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We show that the Wald-Zoupas prescription for gravitational charges is valid in the presence of
anomalies and field-dependent diffeomorphism, but only if these are related to one another in a specific
way. The geometric interpretation of the allowed anomalies is exposed looking at the example of BMS
symmetries; they correspond to soft terms in the charges. We determine if the Wald-Zoupas prescription
coincides with an improved Noether charge. The necessary condition is a certain differential equation, and
when it is satisfied, the boundary Lagrangian of the resulting improved Noether charge contains, in general,
a nontrivial corner term that can be identified a priori from a condition of anomaly freeness. Our results
explain why the Wald-Zoupas prescription works in spite of the anomalous behavior of BMS trans-
formations, and should be helpful to relate different branches of the literature on surface charges.
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I. INTRODUCTION

The seminal Wald-Zoupas (WZ) paper [1] provides a
prescription for the gravitational charges in the two cases of
conservative boundary conditions and of leaky boundary
conditions, with the latter making the system nonconserva-
tive and thus the infinitesimal Hamiltonian generators
nonintegrable. It reproduces the Arnowitt-Deser-Misner
(ADM) charges for the Poincaré group at spatial infinity
in the first case, the Geroch and Dray-Streubel charges for
the Bondi-van der Burg-Metzner-Sachs (BMS) group at
future null infinity in the second case; it has been recently
extended to null hypersurfaces at finite distance and
nonexpanding horizons [2,3]. On the other hand, a more
general framework has been developed by various authors
in the last few years [4–12]. In particular, [10,11] have
shown how to include in the covariant phase-space arbitrary
field-dependent diffeomorphisms and anomalies—quan-
tities whose field-space transformation under diffeomor-
phisms differs from the Lie derivative. Can the WZ
prescription be applied in this more general context?
Answering this question is useful for future research, but
also to better understand the precise relation between the
recent literature and [1]. In particular, both field-dependent
diffeomorphisms and anomalies appear in the study of the
BMS group. How were Wald and Zoupas able to derive the
BMS charges without including either of these two features

in their description? Answering these two related questions
motivates the analysis presented in this paper.
The answers lie in the fact that even if Wald and Zoupas

did not explicitly consider field-dependent diffeomorphisms
and anomalies, they made some precise assumptions about
covariance. Our first result is to translate these assumptions
to the formalismof [10,11].We find that theWZprescription
can be applied also in the presence of a certain class of field-
dependent diffeomorphisms and anomalies, contrarily to
what one may initially expect, but only provided these
satisfy a precise relation relating one to the other.We refer to
the allowed anomalies as soft anomalies. Their presence and
the relation they satisfy are instrumental to understanding
why the procedure works at future null infinity, thus
answering our motivational question.
Our second result is to present a detailed comparison

between the WZ prescription for the charges, and the
prescription used in [4–7,10,11], which we refer to as
boundary-improved, or improved for short, Noether
charges. These are always well-defined, so the question
is whether they can be used to reproduce the WZ charges
when the prescription for the latter is fulfilled. We find that
a positive answer requires finding a corner Lagrangian
satisfying a certain differential equation determined by the
symmetry vector fields. When this equation can be solved,
the WZ charges can be derived as improved Noether
charges. Furthermore, the resulting Noether charges can
be identified a priori, as those associated with a symplectic
potential and boundary Lagrangian which are both
anomaly free since anomalies can be present only in the
corner terms. What makes this construction possible is
(i) the existence of a covariant bulk Lagrangian given by the
Einstein-Hilbert action or the tetrad action, and (ii) the
relation satisfied by the soft anomalies. This result provides
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an independent definition of the WZ charges which fits
very naturally in the language of [10,11].
We complete our analysis looking at the four examples

of spatial infinity; conservative boundary conditions on a
timelike boundary, leaky boundary conditions on arbitrary
null hypersurfaces and at future null infinity. In all cases we
show how to reproduce the WZ expressions as improved
Noether charges satisfying our criteria. The first three cases
are rather trivial, but we include them because we believe
they have useful pedagogical value. The nontrivial and
most interesting example we consider is future null infinity.
There we can see all the details of our analysis coming into
play, understand how the allowed anomalies play a key role
in order to get the standard BMS charges, and also explain
how WZ were able to obtain them without addressing
anomalies explicitly. This example further allows us to
endow the WZ-allowed anomalies with a physical inter-
pretation. They correspond to soft terms in the BMS flux-
balance laws, i.e., those responsible for memory effects.
One of the effects of the WZ prescription is to ensure that
the anomaly contribution is entirely removed from the flux
of the improved Noether charge, and placed instead in the
definition of the charge. This example prompts us to refer to
the anomalies allowed by the WZ prescription as soft.
To be clear, the fact that the BMS charges can be

derived as improved Noether charges is not new as it was
already shown in [9,11]. However, these two papers derive
the required boundary Lagrangian and the corner shift
a posteriori, from the prior knowledge of the BMS charges.
What we do here instead is to derive them a priori, based on
our criteria ensuing from a direct translation of the WZ
conditions.
To conclude the introduction, let us briefly remind

the reader of the general importance of including field-
dependent diffeomorphism and anomalies in the covariant
phase space, to put potential future applications of our
results in context. Field-dependent diffeomorphisms appear
in various physical circumstances. As a first example,
consider the bulk extension of boundary symmetry vectors.
It is often convenient to fix a specific extension, for instance
Tamburino-Winicour [13] or Geroch-Winicour [14], or
gauge-fixing preserving by a bulk coordinate choice
[15–17]. These requirements make the extension field
dependent, and extensions can be relevant in the study
of subleading charges, e.g., [18–23]. Field dependence of
the boundary symmetry vectors themselves occurs in
enlargements of the BMS symmetry [9,15,16,24], generi-
cally turning the Lie algebra into an algebroid [15], and in
investigations of integrability using the ‘slicing’ method,
see e.g., Refs. [25,26]. Finally, field-dependent gauge
parameters are familiar in the canonical approach, where
they can be used to simplify the structure of the constraints,
see e.g., Refs. [27] for recent work using this idea. As for
the anomalies [4,6,28], they can appear whenever back-
ground structures or boundary conditions are present, and

are central to the program of boundary observables in
general. Taking them into account systematically helps us
to deepen our understanding of the covariant phase space
and extend its applications. For instance, anomalies allow
one to compute the cocyle of the Barnich-Troessaert
bracket from first principles [29], and explain the difference
between the WZ charges and the Brown-York charges on
null hypersurfaces [30]. We hope that our paper will help
shed light on how these various structures come together,
and contribute to new applications of the formalism to
address outstanding questions; in particular, in the study of
extensions of the BMS symmetries and modifications of the
charges that arise in that context [16,21,22,31].
In the Appendix we give a brief review of the definition

and evaluation of anomalies, and provide all explicit
formulas relevant to the case of future null infinity. We
also add some considerations on the subsequent derivations
of the BMS charges that appeared in [32–34].
We use the mostly-plus spacetime signature. Greek

letters are for spacetime indices, and we will sometimes
denote scalar products by a dot. When needed, lower case
latin letters a; b;… are hypersurface indices, and upper
case latin letters A;B;… are indices for the 2d cross
sections of the hypersurface. In all cases, (,) denotes
symmetrization, h; i trace-free symmetrization, and ½; �
antisymmetrization. An arrow ← under a p-form or
p-form index means pullback, and ¼̂ means on shell of
the field equations. We use units 16πG ¼ c ¼ 1.

II. CHARGE PRESCRIPTIONS

The starting point for the covariant phase space is a
symplectic potential θ related to the variation of the
Lagrangian by

δL ¼̂ dθ; ð2:1Þ

from which one reads the (pre)symplectic 2-form current
ω ≔ δθ, which satisfies dω ¼̂ 0. We use small greek letters
for the currents, namely the integrands, and capital letters
for the integrated quantities. However, we will loosely
speak of both as symplectic potentials and 2-form, for ease
of language. We are interested in the general situation that
includes field-dependent diffeomorphisms, hence δξ ≠ 0,
and anomalies, namely noncovariant quantities whose field
space transformation under a diffeomorphism differs from
the Lie derivative. We follow [10] for notation and the
general framework, and define the anomaly operator

Δξ ≔ δξ − £ξ − Iδξ: ð2:2Þ

Here £ξ is the Lie derivative in spacetime, and δξ the Lie
derivative in field space. See Appendix A for more details
and the definition of the field-space inner product Iδξ. This
term only acts on field-space forms. We call covariant a
field-space quantity such that δξ ¼ £ξ. We see from (2.2)

ODAK, RIGNON-BRET, and SPEZIALE PHYS. REV. D 107, 084028 (2023)

084028-2



that this amounts to a vanishing anomaly for field-space
scalars. But for field-space forms, covariance in the
presence of field-dependent diffeomorphisms may require
a nonvanishing anomaly, compensating the action of Iδξ.
Accordingly, it is Δξ þ Iδξ that measure the noncovariance,
and not the anomaly operator alone. The lack of covariance
can occur in the presence of background structures which
are described by spacetime fields but constant under
variations in field space, and it will be necessary to
understand the charges on null hypersurfaces. The only
restriction made in [10] and also here, is that the non-
covariance of the Lagrangian should at most be a boun-
dary term, namely that there are choices of Lagrangians
such that the background structure that may lead to a
breaking of covariance only enters through boundary
terms.1 Accordingly, L ¼ Lcov þ dl with ΔξLcov ¼ 0

and ΔξL ¼ daξ, and we define the Lagrangian and sym-
plectic anomalies aξ and Aξ via

Δξl ¼ aξ; Δξθ ¼ δaξ − aδξ þ dAξ: ð2:3Þ

If such anomalies are present, they show up in the formula
for the Noether charges as well as for the Hamiltonian
generators: Following the standard procedure [35] but
allowing for nonvanishing anomalies and field-dependent
diffeomorphisms, one obtains [10]

jξ ≔ Iξθ − iξL − aξ ¼̂ dqξ; ð2:4Þ

=δdhξ ≔ −Iξω ¼̂ dðδqξ − iξθ − qδξ − AξÞ: ð2:5Þ

The Lagrangian and symplectic anomalies enter respec-
tively the Noether charge qξ and (infinitesimal)
Hamiltonian generator dhξ expressions. Notice that the
Hamiltonian generator depends only on θ, whereas the
Noether charge depends on θ but also explicitly on the
boundary Lagrangian via its anomaly.
To understand the meaning of aξ in the first formula,

consider the pullback on a given hypersurface. If the
hypersurface is a boundary used to define the covariant
phase space, then the relevant symmetry vectors ξ are those
tangent to it, since they are the only ones preserving the
boundary and thus the phase space. Then the pull-back of
iξL ¼ 0 vanishes, and the variation of the Noether charge
along the boundary has two contributions: one is the
symplectic flux of the symmetry, and this is the contribu-
tion due to physical degrees of freedom crossing the
hypersurface. The other is the anomaly. This term induces
a charge variation caused by the background structure,
thus introducing a nondynamical contribution to the flux.

For instance, this term is nonzero if one uses a normal that
depends on the foliation to which the boundary belongs.2

In the second formula, Aξ contributes as an additional
potential obstruction to integrabillity. If the right-hand
side of (2.5) is not integrable, the diffeomorphism trans-
formation fails to be a Hamiltonian vector field, whence the
thermodynamical notation δ [37]. Nonintegrability happens
for instance in the presence of a lateral boundary B joining
two spacelike slices, because in this case the property
dω ¼̂ 0 is not enough to guarantee that the symplectic form
is conserved between the two spacelike slices. When there
is flux leaking through the lateral boundary, (2.5) will, in
general, not define a Hamiltonian generator, and one needs
a prescription for the charges. The obvious choice of taking
the Noether charge via (2.4) leads for the Einstein-Hilbert
action to the Komar formulas. These have various useful
properties, but also shortcomings that have been known for
a long time (such as wrong factors of 2 in the energy at
both spatial and future null infinity, generically noninvar-
iant flux-balance laws, and so forth, see e.g., Refs. [35,38]),
hence the motivation for a different prescription.3

In order to understand the prescriptions, it is important to
recall that the covariant phase space constructed above is
not unique, because of the existing freedom in choosing the
symplectic potential. This freedom is twofold [42]: first,
given any θ satisfying (2.1) we can add to it any spacetime
exact 3-form dα; second, we can add a boundary term to the
Lagrangian, which does not change the field equations
nor the symplectic structure. These two cohomological
ambiguities (one in spacetime and one in field space) are
summarized by

L→LþdY; θ→ θþdαþδY; ω→ωþδdα: ð2:6Þ

1This includes the treatment of anomalous bulk Lagrangians
like ADM, since it differs from the covariant Einstein-Hilbert
Lagrangian by a boundary term.

2A different situation occurs if the background structure breaks
diffeomorphism invariance entirely, for instance if we have matter
fields but the (curved) metric is treated as a fixed background, the
anomaly term aξ is nothing but the energy-momentum tensor of
matter, and one recovers the nongeneral-covariant notion of bulk
Noether charge. This observation allows one to reverse the
standard viewpoint that sees Noether charges as global, becoming
surface charges in the special case of local gauge symmetries; and
consider instead that all Noether charges are surface charges,
becoming global only in the presence of anomalies introduced by
background structures [36].

3The literature contains various interesting proposals on how
to achieve integrability, for instance enlarging the phase space
introducing embedding fields that move the boundary in such a
way that the outgoing flux is absorbed into the definition of
the charge [39,40]. Another approach uses a new Leibnizian
bracket with respect to which the charges are integrable [41].
At least in nondynamical cases, there exists also the possibility of
obtaining integrability finding an appropriate field dependence
of ξ so that the qδξ term cancels the obstruction, a procedure
known as ‘slicing’, see e.g., Ref. [25]. We will not consider
these alternative constructions here, and only discuss the WZ
prescription.
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In particular, the Noether charge defined via (2.4) depends
on the choice of representative, and transforms as

qξ → qξ þ iξY þ Iξα: ð2:7Þ

For a given L, we refer to the choice of θ obtained
simply removing d as the ‘bare’ choice. This choice
follows if the symplectic potential is defined using
Anderson’s homotopy operator [5,35,43–45], which is
the approach taken in [10]. Another mathematical way to
eliminate the freedom is to require the Noether current
(2.4) to be weakly vanishing [45]. These choices are
convenient for bookkeeping and can always be made,
but they are however not needed to obtain the results
used and derived here. In the rest of the paper, we will
consider arbitrary θ’s, without any a priori mathematical
prescription.

A. Improved Noether charge from phase
space polarization

The main idea that we would like to recall from the WZ
paper is that one should resolve the ambiguities in the
definition of the charges by deciding under which physical
requirements they are to be conserved. Mathematically,
this can be controlled by trading the initial symplectic
potential θ (be it the bare one or any other chosen one) for
a symplectic potential such that its pullback on the lateral
boundary B vanishes in the subset of the phase space
corresponding to a desirable physical requirement, such as
a choice of conservative boundary conditions, or a choice
of stationarity conditions. In practice, one takes the
pullback on the lateral boundary and decomposes it as
follows:

θ
←
¼ θ0 − δlþ dϑ; ð2:8Þ

where θ0 is required to be in the form pδq for some choice
of polarization of the phase space. The new θ0 corresponds
to L0 ≔ Lþ dl, namely a theory with the same field
equations, and is equivalent to θ under the freedom (2.6).
The idea of changing from the initial θ to a physically
motivated θ0 dates back to [1,46], was generalized
in [4,47] to include the corner potential ϑ, and takes a
central role in various followup works [5–7,10,11].
The terms l and ϑ appearing above are produced by the

manipulations needed to put (the pullback of) θ in the
chosen θ0 form. The explicit form of ϑ depends also on the
representatives chosen for θ and θ0. Since we require
θ0 ¼ pδq, l is manifestly the boundary term to be added
to the Lagrangian to have a well-defined variational
principle with those boundary conditions. However (2.8)
does not identify a unique l, since the condition is still
satisfied under the replacement

ðl;ϑÞ → ðlþ dc;ϑþ δcÞ: ð2:9Þ

Therefore, for a given representative θ, one can compute a
unique ϑ only once a choice for θ0 and l is made.4 For
instance, a nonvanishing ϑ occurs for Dirichlet boundary
conditions if L is the Einstein-Hilbert Lagrangian and l is
the Gibbons-Hakwing-York (GHY) term, as established as
early as [48]. As there observed, the resulting ϑ shifts the
symplectic 2-form,

ω0 ¼ δθ0 ¼ ω − dδϑ: ð2:10Þ
We want to characterize the physical situations in which

the new symplectic potential vanishes on the lateral
boundary B, namely

θ0 ¼B 0: ð2:11Þ

Since it is in the form θ0 ¼ pδq, we can distinguish two
cases, depending on whether it is δq or p to vanish, and
which we name following [1].
Case I: We impose conservative boundary conditions

δq¼B 0. These are restrictions on the variations
that apply everywhere in the phase space. The new
symplectic 2-form ω0 also vanishes on the lateral
boundary,

ω
←
¼B 0; ð2:12Þ

and therefore is preserved between the initial and
final spacelike hypersurfaces. This makes the
system conservative, hence the name. In other
words, the system is in case I within each
cotangent space at fixed q, but not for trajectories
that vary both p and q.
Clearly, different choices of conservative

boundary conditions are possible, corresponding
to different choices of polarizations, and this
turns out to affect the charges. Most literature
focuses on Dirichlet boundary conditions, but the
charges obtained from Neumann and York boun-
dary conditions were computed in [49] for a
timelike lateral boundary. They turn out to be
different, and in agreement with what can

4Unique ϑ up to addition of exact 2-forms, but these will be
irrelevant in the following since we will only look at compact
corners. Accordingly, we will ignore all 2d-exact forms in the rest
of the paper. Notice also that fixing both θ0 and l can be
equivalently seen as fixing θ0 and ϑ. This is the viewpoint taken
in [11], where the chosen quantities are referred to respectively as
boundary and corner (symplectic) fluxes. The freely choosable
ϑ’s have to be related by (2.9), just like the freely choosable θ’s
have to be related by (2.8).
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be computed using 3þ 1 canonical methods.
See Ref. [50] for an exploration of alternative
boundary conditions in the case of a null
boundary.

Case II: There exist solutions for which p¼B 0. They
provide a notion of stationary backgrounds,
whose precise nature depends on the form of p,
namely on the polarization chosen. We can dis-
tinguish two situations, one in which all p’s
vanish, and one in which only some vanish,
and (2.11) is achieved by the vanishing of the
complementary δq’s. Either way, the symplectic
2-form ω0 is in general not conserved,

ω
←
≠
B
0; ð2:13Þ

because there are no restrictions on the variations
δp and at least some of the δq’s. Therefore these
are radiative or leaky boundary conditions.
Different choices of pδq will select different

background satisfying this requirement, or in other
words, a different notion of stationarity.

It should be stressed that we are making these character-
izations with the goal of resolving the ambiguities in the
charges, and not of restricting the phase space. Once the
corresponding θ0 is chosen, we compute the associated
charges, and then we use them in the full phase space. This
means that charges defined using conservative boundary
conditions will not be conserved in the full phase space, and
charges defining using a specific stationarity condition will
not be conserved when evaluated around any other solution
not respecting it. Clearly, charges constructed using the
different perspectives of Case I, II or III but corresponding
to the same polarization are equal and have equal
properties.
The formulas for charges associated with the new

symplectic potential θ0 take exactly the same form as
before, namely [10]

j0ξ ≔ Iξθ0 − iξL0 − a0ξ ¼̂ dq0ξ; ð2:14Þ

=δdhξ ≔ −Iξω0 ¼̂ dðδq0ξ − iξθ0 − q0δξ − A0ξÞ; ð2:15Þ

where L0 ¼ Lþ dl and ω0 ¼ δθ0. In other words, the
formalism allows one to treat all choices on equal footing.
Again, the infinitesimal Hamiltonian generator depends
only on θ0, whereas the Noether charge depends on θ0 but
also explicitly on the boundary Lagrangian l via its
anomaly, ðθ0;lÞ↦ q0ξ. In particular, q0ξ depends on any
corner term that may be present in the choice of l, which
is not visible from L0 and θ0. The relation between

the Noether charges associated to ðθ0;lÞ and the initial
ones is5

q0ξ ¼ qξ þ iξl − Iξϑ: ð2:16Þ

Keeping the primed notation is useful is we want to
compare boundary-improved charges to specific bare
charges. For instance, take L to be the Einstein-Hilbert
Lagrangian, and θ its bare symplectic potential. Then qξ is
the original Noether charge [35], given by the Komar
formulas and their limitations. If we add the boundary
Lagrangian l given by the Gibbons-Hawking-York term
and choose the Dirichlet polarization for θ0, the improved
Noether charges give the Brown-York formulas [4,46].
In [49] we referred to this prescription as Freidel-Geiller-
Pranzetti formula, since we used the notation of [5], but
given the number of authors contributing to these develop-
ments, it seems fair to simply talk about improved Noether
charges. The improvement with respect to the original,
‘bare’ Noether charges, is two-fold. First, the Brown-York
formulas give the correct ADM charges at spatial infin-
ity [51], unlike the Komar formulas. Second, (2.16) can be
made invariant under the cohomological ambiguities
(2.6) [7,11]. Indeed, if we require that the choice of
polarization θ0 is kept fixed under (2.6), we have
ðl; ϑÞ→ ðl − Y; ϑþ αÞ; therefore even if qξ changes as
in (2.7), q0ξ is invariant. In other words, it is the prescription
of working with a unique θ0 that eliminates these
ambiguities.
On the other hand, fixing θ0 alone is not sufficient to

obtain a unique charge, because as anticipated above, q0ξ
depends also on the boundary Lagrangian chosen. This can
be seen explicitly observing that (2.16) is affected by the
corner ambiguity (2.9), which leads to [11]

q0ξ → q0ξ − Δξc: ð2:17Þ

Therefore, even if the cohomology ambiguities ðY; αÞ are
fixed by the choice of θ0, there is still an ambiguity in the
charge if anomalies are present. This ambiguity is removed

5The reader may notice a notational hiccup at this point.
Logically, it would make more sense to denote the boundary
Lagrangian l0, so that one can use l to refer to whatever
choice of corner was present in the initial qξ. Accordingly, one
should add primes on both l and ϑ on the right-hand side of
(2.8), and following formulas. We choose not to do so and
instead follow the notation of [10]. This allows us to keep the
notation lighter, and also refer to that paper for all proofs.
Notice also that the practical use we will make of the unprimed
notation will be to specialize to the bulk covariant Lagrangian
with no boundary term, so no confusion will arise as to what l
refers to.
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if one does not prescribe only θ0 but also a specific choice
of l, thus fixing c.6

Let us now discuss how the restriction (2.11) affects
integrability, and the ensuing relation between the improved
Noether charge and the Hamiltonian generator. Consider
first the familiar case of no anomalies and δξ ¼ 0. When
(2.11) holds, the improved Noether charge q0ξ is conserved
(this follows because the ξ’s allowed in the covariant phase
space are tangent to the boundary, and thus the second term
in (2.14) vanishes taking the pullback). The Hamiltonian
generator (2.15) is integrable, and theHamiltonian coincides
with q0ξ, up to constant terms in field space. Such terms can
be fixed for instance looking at a reference solution [1],
requiring the Hamiltonian charges to vanish there. Having
established this, one can take the prescription of using the
improved Noether charges in the full phase space. This
prescription gives charges that by definition have the useful
property of being conserved and Hamiltonian generators in
the conservative or stationary subspace. Notice that this
prescription is equivalent to defining the charges starting
from to the Hamiltonian generator and subtracting the flux,
since−Iξω0 þ diξθ0 ¼ dδq0ξ. The important point to stress is
that q0ξ is not associated to an arbitrary choice of symplectic
potential, but to the physically preferred θ0. This removes
any ambiguity in the procedure.
In the general case with δξ ≠ 0 and anomalies, we can

compare the Hamiltonian generator and the improved
Noether charge as follows. When (2.11) holds, the
Hamiltonian generators are integrable if and only if there
exists a functional X such that

dY ¼ δX; ð2:18Þ

where

Y ¼ −q0δξ − A0ξ: ð2:19Þ

This requirement means that

X ¼ dsξ þ Cξ; δsξ ¼ Y; ð2:20Þ

and Cξ is a constant in field space. If this condition is
satisfied, we can again prescribe the charges on the full
phase space subtracting the symplectic flux, via

δdhξ ≔ −Iξω0 þ diξθ0 ¼̂ dðδq0ξ − q0δξ − A0ξÞ ¼ δdðq0ξ þ sξÞ:
ð2:21Þ

The first equality follows from (2.15), and the second from
(2.20). This is formula provides a definition for the
Hamiltonian charge associated to the physically selected
θ0, and works only if the anomalies satisfy the descent-type
equation (2.18). This is not yet the WZ prescription but a
generalization thereof, since as we will review in the next
section, theWZ prescription makes additional requirements
than just a specific pδq form of θ0.
From the definition (2.21) it follows that

hξ ¼ q0ξ þ sξ; ð2:22Þ

up to field-space constants as before (the constant Cξ above
drops out on the other hand). Because of the extra term sξ,
the prescription (2.21) associated with the chosen θ0 does
not coincide in general with the improved Noether charge q0ξ
associated with a given ðθ0;lÞ. However, there are two
interesting remarks to make at this point. First, the
formula (2.15) is invariant under the corner Lagrangian
shift (2.9), unlike the improved Noether charge which
changes according to (2.17). Therefore, we can change the
boundary Lagrangian by a corner term without affecting the
Hamiltonian generator, and use this freedom to find a corner-
improved Noether charge that matches the Hamiltonian
charge. In other words, one can ask whether there is a choice
of l compatible with (2.8) such that its Noether charges
match the Hamiltonian prescription. Comparing (2.17) with
(2.22), we see that the matching is possible if there exists a
corner term c whose anomaly reproduces the integrable
anomalies appearing in (2.20), namely

Δξc ¼ −sξ: ð2:23Þ

If such c exists, the corner-improved Noether charge asso-
ciated with θc ¼ θ0 and lc ¼ lþ dc matches the
Hamiltonian charge,7

qcξ ¼ q0ξ þ sξ ≡ hξ: ð2:24Þ

Tobeprecise, the last equivalence is only up to the field-space
constants mentioned above, since these can be freely added

6This may be taken as a suggestion that what matters to get
unique charges is prescribing a specific action principle including
boundary and corner terms, as pointed out in [7,11]. However
more work is needed in our opinion before this suggestion is
borne out, because counterexamples exist, both ways. Going one
way, one can think of the example of adding an anomalous corner
term (hence changing the charge) but which is globally defined
(hence not entering as corner terms in the action principle). Going
the other way, the example of timelike boundaries with non-
orthogonal corners reviewed below in Sec. III A shows that there
is no corner shift needed to get the BY charges corresponding to
the WZ prescription even though there are corner terms in the
action principle. At least in the case of the WZ prescription, what
we will find is that the corner shift is not related to corner terms in
the action principle, but rather in removing anomalies from the
boundary Lagrangian.

7The notation c stands for corner improved, and should not be
confused with the notation for covariant used in [11]. We do not
use any specific notation for covariant quantities, although
typically we will associate them with the initial, unprimed
quantities.
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to hξ in order to satisfy special vanishing requirements, but
not to qcξ which is defined uniquely. The condition (2.23) is a
partial differential equation that relates the corner improve-
ment to the allowed anomalies of the symmetry vectors ξ.We
will see below in the case of future null infinity an example of
this equation and of its solution. In general, we do not know
whether it is always possible or not to solve it.Whenever it is,
the generalizedWZcharge (2.21) can always bederived as an
improved Noether charge. We will show in the next section
that the WZ additional requirements allows us to get a more
explicit form for sξ, and wewill make more comments about
solving it then.
The second remark is that the flux of this corner-

improved Noether charge is still anomalous, since it is
given by

dq
←

c
ξ ¼ Iξθc − acξ ¼ Iξθ0 − a0ξ þ dsξ: ð2:25Þ

This provides also the flux of the Hamiltonian charge (up to
the usual field-space constants), since the δ-variation of the
above expression must match (2.21). Therefore, the charges
are not automatically conserved when (2.11) holds. Clearly,
additional physical requirements could be useful to achieve
conservation when θ0 vanishes on the lateral boundary. We
will see next that the WZ prescription provides precisely
such missing requirements, by forcing acξ ¼ 0. As a result,
Iξθ0 gives the flux responsible for the variation of the
charges, and one obtains charges that are conserved under
the desired circumstances for which θ0 vanishes.8

B. Wald-Zoupas prescription

We now review the WZ prescription from [1] and
highlight the additional inputs that are brought in with
respect to the previous general discussion. The prescription
is based on removing the radiative part from the symplectic
flux, identified making use of a background structure that
can be attributed to the lateral boundary. To do so, one
selects a symplectic potential θ̄ based on three criteria:
(1) It must be a potential for the pullback of the

symplectic 2-form on the boundary, namely

ω
←
¼ δθ̄: ð2:26Þ

(2) It must be a local and covariant functional of the
dynamical fields and background structure. This is
sometimes assumed to imply vanishing anomalies
and field-independent diffeomorphisms, but we will
see shortly that it is more general than that—and this
is crucial to understand the future null infinity results.

(3) It should vanish for conservative boundary condi-
tions, Case I presented earlier, or for arbitrary pertur-
bations around stationary solutions, Case II. The latter
means that it must be of the form FðgÞδg where
FðgstationaryÞ ¼ 0. In reference to the earlier discus-
sion, ifwe thinkof θ̄ as a certainpδq polarization, then
WZ stationarity is of the type p ¼ 0.

Ideally, these criteria should be enough to single out a
unique choice for θ̄, and this is indeed the case in the
examples that we will review below. In Case II, the
preferred θ̄ satisfying all criteria is identified as the radiative
symplectic flux, namely, a quantity whose vanishing means
that all metrics sharing the background structure agree that
the solution is stationary. As a consequence of the require-
ments made, one typically obtains

θ̄ ¼ θ
←
þ δb; ð2:27Þ

for some nonvanishing b defined on N . We can interpret
this formula as a special case of (2.8), where θ0 ¼ θ̄ has to
satisfy the WZ requirements above, b is the pullback of a
boundary Lagrangian up to the corner ambiguity (2.9), and
ϑ vanishes or is at most a total variation so that it can be
reabsorbed in b. An arbitrary dϑ cannot be present because
it would violate (2.26); hence, condition 1.
The WZ prescription for the integrable charges is then to

subtract the radiative flux on N ,

=δdq
←

WZ
ξ ≔ −Iξωþ diξθ̄ ¼̂ dðδq̄ξ − q̄δξ − ĀξÞ: ð2:28Þ

This is the same formula that we discussed in the previous
section. The novelty is the additional restriction given by
conditions 1 and 2. To study the most general situation
under which the WZ prescription works (namely if we can
replace =δ with δ), let us look closely at the covariance
requirement. This property, as spelled out in footnote 9
of [1], translates in our notation to9

8Even if the variation of the charges is given in the end by Iξθ0,
it is still preferable to characterize the physical requirements such
as stationarity in terms of θ0, as requirements on Iξθ0 may be
ambiguous. We will see in [50] an example of such ambiguity.

9Referring to the background fields as χ and the dynamical
fields as ϕ, the requirement spelled out in that footnote is
θ̄ðχ;φ�ϕ;φ�δϕÞ ¼ φ�θ̄ðχ;ϕ; δϕÞ, and assumes the transforma-
tion law δϕ ↦ φ�δϕ. This transformation law is fine if the
diffeomorphism is field independent, but if it is field dependent,
one has to use δϕ ↦ δðφ�ϕÞ in order for the total system
backgroundþ perturbation to be physically equivalent after the
diffeomorphism. Accordingly, the WZ requirement should be
modified to θ̄ðχ;φ�ϕ; δðφ�ϕÞÞ ¼ φ�θ̄ðχ;ϕ; δϕÞ. At the linearized
level, this gives

θ̄ðχ; £ξϕ; δϕÞ þ θ̄ðχ;ϕ; δ£ξϕÞ ¼ £ξθ̄ðχ;ϕ; δϕÞ
¼ θ̄ð£ξχ;ϕ; δϕÞ þ θ̄ðχ; £ξϕ; δϕÞ
þ θ̄ðχ;ϕ; £ξδϕÞ;

from which (2.29) follows. In a previous version of the paper on
arXiv, we considered a stronger condition in which Δξθ̄ and Iδξθ̄
vanish individually. This is not necessary, and the correct version
leads us to simpler equations when applied to the BMS analysis.
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Δξθ̄ þ Iδξθ̄ ¼ 0 ⇔ ðδξ − £ξÞθ̄ ¼ 0: ð2:29Þ
In other words, the anomaly of θ̄ and the allowed field-
dependent diffeomorphisms are constrained, so that θ̄ is
covariant; its field-space derivative coincides with the
spacetime Lie derivative. This condition is indeed sufficient
to guarantee integrability, since we can rewrite (2.28) using

−Iξωþ diξθ̄ ¼ δIξθ̄ − Δξθ̄ − Iδξθ̄

⇒ =δdq
←

WZ
ξ ¼ δdq

←

WZ
ξ ¼ δIξθ̄; ð2:30Þ

namely

dq
←

WZ
ξ ¼ Iξθ̄ ð2:31Þ

up to (spacetime exact) field-space constants, that can be
used as described earlier if one needs to set the charges to
zero for a specific reference solution.
On the other hand, the WZ covariance requirement does

not imply that all anomalies vanish. However, it implies
some restrictions. Indeed, we know that

Δξθ̄ ¼ Δξ θ
←
þ δΔξb − Δδξb ¼ δāξ − āδξ þ dĀξ ð2:32aÞ

Iδξθ̄
←
¼ dq̄δξ þ aδξ: ð2:32bÞ

In the first we usedΔξθ 
¼ Δξθ

←
which is valid for tangent ξ.

Hence, (2.29) gives

Δξθ̄ þ Iδξθ̄ ¼ δāξ þ dðĀξ þ q̄δξÞ ¼ 0 ð2:33Þ

or

δāξ ¼ −dðq̄δξ þ ĀξÞ: ð2:34Þ

In the above formula one can freely replace Āξ withAξ, since
anyways there is no corner difference between θ̄ and θ. This
relation is a special case of (2.18), in which X is determined
by the Lagrangian anomaly āξ. As a consequence,

āξ ¼ dsξ þ Cξ; δsξ ¼ −q̄δξ − Aξ: ð2:35Þ

We see that the WZ covariance requirements (2.29) are
compatible with the presence of field-dependent diffeo-
morphisms and anomalies, provided δξ, aξ and Δξb are
related by (2.34). We refer to such WZ-compatible anoma-
lies as mild or soft anomalies. We will see below an
example that justifies this name. This is the most general
situation allowed by the WZ requirements, and as seen
above it is enough to guarantee integrability of their
prescription for the charges. If we compare with the
generalized WZ prescription (2.21), we see that (2.34) is
a special case of the integrability condition (2.18). The
restriction comes from having added conditions 1 and 2.

We stress that we have done nothing new concerning the
charges and we have merely rederived the same formula of
WZ, namely (2.31), under the same conditions as they did.
Our only contribution is to point out that such conditions,
and therefore the derivation, do admit anomalies, provided
they are soft in the above sense.
Now that we have clarified that the WZ prescriptions

also works in the presence of the soft anomalies, we can ask
if it is possible to interpret the resulting charges as
improved Noether charges for some specific choice of
boundary Lagrangian. The reason why this is not obvious is
that since āξ ≠ 0, we have

Iξθ̄
←
¼ dq̄ξ þ āξ; ð2:36Þ

where

q̄ξ ≔ qξ þ iξb; āξ ≔ aξ þ Δξb: ð2:37Þ

This can be proved from (2.27), or read off directly
from (2.14) using the fact that we can interpret b as a
boundary Lagrangian.10 The compatibility of this equation
with (2.31) follows from (2.34), and if āξ ≠ 0 there is a
mismatch.
Accordingly, we can distinguish three situations,

depending on what anomalies are present:
(a) The preferred symplectic flux θ̄ is associated to a total

Lagrangian Lþ db without anomalies. Then āξ ¼ 0,
and we have

qWZ
ξ ¼ q̄ξ ¼ qξ þ iξb: ð2:38Þ

In this case, the WZ charge coincides with an
improved Noether charge with boundary Lagrangian
l ¼ b and vanishing ϑ. The flux formula (2.31) is
consistent with (2.36) since the anomaly vanishes.
Remark: covariance of both θ and θ̄ is not enough to

guarantee āξ ¼ 0, see (2.3).
(b) There are soft anomalies, and Cξ ¼ 0. Then

āξ ¼ dsξ; δsξ ¼ −q̄δξ − Aξ: ð2:39Þ

Then

qWZ
ξ ¼ qξ þ iξbþ sξ: ð2:40Þ

It differs from the improved Noether charge q̄ξ that
would be immediately associated with (2.27), namely
with boundary Lagrangian l ¼ b and ϑ ¼ 0. Notice
that the additional term sξ is precisely the shift in the
charge required so that the anomaly is removed from

10That fact that b is only defined on the boundary, namely that
db≡ 0, does not affect the derivation.
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its flux, and this is how (2.36) is mapped to (2.31).
When anomalies are present, the WZ prescription
eliminates them from the flux, and puts them in the
definition of the charge.
Next, we can ask if there exists a choice of boundary

Lagrangian whose improved Noether charges repro-
duce the same shift. This is possible if q̄ξ and qWZ

ξ are
related by (2.16), namely if we can find a corner term
that satisfies (2.23), the same general equation of
the previous section applies here. If a solution to this
equation exists, then the WZ charge is the im-
proved Noether charge qc with boundary Lagrangian
lc ¼ bþ dc. This fixes the corner ambiguity in the
charges. Notice that Δξlc ¼ −aξ and that lc is not
unique, since any further shift by an anomaly-free
corner term will also work, and produce the same
charges.
Remark: If we start from a covariant Lagrangian,

aξ ¼ 0 and the required shift can be identified com-
puting the anomaly of b,

āξ ¼ Δξb ¼ dsξ: ð2:41Þ

As a consequence, the corner-improved boundary
Lagrangian is covariant,

Δξlc ¼ Δξbþ dΔξc ¼ 0: ð2:42Þ

If furthermore the starting θ is also covariant, then
Aξ ¼ 0 and

δsξ ¼ −q̄δξ: ð2:43Þ

This means that q̄δξ is integrable, and exposes an
interesting interplay that occurs between soft anoma-
lies and field-dependent diffeomorphisms. This inter-
play will be crucial below to understand why one can
do calculations for the BMS group passing over
anomalies.
From this analysis we deduce that when it is

possible to reproduce the WZ charges as improved
Noether charges, the latter can be identified a priori as
those associated with a covariant choice of bulk
and boundary Lagrangians. All allowed anomalies
can be restricted to corner terms. Again lc is not
unique, since adding anomaly-free corner terms will
give the same charges. Therefore, it is enough to
pick any representative in the class of anomaly-free
Lagrangians.

(c) A general soft anomaly is present, including Cξ. The
flux of the improved Noether charge contains an extra
term with respect to the WZ flux. The two equations
are still compatible because (2.31) is valid up to field-
space constant terms. If Cξ is spacetime-exact it can be

reabsorbed in the Hamiltonian charge, and the match-
ing with an improved Noether charge can be obtained
following the same analysis as case (b). If Cξ is not
spacetime-exact, the matching is not possible. We
could not find any examples in which this situation
occurs, but we have no arguments to rule it out either.
Lacking both, we refrain from drawing any conclu-
sions about this case.

Notice that (2.43) can also be proven directly from
Noether’s theorem, as follows. For an arbitrary δξ and
assuming no anomalies in the initial Lagrangian and
symplectic potential, we have

dqδξ
←
¼ Iδξθ 

− iδξL 
¼ Iδξθ

←
− iδξL 

¼ ðδξ−Lξ −ΔξÞθ
←
− iδξL 

¼ ðδξ −LξÞðθ̄− δbÞ− iδξL 
¼−ðδξ− £ξ −ΔξÞδb− iδξL 

¼−δΔξb− £δξb− iδξL 
: ð2:44Þ

If δξ is now restricted to a symmetry vector, it is tangent and
thus the last term vanishes. Using this and £δξb ¼ diδξb, we
recover (2.43). This alternative derivation highlights that a
nonvanishing qδξ means that one is working with a
symplectic potential that is not covariant, in spite of not
being anomalous, because Iδξθ ≠ 0. In this case, the
covariance requirement of the WZ flux means trading

Δξθ ¼ 0; Iδξθ ≠ 0 ⇒ Δξθ̄ ¼ −Iδξθ̄ ≠ 0:

ð2:45Þ

Summarizing, the WZ covariance requirement is enough
to guarantee that the anomaly and field-dependent diffeo-
morphism contributions to (2.5) are integrable. The WZ
prescription (2.28) can be interpreted as an improved
Noether charge constructed so to have the anomalous term
āξ shifted from the flux to the definition of the charge. This
shift can be identified a priori if it possible to find a
covariant boundary Lagrangian. In other words, it is
premature to conclude from (2.27) that b is the boundary
Lagrangian. If Δξb ≠ 0, one should rather look for a
covariant lc ¼ bþ dc.
This leads to the following independent definition of the

WZ charges. First, evaluate (2.27), choosing a covariant θ̄,
namely such that

ðδξ − LξÞθ̄ ¼ 0; ð2:46aÞ

plus the conservative or stationarity requirement chosen as
described in Cases I and II. Second, identify a corner term c
such that

lc ≔ bþ dc; Δξlc ¼ 0: ð2:46bÞ
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Finally, compute the improved Noether charge associated
with ðθ̄;lcÞ, or in other words with the split

θ
←
¼ θ̄ − δlc þ dδc: ð2:47Þ

C. Extending the WZ prescription
to nonfield-exact corners

This prescription can be immediately generalizing con-
dition 1 to (2.8), as pointed out in [4]. All that will change is
that the identification of lc will start from (2.8) instead of
from b. We repeat the procedure in this case, for the sake of
clarity and ease of reference.
First, evaluate (2.8), choosing θ0 such that

ðδξ − LξÞθ0 ¼ 0; ð2:48aÞ

plus the conservative or stationarity requirement chosen as
described in Cases I and II. Second, identify a corner term c
such that

lc ≔ lþ dc; Δξlc ¼ 0: ð2:48bÞ

Finally, compute the improved Noether charge associated
with ðθ0;lcÞ, or in other words with the split

θ
←
¼ θ0 − δlc þ dðϑþ δcÞ: ð2:49Þ

This means computing

qcξ ¼ q0ξ−Δξc¼ qξþ iξlc− Iξϑc; ϑc ≔ ϑþδc; ð2:50Þ

where qξ is the Noether charge associated with the
covariant bulk Lagrangian, and q0ξ is the Noether charge
associated with the pair ðθ0;lÞ. The resulting flux is
anomaly free, dqcξ ¼ Iξθ0 − iξL0, as opposed to the anoma-
lous flux of q0ξ, given by (2.14). Of course, if we choose
directly an anomaly-free l, then q0ξ ≡ qcξ .

III. EXAMPLES

We review here some well-known explicit examples,
which will be useful to provide some physical meaning to
the anomaly āξ. The examples are all based on the Einstein-
Hilbert Lagrangian, hence aξ ¼ 0. We always start from the
bare potential, which is not anomalous,

θ ¼ 1

3!
θμϵμνρσdxν ∧ dxρ ∧ dxσ;

θμ ¼ 2gρ½σδΓμ�
ρσ ¼ 2gμ½ρgν�σ∇νδgρσ; Δξθ ¼ 0: ð3:1Þ

On the other hand, notice that Iδξθ needs not vanish for
arbitrary δξ. Therefore, while this potential is covariant in
the absence of field-dependent diffeomorphisms, in general

we can only say that it is nonanomalous, and it may well be
noncovariant. Indeed, we will see that in the case of
asymptotic Killing vectors at I with a field-dependent
extension, this is not zero, and therefore the bare Einstein-
Hilbert potential is not covariant.
For each example below, we review the WZ prescription,

determine in which of the cases ða; b; cÞ we are, and
compute when needed the anomaly contribution to obtain
the WZ charges as improved Noether charges. The first two
examples concern Case I, and the latter two concern Case II.
As we will see the first three examples are somewhat trivial,
therefore our discussion may appear slightly pedantic there.
However, we believe they allow us to explain our logic
before themore involved fourth example, and also to provide
a useful comparative of the literature.

A. Conservative timelike boundary

Recasting the pullback of the bare Einstein-Hilbert
symplectic potential in Dirichlet form on a timelike hyper-
surface T with normal nμ, one finds (see e.g., [48])

θ
←
¼ ΠμνδqμνϵT − δlþ dϑ; Πμν ≔ Kμν − qμνK; ð3:2Þ

where l ¼ 2KϵT is the Gibbons-Hawking-York term.
The explicit form of ϑ can be found in [46,48] or more
recent references, and will not be needed in the following.
Suffice to say that it can be made to vanish with an
appropriate choice of coordinates, corresponding to
orthogonal corners [46,49].11 By restricting to this situa-
tion, the nonintegrable term in (2.27) is a good candidate
for the preferred symplectic potential θ̄. It satisfies con-
dition 1 with b ¼ l, and condition 3 with conservative

boundary conditions qμρqνσδqρσ¼T 0, or with a notion of
stationarity given by Π ¼ 0. To discuss its covariance, we
evaluate

ðδξ−£ξÞðΠμνδqμνÞ¼ΔξΠμνδqμνþΠμνδΔξqμνþΠμν£δξqμν:

ð3:3Þ

The residual diffeomorphisms that preserve the phase space
must preserve the boundary, hence be tangent to it. As a
consequence δξqμν ¼ £ξqμν, and Δξnμ ¼ 0 provided we
work with a unit-norm normal (see Appendix A).
Therefore,

11If the timelike boundary is at r ¼ constant and the cross
sections are defined by the spacelike hypersurfaces with timelike
unit normal τ ≔ −Ndt, the restriction is a vanishing r-component
of the shift vector. This means that the timelike boundary is
orthogonal with all t ¼ constant hypersurfaces, condition pre-
served by variations such that τμnνδgμν ¼ 0. This restriction
implies ϑ ¼ 0.
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Δξqμν ¼ ΔξϵT ¼ ΔξKμν ¼ 0: ð3:4Þ

We conclude that this θ̄ is covariant for field-independent
diffeomorphisms. The boundary symmetry group is
DiffðT Þ, and the charges will be conserved for arbitrary
variations around solutions with Π ¼ 0, and around
arbitrary solutions but only for variations restricted to
preserve the boundary conditions. In the latter case the
only allowed symmetries of the conservative subset
of the phase space are the Killing vectors of the boundary
metric.
Following the prescription used in [46] and adopted in

the WZ paper, we take conservative boundary conditions,
as in Case I. Now that we have chosen θ̄ and identified b
with the GHY term, the next step is to look at the
anomalies. We have aξ ¼ 0 from the initial choice of the
Einstein-Hilbert Lagrangian, and Δξb ¼ 0 from (3.4).
Therefore, all anomalies vanish and we are in case (a).
According to (2.38), the WZ charge is given by the
improved Noether charge qξ þ iξb. One can easily check
that this is indeed the WZ charge computed in [1,46], and
which gives the Brown-York formulas at finite distance.
Let us also comment about the importance of the

contribution of [4]. If we relax the corner-orthogonality
condition, we have ϑ ≠ 0 hence condition 1 is violated.
This brings us outside of the hypothesis used in [1,46].
However conditions 2 and 3 are still valid. The crucial
insight of [4] was to show that the modification (2.10) of
the symplectic two-form caused by ϑ is not only accept-
able, but indeed leads to the correct Brown-York formulas
in the case of nonorthogonal corners. This calculation is an
example of the generalized WZ prescription (2.50), and the
insight on the relevance of the redefined symplectic formω0
played an important role in the general developments
reviewed in Sec. II A.
The WZ charges so obtained are still improved Noether

charges with boundary Lagrangian b, namely case (a), even
with nonorthogonal corners. In fact, the presence of a
second normal in ϑ will make some of the boundary
diffeomorphisms anomalous, but (3.4) still holds, and
the GHY Lagrangian remains covariant even with non-
orthogonal corners. Therefore no corner shift is needed to
obtain the WZ charges. The BY formulas follow indeed
from (2.38) with b given by the GHY Lagrangian also with
nonorthogonal corners [4,49].12

Finally, one can consider different θ̄’s associated with
other boundary conditions, and this leads to a modification
of the Brown-York formulas [49].

B. Spatial infinity

Lack of radiation makes the case of spatial infinity
trivial. Using ADM falloff conditions, we have

θ
←
¼ δb;

b¼ lim
r→∞
ðð∂rgtt−∂tgrtÞþ rcqabð∂aqbc−∂cqabÞÞϵT ; ð3:5Þ

and ϵT is the volume element on the time-like slices of
constant r. The residual diffeomorphisms with nontrivial
charges correspond to the asymptotic Poincaré group, and
regarding them as limits of the analysis at finite distances
shows that there are no anomalies. Hencewe can take θ̄≡ 0.
Spatial infinity corresponds to Case I in the WZ paper,
namely the pullback of the symplectic 2-form on the lateral
boundary vanishes identically. From (3.5)we see that theWZ
prescription trivializes, since the Hamiltonian generator is
manifestly integrable, with charge given by qξ þ iξb [35],
and as there shown it reproduces the ADM formulas.
From the improved Noether charge perspective, this is

just like the case at finite distances, we are in case (a) since
Δξb ¼ 0, hence the formula coincides with taking b as
boundary Lagrangian. While it is not immediately clear
which boundary conditions are identified by this choice, the
limiting procedure obtained starting from a timelike boun-
dary at finite distance shows that b corresponds to Dirichlet
boundary conditions up to a renormalization term, see e.g.,
Ref. [49]. The renormalization term depends on a chosen
Minkowski background and therefore can potentially
introduce anomalies, however these vanish because of
(3.4) and the restriction to Poincaré transformations of
the asymptotic symmetries.
It would be interesting to see if the situation changes

relaxing boundary conditions as to have nontrivial super-
translations and super-rotation charges, as investigated in
[17]. Finally, we mention that leaky boundary conditions at
infinity (with nonvanishing cosmological constant) have
been studied in [8].

C. Finite null hypersurfaces and NEH

Restricting the variations to preserve the universal
structure defined in [2], one has

θ
←
¼

�
σμν −

θ

2
γμν

�
δγμνϵN þ 2δðθϵN Þ; ð3:6Þ

where σμν and θ on the rhs are the shear and expansion of
the null hypersurface, and we hope that no confusion arises
from the use of the same letter as for the bare symplectic
potential. The nonintegrable first term is the preferred θ̄ put

12This should be compared with the 3þ 1 canonical calcu-
lation with conservative boundary conditions [4,49,52], where
the 2d Hayward corner term is needed in order to obtain the BY
formulas with nonorthogonal corners. Its role is to secure the
right Legendre transform on the boundary. There appears to be no
relation between the Hayward term in the action and the corner
shift (2.17) in the covariant improved Noether charge, which we
use only to remove noncovariance from the boundary Lagrangian
and satisfy the WZ conditions, and is not needed here.
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forward in [2], and satisfies all WZ requirements: covari-
ance restricts the variations in phase space to preserve the
normal and its inaffinity (see Ref. [2] and the related
discussion in [50]), and field independence of the sym-
metry vector fields on the boundary13; the stationarity
requirement is satisfied for arbitrary variations around
hypersurfaces with vanishing shear and expansion, which
are related to nonexpanding horizons (NEH) [3]. It follows
that

b ¼ −2θϵN ¼ −2dϵS: ð3:7Þ

One can check that this quantity has vanishing ano-
maly [6,50], namely Δξb ¼ 0. Furthermore, aξ ¼ 0 since
we started from the covariant Einstein-Hilbert Lagrangian,
hence āξ ¼ 0. We conclude that we are in case (a), the WZ
charge coincides with the improved Noether charge with
l ¼ b and ϑ ¼ 0.
Notice that even if the boundary Lagrangian is covariant,

anomalies are present, and it has been shown that this
charge is different that what one could call the null Brown-
York tensor [30]. Finally, alternative choices of stationarity
and their effect on charges are explored in [50].

D. Future null infinity

At future null infinity, using for instance Bondi coor-
dinates,14 one has

θ
←
¼ −

�
2δM −

1

2
δðDADBCABÞ

þ 1

2
NABδCAB −

1

8
δðNABCABÞ

�
ϵI : ð3:8Þ

See Appendix B for definitions and some details. At a first
sight, one may identify the physical flux with the non-
integrable third term, namely the Bondi news NAB ≔
∂uCAB contracted with the variation of the shear CAB.
The stationarity requirement is then satisfied by all space-
times with vanishing news, for arbitrary variations.
The issue though is that this term does not satisfy the
covariance requirement, because NAB is not covariant. The
resolution of this issue was found by Geroch [55] with
the introduction of a background tensor ρAB carrying his
name, and whose transformation property is ΔξρhABi ¼
ΔξNAB, so that

N̂AB ≔ NAB − ρhABi ð3:9Þ

is covariant. The Wald-Zoupas criteria thus single out as
preferred potential [1]15

θ̄ ¼ −
1

2
N̂ABδCABϵI : ð3:10Þ

The remainder is a total variation and identifies

b ¼
�
2M −

1

2
D̄AD̄BCAB −

1

8
NABCAB þ 1

2
ρABCAB

�
ϵI :

ð3:11Þ
Therefore all three conditions for theWZprescription aremet.
A key property of ρhABi is to vanish identically when the

background metric is the round 2-sphere. This makes the
choice NδC numerically correct in such Bondi frames,
however one should keep in mind that the correct potential
secretly depends on the Geroch tensor in order to secure
covariance. This is relevant for us, because calculation of
the anomaly involves derivatives in field space, and the
anomaly of b would be different if we forgot the term
necessary to the covariance of θ̄.
From (3.11) and the anomaly-freeness of the Einstein-

Hilbert Lagrangian we compute

āξ ¼ Δξb ¼ dsξ; where sξ ≔
1

4
CABD̄AD̄Bτ; ð3:12Þ

and τ ≔ ξu ¼ T þ u
2
DAYA. Details of this calculation are in

the Appendix B. We see that we are in case (b); there is a
shift, caused by the fact that the ‘naive’ boundary
Lagrangian b has an anomaly.
The shift can furthermore be obtained from the corner

ambiguity. In fact, using the anomalous transformations
reported in Appendix B, it is easy to find a local functional
c solving (2.23),

c ≔
1

16
CABCABϵS; Δξc ¼ −sξ: ð3:13Þ

Therefore the BMS charges obtained from the WZ pre-
scription can also be obtained as improved Noether charges,
choosing an anomaly-free boundary Lagrangian such as

lc ¼ bþ dc

¼
�
2M −

1

2
D̄AD̄BCAB þ 1

2
ρABCAB

�
ϵI ; Δξlc ¼ 0:

ð3:14Þ

13It requires δk ¼ 0 because otherwise θ̄ depends on kwhich in
turns depends on the representative chosen and not on the
universal structure. This in fact is because it is not class III
invariant.

14For descriptions with geometric quantities only and avoiding
reference to Bondi coordinates, see e.g., Refs. [34,53,54].

15In [1], the covariant news N̂ are denoted N, referred to as
Bondi news, and one keeps in mind that the expression ∂uCAB is
only valid in the special set of Bondi frames. This is indeed a
better nomenclature in our opinion. We maintain however the N
and N̂ notation here to match more easily with the contemporary
literature, where Geroch’s analysis seems to have been forgotten
at some point. Notice also that N̂ can be defined in geometric
terms as the Lie derivative of the shear [34], which makes its
covariance manifest. Geroch’s construction on the other hand
used the Schouten tensor of the (pullback of the) unphysical
Riemann tensor, hence a noncovariant quantity, and which
coincides with ∂uCAB in Bondi coordinates.
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This choice of boundary Lagrangian is of course not unique:
any further shift by an anomaly-free corner term would give
the same charges. In this case, it means that we can add an
arbitrary contribution proportional to

ðNABCAB − 2D̄AD̄BCABÞϵI ; ð3:15Þ
which is both a corner term and anomaly-free. In other
words, one can equivalently use any element in the family

lc
x¼

�
2M−

1þx
2

D̄AD̄BCABþ x
4
NABCABþ1

2
ρABCAB

�
ϵI ;

x∈R: ð3:16Þ
Summarizing, the WZ charges for the BMS group can be

obtained as improved Noether charges following the
prescription (2.46), namely starting from the covariant
Einstein-Hilbert Lagrangian and bare symplectic potential,
and choosing ðθ̄;lcÞ given by (3.10) and (3.16), respec-
tively. The resulting corner term in (2.47) is (3.13).
The fact that the BMS charges can be obtained as

improved Noether charges is consistent with what observed
in [9,11], where relevant boundary Lagrangians were
identified a posteriori. The novelty of our derivation is
the identification of the boundary Lagrangians and
charges from first principles, thanks to the attention paid
to anomalies.16

As a final remark, the WZ-compatible anomaly (3.12)
has the structure of the soft term in the flux-balance laws for
the BMS charges. This example provides a physical
example of the meaning of the anomaly contribution to
the variation of the improved Noether charge (2.14); an
improved Noether charge with boundary Lagrangian (3.11)
as opposed to (3.14), or with an arbitrary corner improve-
ment not selected by the covariance requirement (2.42),
would differ from the standard BMS charges by soft terms.
One consequence would be that they would measure
different memory effects, another that the boost part of
the charges would fail to be conserved on stationary
spacetimes. The relation between the soft terms and
anomalies is further explained by the detailed calculations
reported in the Appendix B, which highlight how the bridge
between the two lies in the first-order extension of the
symmetry vector fields. We also report there the calculation
of the charges (Appendix B), as well as the explanation of
how (2.43) allows one to do the calculation à la Wald-
Zoupas without the need to take explicitly into account the
anomalies (Appendix C).

IV. CONCLUSIONS

We have studied the WZ prescription in the light of the
recent extensions of the covariant phase space. The WZ
prescription introduced two precise and valuable physical
requirements, spelled by conditions 2 and 3 in Sec. II B. First,
the importance of covariance with respect to the background
structure, and second, the importance of a physical notion of
stationarity in the radiative case. On the other hand, the WZ
prescription appears to be too restrictive concerning con-
dition 1, which forbids allowing changes in the corner
potential, the quantity we referred to as ϑ in this paper.
The importance of changing the corner potentialwas stressed
in [4] and elaborated further in [5] and subsequent literature.
In particular, it is necessary in Case I if one wants to recover
the Brown-York charges with nonorthogonal corners at finite
distance [4,49], and in Case II if one wants to consider
generalizations of the BMS group [31]. Our discussion
hopefully highlights the importance of taking physical
principles, as opposed to a mathematical prescription alone,
in selecting the symplectic potential defining the charges.
This is possibly the key lesson of the WZ paper.
The first result that emerges from our study is that the

WZ prescription works also in the presence of anomalies
and field-dependent diffeomorphisms. These cannot be
arbitrary, but are restricted from the covariance requirement
(2.29) to satisfy the condition (2.34). We referred to the
allowed anomalies as soft because of their physical mean-
ing at future null infinity. This example also shows that the
bare Einstein-Hilbert symplectic potential is not covariant,
in spite of being nonanomalous, because it is sensitive to
the possibly field-dependent extensions of the asymptotic
Killing vectors. The WZ requirement of covariance balan-
ces this dependence with an anomaly as in (2.29).

16When comparing our quantitative results with the literature,
some attention is however needed. The corner term (3.12) differs
from the one used in [9] by a factor of 2 (notice the different units
used, 16πG ¼ 1 here, 8πG ¼ 1 there). This follows from the fact
that [9] uses the tetrad Lagrangian, whose bare symplectic potential
differs from the Einstein-Hilbert one by a corner term [56,57]. We
explain this comparison in App. E, and our results here perfectly
agreewith those of [9].We find on the contrary a disagreement with
the conclusions of [11], which find: (1) no anomalous shift, namely
they claim qWZ

ξ ¼ q̄ξ þ iξb, and (2) no restriction of the boundary
Lagrangian to be anomaly free, namely they consider four different
options of which only their (6.17) is in our family, with x ¼ 0. The
remaining (6.9), (6.18) and (6.18) are anomalous. Disagreement (1)
is in our opinion due to a computational mistake, we believe that
their equation (6.15) lacks a factor 1=2 in the third term, the one that
reads UDf. Their numerical factor would indeed make the
anomalous shift unnecessary in order to obtain the BMS charges,
but it is incontradictionwithourcalculation reported inAppendixB,
as well as with the calculations of [16,32] which use the qδξ term,
andwhichwe report inAppendixC. Since the presence of a nonzero
anomaly is crucial to our paper, we made multiple checks of our
calculations and the presence of this contribution. But of course we
welcome further feedback on this point, should the mistake be on
our end.Disagreement (2) is on the other handnot an issue, provided
(1) is fixed. Every time their boundary Lagrangian is anomalous,
they redefine the charge by hand to remove what the anomalous
contribution to the flux, via the quantity they denote h̃ξ. What we
have shown here is that h̃ξ is in general not an improved Noether
charge in the sense of (2.16), and that there is no need to do this
redefinition by hand, because it is possible to identify the charge
uniquely working with a covariant pair of bulk and boundary
Lagrangians.
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The second result is that the WZ charges are not
straightforwardly improved Noether charges in the sense
of [4], namely they cannot necessarily be obtained from the
formula (2.16). It only happens if (2.23) admits solutions.
This is the case for the BMS charges, but we do not know if
it is always possible. It would surely be interesting to
further study this differential equation and understand its
general solution. There may also be hybrid situations in
which the WZ charges are improved Noether charges only
for a subset of the boundary symmetry algebra.
When (2.23) can be solved, the WZ charges are

improved Noether charges, up at most to field-constant
terms. Solving that equation has the compelling meaning
that one has to find a boundary Lagrangian that is anomaly-
free, when starting from a covariant bulk Lagrangian. In
other words, the boundary Lagrangian needed to derived
the WZ charges from (2.16) is not necessarily the term b
that appears in (2.27), nor the initial l that appears in (2.8).
This understanding allows us to provide an independent

definition of WZ charges as the improved Noether charges
satisfying (2.46), and to generalize it relaxing condition 1
by requiring (2.48).
A nontrivial property of the soft anomalies is to be

strongly related to the allowed field-dependent diffeomor-
phisms, via (2.34) in general, and via (2.43) if one starts
from a covariant bulk Lagrangian and its bare potential. A
consequence of this is that one can effectively perform
some calculations ignoring anomalies, and this is the reason
why Wald and Zoupas could compute the BMS charges
without the need to talk about anomalies. Nonetheless, we
believe it does not affect the relevance of taking anomalies
into account. We hope that our new derivation of the BMS
charges in the main text and in the Appendix shows that
using the formalism with anomalies enriches our under-
standing of the mathematics as well as the physics.
One example of what can be learnt is how anomalies

capture the difference between future null infinity and a null
hypersurface at a finite distance, such as an event horizon. It
is well known that the BMS symmetries are different from
the symmetries of a null hypersurface in spacetime. For
example, in BMS, dilations are not independent while on a
finite null hypersurface they are independent and their
associated charge is given by the area.17 In both cases the
anomaly comes from the boundary normal. At a finite
distance, the background structure only provides the loca-
tion of the boundary. But at future null infinity, it also
provides the compactification factor. As a consequence, the
metric on the cross section is anomaly free at finite distance,
but not on I . This introduces a second source of anomalous
transformations, given by the inhomogeneous terms of the

metric functionals on I . It is also interesting to remark that
the difference can be seen looking at the first-order extension
of the symmetry vector fields. More details on these aspects
appear in Appendixes A and D.
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APPENDIX A: ANOMALIES AND BOUNDARIES

In this appendix we review how to compute the anomaly
associated with a background structure, and prove the
absence of anomalies in the case of timelike boundaries
parametrized by a unit-normal, the result used in (3.4).
Anomalies arise when the covariant phase space contains

background structures. Let us denote by ϕ the dynamical
fields, and by χ the background fields. For the dynamical
fields we define δξϕ ≔ £ξϕ, whereas the background fields
satisfy δξχ ¼ 0, whence the anomaly Δξχ ¼ −£ξχ. To
understand the third term in (2.2), consider a functional
of the fields that is a one-form in field space, namely
Fðϕ; χÞδϕ. In this case we have

δξðFδϕÞ ¼ ∂ϕFδξϕδϕþ Fδδξϕ ¼ ∂ϕF£ξϕδϕþ Fδ£ξϕ

¼ £ξðFδϕÞ − ∂χF£ξχδϕþ F£δξϕ; ðA1Þ

where we used ½δ; δξ� ¼ 0 in the first equality, and
½δ; £ξ� ¼ £δξ in the last. Hence,

ΔξðFδϕÞ ¼ −∂χF£ξχδϕ ¼ ðδξ − £ξ − IδξÞFδϕ: ðA2Þ

The first example of background structure we consider in
the following is a spacetime boundary B. We define it by its
Cartesian equation as χðxμÞ ¼ 0, and associated with it a
normal 1-form nμ ≔ −f∂μ χ. The field χ is a fixed back-
ground structure, with δχ ¼ 0. Since £ξ χ ¼ ξμ∂μ χ, every
diffeomorphism that does not preserve the boundary is
anomalous. When constructing the covariant phase space
associated to this boundary, the only relevant diffeomor-
phisms are those that preserve the boundary, namely

ξμnμ ¼B 0 ⇒ ξμ ¼ ξ̄μ þ χξ̂μ; ðA3Þ

where ξ̄μnμ ¼ 0. The boundary is shared by all metrics in
the phase space. The diffeomorphisms that preserve the
boundary are also called residual diffeomorphisms, or
symmetry vector fields, hinting at the physical relevance
that boundary diffeomorphisms can acquire. In different
situations, one may add additional background structure on
top of the presence of the boundary, still shared by all
metrics in the phase space and usually referred to as

17Matching the two symmetries is possible relaxing the falloff
conditions so that the BMS group is enhanced to the BMSW
group [9]. See also [25,58,59] for related work on charges at
horizons.
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universal structure. Any additional requirement in the
universal structure can restrict the symmetry group.
From (A3) it follows that £ξχ¼B 0, and therefore Δξχ ¼ 0:

the boundary is covariant with respect to the diffeomor-
phisms that preserve it. However, anomalies can still appear
when we look at derivatives of χ, for instance through the
normal1-form. In fact, a simple calculation shows that

Δξnμ ¼ wξnμ; wξ ≔ Δξ ln f − ξ̂μ∂μχ: ðA4Þ
If we take a gradient as normal, say f ¼ 1, then the
anomaly comes entirely from ξ̂μ∂μχ, namely from how
much the extension of ξ off B does not preserve the
neighbouring leaves of the χ foliation. However, as long as
the foliation is not null, the anomaly associated with a
nontrivial extension ξ̂ can be eliminated choosing f so that
the normal is unit-norm: in this case in fact,

nμ ¼ s
∂μχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sgρσ∂ρχ∂σχ
p ; n2 ¼ s ≔ �1; ðA5Þ

and

Δξnμ ¼ −s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sgρσ∂ρχ∂σχ
p

�
£ξ∂μχ − sgνλ

∂νχ£ξ∂λχ
sgρσ∂ρχ∂σχ

∂μχ

�

¼ −s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sgρσ∂ρχ∂σχ
p ðδνμ − snνnμÞ£ξ∂νχ

¼ −qνμ£ξnν ¼ 0 ðA6Þ
because of the condition that ξ preserves the boundary.
Recalling that unit-norm means foliation independence of
the normal, we see that what this anomaly is capturing is
not so much the presence of the boundary, but rather any
foliation dependence in its description, namely noninvar-
iance under χ ↦ χ0ðχ; xμÞ.
In the case of a null hypersurface, there is no choice of f

that would make the normal foliation-independent, hence
anomalies (A4) are generically present. Furthermore, in
order to distinguish physical solutions on the covariant
phase space, one typically reduces the allowed variations to
preserve a certain universal structure [1,2]. This reduces the
symmetry group and can lead to a fixed, nonvanishing first-
order extension, hence anomalies. An interesting difference
arises between a null hypersurface at a finite distance and
future null infinity. In both cases, we have a background
field describing the presence of the boundary. But at future
null infinity, the same structure is used as conformal factor
Ω in the compactification. As a consequence, reparame-
trizing χ at finite distance changes the normal 1-form nμ,
but reparametrizing Ω changes both the normal and the
unphysical metric which induces the metric on the cross
sections, leading to two sources of anomalies. To see this
difference in formulas, consider the volume elements. At
finite distance we have

ϵN ¼ ilϵ ¼ −l ∧ ϵS; ðA7Þ

where l · n ¼ −1 is the auxiliary vector, hence (A4)
implies [6]

ΔξϵN ¼ −wξϵN ; ΔξϵS ¼ 0: ðA8Þ
But the volume element of future null infinity is deter-
mined from the unphysical metric g̃μν≔Ω2gμν, which is
anomalous,

ΔξΩ¼ 0; Δξnμ ¼ wξnμ; Δξg̃μν ¼ 2wξg̃μν; Δξϵ̃¼ 4wξϵ̃:

ðA9Þ
Therefore, taking

ϵI ¼ ilϵ̃ ¼ −l ∧ ϵS; ðA10Þ
we have

ΔξϵI ¼ 3wξϵN ; ΔξϵS ¼ 2wξϵS: ðA11Þ
The first difference is that the anomalous dimension of the
induce volume element changes from −1 to þ3, and the
second difference is that tensors on the cross sections are
now anomalous as well, unlike in the finite-dimensional
case. This comes as explained above from the fact that the
background structure has the double role of determining the
boundary and providing the unphysical metric.

APPENDIX B: BMS ANOMALIES

We review here some basic formulas of the BMS trans-
formations, and show how to compute the associated
anomalies and the shift between the WZ and improved
Noether charges. We follow [9] for the notation. While the
general logic remains the same described in the main text,
performing the calculations explicitly requires paying atten-
tion to two special features. The limit to I and the difference
between a symmetry vector field on I and its bulk extension,
and the fact that we choose toworkwith a specific coordinate
system. Working in Bondi coordinates ðu; r; θ;ϕÞ and with
conformal factorΩ ≔ 1=r, the asymptoticKillingvectors are

ξ ≔ τ∂u þ YA
∂A þΩð_τ∂Ω − ∂

Aτ∂AÞ þOðΩ2Þ: ðB1Þ

For the BMS group, τ ¼ T þ u
2
DAYA, where Tðθ;ϕÞ is the

supertranslation parameter, and YAðθϕÞ a conformal Killing
vector on the two-sphere. For the BMSW enlargement [9],
which encompasses both extended [15] and general-
ized [16,24] BMS groups, τ ¼ Tðθ;ϕÞ þ uWðθ;ϕÞ, and
YA is an arbitrary vector, which we take to be globally
defined. From

Δξg̃μν ¼ −gμν£ξΩ2 ¼ −
2

Ω
ξΩg̃μν ¼ −2_τg̃μν; ðB2Þ

we see that

wξ ¼ −_τ: ðB3Þ
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The covariant phase space at future null infinity is parametrized by the functionals q̄AB; CAB, respectively the leading and
first subleading orders of the 2d metric, and the mass and angular momentum aspectsM; P̄A. The parametrization is chosen
so that P̄A coincide with the definition of Dray and Streubel in these coordinates. All quantities depend on ðu; θ;ϕÞ, except
for the background metric q̄AB which is constant in u.18 The phase space transformations generated by the asymptotic
BMSW symmetries are [9]

δξq̄AB ¼ ð£Y − 2_τÞq̄AB; ðB4aÞ

δξCAB ¼ ðτ∂u þ £Y − _τÞCAB − 2D̄hA∂Biτ; ðB4bÞ

δξNAB ¼ ðτ∂u þ £YÞNAB − 2D̄hA∂Bi _τ; ðB4cÞ

δξM ¼ ðτ∂u þ £Y þ 3_τÞM þ
�
1

2
D̄ANAB þ ∂

BF̄

�
∂Bτ þ

1

4
∂uðCABD̄A∂BτÞ; ðB4dÞ

δξP̄A ¼ ðτ∂u þ £Y þ 2_τÞP̄A þ 3M∂Aτ −
1

8
NBCCBC

∂Aτ þ
1

2
ðCC

ANBCÞ∂Bτ þ
3

4
ðD̄AD̄CCB

C − D̄BD̄CCACÞ∂Bτ

þ 1

4
∂AðCBCD̄BD̄CτÞ þ

1

2
D̄hAD̄BiτD̄CCBC þ CAB

�
F̄∂Bτ þ 1

4
∂
BΔτ

�
: ðB4eÞ

Here £Y is a slight abuse of notation and should be under-
stood as the Lie derivative for tensors on the two-sphere. The
functionals transform in general not as scalars but rather as
densities in the u variable, because of the _τ shifts, and as
tensors on the sphere in the A indices, plus inhomogeneous
terms. Because of this algebraic structure,I is endowedwith
the structure of a fiber bundle S2 ×R in which the fibers are
the conformal weights. The density shifts and the inhomo-
geneous terms are responsible for the anomalies.
To see that explicitly, we need first to explain how the

covariant Lie derivative is mapped to a gauge-fixed descrip-
tion associated with the Bondi coordinates used above.
Consider a 3-form on I . This is a spacetime covariant
quantity, which in Bondi coordinates will read like a scalar
on the 2-sphere times the volume form, e.g., vAwAϵI . For an
example, see the symplectic potential at I given by (3.8).
Using the asymptotic symmetry vectors (B1), we have

£ξðvAwAϵIÞ ¼ £ξðvAwAÞϵI þ vAwA£ξϵI : ðB5Þ

Now we can write

£ξðvAwAÞ ¼ ξμ∂μðvAwAÞ ¼ τ∂uðvAwAÞ þ YB
∂BðvAwAÞ

¼ τ∂uðvAwAÞ þ £YðvAwAÞ ¼ LξðvAwAÞ;

where we introduced the Bondi-frame Lie derivative

Lξ ≔ τ∂u þ £Y; ðB6Þ

or Bondi Lie derivative for short. Its action is that of a
Lie derivative on the conformal bundle of u-dependent
2-sphere tensors.
The anomalies of the phase space functionals are thus

given by Δξ ¼ δξ − Lξ (the last term from the definition
(2.2) drops out because we are acting on field-space
scalars), namely

Δξq̄AB ¼ −2_τq̄AB; ðB7aÞ

ΔξCAB ¼ −_τCAB − 2D̄hA∂Biτ; ðB7bÞ

ΔξNAB ¼ −2D̄hA∂Bi _τ; ðB7cÞ

ΔξM ¼ 3_τM þ
�
1

2
D̄ANAB þ ∂

BF̄

�
∂Bτ

þ 1

4
∂uðCABD̄A∂BτÞ; ðB7dÞ

and similarly for P̄A, which won’t be needed in the
following. These formulas are identical for BMSW and
BMS, with the only simplification for BMS being
that _τ ¼ D̄AYA=2, and that taking the round sphere
F̄ ¼ R̄=4 ¼ 1=2, so one term in ΔξM drops out. From
now on, we restrict attention to the BMS case.
The anomaly of the background metric is familiar

from the BMS literature: the 2d metric—also known as
the ‘Bondi frame’—is a background structure, hence
δq̄AB ¼ 0, while an asymptotic symmetry changes the
Bondi frame by a conformal transformation given by

18With Penrose’s definition of asymptotic flatness (see
e.g. [1,54]), one can always choose a conformal factor satisfying
the Bondi condition ∇̃μnμ ¼ 0, and then £nq̄AB ¼ 0. This is the
case with the choice of Ω taken here, from which the asymptotic
Einstein’s equations impose ∂uq̄AB ¼ 0.
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2_τ ¼ D̄AYA. Hence the RHS of (B7a). In the generalized
BMS and in BMSW the phase space is enlarged to include
the Bondi frame as a variable, hence δq̄AB ≠ 0, but the
resulting anomaly is again just a conformal transformation,
albeit with an arbitrary factor instead of just the Lorentz
boost D̄AYA. From this expression we can also derive
Δξ

ffiffiffī
q
p ¼ ffiffiffī

q
p

q̄ABΔξq̄AB=2 ¼ −2_τ
ffiffiffī
q
p

.
The anomaly of the news (B7c) is also familiar from the

seminal work of Geroch [55], which introduced the tensor
carrying his name, and whose traceless part is

ρhABi ≔ 2D̄hAφD̄Biφþ 2D̄hAD̄Biφ; ðB8Þ

where 2φ is the conformal factor relating the metric q̄AB to
a round 2-sphere metric. It vanishes for the round 2-sphere.
From this expression and the condition ∂uq̄AB ¼ 0 we

deduce that £ξρhABi ¼ 2D̄hAD̄Bi _τ. Notice that it is crucial
that ρAB has a trace part that does not vanish on a round
2-sphere, otherwise this Lie derivative would vanish as
well. Geroch also proves that this tensor is universal. Hence
δρhABi ¼ 0, and

ΔξρAB ¼ −2D̄hA∂Bi _τ≡ ΔξNAB: ðB9Þ

It follows that N̂AB ≔ NAB − ρAB is covariant, i.e. its
anomaly vanishes.
The anomaly of the volume form ϵI is given by (A11)

with (B3), namely19

ΔξϵI ¼ −3_τϵI : ðB10Þ
Putting together these results, we find

ðδξ − £ξÞðN̂ABδCABϵIÞ ¼ ðδξ − LξÞN̂ABδCABϵI þ N̂ABðδξ − LξÞδCABϵI þ N̂ABδCABðδξ − LξÞϵI
¼ ΔξN̂ABδCABϵI þ N̂ABδΔξCABϵI þ N̂ABLδξCAB þ N̂ABδCABΔξϵI

¼ N̂ABδΔξCABϵI − 3_τN̂ABδCABϵI ¼ 0: ðB11Þ

In the third equality we used LδξCAB ¼ 0, since δξ ¼
OðΩ2Þ as follows from (B1). In the last we used ΔξCAB ¼
3_τCAB − 2D̄hA∂Biτ which follows from (B7). As a conse-
quence, the nonintegrable term that can be read naively
from (3.8) is not covariant, whereas θ̄ defined in (3.10) is.
Next, we compute the anomaly of (3.11), here copied for

convenience,

b ¼
�
2M þDAŪA −

1

8
NABCAB þ 1

2
ρABCAB

�
ϵI ; ðB12Þ

with ŪA ¼ − 1
2
D̄BCAB. For this term, we have20

ΔξðD̄AŪAϵIÞ¼D̄AðΔξŪAÞϵIþD̄AŪAΔξϵIþ½Δξ;D̄A�ŪAϵI

¼D̄AðΔξŪAÞϵI−3_τD̄AŪAϵI

þð _̄UA
∂Aτ−2ŪA

∂A_τÞϵI
¼D̄AððΔξ−3_τÞŪAÞϵIþ

1

2
∂uðCABD̄AD̄BτÞ:

ðB13Þ

The total derivatives on the sphere can be dropped. As a
consequence, we do not need to know the explicit form of
the anomaly of ŪA. For the interested reader, it can be
found in [9]. For the other terms in b, we have

Δξ

��
2M −

1

8
NABCAB þ 1

2
ρABCAB

�
ϵI

�

¼ −
1

4
∂uðCABD̄AD̄BτÞ þ

1

2
ρABΔξðCABϵIÞ: ðB14Þ

Adding up and using the vanishing of the Geroch tensor on
the round 2-sphere, we conclude that

Δξb ¼ dsξ; sξ ¼
1

4
CABD̄AD̄BτϵS: ðB15Þ

This proves (3.12) used in the main text. As for (3.13),
this follows immediately computing the anomaly of
β̄ ≔ − 1

32
CABCAB, which gives

19It is also possible to derive this writing ϵI ¼ du ∧ ϵS. The
1-form du is an anomalous quantity on the scale bundle, with
anomaly given by Δξdu ¼ −£ξdu ¼ −_τdu, and ΔξϵS ¼ −2_τϵS.
Care is needed when writing ϵS ¼

ffiffiffī
q
p

d2θ and using the anomaly
for

ffiffiffī
q
p

previously derived. This is because
ffiffiffī
q
p

is a density,
therefore we should remember that d2θ is an invariant. This is a
familiar result for Lie derivatives of volume forms if we write
ϵ ¼ ffiffiffiffiffiffi−gp

d4x, where d4x ≔ 1
n! ϵ˜ μνρσ

dxμ ∧ dν ∧ dxρ ∧ dxσ is a

density, we have £ξ
ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffi−gp ∇μξ

μ and £ξd4x ¼ 0.
20The second equality below follows from the fact that for BMS

½Δξ; D̄A� ¼ −½£ξ; D̄A�;
which can be computed from

½τ∂u; D̄A�fB ¼ −∂ufBD̄Aτ;

½LY; D̄A�fB ¼ fAD̄BD̄CYC −
R
2
ð2fBYA − δBAYCfCÞ;

½LY; D̄A�fA ¼ fAD̄AD̄CYC;

and we also observe that ½∂u;LY � ¼ 0.
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c ≔ −2β̄ϵS; Δξc ¼ −
1

4
CABD̄AD̄BτϵS: ðB16Þ

Let us check that the shift (3.12) indeed reproduces the
known expressions of the WZ charges at I . The expansion
of the Komar two-form gives (to lighten the notation, we
drop in the following the sphere indices A)

qξ ¼ τ

�
2M −DŪ þ 1

8
CN −

1

4
DDC

�

þ 2Yð−rŪ þ P̄þ ∂β̄Þ þ 2Wð−r2 þ 2β̄Þ: ðB17Þ

The divergent terms vanish for BMS, and can be renor-
malized away for BMSW [60], so we will drop them in the
following.21 Then we have

iξϵI ¼ −ξ · lϵS; −ξ · l ¼ τ;

iξb ¼ τ

�
2M þ D̄ Ū−

1

8
NCþ 1

2
ρC

�
ϵS; ðB18Þ

hence

qξ þ iξb ¼
�
τ

�
4M −

1

4
D̄ D̄ C

�
þ 2YP̄

�
ϵS: ðB19Þ

This shows that without the right corner shift, the improved
Noether charge with b as boundary Lagrangian does not
give the standard BMS charges. The difference is a soft
term. This charge would not measure the standard memory
effects, and furthermore has a flux determined not only by
the physical symplectic potential θ̄, but by the anomalous
contribution as well. In particular, the part of the charges
corresponding to Lorentz boosts would not be conserved in
stationary spacetimes.
Finally, adding up (B15), which after a trivial integration

by parts on the 2-sphere can be rewritten as

sξ ¼ −
τ

2
D̄ Ū ϵS; ðB20Þ

we obtain the desired result22

qWZ
ξ ¼ qξ þ iξbþ sξ ¼ ð4τM þ 2YP̄ÞϵS: ðB21Þ

These charges vanish exactly on the Minkowski solution,
therefore there is no need of any shift by field-space
integration constants. The calculation proves that the

WZ charges can be obtained without ever talking about
Hamiltonian generators, but just as an improved Noether
charge with the prescriptions (2.46). The anomaly-free
boundary Lagrangian can be read from (B16) to be (3.14),
which we report here for convenience,

lc ¼
�
2M þ D̄ Ūþ 1

2
ρC

�
ϵI : ðB22Þ

We also notice that

�
D̄ Ūþ 1

4
CN

�
ϵI ¼ d

�
1

8
C2ϵS þ iŪϵI

�
;

Ūμ ≔ ð0; 0; ŪAÞ: ðB23Þ

This corner term is also anomaly free once we integrate on
the 2-sphere to get rid of the total derivatives that appear
when using (B13). We conclude that the WZ charges can be
obtained starting from the family of boundary Lagrangians
(3.16), that all differ from (B22) by a term proportional
to (B23).

APPENDIX C: CHARGES’ ARCHEOLOGY

In this appendix we comment on the importance of the
interplay relation (2.43). This allows one to understand how
Wald and Zoupas were able to get away without ever
talking about anomalies, and will also be the opportunity
for us to add some comments about [32–34] that we think
may be useful to the reader. If we start from the Einstein-
Hilbert Lagrangian there are no anomalies, and

−Iξω ¼ δqξ − qδξ − iξθ: ðC1Þ

Then, the WZ prescription (2.28) gives

−Iξωþ iξθ̄ ¼ δqξ − qδξ − iξθ þ iξθ̄ ¼ δqξ − qδξ þ iξδb

¼ δðqξ þ iξbÞ − qδξ − iδξb: ðC2Þ

If we take the bare Eistein-Hilbert θ, this is covariant and qξ
is Komar; the covariance requirement for θ̄ guarantees not
only (2.34) but also (2.43). Therefore, δsξ ¼ −q̄δξ ¼
−qδξ − iδξb. Using this equality in (C2) we recover the
calculation of the charges done at the end of the previous
section, namely adding sξ as computed from the anomaly of
b. But we can also forget about the anomalous origin of sξ,
and compute directly qδξ and iδξb in (C2). On first thought,
one may imagine that these vanish, since there is no field
dependence in ξ at zeroth or first order, see (B1). However,
it had been observed as early as [14] that the limit of the
Komar 2-form to future null infinity depends on the second-
order extension as well, and in fact it even depends on the
third order insofar as the radial component is concerned.

21Taking the on shell value of Ū, the second and fourth terms
add up to − 1

2
D̄ Ū. Our Ū coincides with the U used in [11], and

our 1=2 instead of their 1 in the third term of their (6.15) is the
mismatch we referred to in the main text.

22Recall we are using the notation from [9] and units
16πG ¼ 1. The relation to the angular momentum aspect used
in [16,32] is NA ¼ P̄A þ ∂Aβ̄.
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This can be trivially checked using for instance Bondi
coordinates and Ω ¼ 1=r. The Komar formula then con-
tains ∂rξr, which when integrated against the r2 area 2-form
fishes a contribution Oðr−1Þ in ξr, which is OðΩ3Þ. But
then, the second and higher-order terms are generically
field-dependent. Using the Tamburino-Winicour extension,
equivalent to preserving the bulk Bondi coordinates used in
the previous section, we have

δξ ¼
�
Ω2

2
δðCAB

∂BτÞ þOðΩ3Þ
�
∂A

þ
�
Ω3

2
δ

�
D̄ACAB

∂Bτ þ
1

2
CABD̄A∂Bτ

�
þOðΩ4Þ

�
∂r:

ðC3Þ

This vector gives a vanishing contribution when hooked
with b, but not when plugged in the Komar form. There, it
replaces a divergent term that was a total divergence on the
sphere (hence integrating to zero) if ξ was used, with a
finite term that is no longer a total 2d-divergence, but rather
gives on the cross sections

−qδξ ¼
1

4
δðτD̄ D̄ CÞϵS: ðC4Þ

This is precisely the same contribution of sξ, as expected
from the general equivalence (2.43). As a consequence,
one can do the calculation using the first line of (C2), and
obtain the correct result without ever talking about
anomalies, and instead properly taking into account the
qδξ term (C4). This is the way the calculation is done for
instance in [16], even though the contribution of the term
(C4) is not explicitly reported.23 Notice also that the neat
result of this term is to make Iξω independent of the field-
dependent extension, because (C4) cancels the OðΩ3Þ
term that appears when computing δqξ, As for the second-
order terms in qξ, they drop out when taking the pullback
on a fixed u cross section of I . The final result depends
only on the zeroth and first orders of ξ, which are field
independent.
This term is also taken into account in the formula used

in [32], following [45,61], and this is for us the only
reference in the literature where all aspects of the calcu-
lation of the BMS charges are properly and explicitly
discussed.24

Coming back to the WZ paper, there are actually two
difficulties with the way the BMS calculations are
presented. The first is that since they assume δξ ¼ 0,
they write −Iξω ¼ δqξ − iξθ. This is not too bad, because

it can be easily corrected; the effective consequence of the
qδξ term in (C2) is that one should take the variation of qξ
treating ξ as a c-number even if it is field dependent. With
this caveat in mind, the calculations are correct.
Otherwise, (94) of [1] is missing an additional finite term
coming from the OðΩ2Þ terms of ξ. Notice that WZ
discuss the independence of (C1) from the arbitrary part of
the extension of the asymptotic symmetry vector, below
their Eq. (22). This independence is taken there as a
definition of equivalent representatives, but it can be
proved explicitly as done in [34], Lemma 5.2. The proof
is given there only for field-independent higher-order
extensions, but can be trivially generalized to our case if
δqξ is replaced by δqξ − qδξ. Or alternatively, with the
caveat that ξ is always a c-number for δ. This way of
understanding the action of δ and the rhs of Iξω for field-
dependent diffeomorphisms was made more explicit
shortly after in [62]. We suppose that this is the approach
taken also in [34], even though it is nowhere explicitly
stated, otherwise some of their calculations are
missing intermediate terms that cancel out in the end
result. We remark that having extended the proof of
independence from higher-order extensions to the
field-dependent case, one can also compute the rhs of
(C1) ignoring such terms, instead of computing them and
see that they cancel out. This means in particular igno-
ring the qδξ term altogether. This provides another way of
interpreting the results of [1,34] as correct. With
these caveats in mind, [34] is a very clear and explicit
paper, and has the further advantage of presenting the
calculations in two different gauges as well as in covariant
language.
The second difficulty of the WZ paper concerns the

boost charges. Inspection of (B1) shows that these get
a contribution from the vertical part, and therefore are
not generated purely by a vector tangential to the cross
section. In other words, restricting ξ to be tangential is a
stronger condition than setting the super-translation
parameter to zero. Nonetheless, Wald and Zoupas tried
to recover all Lorentz charges, rotations as well as boosts,
from a purely tangential vector. The interest in doing so is
possibly that for a field-independent and purely tangential
vector, the Hamiltonian generator is integrable since
the pullback of iξθ vanishes, and one does not need
any prescription. The result is the Komar formula, which
they knew gives the Dray-Streubel charges for angular
momentum but not for boosts, unless the extension is
chosen to satisfy the Geroch-Winicour condition. So what
Wald and Zoupas set up to do is to prove that the varia-
tion of the Komar formula is unchanged if the Geroch-
Winicour condition is imposed, because then they can
claim that the Dray-Streubel charges are recovered when
they further impose the condition that all charges vanish in
Minkowski spacetime. This is arguably a more tortuous
path than straightforwardly including the vertical part

23We thank Adrien Fiorucci for sharing his calculations.
24Mind however that [32] does not start from −Iξω but adds

to it a term proportional to the Killing equation, see e.g., (9.10)
in [57]. This additional term has vanishing limit to I .
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of the vector in the boost contribution, which is the
reason the calculation works no matter what extension
is taken.
The same result of [32] then appeared again in [33]. Both

papers use the Tamburino-Winicour extension described
above. However [33] claims that the result matches Dray-
Streubel because the Geroch-Winicour condition ∇μξ

μ ¼ 0

can be relaxed to ∇μξ
μ ¼ OðΩ2Þ, which is satisfied by the

Tamburino-Winicour extension that they use. This argument
is wrong in our opinion, because the Tamburino-Winicour
extension precisely requires the linkage term in order to
reproduce the right boost charges [13]. The reason why [33]
gets the right charges is for us not that the linkage is not
needed because of the chosen extension, but because of the
correct inclusion of the vertical term, just as in [32].
As a final comment, notice that (C4) shows that Iδξθ ≠ 0

for the Einstein-Hilbert bare potential, by consistency with
the Noether theorem (2.14) with ξ replaced by δξ. To verify
this explicitly some care is needed, because δξ is not a
symmetry vector.25 In particular, δδξ does not exist on the
asymptotic phase space. Instead, we can use the general
formula (2.44) and take the limit to infinity. Since
δξ ¼ OðΩ2Þ, the last two terms vanish and we find

lim
r→∞

Iδξθ 
¼ −δΔξb ¼ −dδsξ: ðC5Þ

This result together with qδξ ¼ −δsξ proves the consistency
of (C4) with Noether’s theorem.

APPENDIX D: ANOMALIES AND FIRST-ORDER
EXTENSIONS OF SYMMETRY VECTOR FIELDS

In Appendix A we showed that the case of future null
infinity differs from a finite distance null hypersurface
because there are two sources of anomalies. We point out
that this difference is encoded also at the level of the
asymptotic Killing vectors, if one looks at the first-order
extension away from the boundary. For a null hypersurface
at finite distance, located say at r ¼ 0, we have [2]

ξ ¼ τ∂u þ YA
∂A − r_τ∂r þOðr2Þ: ðD1Þ

At future null infinity we have (B1), which we report here
for convenience of comparison,

ξ ¼ τ∂u þ YA
∂A þΩð_τ∂Ω − ∂

Aτ∂AÞ þOðΩ2Þ ðD2Þ

In both cases the first-order is fixed uniquely in terms of the
symmetry parameters, and the freedom to extend the
symmetry vector field starts at second order. We see that

the first-order extensions contain respectively one and two
terms, and these are the seeds of the anomalous trans-
formations; _τ at a finite distance, whereas on I we have
both the density-weights _τ as well as the inhomogeneous
transformations that go like ∂Aτ.
Another difference concerns the fact that field-dependent

extensions of the diffeomorphisms do not matter in comput-
ing the charges at finite distance, but matter at I . This is
because the Komar formula depends on first derivatives of ξ,
which are field independent at finite distance, but involve
higher orders at I , which see the field dependence.

APPENDIX E: TETRAD VARIABLES

There are three useful remarks to make if one uses tetrad
variables. First, the bare symplectic potential differs from
the Einstein-Hilbert one by an exact 3-form [56,57].
Second, if one fixes the same physical θ and boundary
Lagrangian, the improved Noether charge is the same [63].
Furthermore, the DPS exact 3-form is anomaly free, there-
fore one can use the same covariant boundary Lagrangian as
in the metric case to evaluate the Wald-Zoupas prescription
for the BMS charges.
The bare symplectic potential given by the Einstein-

Hilbert Lagrangian differs from the tetrad one by an exact
3-form [56,57],

θ ¼ θe þ dαDPS; αDPS ¼ ⋆ðeI ∧ δeIÞ: ðE1Þ

As a consequence, the bare Noether charges computed
without adding any boundary Lagrangian are also different,
and we have

qξ ¼ qeξ þ IξαDPS; ðE2Þ

where qξ is Komar, and qeξ ¼ 1
2
ϵIJKLeI ∧ eJiξωKL. The

improved Noether charges can be made to coincide if one
chooses the boundary Lagrangian l and θ0 to match the
metric choices, as pointed out in [63],

qe0ξ ¼ qeξ þ iξl − Iξϑe ¼ qξ þ iξl − Iξϑ ¼ q0ξ: ðE3Þ

This is a perfect example of the value of working with the
improved Noether charge, ambiguities such as picking a
representative of the equivalence class become irrelevant
once attention is switched to the physically preferred
symplectic potential.26

25It vanishes on I , and the Tambourino-Winicour extension of
the trivial vector on I vanishes everywhere, unlike δξ. The latter
is more akin to the difference between two different bulk
representatives of the same asymptotic Killing vector.

26When the authors of [5] write the table of different corner
symmetry algebras associated with the ADM, EH, EC and ECH
Lagrangians, they are looking at the bare Noether charges qξ
associated with the bare symplectic potential and no boundary
Lagrangian, as selected by the homotopy prescription. Should
they switch to the improved Noether charges q0ξ selected in each
case by the same θ0 and the same l, they would of course obtain
the same algebra in each case.
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Both θe and αDPS are anomaly-free. Furthermore, αDPS

becomes field-space exact at I ,

dα
←

DPS ¼ δ

�
DU þ 1

8
CN

�
: ðE4Þ

Therefore, condition 1 of the WZ prescription is satisfied,
with

θe
←
¼ −

�
δð2M þ 2DŪÞ þ 1

2
NABδCAB

�
ϵI : ðE5Þ

Taking the same θ̄ as before, we have

be ¼
�
2M þ 2DŪ þ 1

2
ρC

�
ϵI : ðE6Þ

The anomaly of this boundary Lagrangian can be
computed as shown before and gives twice the metric
one, Δξbe ¼ dseξ ¼ 2dsξ with sξ given by (B20). On the
one hand, this is the right result to get the correct WZ
charge, since using the results of [9],

qeξ þ iξbe ¼ ðτð4M þDŪÞ þ 2YP̄ÞϵS;
qeξ þ iξbe þ 2sξ ¼ ð4τM þ 2YP̄ÞϵS: ðE7Þ
On the other hand, this means that the corner shift needed to
get this result from an improved Noether charge is also
twice the metric one,

ce ¼ 2c ¼ −4β̄ϵS ¼
1

8
C2ϵS; ðE8Þ

le¼ beþdce

¼
�
2Mþ2DŪþ1

4
CNþ1

2
ρC

�
ϵI ; Δξle¼ 0: ðE9Þ

Notice that this anomaly-free boundary Lagrangian differs
from the metric one (3.14) by the anomaly-free corner term
(B23). It thus belong to the same anomaly-free class, and
can indeed be recognized as (3.16) with x ¼ 1. That it
belongs to the same family of anomaly-free boundary
Lagrangians was to be expected, since Δξα

DPS ¼ 0.
In the same anomaly-free class of tetrad boundary

Lagrangians we find taking x ¼ −1

lBMSW ¼
�
2M −

1

4
CN þ 1

2
ρC

�
ϵI ; ðE10Þ

which is the one used in [9]. The results are thus perfectly
compatible with the ones here presented, and the novelty is
that we now know how to identify this boundary
Lagrangian a priori, without having to deduce it from
already knowing the WZ charges.
As a final remark, notice that there is no incompatibility

between the fact that (B23) and (E4) are both anomaly free
in spite of having different relative factors, because
½Δξ; δ� ¼ −Δδξ ≠ 0. This calculation cannot however be
done explicitly without providing a definition for δδξ, which
in turns requires an extension of be.

[1] R. M. Wald and A. Zoupas, A general definition of ’con-
served quantities’ in general relativity and other theories of
gravity, Phys. Rev. D 61, 084027 (2000).

[2] V. Chandrasekaran, E. E. Flanagan, and K. Prabhu, Sym-
metries and charges of general relativity at null boundaries,
J. High Energy Phys. 11 (2018) 125.

[3] A. Ashtekar, N. Khera, M. Kolanowski, and J.
Lewandowski, Charges and fluxes on (perturbed) non-
expanding horizons, J. High Energy Phys. 02 (2022)
066.

[4] D. Harlow and J.-Q. Wu, Covariant phase space with
boundaries, J. High Energy Phys. 10 (2020) 146.

[5] L. Freidel, M. Geiller, and D. Pranzetti, Edge modes of
gravity. Part I. Corner potentials and charges, J. High
Energy Phys. 11 (2020) 026.

[6] V. Chandrasekaran and A. J. Speranza, Anomalies in gravi-
tational charge algebras of null boundaries and black hole
entropy, J. High Energy Phys. 01 (2021) 137.

[7] J. Margalef-Bentabol and E. J. S. Villaseñor, Geometric
formulation of the Covariant Phase Space methods with
boundaries, Phys. Rev. D 103, 025011 (2021).

[8] G. Compère, A. Fiorucci, and R. Ruzziconi, The Λ-BMS4
charge algebra, J. High Energy Phys. 10 (2020) 205.

[9] L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale, The
Weyl BMS group and Einstein’s equations, J. High Energy
Phys. 07 (2021) 170.

[10] L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale,
Extended corner symmetry, charge bracket and Einstein’s
equations, J. High Energy Phys. 09 (2021) 083.

[11] V. Chandrasekaran, E. E. Flanagan, I. Shehzad, and A. J.
Speranza, A general framework for gravitational charges
and holographic renormalization, Int. J. Mod. Phys. A 37,
2250105 (2022).

[12] L. Ciambelli, From asymptotic symmetries to the corner
proposal (2023), arXiv:2212.13644.

[13] L. A. Tamburino and J. H. Winicour, Gravitational fields in
finite and conformal bondi frames, Phys. Rev. 150, 1039
(1966).

[14] R. P. Geroch and J. Winicour, Linkages in general relativity,
J. Math. Phys. (N.Y.) 22, 803 (1981).

[15] G. Barnich and C. Troessaert, Aspects of the BMS/CFT
correspondence, J. High Energy Phys. 05 (2010) 062.

WALD-ZOUPAS PRESCRIPTION WITH SOFT ANOMALIES PHYS. REV. D 107, 084028 (2023)

084028-21

https://doi.org/10.1103/PhysRevD.61.084027
https://doi.org/10.1007/JHEP11(2018)125
https://doi.org/10.1007/JHEP02(2022)066
https://doi.org/10.1007/JHEP02(2022)066
https://doi.org/10.1007/JHEP10(2020)146
https://doi.org/10.1007/JHEP11(2020)026
https://doi.org/10.1007/JHEP11(2020)026
https://doi.org/10.1007/JHEP01(2021)137
https://doi.org/10.1103/PhysRevD.103.025011
https://doi.org/10.1007/JHEP10(2020)205
https://doi.org/10.1007/JHEP07(2021)170
https://doi.org/10.1007/JHEP07(2021)170
https://doi.org/10.1007/JHEP09(2021)083
https://doi.org/10.1142/S0217751X22501056
https://doi.org/10.1142/S0217751X22501056
https://arXiv.org/abs/2212.13644
https://doi.org/10.1103/PhysRev.150.1039
https://doi.org/10.1103/PhysRev.150.1039
https://doi.org/10.1063/1.524987
https://doi.org/10.1007/JHEP05(2010)062


[16] G. Compère, A. Fiorucci, and R. Ruzziconi, Superboost
transitions, refraction memory and super-Lorentz charge
algebra, J. High Energy Phys. 11 (2018) 200.

[17] M. Henneaux and C. Troessaert, Hamiltonian structure
and asymptotic symmetries of the Einstein-Maxwell system
at spatial infinity, J. High Energy Phys. 07 (2018) 171.

[18] H. Godazgar, M. Godazgar, and C. Pope, Tower of
subleading dual BMS charges, J. High Energy Phys. 03
(2019) 057.

[19] Y. Hamada and G. Shiu, Infinite Set of Soft Theorems in
Gauge-Gravity Theories as Ward-Takahashi Identities,
Phys. Rev. Lett. 120, 201601 (2018).

[20] G. Compère, R. Oliveri, and A. Seraj, The Poincaré and
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