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Circumambient and galactic-scale environments are intermittently present around black holes, especially
those residing in active galactic nuclei. As supermassive black holes impart energy on their host galaxy, so
the galactic environment affects the geodesic dynamics of solar-mass objects around supermassive black
holes and subsequently the gravitational waves emitted from such nonvacuum extreme-mass-ratio binaries.
Only recently an exact general-relativistic solution has been found that describes a Schwarzschild black
hole immersed in a dark matter halo profile of the Hernquist type. We perform an extensive analysis generic
geodesics delving in such nonvacuum spacetimes and compare our results with those obtained in vacuum
Schwarzschild spacetime, as well as calculate their dominant gravitational-wave emission. Our findings
indicate that the radial and polar oscillation frequency ratios, which designate resonances, descend deeper
into the extreme gravity regime as the compactness of the halo increases. This translates to a gravitational
redshift of nonvacuum geodesics and their resulting waveforms with respect to the vacuum ones; a
phenomenon that has also been observed for ringdown signals in these setups. We calculate the maximized
overlap between waveforms resulting from orbital evolutions around Schwarzschild and nonvacuum
geometries and find that it decreases as the halo compactness grows, meaning that dark matter
environments should be distinguishable by space-borne gravitational-wave detectors. For compact
environments, we find that the apsidal precession of orbits is strongly affected due to the gravitational
pull of dark matter; the orbit’s axis can rotate in the opposite direction as that of the orbital motion, leading
to a retrograde precession drift that depends on the halo’s mass, as opposed to the typical prograde
precession transpiring in vacuum and galactic-scale environments. Gravitational waves in retrograde-to-
prograde orbital alterations demonstrate transient frequency phenomena around a critical nonprecessing
turning point, thus they may serve as a “smoking gun” for the presence of dense dark matter environments
around supermassive black holes.

DOI: 10.1103/PhysRevD.107.084027

I. INTRODUCTION

One of the most curious and enigmatic conundrums that
has puzzled the physics community for decades is the dark
matter problem in our Universe. Although we are now
convinced that the striking majority of the mass in the
Universe is indeed comprised of nonordinary (and non-
luminous) matter, there are still efforts to understand its
composition [1–3]. The current Standard Model of cosmol-
ogy, namely the Λ cold dark matter (ΛCDM) model,
describes the structure formation of the Universe, from stars
to galaxy clusters, quite successfully in accord with the
observational characteristics of the Universe [4,5], though
there are still a number of challenges to be resolved [6].
Even though dark matter is not directly perceptible [7,8],

there is a plethora of indirect evidence for the existence of a

field that only interacts gravitationally [9,10]. Some exam-
ples are the discrepancy in rotation curves of galaxies and
the fact that they cannot be explained only by ordinary
matter [11–16], the inconsistency between gravitational
lensing predicted by general relativity (GR) and observa-
tions [17–19], as well as the observed cosmic microwave
background radiation power spectrum that strongly sup-
ports the existence of dark matter [20], to name a few.
Since dark matter is assumed to interact only gravitation-

ally, it should be taken into account in gravitational-wave
(GW) astrophysics [21], especially because astrophysical
environments are omnipresent in galactic media. In the
meantime, the first GW detection of a black hole (BH)
binary merger by the LIGO/Virgo collaboration [22], and
subsequent ones [23], has opened an entirely new avenue for
precision GW astronomy. GWs carry pristine information
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regarding the binary’s constituents, as well as the final
remnant’s externally observable quantities. So far, the
majority of mergers observed last for fractions of a second.
Although GW astronomy is in full bloom and we are now
able to extract significant information regarding the space-
time geometry and the Kerrness of BHs, it is natural to
venture out and explore novel GW sources that are at the
moment inaccessible with current detectors.
The Laser Interferometer Space Antenna (LISA) [24] is a

space-borne GW detector that will open new realms in GW
astrophysics, due to its unprecedented level of accuracy,
and pursue in particular mHz sources of GWs [25–28].
One of the prime objectives of LISA (and other space
programs [29–31]) is the detection of gravitational radia-
tion from extreme-mass-ratio inspirals (EMRIs) [32],
which comprise a primary supermassive BH and a secon-
dary stellar-mass compact object. Supermassive BHs, and
consequently EMRIs, reside in stellar clusters and galactic
cores, thus including environmental effects in waveform
models should be prioritized in order to maximize the
science yield of space-based detectors [33–50].
Even so, the bulk of EMRI analyses treat these systems

in vacuum, or with Newtonian potentials that approximate
matter and dynamical friction. Only recently an exact
general-relativistic solution of the Einstein field equations
has been obtained [51], which describes a BH immersed
into a dark matter halo of the Hernquist type [52], and was
further extended to different dark matter profiles [53–56].
The axial and polar GW fluxes have been recently inves-
tigated in a generalized setup [57], for circular equatorial
EMRIs, and strongly support the need for astrophysical
environments to be taken into consideration in EMRI
waveform modeling.
In this study, we investigate the orbital phase space of

generic, noncircular and precessing geodesics in galactic-
scale and compact dark matter environments, as well as
their emitted GW radiation, without restricting the orbit
onto the equatorial plane. We find that geodesics are
integrable irregardless of the halo’s compactness and that
bound orbits occupy a larger volume in phase space with
respect to Schwarzschild geodesics when the secondary’s
properties remain fixed. We further find that the character-
istics of the halos considered impose significant changes
in phase space and lead to orbits with longer revolution
period, due to dynamical friction, which possess larger
orbital frequency ratios as the halo compactness increases.
This translates to a significant decrease in the match
between vacuum Schwarzschild and nonvacuum GWs
from such asymmetric binaries, even when the compact-
ness is of order 10−6 and can represent a galactic-scale
environment, as well as a redshift in their respective
GW frequencies.
Taking the compactness of the halo at a large limit,

where the solution still does not violate any energy
conditions or exhibits external singularities, we find a clear

phenomenological imprint, where the trajectories can
experience a retrograde-to-prograde precession transition
and the GW frequencies slowly convert from triplets to
single Fourier peaks and back as the secondary crosses a
critical radial position. This phenomenon only occurs when
the dark matter halo is compact and massive enough; in
such case the dark matter pull can antagonize the general-
relativistic effects of the primary. Our analysis provides
results both in the orbital and waveform level, and assesses
potential effects of astrophysical and compact environ-
ments during an inspiral’s progression under the
assumption of adiabatic evolution through a successive
geodesic scheme. In what follows we utilize geometrized
units so that G ¼ c ¼ 1.

II. BLACK HOLES IN GALAXIES

We operate on an exact solution of Einstein’s equations
that describes a nonrotating BH lurking in the center of a
galactic dark matter halo [51]. The construction assumes
many gravitating masses following all possible geodesics
and surrounding the central object, thus building an
Einstein cluster. The construction is equivalent to intro-
ducing an anisotropic material with vanishing radial and
nonvanishing tangential pressure Pt, such that

Tμ
ν ¼ diagð−ρ; 0; Pt; PtÞ; ð1Þ

where ρ describes the dark matter profile. Even though
there are plenty of density profiles to describe dark matter
halos [58–61], an exact spacetime geometry has only
been found when the Hernquist density profile is utilized,
namely [52]

ρ ¼ Ma0
2πrðrþ a0Þ3

; ð2Þ

where M is the mass of the halo, a0 its length scale and
M=a0 defines the halo compactness. The assumption of
spherical symmetry, together with a Hernquist-inspired
matter distribution

mðrÞ ¼ MBH þ Mr2

ða0 þ rÞ2
�
1 −

2MBH

r

�
2

; ð3Þ

where MBH is the mass of the primary BH, leads to the
spacetime geometry

ds2 ¼ −fðrÞdt2 þ dr2

1 − 2mðrÞ=rþ r2dΩ2; ð4Þ

with

fðrÞ ¼
�
1 −

2MBH

r

�
eϒ; ð5Þ
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ϒ ¼ −π
ffiffiffiffiffiffiffiffiffi
M=ξ

p
þ 2

ffiffiffiffiffiffiffiffiffi
M=ξ

p
arctan

�
rþ a0 −Mffiffiffiffiffiffiffi

Mξ
p

�
; ð6Þ

ξ ¼ 2a0 −M þ 4MBH: ð7Þ

At small scales, Eq. (4) describes a BH of massMBH, while
at large distances the Newtonian potential corresponds
to that of the Hernquist profile (2), dominated by M. The
causal structure of spacetime consists of an event horizon
at r ¼ 2MBH, a curvature singularity at r ¼ 0, while the
configurations have Arnowitt-Deser-Misner mass equal to
M þMBH. For astrophysical scenarios, such as galactic-
scale halos, the inequality MBH ≪ M ≪ a0 should hold
together with compactness of order M=a0 ≲ 10−4 [60].
Nevertheless, in the context of BH environments, the
compactness is a free parameter as long as M <
2ða0 þ 2MBHÞ, in order to avoid further curvature singu-
larities besides the one at r ¼ 0. In the rest of this analysis,
we will conform to the aforementioned inequality.

III. ORBITAL DYNAMICS

The most suitable way to adiabatically evolve an EMRI
is through the calculation of the axial and polar GW fluxes
in order to drive the inspiral through successively damped
geodesics. Currently, the most proper EMRI analysis in the
geometry (4) has been performed in [51,57] for circular
equatorial orbits. Nevertheless, a first-order approximation
to EMRI evolution can be accomplished through geodesics
of a test particle which plays the role of the secondary
orbiting around the primary supermassive BH. As such,
one can gain important intuition regarding the elemental
structure of the underlying background geometry at the
geodesic level. In what follows, we will consider generic
orbits, which even though are planar due to the spherically
symmetric nature of the primary, are not circular and are
precessing, therefore the initial conditions and parameters
of the secondary are not fine-tuned but rather satisfy
appropriate constraints for bound geodesic motion.

A. Geodesic evolution

The geodesic equations read

ẍκ þ Γκ
λν _x

λ _xν ¼ 0; ð8Þ

where Γκ
λν are the Christoffel symbols associated with

the background spacetime, xκ is the four-position, _xκ is
the four-velocity and the overdot denotes differentiation
with respect to proper time τ.
In general, stationary and axisymmetric spacetimes, the

metric tensor components are t and ϕ independent thus
admit at least two conserved quantities (due to stationarity
and axisymmetry) throughout the geodesic evolution,
namely the energy E and z component of the orbital
angular momentum Lz (see Refs. [62–64]).

The geometry (4) is static and spherically symmetric thus
admits a third constants of motion, besides E and Lz which
can be expressed from (4) as

E=μ ¼ −gtt _t; Lz=μ ¼ gϕϕ _ϕ; ð9Þ

with μ the mass of the test-particle (secondary). The third
constant corresponds to the square of the angular momen-
tum L2 ¼ L2

x þ L2
y þ L2

z (see Sec. III B and the Appendix).
The t and ϕ momenta can be expressed with respect to the
conserved quantities and the nonzero metric tensor com-
ponents. Together with the conservation of the rest mass μ
of the secondary, (preservation of four-velocity) which
leads to gλν _xλ _xν ¼ −1, the geodesics of test particles
possess four constants of motion. Specifically, the con-
servation of the rest mass gives the constraint equation for
bound orbits

_r2 þ gθθ
grr

_θ2 þ Veff ¼ 0; ð10Þ

where the Newtonian-like effective potential has the form

Veff ≡ 1

grr

�
1þ gϕϕE2 þ gttL2

z

gttgϕϕ

�
: ð11Þ

The curve defined when Veff ¼ 0 is called the curve of zero
velocity (CZV) since _r ¼ _θ ¼ 0 there. Utilizing the CZV
and proper initial conditions leads to bound orbits that do
not escape from the gravitational potential of the primary
nor plunge into the BH.
Generally, bound geodesics can be fully characterized

by three frequencies which are imprinted at the emitted
gravitational radiation of EMRIs. These frequencies are
associated with the radial rate of transition between the
periapsis and apoapsis of the orbit (ωr), longitudinal
oscillations around the equatorial plane (ωθ) and the
frequency of revolution around the primary (ωϕ). The
geodesics, then, evolve on two-dimensional tori character-
ized by the above frequencies. When the ratios ωr=ωθ,
ωr=ωϕ or ωθ=ωϕ, are irrational then the orbits are quasi-
periodic and cover the entire phase space of the associated
torus densely, meaning that they never return to their initial
position. On the other hand, when one of these ratios forms a
rational number then the geodesic is periodic (or resonant)
and returns to its initial position after a number of oscil-
lations defined by the ratio. Such orbits are special in the
sense that they are not phase-space filling and therefore,
can directly affect the evolution of EMRIs [62–80].

B. Integrability

In general, the metric tensor field of geometry (4) (and
any other spherically symmetric configuration) admits four
Killing vector fields (KVFs); one timelike ηα which acts
simply transitively, and three spacelike ξαðiÞ; i ∈ f1; 2; 3g
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which act multiple transitively in two-dimensional surfaces.
Locally, the algebra of the three spacelike KVFs form an
SO(3) group, while they all commute with the timelike
field. As discussed above, every KVF gives rise to a linear
(in velocities) constant of motion for the geodesics equa-
tions (8). Thus, if

E ¼ ηαgαβ _xβ; Li ¼ ξαðiÞgαβ _x
β; i ∈ f1; 2; 3g; ð12Þ

then

_xα∇αE ¼ _xα∇αLi ¼ 0; ð13Þ

provided that Eq. (8) is satisfied, i.e., four linear constants are
expected. Given the fact that the initial degrees of freedom
are four in Eq. (8), eight boundary or initial conditions are
needed in order for the system to be integrated. Nevertheless,
two out of the four linear constants, i.e., the integrals L2 and
L3, are functionally dependent, otherwise the system would
be superintegrable and it could be solved algebraically.
Therefore, only three out of the four integrals of motion can
be implemented, suggesting that there is only 1 degree of
freedom left that corresponds to the radial coordinate r.
Alternatively, if one tries to search for a quadratic (in

velocities) Killing tensor, e.g. Kαβ, then the corresponding
equations ∇ðαKβγÞ ¼ 0 can easily be solved in the case
under consideration. It turns out that

Kαβ ¼ K1η
αηβ þ K2ðξαð1Þξβð1Þ þ ξαð2Þξ

β
ð2ÞÞ þ K3ξ

α
ð3Þξ

β
ð3Þ

þ K4ðηαξβð3Þ þ ξαð3Þη
βÞ þ K5gαβ:

Since the constants Kj; j ∈ f1; 2; 3; 4; 5g are free param-
eters, one can set K1 ¼ K4 ¼ K5 ¼ 0 and K2 ¼ K3 ¼ 1.
Then the (would be) Carter constant equals the magnitude
of the angular momentum operator,

Kαβ _xα _xβ ¼ L2
1 þ L2

2 þ L2
3 ¼ L2

x þ L2
y þ L2

z ≡ L2: ð14Þ

In that case, the needed integrals of motion, in order to
perform a reduction in the geodesics, are E, Lz and L2,
which can be solved algebraically in terms of the velocities
_t, _x, _ϕ (where x ¼ cos θ) and subsequently substituted
(along with their first derivatives with respect the affine
parameter) to the geodesics. Hence, a single, second-order
ordinary differential equation regarding the radial coordi-
nate r will emerge (see the Appendix) that describes the
radial evolution of geodesics on a fixed plane θ ¼ constant.

C. Poincaré surface of section and rotation number

To comprehend the structure of bound orbits in phase
space around the geometry (4) we can employ various
tools in order to gain further intuition regarding interesting
orbital phenomena. A typical example is the Poincaré map

which is constructed by successive intersections of orbits,
with varying initial conditions, on a surface of section (e.g.
the equatorial plane) with positive (or negative) direction
of intersection. The structure of the Poincaré map can
instantly reveal the existence of chaos, such as disorganized
intersections which reveal a fully chaotic/ergodic orbital
evolution or the formation of resonant/Birkhoff islands
that encapsulate periodic-orbit stable points [81]. To further
elaborate on the libration-like frequency evolution, one
can utilize the rotation number of each geodesic. This is
accomplished by tracking the angle ϑ between two suc-
cessive intersections on the Poincaré map relative to the
fixed central point of the map (clockwise or anticlockwise)
which corresponds to a circular, but otherwise not neces-
sarily equatorial, orbit that intersects the surface of section
exactly at the same point. The rotation number is then
defined as [81]

νϑ ¼
1

2πN

XN
i¼1

ϑi: ð15Þ

When the number of angles measured N tends to infinity,
the above sequence converges to the rotation number
νϑ ¼ ωr=ωθ. Integrable systems (such as the one we study
here) exhibit monotonous changes in consecutive rotation
numbers. Rotation curves formed by successive rotation
numbers are a rather helpful tool to spot where resonances
lie and if there are any imprints of chaos in dynamical
systems [62–64,75,76,80–85].

IV. ENVIRONMENTAL EFFECTS
ON GEODESIC EVOLUTION

In this section we perform a qualitative comparison
between geodesics around vacuum Schwarzschild BHs and
those evolving in the geometry (4). By solving the coupled
radial and polar second-order ordinary differential equa-
tions (without making any assumptions of integrability),
together with the first order decoupled equations for _t and _ϕ
from Eqs. (9), we obtain bound orbits that reside inside the
CZVand never plunge nor escape to infinity.1 This is made
possible by the use of appropriate initial velocity compo-
nents for _r, _θ. All orbits we obtained lie on a fixed plane,
as expected from spherical symmetry and the discussion
in Sec. III B. To check the precision of our evolution we
evolve the constraint equation (10) for 104–105 revolutions
and find that it is satisfied within one part in 1010–1012

depending on the compactness of the halo.

1It is important to note that since the spacetime under
consideration is integrable, one can decouple the equations for
the evolution of r and θ to become separate first-order differential
equations. Nevertheless, symmetry assumptions only simplify the
equations meaning that one can integrate them faster but the
resulting orbits are identical in both cases.
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Before embarking in a parametric space analysis of
geodesics we note that there is a variety of parameter sets
ðE=μ; Lz=μ;M; a0Þ that can give rise to almost identical
CZVs and Veff at the equatorial plane. In Fig. 1 we
demonstrate the aforementioned statement for three differ-
ent cases of ðE=μ; Lz=μ;M; a0Þ sets that give rise to similar
(if not the same) potentials and CZVs. Note that we have
spanned the compactness of the halo in a rather large range,
i.e. M=a0 ∈ ½10−8; 10−1�, and could still find appropriate
choices of E and Lz that lead to similar orbital potentials.
Since the parameter space ðE=μ; Lz=μ;M; a0Þ presents
such degeneracies, we will fix E=μ ¼ 0.95 and Lz=μ ¼
3MBH for the rest of the paper. The particular choice of E
and Lz gives rise to geodesics with small eccentricity,
generally. Because of the fact that most of our initial
conditions lie in the strong field regime and close to the
primary, where the emission of GWs have significantly
circularized the orbits, this particular set of initial param-
eters for the secondary is astrophysically relevant.

A. Poincaré maps, rotation curves and resonances

The predominant effect introduced by the halo is an
overall redshift on the fundamental structure of the geom-
etry, such as the light-ring position, as well as a redshift on
the light-ring angular frequency, the instability timescale of
null geodesics and the characteristic vibrational frequencies
(quasinormal modes) of spacetime under scalar and axial
gravitational perturbations [51].
The geodesic analysis reveals, at first glance, a volume

enlargement of the CZVs, with respect to that of
Schwarzschild, as the compactness of the halo increases
(see Fig. 2). Such behavior translates to orbits that can span
on a larger orbital frequency range which is imprinted in the
Poincaré surface of section shown in Fig. 2. Galactic-scale

halos with compactness of orderM=a0 ≲ 10−5 do not seem
to affect significantly the available orbital phase space of
bound orbits at first glance. As we will see later though,
even compactnesses of astrophysical relevance can affect
the geodesic evolution and the emitted GWs substantially,
as has already been shown in [51], though only for circular
equatorial EMRIs. Nevertheless, upgrading the halo into a
compact BH hairlike environment leads to a significant
change on the bound orbit phase space. Figure 3 portrays
the orbital effect of the halo for small and intermediate
compactness (top panel), as well as dense BH environments
(bottom panel).
The rotation curves (designating the frequency ratio of

radial and polar orbital oscillations) for small and inter-
mediate compactness have a trivial monotonic structure
which agrees with the integrability property of geodesics in
spherical symmetry. The main effect presented on the top
panel of Fig. 3 is a redshift of the orbital frequency ratio
into smaller radii with increasing compactness, with respect
to that of vacuum Schwarzschild geodesics, as well as
the sustainability of orbits with higher rotation numbers.
A qualitative picture is presented for a particular resonant
frequency, namely the ωr=ωθ ¼ 1=2 periodic orbit (top
right panel in Fig. 3) and the ωr=ωθ ¼ 2=3 periodic orbit
(bottom right panel in Fig. 3), which occurrence experi-
ences an advance towards the primary as the halo becomes
more dense. One may characterize such events typical due
to the growing presence of gravitating dark matter around
the primary. This is indeed the case; the increment of
compactness leads to an antagonism between the gravita-
tional pull of the primary and the dark matter influence on
test particles which allows for bound orbits closer to plunge
and further regions before escaping to infinity, as well as
with higher orbital frequency ratios. If there would be a
case where geodesics around a nonvacuum primary mimic

FIG. 1. Left: curves of zero velocity for the geometry (4) with various combinations of the parameters E, Lz,M, a0. The compactness
combinations vary in the range M=a0 ∈ ½10−8; 10−1�. Right: same as the left figure with θ ¼ π=2. For both cases the secondary and
primary masses are μ ¼ 2M⊙ and MBH ¼ 2 × 106M⊙, respectively.
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the rotation curve of orbits around a vacuum Kerr BH, then
such degeneracy can easily be broken directly from the
properties of resonances in spherical symmetry, which do
not affect the fluxes, in contrast to Kerr resonances which
have been shown to affect significantly the resulting
waveforms and the fluxes of energy, z component of
angular momentum and Carter constant [65,66,72], as well
as parameter estimation [73,74].

B. Apsidal precession drift

Intriguingly, when introducing a more compact environ-
ment surrounding the primary object the dynamics display
an interesting phenomenon, related to the apsidal precession
of the orbit. In Fig. 3 (bottom left panel) we show rotation
curves of a BH surrounded by a compact environment with
fixed M=a0 ¼ 10−1 and increasing halo mass M. Beyond a
certain halo mass the rotation curve can reach unity at a
critical radius after which the rotation number drops from
unity to zero, and then slightly increases to nonzero values.
Such event is not a numerical artifact2 but rather a physical
phenomenon related to the antagonism and eventual counter-
balance between general-relativistic effects and the gravita-
tional field of dark matter. As we will see below, such
physical antagonism will lead to a change in the precession
drift direction which leads to these critical radii in rotation
curves. Therefore, what occurs in Fig. 3 depends on the
definition of the rotation number, which is directly linked to

the assumption made regarding the direction one measures
angles between successive intersections.
Figure 4 (left panel) portrays three distinct EMRI orbits

with different initial radial positions in the x–y plane
under the identification of Boyer-Lindquist coordinates
with spherical coordinates as seen from an observer at
infinity. The orbit in red initiates its trajectory in a region
before the critical radius. In this case the precession drift is
positive (prograde precession), i.e. the orbit’s axis rotates in
the same direction as the orbital motion. On the other hand,
the orbit in blue, with initial radial position beyond the
critical point, has negative precession (retrograde preces-
sion) since the apsidal axis rotates in the opposite direction
as the trajectory of the test particle. Right at the critical
radius where the drop on the rotation curves occur lies
an elliptic orbit with a critical initial condition rð0Þ that
does not exhibit precession in any direction (shown in
green in Fig. 4). On the right panel of Fig. 4 we present the
precession angle evolution for the three aforementioned
geodesics which clearly demonstrates that the retrograde
and prograde trajectories have opposite precession rates
while the elliptic orbit’s rate remains constant, i.e. exhibits
no precession drift.
Therefore, even though at first glance the rotation curves

present severe discontinuities, they can be explained by
physical phenomena and happen smoothly as the initial
secondary’s precession rate slowly decreases, becomes null
and eventually changes sign, with the decrease of the initial
radial position of the geodesic. Discontinuities in rotation
curves can therefore be associated with a change in the
precession drift’s direction from prograde to retrograde and
eventually trace back to the particular conventions made in
the definition of the rotation number.

FIG. 2. Left: curves of zero velocity for the geometry (4) with M ¼ 103MBH and varying compactness M=a0. For comparison we also
present the curve of zero velocity of Schwarzschild geodesics. Right: Poincaré maps of bound orbits for the geometry (4) with M ¼
103MBH and varying compactness M=a0. For both cases the conserved energy and angular momentum of the test particle are chosen as
E=μ ¼ 0.95, Lz=μ ¼ 3MBH, respectively, where the secondary and primary masses are μ ¼ 2M⊙ and MBH ¼ 2 × 106M⊙, respectively.

2We have performed intense convergence tests with an
increasing number of intersections and initial conditions around
the critical radius and always retrieve the same discontinuity up to
numerical precision.
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Indeed, by inspecting the consecutive intersections
through a surface of section of the orbits presented in
Fig. 4, we find that the intersections of the retrograde- and
prograde-precessing geodesics have opposite direction,
while the nonprecessing orbit intersects the surface of
section at exactly one single point (see Fig. 5). Since the
rotation number depends on the direction which one
measures the angles between consecutive crossings (clock-
wise or counterclockwise), the rotation curve is bound to
drop to zero when the critical radius is met, where the angle
between subsequent intersections is zero. Physically, the
trajectories close to the primary are dominated by general-
relativistic effects and the precession drift is positive
(similar to what occurs in the precession of Mercury and
the S-stars around Sgr A*), while beyond the critical point,

where the gravitational field of dark matter is dominant,
the dynamics of test particles and precession rates
become negative.
Finally, we note that, to our knowledge, the aforemen-

tioned phenomenon only occurs when dark matter [86,87],
other novel fundamental fields that change the theory of
gravity [88], thick accretion disks [89], as well as exotic
compact objects, such as wormholes [90], are considered.
Geodesics around Schwarzschild BHs always precess
prograde; a phenomenon which has also been observed
experimentally on the S-stars that orbit around the
supermassive BH in the center of the Milky Way [91],
which according to contemporary estimations of its spin
is rather slowly rotating, thus can be modeled as a
Schwarzschild BH [92,93].

FIG. 3. Top left: rotation curves of bound orbits for the geometry (4) with M ¼ 103MBH and varying compactness M=a0. Top right:
radial position of 1=2-resonances r ¼ r1=2MBH with respect to the compactness M=a0 extracted from the top left curves. Bottom left:
rotation curves of bound orbits for the geometry (4) with a0 ¼ 10M and varying halo mass M. Bottom right: radial position of
2=3-resonances r ¼ r2=3MBH with respect to the halo massM extracted from the bottom left curves. For all cases, the conserved energy
and angular momentum of the test particle are chosen as E=μ ¼ 0.95, Lz=μ ¼ 3MBH, respectively, where the secondary and primary
masses are μ ¼ 2M⊙ and MBH ¼ 2 × 106M⊙, respectively.
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V. GRAVITATIONAL RADIATION

Even though we operate at the geodesic level, and do not
take into account radiative backreaction of the secondary
to the geometry of the primary, it is still interesting to

qualitatively compare the approximate GW emission of a
particle in vacuum Schwarzschild and a particle orbiting a
Schwarzschild BH immersed in a dark matter halo where
dynamical friction actively takes place. For this task, we
shall take advantage of the quadrupole approximation
described below.

A. Quadrupole approximation

The quadrupole formula takes advantage of the fact that
the quadrupole emission of gravitational radiation is the
dominant one, thus the radiative component of the metric
perturbation introduced by the test particle at luminosity
distance d from the source T can be read at the transverse
and traceless gauge as

hTTij ¼ 2

d

d2Qij

dt2
; ð16Þ

where Qij is the symmetric and trace-free (STF) quadru-
pole tensor

Qij ¼
�Z

xixjTttðt; xiÞd3x
�
STF

; ð17Þ

with t being the coordinate time measured at very large
distances from the source. The source term of the point
particle is then

Tttðt; xiÞ ¼ μδð3Þ½xi − ZiðtÞ�; ð18Þ

FIG. 4. Left: geodesic evolution of a compact object with mass μ ¼ 2M⊙ orbiting around a supermassive BH with mass
MBH ¼ 2 × 106M⊙. The BH, shown at the origin, has event horizon radius r ¼ 2MBH and resides in a compact environment with
mass M ¼ 3MBH and length scale a0 ¼ 10M, described by the geometry (4). Each orbit is evolved for ten revolutions and projected in
Euclidean coordinates. Different colors designate orbits with distinct initial positions r ¼ rð0Þ as well as with _rð0Þ ¼ 0, θð0Þ ¼ π=2,
E=μ ¼ 0.95, Lz=μ ¼ 3MBH, while _θð0Þ is initialized through the constraint equation (10). The geodesic with rð0Þ ¼ 10MBH (red)
begins its trajectory from the black square in the ðx; yÞ plane. Equivalently, orbits with rð0Þ ¼ 11.65MBH (green) and rð0Þ ¼ 14MBH
(blue) begin from the black triangle and circle, respectively. The red, green and blue arrowheads at the end of evolution designate
the orbital direction which is anticlockwise for all cases. Finally, the red and blue arrows point towards the direction of precession.
Right: evolution of precession angles for the three aforementioned orbital cases with respect to time for ∼50 cycles.

FIG. 5. Equatorial surface of section of geodesics with initial
conditions rð0Þ ¼ 10MBH (red), rð0Þ ¼ 11.65MBH (green),
rð0Þ ¼ 14MBH (blue), respectively, and _rð0Þ ¼ 0, θð0Þ ¼ π=2,
E=μ ¼ 0.95, Lz=μ ¼ 3MBH, while _θð0Þ is initialized through the
constraint equation (10). The secondary (with μ ¼ 2M⊙) orbits
around a primary (with MBH ¼ 2 × 106M⊙) that is described by
the geometry (4) with M ¼ 3MBH and a0 ¼ 10M. Here, only the
first 50 intersections through the equatorial plane are shown to
emphasize the change in intersection direction.
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where ZðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ with

xðtÞ ¼ rðtÞ sin θðtÞ cosϕðtÞ; ð19Þ

yðtÞ ¼ rðtÞ sin θðtÞ sinϕðtÞ; ð20Þ

zðtÞ ¼ rðtÞ cos θðtÞ; ð21Þ

the trajectory components with respect to flat spherical
coordinates, under the assumption that our space-borne
detector is positioned at infinity. Even though this does not
practically occur,3 since we assume a finite luminosity
distance d from the source, such prescription, though not
strictly valid, has been found to work well when generating
EMRI waveforms in GR [94].
An incoming GW onto the detector can be projected on

its two polarizations, þ and ×, with the introduction of two
unit vectors, namely p and q, which are defined in terms
of a third unit vector n that points from the source to the
direction of the detector. The triplet of unit vectors p, q, n
is chosen so that they form an orthonormal basis. The
polarization tensor components are then

ϵijþ ¼ pipj − qiqj; ϵij× ¼ piqj þ pjqi; ð22Þ

and allow us to write the metric perturbation as

hijðtÞ ¼ ϵijþhþðtÞ þ ϵij×h×ðtÞ; ð23Þ

with

hþðtÞ ¼
1

2
ϵijþhijðtÞ; h×ðtÞ ¼

1

2
ϵij×hijðtÞ: ð24Þ

To express the GW components in terms of the position,
ZiðtÞ, velocity, viðtÞ ¼ dZi=dt, and acceleration vectors
aiðtÞ ¼ d2Zi=dt2, we use Eqs. (16) and (18) to obtain [95]

hþ;×ðtÞ ¼
2μ

d
ϵþ;×
ij ½aiðtÞZjðtÞ þ viðtÞvjðtÞ�: ð25Þ

LISA’s response to an incident GW depends on the
antenna patterns Fþ;×

I;II of the detector (see Refs. [62,96,97]
for their intricate functional forms), thus the total waveform
detected by LISA is

hαðtÞ ¼
ffiffiffi
3

p

2
½Fþ

α ðtÞhþðtÞ þ F×
α ðtÞh×ðtÞ�; ð26Þ

where α ¼ fI; IIg is the channel index of the detector’s
antennas. We will simplify our analysis by assuming a
detector that lies at a luminosity distance d with fixed
orientation n ¼ ð0; 0; 1Þ with respect to the source and that
the primary’s polar and azimuthal angles are fixed at the
equatorial plane due to spherical symmetry (this choice
simplifies a lot the response patterns of the antennas).
A typical data stream observed by a detector contains both

the signal of the source and some noise, but in our case
we will assume that the noise is stationary and Gaussian
with zero mean. Furthermore, we assume that the two data
streams are uncorrelated and the noise power spectral density
of LISA SnðfÞ (that includes instrumental, galactic and
extragalactic confusion noise [96,97]) is the same at both
channels. This allows for a single-channel approximation.
For more details we refer the reader to Refs. [62,95–97].

B. Fourier analysis and waveform comparison

Equation (26) provides a decent approximate of the GWs
emitted by a pointlike particle orbiting around a super-
massive primary and detected by LISA. Even though
waveforms are obtained in the time domain, there exist a
handful of data analysis schemes to maximize the phe-
nomenological yield from GW observations.
The most significant tools in signal processing are

usually connected to the Fourier transform of the signal
from the time to the frequency domain. In what follows,
we denote time domain waveforms as hðtÞ and frequency
domain ones, after being Fourier transformed, as h̃ðfÞ,
where f is the frequency. A Fourier-transformed signal is
by its nature represented with imaginary numbers; therefore
whenever needed, we will take its absolute value in order to
present figures of the Fourier peaks, and thus the resulting
spectrum of GW signals.
When we want to answer questions regarding signal

characterization, we can employ further statistical tests, in
order to better understand the evolution of phase [98,99].
The maximized overlap [98,100,101], or faithfulness, is a
useful statistic for detailed waveform comparisons, since
it is very sensitive to small differences in phase between
signals. The faithfulness of two GWs is defined as the
maximized noise-weighted overlap [98,99]

F ðh1; h2Þ ¼ max
ftc;Φcg

hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð27Þ

with tc and Φc being time and phase offsets. The inner
product hh1jh2i is defined as

hh1jh2i ¼ 2

Z
fmax

fmin

h̃�1ðfÞh̃2ðfÞ þ h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df;

¼ 4Re

�Z
fmax

fmin

h̃�1ðfÞh̃2ðfÞ
SnðfÞ

df

�
; ð28Þ

3Here, we identify the Schwarzschild coordinates ðr; θ;ϕÞ of
the secondary’s trajectory with flat-space coordinates, known as
the “particle-on-a-string” approximation.
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where the superscript � designates complex conjugation,
and the Fourier transform convention we assume is

h̃ðfÞ ¼
Z

∞

−∞
ei2πfthðtÞdt: ð29Þ

Equation (27) calculates the overlap between two wave-
forms, with the same physical parameters, but maximized
extrinsic (unphysical) parameters of little astrophysical
interest, i.e. the time tc and phase Φc offsets. For the
calculation of the inner product (28) that leads to Eq. (27),
we have used realistic bounds of integration such that the

lower and upper limits are fmin ¼ 10−8 Hz and the Nyquist
frequency fmax ¼ fNy, respectively. Obviously, when com-
paring two equivalent signals we have F ðh1; h1Þ ¼ 1 and
the inner product (28) satisfies the commutative law, thus
F ðh1; h2Þ ¼ F ðh2; h1Þ.

C. Gravitational waves and overlap

In Fig. 6 we plot some representative cases of GWs,
detected by LISA, emitted by either geodesics around a
Schwarzschild primary or around a primary surrounded by
a dark matter halo. It is clear that the environment affects
significantly the resulting waveforms, even when it is of

FIG. 6. Top panel: GWs detected by LISA at the beginning (left subfigure, first seven hours) and at the end (right subfigure, after ∼2
months) of an EMRI composed of a vacuum Schwarzschild primary (black curves) and primary surround by a halo with M=a0 ¼ 10−6

(red curves), where μ ¼ 2M⊙, MBH ¼ 2 × 106M⊙. The halo mass is chosen as M ¼ 103MBH. The secondary is initialized for all cases
with rð0Þ ¼ 7.5MBH, _rð0Þ ¼ 0, θð0Þ ¼ π=2, E=μ ¼ 0.95, Lz=μ ¼ 3MBH, while _θð0Þ is found from the constraint equation (10). The
waveforms result from the orbital evolution of the aforementioned geodesics for t ¼ 5 × 105MBH ∼ 2 months (or 4 × 103 orbital
revolutions) and take only into account the l ¼ 2 contribution to gravitational radiation. The corresponding radiation is observed by
LISA from luminosity distance d ¼ 100 Mpc. Bottom panel: same as the top panel for an EMRI composed of a vacuum Schwarzschild
primary (black curves) and a primary surrounded by a halo with M=a0 ¼ 10−4 (blue curves).
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galactic scale. At the early stage of the evolution, the vacuum
and nonvacuum EMRI waveforms are in phase but only due
to the fact that seven hours have elapsed. Nevertheless, after
only ∼2 months of observation, the GW signals dephase,
with the dephasing becoming more significant as the
compactness of the halo increases. Figure 6 further dem-
onstrates that the orbits inside halos dephase in a manner that
designates that the GW frequencies should be redshifted,
since the presence of dark matter leads to an increase in
the geodesic’s revolution period. After ∼7.5 months of
orbital evolution, all waveforms calculated have completely
dephased, therefore the environment should play a very
crucial role in EMRI evolution [51,57].
Figure 7 presents the faithfulness (maximized overlap)

between vacuum Schwarzschild EMRIs and those with a
primary residing in a halo. We have calculated the faithful-
ness of emitted GWs from geodesics around vacuum and
nonvacuum primaries for varying compactness for the two
and five months of observation (i.e. tobs ¼ 5 × 105MBH

and tobs ¼ 1.3 × 106MBH, respectively), which correspond
roughly to 3000 and 8000 cycles for all halos considered.
The choice of observation time seems to affect the faithful-
ness. Indeed, for shorter observation times the environment
affects less the GW emission and propagation but longer
observations lead generally to lower faithfulness. Similar
analyses have been performed for even longer observation
times, e.g. years [102–104], though for circular equatorial
EMRIs with small non-GR parameters. Nevertheless, our
case is more sensitive to the generic, noncircular and

precessing nature of orbits, as well as the strong effect
the halo introduces to the secondary’s trajectory when we
increase it significantly.
When the compactness of the halo is arbitrarily small

(of order 10−10–10−7) the two waveforms differ by
extremely little, if not at all, and the overlap is practically
unity. Eventually it starts decreasing with the growth of the
compactness of the halo since the GWs dephase significantly
in the window of observation. Moreover, even when the
compactness is of galactic scales, i.e. of order 10−6–10−4, the
overlap is still quite low and therefore EMRIs in a galactic
environment can certainly be distinguishable from those in
vacuum, especially when generic inspirals are considered.
Of course, in our case, radiation reaction has not been taken
into account, but our study does not put bounds on the initial
conditions. Rather we let the orbits evolve in a generic
manner by including off-equatorial, noncircular and precess-
ing evolutions. This is the reason behind the rapid drop of
the overlap; the signals become much more complicated,
with multiple Fourier peaks, than the ones studied with
radiation reaction but for equatorial and circular (see e.g.
Refs. [51,102–106]) or eccentric EMRIs [107]. In fact, the
claims in [107] that entertain the possibility of constraining
better a non-GR scalar charge carried by the secondary,
when the orbit is eccentric rather than circular, are in
complete agreement with the qualitative picture of our
findings, that is the more complicated the orbit, the more
distinguishable are its EMRI parameters.

D. Gravitational-wave frequency redshift

Here, we investigate GWs in the frequency domain in
order to spot possible environmental effects in their spectra.
Figure 8 depicts the Fourier harmonics of GWs with
varying halo parameters. For reference, we include the
frequencies of a vacuum EMRI with a Schwarzschild
supermassive primary. As the compactness increases the
GW frequencies are redshifted (shown in the left panel of
Fig. 8 and further observed earlier in Fig. 6). Physically, the
redshift is associated with the presence of the halo which
interacts with test particles, leads to dynamical friction and
eventually increases their orbital period (as discussed in the
previous subsection), thus decreasing the GW frequencies.
We point out that there might be a case where the
observability of the redshift could be potentially obscured
by a change in the initial radial position of the geodesic or
the mass of the primary. To the contrary, both changes will
not only affect the amplitude of the GWs observed (and
their respective Fourier amplitudes) but can also completely
change the frequency domain spectrum if the orbit moves
closer or further from the primary.

E. Waveform imprints of compact environments

Compact environments introduce a precession drift
reversal, as shown in Sec. IV B. Figure 9 focuses on the

FIG. 7. Faithfulness F ðh1; h2Þ (in logarithmic scale) between
GWs from a vacuum Schwarzschild EMRI hvac and nonvacuum
EMRI with varying halo compactness hM=a0 , where the halo mass
is set to M ¼ 103MBH and the primary BH’s mass MBH ¼
2 × 106M⊙. The secondary has mass μ ¼ 2M⊙ and is initialized
for all cases with rð0Þ ¼ 7.5MBH, _rð0Þ ¼ 0, θð0Þ ¼ π=2, E=μ ¼
0.95, Lz=μ ¼ 3MBH, while _θð0Þ is found from the constraint
equation (10). The faithfulness between the waveforms is
calculated for the two (red curve) and five (blue curve) months
of observation.
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waveform frequencies of geodesics with varying initial
radial position (same as Fig. 4) and halo parameters
M ¼ 3MBH, a0 ¼ 10M. First, the Fourier peaks appear
more concentrated to low frequencies, due to cumulative
redshift, and exhibit a wealthier structure. For reference, the
red, blue and green peaks correspond to trajectories with

prograde, retrograde and no precession (see Figs. 4 and 5).
Precessing orbits consist of peak triplets, while the critical
nonprecessing geodesic possesses single Fourier peaks; an
expected phenomenon due to the absence of precession
frequencies. Each frequency triplet has a minimum and a
maximum amplitude, with the position of the maximum

FIG. 8. Left: GW frequencies (in mHz) extracted from the waveforms produced by EMRIs, and observed by LISA, with μ ¼ 2M⊙,
MBH ¼ 2 × 106M⊙ and different compactness M=a0 where the halo mass is M ¼ 103MBH. The secondary is initialized for all cases
with rð0Þ ¼ 7.5MBH, _rð0Þ ¼ 0, θð0Þ ¼ π=2, E=μ ¼ 0.95, Lz=μ ¼ 3MBH, while _θð0Þ is found from the constraint equation (10). The
waveforms result from the orbital evolution of the aforementioned geodesics for t ¼ 2 × 106MBH ∼ 7.5 months (or 1.5 × 104 orbital
revolutions) and take only into account the l ¼ 2 contribution to gravitational radiation. The corresponding radiation is observed by a
space-based detector from luminosity distance d ¼ 100 Mpc. Right: enlarged view of a particular region of the left figure to discern the
redshift effect that compactness introduces to the waveforms.

FIG. 9. Left: GW frequencies (in mHz) extracted from the waveforms produced by EMRIs, and detected by LISA, with μ ¼ 2M⊙,
MBH ¼ 2 × 106M⊙ and compactness M=a0 ¼ 0.1 where M ¼ 3MBH and a0 ¼ 10M. The secondary is initialized with rð0Þ ¼ 10MBH

(red), rð0Þ ¼ 11.65MBH (green) and rð0Þ ¼ 14MBH (blue) where _rð0Þ ¼ 0, θð0Þ ¼ π=2, E=μ ¼ 0.95, Lz=μ ¼ 3MBH, while _θð0Þ is
found from the constraint equation (10). The waveforms result from the orbital evolution of the aforementioned geodesics for t ¼
2 × 106MBH ∼ 7.5months (or 1.5 × 104 orbital revolutions) and take only into account the l ¼ 2 contribution to gravitational radiation.
The corresponding radiation is observed by a space-based detector from luminosity distance d ¼ 100 Mpc. Right: enlarged view of a
particular region of the left figure to discern the effect of precession drift reversal that compact environments introduce to the waveform.
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(and the existence of the triplet) depending delicately to the
initial position of the geodesic. Specifically, (retrograde-)
prograde-precessing orbits, i.e. the ones lying (beyond)
below the critical radius and the drop on the respective
rotation curve, acquire maximal harmonics at the (leftmost)
rightmost frequencies of each triplet, while the special
nonprecessing orbit has single harmonics which arise from
the combination of the triplet.
In order to further elucidate the frequency evolution of

EMRI systems in galactic halos and compact environments,
i.e. the interchange between triplet maxima and minima,
we can simulate an adiabatic “inspiral” through successive
geodesics by simply changing the initial radial position of
the geodesic and calculating the respective Fourier trans-
forms of the resulting waveforms. We note that this is not
the proper way of evolving inspirals, since we do not know
how E and Lz evolve under radiation reaction, but the
phenomenological imprint can be discerned since the
fluxes should change dramatically slow in a timescale of
∼7.5 months of evolution.
In what follows, we keep E=μ ¼ 0.95 and Lz=μ ¼ 3MBH

(even though for a realistic inspiral they should decrease in
accord with the GW fluxes) and slowly change the initial
condition rð0Þ to obtain a geodesic evolution (similar to
what is done for the Poincaré maps). We then use the
quadrupole formula to approximate the waveform and
Fourier transform it to the frequency domain. From the
Fourier peaks, we pick a particular frequency range which
includes one harmonic and calculate the frequency for which

the peak is maximized. We reiterate the aforementioned
method for different initial conditions to simulate a very
rough estimate of the frequency evolution, though without
knowing the actual phenomenological timescales involved.
Figure 10 depicts two cases of environments, namely a

galactic-scale halo with M ¼ 103MBH, a0 ¼ 105M and a
compact environment with M ¼ 3MBH, a0 ¼ 10M, where
precession reversal occurs. The influence of the galactic
environment in EMRI evolution is practically negligible
and matches to good agreement that of vacuum EMRIs, i.e.
as the radius of the secondary with respect to the primary
decreases, the GW frequencies increase exponentially
(see Fig. 10, left plot).
The phenomenology is altered when the halo is ultra-

compact, as discussed in previous sections. Concentrated
dark matter and the primary’s influence on the test particle
engage into a gravitational clash, which further can cancel
out one another and lead to perfectly elliptic orbits that
exhibit no precession (up to numerical precision). Figure 10
(right plot) shows the dependence of three subpeaks in a
particular frequency regime with respect to the initial
position (similar behavior is found for other harmonics).
First, we observe two subfrequencies (in red); one that grows
in a similar manner as the one in the left plot of Fig. 10
and another that decays as the radius is decreased. These
subfrequencies correspond to the leftmost (solid red curve)
and the rightmost (dot-dashed) subpeaks of Fig. 9. The
central subfrequency of the orbit remains constant, which is
expected since the orbit, precessing or counterprecessing,

FIG. 10. Left: GW frequency (in mHz) with respect to the orbital radius rð0Þ=MBH extracted from waveforms produced by extreme-
mass-ratio binaries with μ ¼ 2M⊙, MBH ¼ 2 × 106M⊙ and compactness M=a0 ¼ 10−5 where M ¼ 103MBH and a0 ¼ 105M. The
secondary is initialized with _rð0Þ ¼ 0, θð0Þ ¼ π=2, E=μ ¼ 0.95, Lz=μ ¼ 3MBH, while _θð0Þ is found from the constraint equation (10).
The waveforms result from the orbital evolution of geodesics for t ¼ 2 × 106MBH ∼ 7.5months (1.5 × 104 orbital revolutions) and take
only into account the l ¼ 2 contribution to gravitational radiation. The corresponding radiation is observed by a space-based detector
from luminosity distance d ¼ 100 Mpc. Right: same as left with M=a0 ¼ 10−1 where M ¼ 3MBH and a0 ¼ 10M. In the observed
frequency range, there exist three distinct peaks that evolve with r=MBH. The red (and dash-dotted red) curves show the dependence of
the leftmost and outermost subpeaks to the initial condition rð0Þwhile the black line corresponds to the evolution of the central subpeak.
The vertical dashed line designates the radius where the three subpeaks merge and the orbit is nonprecessing.
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still contains the revolution frequency of the elliptic orbit.
Interestingly, all subpeaks meet at a critical radius (black
dashed line in Fig. 10), to form a single peak, which
coincides with the frequency of the critical nonprecessing
geodesic.
Unfortunately, the absence of radiation reaction effects

forbids us to simulate a proper inspiral, therefore we cannot
make any solid predictions on the timescales involved
when all subpeaks merge and how long the secondary can
latch in such a special orbit, as well as how discernible
this effect may be with future space-based detectors. In any
case, we have shown that dark matter environments
(compact or not) affect GW generation and propagation
in various ways, and at significant levels, and have the
potential to introduce direct phenomenological imprints
(see also [57]) that can serve as further “smoking guns” of
dense dark matter clumps around supermassive BHs.

VI. DISCUSSION

We have investigated the phase space of geodesics of a
newly obtained exact solution of GR that describes a
Schwarzschild BH surrounded by a dark matter halo which
one can tune its compactness. The orbits on such geometry,
together with the characteristic orbital frequencies, behave in
a similar manner as those around vacuum Schwarzschild
BHs when the compactness is tuned to astrophysical values,
i.e.M=a0 ≲ 10−5, which describe galactic dark matter halos.
Nevertheless, the compactness can be further increased to
simulate BH hair and dense environments. This is when
the geodesics experience significant effects. The available
phase space volume is enlarged with respect to that of
Schwarzschild, which leads to a redshift in the rotation
numbers of geodesics and their respective orbital resonances.
Interestingly, when the dark matter is concentrated

around the central BH, a delicate gravitational competition
takes place between general-relativistic effects and the dark
matter influence. In these cases, we have found critical radii
for which the rotation curves reach unity and then diminish
to zero. These critical points designate a transition from
prograde to retrograde precession drift, and exactly at these
points in phase space the corresponding geodesic experi-
ences no precession. Similar results have been obtained
recently in dense dark matter cores [86,87] which further
justifies the validity of the orbital analysis presented here.
We have further analyzed the dominant GWs emitted

from these geodesics in an attempt to visualize potential
phenomenological imprints sourced by EMRIs, where the
primary of the binary is described by the galactic BH
model. Under the assumption that the space-based detector
is LISA, we have found that increasing the compactness of
the halo leads to a rapid dephasing of GWs due to redshift;
an outcome attributed to the presence of the dark matter
field that leads to dynamical friction and to the growth of
the secondary’s orbital period. In fact, since the orbits we
study here are not bound to be circular or equatorial, but

rather generic, they give rise to a quick drop in faithfulness
between GWs in vacuum and nonvacuum binaries asM=a0
grows from galactic scales to compact BH environments.
The redshift of rotation numbers at the orbital level trans-
lates to a typical GW frequency redshift during inspiral.
Similar redshift has been found in the quasinormal modes
of the remnant after merger [51], while more intricate
phenomena occur when one takes into account both axial
and polar GW fluxes [57].
Nevertheless, the waveform spectra resulting from bina-

ries surrounded by very compact environments tell a differ-
ent story. Each Fourier harmonic breaks onto three subpeaks,
where the two outermost ones are interchanged during the
retrograde-to-prograde transition, while the central one
remains constant. We have simulated a very rough EMRI
evolution through the turning point by utilizing consecutive
geodesics with decreasing initial conditions (though the
energy and angular momentum of the secondary are kept
constant) and found that right at the point of no precession
all three subpeaks combine into the central harmonic peak.
Future space-based detectors such as LISA should, therefore,
be able to discern the existence of both galactic-scale and
dense environment surrounding EMRIs, through cumulative
dephasing and retrograde-to-prograde precession drifts, thus
environmental effects should be taken into consideration
when building accurate EMRI waveforms.
Although in this paper we explored environmental effects

in EMRIs at the geodesic level, proper inspirals should be
driven by GW fluxes, and more precisely by gravitational
self-force effects [108]. The axial and polar fluxes due to
metric perturbations introduced by the secondary have only
been calculated for circular, equatorial EMRIs in astrophysi-
cal environments very recently [51,57]. A faithful direction
which we are currently pursuing is to accurately evolve an
EMRI surrounded by a compact dark matter cloud, in order
to examine the exact timescales involved in retrograde-to-
prograde orbital transitions and understand if these effects
can be distinguished with space-borne interferometers.
Another direction to explore is the connection of the galactic
BH solution with the recently found spectral instabilities that
quasinormal modes suffer from in BH physics [109–121].
Since it has been shown that the presence of an astrophysical
environment sources fluid modes [57] that couple with polar
metric perturbations and “destabilize” the quasinormal mode
spectrum it is worth using nonmodal tools, such as the
pseudospectrum [122], to further elucidate the existence of
such modes and their effect in astrophysical BH settings
including realistic environments.
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APPENDIX: INTEGRABILITY OF GEODESICS IN
SPHERICALLY SYMMETRIC GEOMETRIES

Let ðM;gÞ be a four-dimensional, Haussdorf space,
with Lorentzian signature and no boundary, such that there
is a local coordinate system xα ¼ ðt; r; x;ϕÞ—part of the
atlas—in which the line element assumes the form

ds2 ¼ f1ðrÞdt2 − f2ðrÞdr2

− r2
�

1

ð1 − x2Þ dx
2 þ ð1 − x2Þdϕ2

�
: ðA1Þ

Note that if x is to be identified as cos θ then the usual
standard Schwarzschild-like coordinates are recovered.
The metric tensor field under consideration is susceptible

to four linearly independent (with constant coefficients)
KVFs, which in the local coordinate system assume the
form

ηα ¼ ð1; 0; 0; 0Þ; ðA2Þ

ξαð1Þ ¼
�
0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
cosϕ; x

sinϕffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�
; ðA3Þ

ξαð2Þ ¼
�
0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sinϕ;−x

cosϕffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�
; ðA4Þ

ξαð3Þ ¼ ð0; 0; 0; 1Þ; ðA5Þ

£ηgαβ ¼ 0; ðA6Þ

£ξðiÞgαβ ¼ 0; i ∈ f1; 2; 3g; ðA7Þ

where £X is the Lie derivative of the vector field X. The
corresponding (closed) Lie algebra is

½η; ξðiÞ� ¼ 0; ðA8Þ

½ξðiÞ; ξðjÞ� ¼ ξðkÞϵkij; i; j; k ∈ f1; 2; 3g; ðA9Þ

where ϵkij is the Levi-Civita symbol in three dimensions
with Euclidean signature. The first KVF acts simply
transitively, while the last three multiple transitively. The
important problem here is to solve the geodesics equa-
tions (8). It is a trivial exercise to show that if

£Xgαβ ¼ 0; ðA10Þ

i.e., if the vector field X is a KVF then the quantity

I ≡ Xαgαβ _xβ ðA11Þ

is an integral of motion for the geodesics equation, that is

_xα∇αI ¼ 0: ðA12Þ

Therefore in the present case there are four integrals of
motion. Nevertheless, due to the multiply transitive char-
acter of a part of the entire symmetry group, along with the
manifest appearance of the trigonometric functions, we can
easily deduced that if

I1 ≡ ηαgαβ _xβ; I ðiÞ ≡ ξαðiÞgαβ _x
β; ðA13Þ

then the system

I1 ¼ E; ðA14Þ

I2
ð1Þ þ I2

ð2Þ þ I2
ð3Þ ¼ L2; ðA15Þ

I ð3Þ ¼ −Lz; ðA16Þ

can be solved in terms of the generalized velocities _t, _x, _ϕ.
Then, substitution of those relations (and their derivatives
with respect to the affine parameter τ) into Eq. (8) results in
only one component equation (the other three being empty):

r̈þ ∂rf2ðrÞ
2f2ðrÞ

_r2 þ E2
∂rf1ðrÞ

2f1ðrÞ2f2ðrÞ
−

L2

f2ðrÞ3
¼ 0; ðA17Þ

where r ¼ rðτÞ. Obviously, special forms for the functions
f1, f2 may lead to further symmetries via the Lie-point (or
contact or even dynamical) symmetries of the last equation.
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