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We compute bounds and forecasts on screened modified gravity theories, specializing to the chameleon
model in Casimir force experiments. In particular, we investigate the classical interaction between a plate
and sphere subject to a screened interaction of the chameleon type. We compare numerical simulations of
the field profile and the classical pressure exerted on the sphere to analytical approximations for these
nonlinear field theories. In particular, we focus on the proximity force approximation (PFA) and show that,
within the range of sphere sizes R and plate-sphere distance D simulated numerically, the PFA does not
reproduce the numerical results. This differs from the case of linear field theories such as Newtonian gravity
and a Yukawa model where the PFA coincides with the exact results. We show that, for chameleon theories,
the screening factor approximation, whereby the sphere is modeled as a screened sphere embedded in the
external field due to the plates, fares better and can be used in the regime D≳ R to extract constraints and
forecasts from existing and forthcoming data. In particular, we forecast that future Casimir experiments
would corroborate the closing of the parameter space for the simplest of chameleon models at the dark
energy scale.
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I. INTRODUCTION

Modified gravity theories whereby the Einstein-Hilbert
action is supplemented with an additional scalar field have
been extensively developed over the years. Such theories
open up new testing grounds for general relativity on a
range of scales not previously accessible. They could also
explain puzzles in standard model physics, like the anoma-
lous magnetic moment of the muon [1] or the observed
acceleration of the expansion of the Universe [2]. However,
the existence of such scalar fields is severely constrained by
fifth force experiments. In modern developments, the scalar
force is screened such that Solar System constraints are
evaded.
Such modifications of gravity by screened scalar inter-

actions are now classified and have been tested from the
cosmological scales down to the laboratory [2–4]. They
appear in three types and are characterized by lower bounds
on the Newtonian potential or its first and second spatial
gradients. Nonlinear scalar field theories where screening
appears when the Newtonian potential of test objects is
large enough are chameleon screened [5] and can be tested

in the laboratory thanks to a large variety of experiments,
e.g., levitating spheres, Q-bouncing neutrons, atomic inter-
ferometry [6–11], torsion balance experiments [12,13], and
Casimir effect measurements [14,15]. (See Refs. [2,4,16]
for reviews of these bounds.) In this paper, we concentrate
on Casimir tests. The Casimir interaction is a prominent
quantum interaction in the micrometer range and is exerted
between two metallic plates. The original calculation by
Casimir does not take into account temperature effects and
the finite conductivity of real material. Reviews on the
modification to the Casimir interaction from temperature,
finite conductivity, and surface roughness effects can be
found in [17]. Here we will consider a regime where
distances between objects are large enough that the Casimir
pressure due to the quantum fluctuations of the photon can
be small enough to allow for other interactions to feature.
Of course, a nearly massless scalar field would immediately
lead to an enhancement of the photon Casimir interaction
by a factor of 3=2 and would be experimentally ruled out.
For a thorough discussion of the quantum Casimir effect for
light scalar fields, see Ref. [15]. We will be interested here
in a more subtle effect when the Compton wavelength of
the scalar field in the experimental environment is smaller
than the typical distance between the test objects. In this
regime, the quantum fluctuations of the scalar field are
sufficiently suppressed to be neglected. This is particularly
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relevant for screened models of the chameleon type [5]
where the fields do not penetrate in the test objects, and a
classical interaction can be generated between them. This
effect is the classical equivalent of an electrostatic inter-
action for photons.
The classical interaction generated by chameleons

between screened objects has already been exploited and
useful bounds on the parameter space have ensued [14]. In
this paper, we come back to this issue in order to ascertain
whether the hypotheses used previously to tackle the
calculation of the classical pressure are indeed valid. No
problems exist in the case of a plane-plane situation, where
the field profile and the pressure on the plates can be
calculated exactly thanks to the planar symmetry of the
configuration. Unfortunately, the plate-plate configuration
is not the experimentally favored one, as maintaining two
planes exactly parallel in an experimental setup is particu-
larly difficult. The plane-sphere geometry is more appro-
priate, but also less amenable to an exact analytical
treatment. In the case of Newtonian gravity, the exact
force can be retrieved using the proximity force approxi-
mation (PFA, also called the Derjaguin approxima-
tion) [18], whereby each spherical element at the surface
of the sphere can be approximated by its tangent plane and
the interaction between the sphere and the plate can be
obtained as the sum of all the elemental pressures on the
tangent planes exerted by the infinitely large plate. More
precisely, each elemental plane bounds a small cylinder that
is attracted by the infinite plane. The sum of forces on each
of the infinitesimal cylinders coincide with the Newtonian
pressure between the plane and the sphere. The same
method can be applied to a Yukawa interaction involving a
massive scalar field linearly coupled to matter [19] and has
been refined to describe electromagnetic forces [20]. In
previous work [14], the proximity approximation was also
extended to chameleon theories. In this paper, we inves-
tigate the validity of this extension by comparing numerical
simulations when D≳ R, where D is the sphere-plane
distance and R is the radius of the sphere, to the proximity
approximation. We show that the PFA fails to reproduce the
numerical results. Surprisingly, another approximation
where the sphere is treated as a screened sphere embedded
in the external field created by the plate more accurately
reproduces the numerical results. We then use this approxi-
mation to forecast what future Casimir experiments could
measure and show that, for the most popular of chameleon
models, the n ¼ 1 inverse power law chameleon, the future
Casimir measurements would close part of the chameleon
parameter space. This part of the parameter space has
recently been closed experimentally [21] and Casimir
experiments would confirm this in a different context.
Moreover, we discuss how improving the sensitivity of
future Casimir experiments would further this result. We
extend our results to the n ¼ 2 chameleon using our
numerical data and to arbitrary n chameleons using the

screening factor approximation (SFA) approximation. This
enables us to put bounds on the parameter space for this
class of theories. This work is akin to our previous paper in
which forecasts were made for future Casimir experiments
for the symmetron model of screened modified gravity [22],
although our findings differ significantly. In the case of
the symmetron, distinct regimes were identified in which
the PFAwas accurate. In the case of the chameleon, we will
see that we are unable to confirm the accuracy of this
approximation method, even within the regime where one
might expect it to work well. We use the same experimental
prescription for these forecasts.
The paper is arranged as follows. In Sec. II, we discuss

the calculation of the plate-sphere interaction in the case of
Newtonian and Yukawa interactions. We show how the
proximity force approximation reproduces the exact result,
which can be calculated exactly. In Sec. III, we introduce
the chameleon models and consider the Casimir interaction
between two plates and between a plate and a sphere. We
introduce another approximation, the screening factor
approximation, whereby the screened sphere is embedded
in the field profile generated by the planar plate. In Sec. IV,
we give the results of numerical simulations for the field
profile and the force when the radius of the sphere and its
distance to the plate is varied. We show that the SFA
reproduces the numerical results much better than the PFA.
Finally, in Sec. V, we use current experimental specifica-
tions to forecast the reach of future Casimir experiments for
chameleons. We also investigate how sensitive these
experiments should be to close the parameter space almost
completely. Finally, we conclude in Sec. VI.

II. SPHERE-PLATE INTERACTIONS
IN SCALAR-TENSOR THEORIES

Casimir-like experiments are sensitive to new physics
like the force mediated by a screened scalar field. This is
because such a test involves high precision and a very high
vacuum between dense objects. In this context, models that
pass the Solar System tests of gravity can be probed in the
laboratory.
We are interested in computing the classical force

between an infinite plate and a finite sphere in scalar-
tensor theories, which may be written in the following
form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
þ Smatter½A2ðϕÞgμν;ψ �; ð2:1Þ

where ϕ is the new scalar field. The matter fields ψ respond
to the Jordan-frame metric A2ðϕÞgμν, hence the function
AðϕÞ is often referred to as the matter coupling.
The scalar force on a pointlike object of massmobj in this

theory is
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F⃗ ¼ −mobj
d lnA
dϕ

∇⃗ϕ; ð2:2Þ

while the force on an extended object in an external field is
given by

F⃗ ¼ −mobjλobj
d lnA
dϕ

∇⃗ϕextðx⃗Þ: ð2:3Þ

The scalar charge carried by the object is Qobj ¼ λobjmobj,
where λobj is referred to as the “screening factor” and varies
between zero (for large, dense objects) and one (for small,
light objects).
Our previous paper [22] carefully worked out the

classical force between an infinite plate and a finite sphere
in the case of symmetron models. Different regimes can be
discriminated depending on the mass of the scalar field in
vacuum, i.e., the mass the scalar field would have in the
experimental vacuum in the absence of boundary plates.1

This suggests the following generalization for obtaining the
force in most scalar-tensor theories:

(i) When R ≪ m−1
vac, write down the exact field profile

ϕplate sourced by an infinite plate. The force is then
the one due to the external field generated by the
plate acting on the sphere simply embedded in the
external profile. We will refer to this approximation
as the screening factor approximation,

F ¼ −MsphereλsphereA;ϕ ∇⃗ϕplate; ð2:4Þ

where the gradient is evaluated at the center of the
sphere.

(ii) When R ≫ m−1
vac, solve for the exact pressure be-

tween two parallel plates, PparallelðLÞ, which is in
general a function of their separation L. Then we can
approximate the force on the sphere as

F ¼ −2πR2

Z
π

π=2
dθ sin θ cos θ

× PparallelðDþ Rþ R cos θÞ: ð2:5Þ

This will be referred to as the proximity force
approximation.

(iii) WhenR ≈m−1
vac, the problemmust be solved numeri-

cally. Alternatively, the results from the previous two
limits may be interpolated to approximate the force
in this regime.

In the following sections, we will apply this prescription
to scalar-tensor theories, in particular, the inverse power

law chameleon, which are already critically constrained by
experiments such as atomic interferometry. We will find
that the PFA is not reliable as an approximation and that in
the long distance regime D≳ R the SFA is much more
accurate. Before focusing on nonlinear scalar-tensor the-
ories where screening takes place, we will review the status
of the sphere-plate interaction in Newtonian gravity and
Yukawa theories. We will emphasize the role of the PFA in
this context.
We are adopting units where c ¼ ℏ ¼ 1 and define

MPl ¼ ð8πGÞ−1=2. We work in the mostly plus metric
convention, and derivatives of fields are denoted with a
subscript, e.g., d

dϕAðϕÞ ¼ A;ϕ .

A. Proximity force approximation
in Newtonian gravity

As a warm-up, we will first develop the PFA in
Newtonian gravity. This will be helpful because, in addition
to the solutions being simpler, there are several remarkable
properties that will allow us to obtain the exact force
between the sphere and plate. Furthermore, there is no
screening in this theory; this case is considerably simpler
and will allow us to focus on the important differences for
screened theories later on.
The Newtonian potential ϕ is given by Poisson’s

equation,

∇⃗2
ϕ ¼ 4πGρ: ð2:6Þ

The force on a test particle of massm is F⃗ ¼ −m∇⃗ϕ. Since
we only measure the force, it is often helpful to work with

the (Newtonian) gravitational field, g⃗≡ −∇⃗ϕ, so that the
force on a test particle is F⃗ ¼ mg⃗, and the equation of
motion is

∇⃗ · g⃗ ¼ −4πGρ: ð2:7Þ

First we need to solve for the gravitational field g⃗ around an
infinite plate of uniform density. As there is no screening,
we must introduce a plate thickness T and density ρplate.
Although we could integrate Eq. (2.6) directly, a shortcut is
to use the divergence theorem, which works with Eq. (2.7),Z

V
ð∇⃗ · g⃗ÞdV ¼

Z
S
ðg⃗ · n̂ÞdS: ð2:8Þ

This allows us to turn a volume integral over V into a
surface integral on the boundary S with outward-pointing
normal vector n̂. Applying this theorem to Eq. (2.6), we findZ

S
ðg⃗ · n̂ÞdS ¼ −4πGm; ð2:9Þ

where m is the mass enclosed within the surface S.

1The actual mass of the scalar field becomes space dependent
between the plates as the field profile is nontrivial. We assume
that the typical mass of the scalar between the plates is larger than
1=D. This suppresses the quantum interaction mediated by the
scalar field, which would be ruled out if present.
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It is now straightforward to solve for the field around a
plate. Draw a cube with sides of length l > T centered on
the plate. By symmetry, g⃗ is perpendicular to the sides of
the box, so we just have to integrate over the faces that are
parallel to the plate. The field is uniform, so we have

2jg⃗jl2 ¼ −4πGρplateTl2: ð2:10Þ

Isolating g⃗, and recalling that the contribution to the surface
integral is positive when the gravitational field is parallel to
the outward-facing normal vector n̂, we have

g⃗ ¼ −2πGρplateTx̂ for e⃗x > 0; ð2:11Þ

where e⃗x is the unit vector along the x axis, pointing toward
positive x values. Notice that this field is uniform, so an
object of mass m and arbitrary shape will move like a test
particle located at the object’s center of mass.
It is now trivial to solve for the exact force between the

sphere and the plate,

F⃗ ¼ −2πGρplateTmspheree⃗x: ð2:12Þ

Now let us think about how we might reproduce
Eq. (2.12) with the PFA. There is no need to do this for
the present case since we already have the exact result, but
it will give us some ideas of how to generalize the PFA to
deal with objects of finite thickness in more complicated
theories.
The starting point is to solve for the pressure between

two parallel plates, of density ρi and thickness Ti, separated
by a distance L . The force on a section of plate 2, enclosed
within a box with sides of length l > T is

F⃗ ¼ −2πGρ1T1ρ2T2l2e⃗x; ð2:13Þ

where the minus sign indicates an attractive force. The
pressure between the plates is then

Px ¼ −2πGρ1T1ρ2T2: ð2:14Þ

This expression is independent of L thanks to the uniform
gravitational field source by the plates.
Now let us use this result in the PFA to approximate the

force between the sphere and the plate. We immediately
have a challenge, because our earlier formulation of the
PFA accounts for the plate separation L, but makes no
reference to the thicknesses of the materials. One possible
modification suggests itself: when considering the force on
an infinitesimal patch dA on the surface of the sphere, we
will use the pressure that corresponds to a plate of thickness
T2 that is equal to the thickness of the sphere along a line
perpendicular to the plate, which passes through dA, as
shown in Fig. 1.

The advantage of this prescription is that it will give us a
final result that is exactly correct in this case. Noting that
the force on dA is the same for any other patch located on a
ring that is parallel to the plane, we see that we are simply
breaking the sphere up into cylinders of infinitesimal
thickness. Each cylinder has a mass

mðrÞ ¼ ρsphere2πrdrTðrÞ; ð2:15Þ

where r is the radius of the cylinder and TðrÞ is the height.
We can treat this as a test object of massmðrÞ located at the
center of mass, and the total force on the sphere is obtained
by integrating all cylinder radii 0 < r < R. By geometry,
TðrÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

p
, and the net force is

F ¼ −2πGTplateρplate

Z
R

0

4πr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

p
drρsphere;

¼ −2πGTplateρplatemsphere; ð2:16Þ

which precisely agrees with the exact result. This version of
the PFA describes the Newtonian force between a sphere
and a plate exactly.

B. Yukawa interactions

As a next step, we consider a Yukawa theory of a
massive scalar field coupled linearly to matter,

L ¼ −
1

2
ð∂ϕÞ2 − 1

2
m2ϕ2 −

ϕ

M
ρ: ð2:17Þ

First we must calculate how the field responds to a sphere in
isolation. The static equation of motion is

∇⃗2
ϕ ¼ m2ϕþ ρ

M
: ð2:18Þ

We can bring this into a more familiar form by making the
variable transformation

FIG. 1. Sphere-plate system, where the thickness of the second
plate in the PFA is specified as TðrÞ.
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y≡ ϕþ ρ

m2M
; ð2:19Þ

so that the equation of motion is

∇⃗2y ¼ m2y; ð2:20Þ

which has the spherically symmetric solution

y ¼ A
emr

r
þ B

e−mr

r
: ð2:21Þ

Transforming back to our original variable ϕ, we find

ϕ ¼ A
emr

r
þ B

e−mr

r
−

ρ

m2M
: ð2:22Þ

The density is a piecewise function of r ,

ρðrÞ ¼
�
ρin for r < R;

ρout for r > R:
ð2:23Þ

We solve the equation of motion in a piecewise manner,
with four undetermined constants of integration,

ϕ¼
�ϕin≡Ain

emr

r þBin
e−mr

r − ρin
m2M for r<R;

ϕout≡Aout
emr

r þBout
e−mr

r − ρout
m2M for r>R:

ð2:24Þ

Our boundary conditions are the following: ϕðr → ∞Þ ¼
− ρout

m2M, ϕ
0ð0Þ¼0, ϕinðRÞ ¼ ϕoutðRÞ, and ϕ0

inðRÞ ¼ ϕ0
outðRÞ.

The first condition demands Aout ¼ 0, and the second
condition enforces Bin ¼ −Ain, so we have

ϕin ¼ Ain
sinh mr

r
−

ρin
m2M

: ð2:25Þ

We will henceforth denote A≡ Ain and B≡ Bout. The
matching conditions at R give a set of equations,

A
sinh mR

R
−
ρin − ρout
m2M

¼ B
e−mR

R
;

A

�
cosh mR −

sinh mR
mR

�
¼ −B

�
1þmR
mR

�
e−mR: ð2:26Þ

We solve these for B only, since we are only interested in
the external solution, finding

B ¼ −
ρin − ρout
m3M

�
mR − tanh mR
1þ tanh mR

�
emR; ð2:27Þ

so the external field profile is now

ϕðr > RÞ ¼ −
ρin − ρout
m3M

�
mR − tanh mR
1þ tanh mR

�
e−mðr−RÞ

r

−
ρout
m2M

: ð2:28Þ

Let us now rearrange this in a way that lets us identify the
scalar charge, as well as a screening factor. We take the
point-particle limit mR ≪ 1, and at leading order we have

lim
mR→0

ϕðrÞ ¼ −
msph

4πM
e−mðr−RÞ

r
−

ρout
m2M

; ð2:29Þ

wheremsph ¼ 4πρinR3=3 is the mass of the sphere. We thus
define the screening factor in the following way:

ϕðrÞ≡ −
λsphmsph

4πM
e−mðr−RÞ

r
−

ρout
m2M

: ð2:30Þ

The screening factor λsph encodes the finite-size effects of
the sphere. Matching Eqs. (2.28) and (2.30) leads us to
conclude

λsph ¼
3

ðmRÞ3
�
1 −

ρout
ρin

��
mR − tanh mR
1þ tanh mR

�
; ð2:31Þ

and the scalar charge is Qsph ≡ λsphmsph .
Now that we have the screening factor, we can compute

the force on the sphere in the following way:

F⃗ ¼ −
λsphmsph

M
∇⃗ϕext: ð2:32Þ

If we use this to compute the force between two unscreened
test particles, then we find an interaction potential

VðrÞ ¼ −
m1m2

4πM2

e−mr

r
; ð2:33Þ

which allows us to match our notation to Eq. (10) in [19].
This will enable us to compare our results to those
previously obtained. For reference, that mapping is

1

4πM2
¼ Gα; m ¼ 1

λ
; ð2:34Þ

where the notation of the present work is on the left-hand
side of the equations.
Now we use the screening factor to compute the force

between an infinite plate of finite width (2W) and a sphere
of radius R. The nearest distance between the surface of the
sphere and the plate is D. We must first solve for the field
configuration around the plate in isolation. Because of the
planar symmetry, the general solution to the equation of
motion is
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ϕ ¼ Aemx þ Be−mx −
ρ

m2M
: ð2:35Þ

We solve in a piecewise manner again inside and outside
the plate, with x ¼ 0 located in the middle of a plate of
width 2D. Requiring ϕ to be finite at x ¼ ∞ and regular at
the origin leads us to

ϕðx > 0Þ ¼
�A cosh mx − ρin

m2M for x < W;

Be−mx − ρout
m2M for x > W:

ð2:36Þ

This profile is symmetric about x ¼ 0. Matching the field
and its first derivative at x ¼ W gives the matching
conditions

A cosh mW −
ρin − ρout
m2M

¼ Be−mW;

A sinh mW ¼ −Be−mW: ð2:37Þ

Adding these equations together, we find

A ¼ ρin − ρout
m2M

e−mW ð2:38Þ

and then plugging this into the second matching condition
yields

B ¼ −
ρin − ρout
m2M

sinh mW: ð2:39Þ

Putting everything together, we find that the field around a
plate of total width W1 is

ϕplateðxÞ ¼ −
ρin − ρout
m2M

sinh
mW1

2
e−mx −

ρout
m2M

; ð2:40Þ

where x is the distance from the center of the plate. Finally,
we can combine this result with Eq. (2.32) to obtain the
force between a plate of widthW1 and a sphere of radius R
separated by a distance D,

F ¼ −
3

ðmRÞ3
�
1 −

ρout
ρsph

��
mR − tanh mR
1þ tanh mR

��
4

3
πρsphR3

�
×
ρplate − ρout

m2M
sinh

mW1

2

�
m
M

�
e−mðDþRþW1=2Þ: ð2:41Þ

We will henceforth assume ρout ¼ 0, and simplifying the
expression we find

F ¼ −
2πρsphρplate
m4M2

�
mR − tanh mR
1þ tanh mR

�
× e−mR

�
1 − e−mW1

�
e−mD: ð2:42Þ

Recall that the screening factor calculation is only valid
when the background field is approximately linear over the

extent of the sphere. Applying Eq. (3.11), we find the
condition for validity of this result is

ϕ0
plateðxÞ ≫ ϕ00

plateðxÞR; ð2:43Þ

which is satisfied when mR ≪ 1. In this limit, our result to
leading order is

F≈
2πρsphρplate
3m4M2

ðmRÞ3ð1−e−mW1Þe−mDþOðmRÞ4: ð2:44Þ

The proximity calculation can be carried in a similar
fashion to the one for Newtonian gravity. First of all,
the field inside a plate of density ρ2 and width W2 at a
distance 2d from another plate of density ρ1 and width W1

is given by

ϕðxÞ ¼ −
ρ2

m2M
− ð1 − e−mW1Þ ρ1

2m2M
emðxþdÞ

þ ρ2
2m2M

ðemðd−xÞ þ emðx−d−W2ÞÞ; ð2:45Þ

where x is between d and dþW2. The pressure on the plate
is given by

P ¼ −
ρ2
M

Z
dþW2

d
∂xϕ ¼ ρ2

M
ðϕðdÞ − ϕðdþW2ÞÞ; ð2:46Þ

which gives

P ¼ −
ρ1ρ2
2m2M

ð1 − e−mW1Þð1 − e−mW2Þe−2md: ð2:47Þ

With this result we can calculate the force due to a plate on
a sphere as

FPFA ¼ −
πρsphρplate
m2M

ð1 − e−mW1Þ

×
Z

R

0

dr reDþR−
ffiffiffiffiffiffiffiffiffi
R2−r2

p
ð1 − e−2m

ffiffiffiffiffiffiffiffiffi
R2−r2

p
Þ; ð2:48Þ

which becomes

FPFA ¼ −
πρsphρplate
m4M2

ðmR − 1þmRe−2mR þ e−2mRÞ
× ð1 − e−mW1Þe−mD: ð2:49Þ

In the limit mR ≪ 1, this gives

F ≈
2πρsphρplate
3m4M2

ðmRÞ3ð1 − e−mW1Þe−mD; ð2:50Þ

which is in precise agreement with our screened sphere
result in the appropriate limit.
As a result, we find that the proximity approximation and

the small sphere result coincide as long as R ≪ 1=m. As the
proximity approximation is exact for Yukawa field theories,
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we find that the screening factor approximation is also
exact for small spheres. We will see that for nonlinear
theories with screening the situation changes drastically.

III. A SCREENED MODEL: THE INVERSE
POWER LAW CHAMELEON

As a typical example of chameleon screening, we
focus on the self-interaction potential VðϕÞ and matter
coupling AðϕÞ,

VðϕÞ ¼ Λ4

�
1þ Λn

ϕn

�
; AðϕÞ ¼ eϕ=M; ð3:1Þ

originally proposed in [5] and referred to as the inverse
power law chameleon model. In the presence of matter of
density ρm, the field responds not only to the potential VðϕÞ
but to the “effective potential”

Veff ¼ Λ4

�
1þ Λn

ϕn

�
þ ϕ

M
ρm; ð3:2Þ

with a corresponding Klein-Gordon equation

□ϕ ¼ −nΛ4þn

ϕnþ1
þ ρm

M
: ð3:3Þ

A. The force on a small screened sphere

Consider the case of an infinite plate, where ρ ¼ ∞ for
x < 0 and ρ¼0 for x > 0. We therefore have ϕðx ¼ 0Þ ¼ 0
as a boundary condition. It is easy to see that the solution
outside the plate is

ϕðx > 0Þ ¼
�
1

2
Λ4þnðnþ 2Þ2

�
1=ðnþ2Þ

x2=ðnþ2Þ: ð3:4Þ

The screening factor of a sphere, when the ambient field
value is ϕbg, is [8]

λ ¼ 3Mϕbg

ρobjR2
;

¼ 4πMRϕbg

Mobj
: ð3:5Þ

The force on a small, screened sphere is therefore

F ¼ −
λMobj

M
∇⃗ϕ; ð3:6Þ

where ϕ is given by the planar solution above. There is
some ambiguity in how to pick ϕbg. In our idealized case,
where we are ignoring the details of the experimental setup
such as the vacuum chamber walls and the backreaction of
the field due to the sphere, it is given by the above planar

solution. Putting everything together, we find that the force
on a small screened sphere is

F⃗ðx⃗Þ ¼ −4πRϕ∇⃗ϕ; ð3:7Þ

where ϕðx⃗Þ is given by Eq. (3.4). Writing this out explicitly,
we have

F ¼ −Λ2ðΛRÞ4=ð2þnÞπ2
4þ3n
2þn ðð2þ nÞð1þD=RÞÞ2−n2þn; ð3:8Þ

where R is the radius of the sphere and D is the distance
between the surface of the sphere and the plate, so
x ¼ Dþ R.
It is somewhat curious that M has dropped out entirely

from this expression. This is due to the fact that we took
ϕð0Þ ¼ 0 at the surface of the plate. If we had been more
meticulous, we would have chosen a finite density for the
plate and then taken ϕð0Þ ¼ ϕmin, where ϕmin minimizes
the effective potential. In the limit ρ → ∞, we would
find ϕmin → 0.
Let us make clear when this approach is valid. A rigorous

derivation of the screening factor relies on several assump-
tions, which are summarized in [23]. One of the key steps in
that derivation is to draw an enclosing surface around the
object of interest, which in our case is the sphere. This
surface is taken, for simplicity, to be a sphere of radius
r > R. On that surface, it must be possible to perform an
object-background split for the field value,

ϕ ≈ ϕ0ðx⃗Þ þ ϕ1ðrÞ; ð3:9Þ

where ϕ0 is the environmental field (in our case, sourced by
the plate) and ϕ1 is the field of the object in isolation. We
require that the environmental field ϕ0 be approximately
linear throughout the region enclosed by the surface of
radius r. Concretely, we require

ϕ0ðxþ rÞ ≈ ϕ0ðxÞ þ ϕ0
0ðxÞr; ð3:10Þ

where x ¼ Dþ R is the location of the center of the sphere.
A simple way to estimate whether this is valid is to check

that the first neglected term in the Taylor expansion is much
smaller than the linear term, that is,

ϕ0
0ðxÞ

ϕ00
0ðxÞr

≫ 1: ð3:11Þ

The most stringent condition is obtained for r ¼ R.
Substituting this and the plate solution (3.4) into the above
expression, we find the condition�

1þ 2

n

��
1þD

R

�
≫ 1: ð3:12Þ
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This should be viewed as the minimal, necessary (but not
always sufficient) condition in order for the point-sphere
approximation of this section to be valid. Let us make a few
observations about this expression:

(i) This condition is easily satisfied for D=R ≫ 1.
(ii) This is also satisfied for any D=R in the limit

jnj ≪ 1. In this limit, the evolution of the planar
solution (3.4) is approximately linear, so the
approximation of Eq. (3.10) is a very good one
on any scale.

(iii) Notice the absence of any condition on the total size
of the sphere ΛR or its separation ΛD.

These points make clear the advantages and limitations of
this description of the force and the SFA.

B. The force on a large screened sphere

In this subsection, we will compute the force on the
sphere using the PFA, which should be valid when the
sphere is sufficiently large. We will explore the transition in
the validity of these two regimes later on.
The first step of this approximation is to compute the

pressure between two parallel plates. Each plate is taken to
be of width W, with a gap between them of width L
centered about x ¼ 0. The external solution was already
derived in the previous section,

ϕextðx > L=2þWÞ ¼
�
1

2
Λ4þnðnþ 2Þ2

�
1=ðnþ2Þ

× ðx − L=2 −WÞ2=ðnþ2Þ ð3:13Þ

and is symmetric about x ¼ 0.
Next we must solve Eq. (3.3) between the plates, for

jxj < L=2. Our boundary conditions are ϕð�L=2Þ ¼ 0 and
ϕ0ð0Þ ¼ 0. As before, we will assume ρ ¼ 0 outside the
plates.
Our approach closely follows that of [14,24]. Using the

identity ϕ00 ¼ 1
2

d
dϕ ðϕ02Þ, we can integrate Eq. (3.3) from

ϕðx ¼ 0Þ to ϕðx < L=2Þ, and we obtain

ϕ0ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðVðxÞ − Vð0ÞÞ

p
: ð3:14Þ

We will integrate this expression again from 0 to x, and
we find

�
ffiffiffi
2

p
x ¼

Z
ϕðxÞ

ϕ0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðxÞ − Vð0Þp ; ð3:15Þ

where we have defined ϕ0 ≡ ϕð0Þ. Substituting the cha-
meleon’s self-interaction potential, we find

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ4þn

p
x ¼

Z
ϕðxÞ

ϕ0

ϕn=2dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϕ=ϕ0Þn

p : ð3:16Þ

The integral on the rhs can be made more palatable by
swapping variables: first to u ¼ ϕ=ϕ0, and then to
t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − un
p

. We end up with

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2Λ4þn

2ϕnþ2
0

s
x ¼

Z
tðxÞ

0

ð1 − t2Þð2−nÞ=2ndt: ð3:17Þ

This integral is a particular example of the incomplete beta
function, which is defined as

Bðz; a; bÞ ¼
Z

z

0

ua−1ð1 − uÞb−1du:

As such, we find

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2Λ4þn

ϕnþ2
0

s
x ¼ B

�
1 − ðϕðxÞ=ϕ0Þn;

1

2
;
2þ n
2n

�
: ð3:18Þ

Evaluating this expression at x ¼ L=2, where ϕðL=2Þ ¼ 0,
gives us the central field value

ϕ0 ¼ Λ
� �nΛLffiffiffi

2
p

Bð1
2
; 2þn

2n Þ

�
2=ð2þnÞ

; ð3:19Þ

where we have yet to determine the � root and Bða; bÞ is
the beta function. Inverting Eq. (3.18), we find

ϕðxÞ¼ϕ0

�
1−B−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2Λ4þn

ϕnþ2
0

s
x;
1

2
;
2þn
2n

��1=n

; ð3:20Þ

where B−1 is the inverse of the incomplete beta function.
Let us now compute the force. As shown in [22], the

force is

F
A
¼ TxxðxÞjL=2−ϵL=2þWþϵ

¼ 1

2
ϕ0ðL=2Þ2 − VðL=2Þ

−
1

2
ϕ0ðL=2þWÞ2 þ VðL=2þWÞ: ð3:21Þ

In Eq. (3.14), we showed a way to rewrite the interior field
gradient in terms of the potential. We can do the same thing
with the exterior field gradient, by integrating from ϕð∞Þ to
ϕðx > L=2þWÞ. We find

ϕ0ðx > L=2þWÞ2 ¼ 2ðVðxÞ − Vð∞ÞÞ; ð3:22Þ

where we have assumed that the field gradient vanishes at
infinity, which is justified by the explicit solution (3.13).
Combining these expressions, we find that the exact force
on the plate is simply
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F
A
¼ −ðVð0Þ − Vð∞ÞÞ: ð3:23Þ

For our particular chameleon potential, this implies

F=A ¼ −Λ4

�� ffiffiffi
2

p
Bð1

2
; 2þn

2n Þ
nΛL

�2n=ð2þnÞ
: ð3:24Þ

This agrees with the results of [14,24].
With the pressure between two parallel plates estab-

lished, we can move on to the computation of the force
between a plate and sphere. We break the calculation up
into infinitesimal rings, each of constant distance L from
the plate. The contribution from each ring to the total
force is

dF ¼ 2πaRdθPðLÞ cos θ; ð3:25Þ

where a is the radius of the ring, L is the distance from the
ring to the plate, and P is the pressure given by Eq. (3.24).
Note that we have included an additional factor of cos θ,
which allows us to include only the component of the force
normal to the plate, as the other components cancel out by
symmetry when integrated around the ring.
We integrate over the surface of the sphere, that is, from

polar angle θ ¼ 0 → π=2 . Then we have a ¼ R sin θ,
L ¼ Dþ R − R cos θ. The force is then

F ¼ −Λ4

�� ffiffiffi
2

p
Bð1

2
; 2þn

2n Þ
nΛR

�2n=ð2þnÞ

× 2πR2

Z
π=2

0

sin θ cos θ

ð1þD=R − cos θÞ2n=ð2þnÞ dθ: ð3:26Þ

The remaining difficulty is the nondimensional integral

I ≡
Z

π=2

0

sin θ cos θ
ða − cos θÞb dθ; ð3:27Þ

with a ¼ 1þD=R. By defining u ¼ cos θ, this becomes

I ¼
Z

1

0

u
ða − uÞb du: ð3:28Þ

We make a further substitution y≡ a − u, so we have

I ¼
Z

a

a−1
ðay−b − y1−bÞdy: ð3:29Þ

Note that b≡ 2n
2þn, so as long as n > 0, we will have

b ∈ ð0; 2Þ. This expression then readily integrates to

I ¼
� 1

ð1−bÞð2−bÞ ða2−b − ðaþ 1 − bÞða − 1Þ1−bÞ if b ≠ 1;

a log a
a−1 − 1 if b ¼ 1:

ð3:30Þ

With this, the expression for the force becomes

F ¼ −Λ2ðΛRÞ4=ð2þnÞ2π
� ffiffiffi

2
p

n
B

�
1

2
;
2þ n
2n

��2n=ð2þnÞ
× I;

ð3:31Þ

where

I ¼
� ð2þnÞ2

4ð2−nÞ ðð1þD=RÞ4=ð2þnÞ − ðD=Rþ 4
2þnÞðD=RÞð2−nÞ=ð2þnÞÞ if n ≠ 2;

ð1þD=RÞ logð1þ R=DÞ − 1 if n ¼ 2:
ð3:32Þ

We will use this result to extract scaling laws for the force.

C. Scaling of the force with R

Our expressions for the force on a small sphere
[Eq. (3.8)] and a large sphere [Eq. (3.31)] depend on three
quantities: Λ, R, and D. But the forms of these expressions
suggests a better parametrization: Λ; ðΛRÞ, and D=R. The
scaling of the force withD=R is complicated in the case of a
large sphere, as it depends on the details of the factor I in
Eq. (3.31). However, for fixed D=R the scaling of the force
with the remaining two quantities Λ and ΛR is identical in
each of these limiting cases,

F ∼ Λ2ðΛRÞ 4
2þn: ð3:33Þ

This is a very fortunate turn of events. For comparison, the
symmetron force scales with the radius in different ways,
depending on whether the radius is large or small compared
to the scalar field’s Compton wavelength [22]. In this
situation, there is no such property: the force for large
spheres and small ones scales in exactly the same way with
Λ and R. The only remaining challenge is to understand
how the Oð1Þ constants and the dependence on D=R
interpolate between these two regimes, where D=R ≈ 1.
For this, we turn next to numerical solutions.

IV. NUMERICAL DETERMINATION
OF THE SCALAR FORCE

In the previous sections, we established two different
methods to approximate the force. The SFA, given by
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Eq. (3.8), neglects the backreaction of the field due to the
sphere, but does include some knowledge of edge effects
due to the finite size of the sphere. On the other hand, the
PFA given by Eq. (3.31) does the opposite: since it is based
on the two parallel plate solution, we have built in some
knowledge of the field backreaction, but this may be a poor
model of edge effects. Our goal in this section is twofold:
first, to evaluate the accuracy of Eqs. (3.8) and (3.31), and
second, to interpolate between their regimes of validity. To
this end, we turn now to numerical techniques to evaluate
the field and force.
We are looking for static, cylindrically symmetric

solutions of Eq. (3.3),

∇⃗2
ϕ ¼ −

nΛ4þn

ϕnþ1
þ ρm

M
: ð4:1Þ

We make a further simplifying assumption, consistent with
the previous sections. First, we take the screened limit, in
which ϕ at the surface of the sphere and the plate is ≈0.
Second, we neglect the density of the residual gas inside the
vacuum chamber. These assumptions are justified when
ϕsurface ≪ ϕamb, where ϕsurface is the field value at the
surface of the sphere and ϕamb is the ambient field value.
With the above assumptions, ρamb=M drops out of the

equation of motion, and we have the boundary condition
ϕ ¼ 0 at the surfaces of the sphere and plate. We are now
able to eliminate Λ from the equation of motion by the
following rescaling of the coordinates and field variable:

ϕ̂≡ ϕ

Λ
; x̂≡ Λx: ð4:2Þ

The equation we are left to solve is

∇̂2ϕ̂ ¼ −
n

ϕ̂nþ1
; ð4:3Þ

where ∇̂2 is the Laplacian in the rescaled coordinates. A
given solution to the sphere-plate system is now completely
defined by its rescaled parameters ΛD and ΛR.
Examining our analytical solutions, given by Eqs. (3.8)

and (3.31), suggests that we parametrize a solution withΛR
andD=R. We expect the SFA to work well whenD=R ≫ 1,
while the PFA is expected to work when D=R ≪ 1. The
intermediate region, in which 0.1 ≪ D=R ≪ 10, is
unknown, but fortunately this is precisely the region in
which numerical solutions are most easily obtained.
One could scan over a range of different values for ΛR

and D=R, repeating the process for different values of the
chameleon model parameter n. A full three-dimensional
parameter sweep would take significant computational
resources to cover. Fortunately, this situation is ameliorated
by an additional hidden scaling symmetry. Notice that the
SFA and the PFA both scale as

F ∼ ðΛRÞ4=ð2þnÞ: ð4:4Þ

This suggests that the numerical solutions might scale the
same way, and our results will confirm this fact.
We use a commercially available partial differential

equation solver to solve Eq. (4.3) in cylindrical coordinates.
The field solution is a function of the height and radial
coordinates ẑ and r̂, respectively, where the hat indicates
that the coordinate is nondimensional via Eq. (4.2). The
solution is obtained within a simulation box 0 < ẑ < D̂þ
2R̂þ Ĥ and 0 < r̂ < R̂þ Ĥ, where Ĥ is a parameter to set
the overall box size. It is chosen to be large enough that the
computed value for the force is independent of this choice.
We set ϕ̂ ¼ 0 on the edge where ẑ ¼ 0, which simulates

the flat plate. Likewise, we set ϕ̂ ¼ 0 on a ball of radius R̂
centered at ẑ ¼ D̂þ R̂; r̂ ¼ 0, which naturally represents
the sphere. On all other boundaries we enforce the con-

dition b∇ ϕ̂ ¼ 0 normal to the boundary. This is appropriate
for the boundaries on r̂ ¼ 0, but is clearly unphysical for
the other boundaries. However, the ill effects of this
unphysicality are avoided by choosing Ĥ to be sufficiently
large. This setup is illustrated by the sample numerical field
solution in Fig. 2.
Once a numerical solution is obtained, the field may be

used to calculate the chameleon sphere-plate force. Our
method is the same one used in a previous study of the
symmetron [22], which is based on the Einstein-Infeld-
Hoffmann method to compute the force on extended
objects in general relativity [23,25]. We review the main
points here. First, note that the total momentum in a spatial
volume V is

Pi ¼
Z
V
d3xT0

i ; ð4:5Þ

FIG. 2. Sample numerical field solution. The boundary con-
ditions ϕ ¼ 0 at the left side and on the ball in the middle
represent the plate and the sphere. Solution parameters were
ΛD ¼ 1;ΛR ¼ 0.1; Ĥ ¼ 1. As expected, the field rolls to a large
value far away from the sphere and plate and is suppressed
between the two objects.
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where Tμν is the energy-momentum tensor for all scalar and
matter fields within the volume. The time derivative of the
momentum is the force and may be simplified as follows:

_Pi ¼
Z
V
d3x∂0T0

i ¼ −
Z
V
d3x∂jT

j
i ¼ −

Z
B
d2σjT

j
i ; ð4:6Þ

where we have used conservation of the energy-momentum
tensor as well as the divergence theorem to turn the volume
integral into a surface integral over the volume’s boundary
B. The vector for the infinitesimal area d2σj is normal to the
boundary. We will compute this surface integral for a
volume centered on the sphere. If this boundary were set
exactly at the surface of the sphere the evaluation of this
integral would require knowledge of the matter fields.
However, by increasing the size of the volume slightly,
we guarantee that the matter fields are zero and the

energy-momentum tensor is given only by that of the
scalar field,

Tμν ¼ ∂μϕ∂νϕþ ημν

�
−
1

2
ð∂ϕÞ2 − VðϕÞ

�
: ð4:7Þ

This procedure was done for 0.1 ≤ ΛR ≤ 10,
0.1 < D=R < 10, and n ¼ 1, 2, 3, and our results are
shown in Fig. 3. First, we note that Fig. 3(d) supports our
hypothesis that the force scales as Eq. (4.4), where we have
checked for n ¼ 1, 2, and 3. Consequently, we are free to
set ΛR ¼ 1, knowing that we can use Eq. (4.4) to scale the
result as needed. This allows us to focus our attention and
computational resources on the remaining two parameters
D=R and n.
For all three values of n, we see good agreement with the

screening factor approximation when D=R ≈ 10. In fact,

FIG. 3. Comparison of numerical data to the PFA and SFA for the (a) n ¼ 1, (b) n ¼ 11, and (c) n ¼ 1 chameleon. The scaling with
ΛR is shown to be highly regular, as predicted (d). We see that, for realistic Casimir experiments where D=R ∼ 1, the screening factor is
a more accurate approximation method.
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the screening factor approximation does surprisingly well
throughout the entire region that was tested, differing at
most by ∼30% from the exact numerical solution. On the
other hand, the proximity force approximation does a
surprisingly poor job, even in the regime where it was
expected to work well, D=R ≈ 0.1. Throughout the entire
window that was tested numerically, the screening factor is
in fact a better predictor of our exact solutions. It is entirely
possible that the proximity force approximation works well
for even more extreme values D=R ≪ 0.1, but we are
unable to test this region numerically. What we have found,
however, is that the proximity force approximation is an
inappropriate tool in the analysis of practical Casimir
experiments using a plate and a sphere, as those experi-
ments typically have D=R≳ 0.1. As such, when we place
experimental bounds on the chameleon theory, we will
employ the screening factor approximation, not the prox-
imity force approximation.
Finally, we briefly comment on the curious-looking

behavior shown by the SFA in Figs. 3(a) and 3(b).
Namely, that the screening factor approximation, as well
as our numerical results, show the chameleon force being
constant, or even increasing, with increasing distance from
the plate. Intuitively, one might expect that the force should
decrease with distance, although this need not be the case
in the highly idealized situation we consider here. We
also remind the reader that, in standard electrostatics, an
infinitely large charged plate also sources a force that is
constant with distance. The resolution in this case is that we
have neglected the density of the residual gas ρvac sur-
rounding the plate and sphere, as well as the finite size of
the plate. At a distance on the order of a Compton
wavelength m−1

eff , which will be discussed in further detail
in the next section, the force law will become exponentially
suppressed.

V. CONSTRAINTS ON CHAMELEON
MODIFIED GRAVITY

In this section, we describe a realistic experiment, based
on the current state of the art, that could be performed in the
near future. The experimental parameters are drawn
from [22,26,27] and are as follows. A sphere of radius R ¼
150 μm is suspended 15 μm away from a rotating disk. The
disk has 50 μm deep trenches spaced periodically, such that
as the disk rotates the distance between the disk and the
nearest point of the sphere varies between Dnear ¼ 15 μm
and Dfar ¼ 65 μm. The force between the sphere and the
disk is monitored, and the difference in the force between
the Dnear and Dfar configurations is measured to be
δF ¼ Fnear − Ffar < 0� 0.2fN. Note that the Casimir force
itself is much smaller than this beyond a distance of
≈10 μm, eliminating the need to accurately model the
Casimir force in order to derive constraints [26].
These experimental parameters may be used to constrain

fundamental theories, as any new scalar must contribute a

force that is smaller than δF. However, we emphasize that
these are only forecasts for a near-future hypothetical
experiment. The experiment that these values are drawn
from used a plate with trenches that were only 200 μm
apart. This both suppresses the chameleon force in the
measurement and also necessitates accurate modeling of
the effects from the trench walls, which is beyond the scope
of this work. As such, we must content ourselves with
placing forecasts on a future experiment, with similar
parameters, that uses much wider trenches to avoid these
issues.
In this experiment, the ratio D=R varies between 0.1 and

0.43. We can see from Fig. 3(a) that in this regime the
screening factor approximation is perfectly adequate to
estimate the force on the sphere and is considerably more
straightforward to employ than the proximity force
approximation or the numerical solutions. As such, in this
section we will exclusively employ the screening factor
approximation, given by Eq. (3.8), to place bounds on the
n ¼ 1 chameleon. The differential force is

δF ¼ Λ2ðΛRÞ4=ð2þnÞπ2
4þ3n
2þn ð2þ nÞ2−n2þn

× ðð1þDnear=RÞ2−n2þn − ð1þDfar=RÞ2−n2þnÞ: ð5:1Þ

There are several limitations to this expression that are
worth noting. First, it was assumed that the sphere is
screened. Using Eq. (3.5), this amounts to demanding

3Mϕbg

ρobjR2
< 1; ð5:2Þ

where the ambient field value ϕbg in the vicinity of sphere is
given by evaluating the planar solution (3.4) at
x ¼ Dfar þ R. Second, we have neglected the finite density
of the residual gas inside the vacuum chamber of the
experiment. This is accurate provided that the distance to
the plate is shorter than the scalar field’s Compton wave-
length inside the vacuum chamber

ðDfar þ RÞ < m−1
eff : ð5:3Þ

The Compton wavelength is the inverse of the mass of the
scalar perturbations and is computed as follows. The mass
of the perturbations around a particular field value is

m2
eff ¼

d2

dϕ2
VeffðϕÞ; ð5:4Þ

where the chameleon effective potential Veff is given by
Eq. (3.2). This is to be evaluated about the minimum of the
effective potential, which is set by the ambient density
inside the vacuum chamber. For this experiment, we have
ρamb ¼ 10−13 g=cm3. For a chameleon potential, the scalar
mass is
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m2
effðϕminÞ ¼ nðnþ 1ÞΛ

4þn

ϕnþ2
min

;

ϕmin ¼
�
nΛ4þnM
ρamb

�
1=ðnþ1Þ

: ð5:5Þ

The regions where Eqs. (5.2) and (5.3) are satisfied, and
where δF ≤ 0.2 fN, are plotted in Figs. 4 and 5. In Fig. 4,
we see that the forecast is tantalizingly close to ruling out
n ¼ 1 chameleons at the dark energy scale. An order of
magnitude improvement in the sensitivity of Casimir-type
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FIG. 5. Forecast constraints vs chameleon parameter n, at (a) Λ ¼ 14 and (b) Λ ¼ 24 meV. These constraints are made using the
screening factor approximation, which predicts zero differential force in the vicinity of n ¼ 2, hence the gaps in that region.

FIG. 4. Prospective bounds on the parameters for an n ¼ 1 chameleon, along with combined constraints from various experiments. It
is clear that Casimir experiments are sensitive to a wide range inM and accesses the small window that has also recently been tested by a
levitated force sensor (LFS) [21].
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experiments would close this gap and conclusively rule out
those models. This gap has recently been tested using a
levitated force sensor [21] and therefore a Casimir experi-
ment would corroborate those findings and could even put
the constraints in region of the parameter space so far only
probed by atomic interferometry. This would be an impor-
tant method of confirming the exclusion regions already
known in the literature. In Fig. 5, we show the dependence
of the constraints on the chameleon index n. Apart from the
spurious gap at n ¼ 2, which is due only to our use of the
screening factor approximation, we see significant con-
straining power across a wide range of n and M values.
Present forecasts do not show an ability to quite reach the

dark energy scale Λ ¼ 2.4 meV, although it is possible that
mild improvements in the near future could enable this.
Using Eq. (5.1), we see that, if keeping R;Dnear, and Dfar
fixed, it will be possible to constrain down to the dark
energy scale if the experimental sensitivity is improved by a
factor of 40, to rule out differential forces δF > 5 aN.
We now briefly comment on the n ¼ 2 chameleon. This

is a special case for the screening factor approximation,
which predicts δF ¼ 0 as seen in Eq. (5.1) and Fig. 5.
However, we note that our numerical results, shown in
Fig. 3(b), do in fact display a variation in the force with the
distance. From the numerical data, we have

δF ≈ 10Λ3R; ð5:6Þ

which rules out Λ > 7 meV within the inequalities given
by Eqs. (5.2) and (5.3) . Finally, in Fig. 5, we have
represented the parameter space of the chameleon models
for a given value of Λ and different coupling scales M and
index n. As can be seen, although the value of Λ
corresponding to the dark energy scale will not be reachable
unless the sensitivity of future Casimir experiments is
increased by an order of magnitude, larger values of Λ
would open up the parameter space. Values of n up to
n ¼ 10 and Λ varying over nearly 15 orders of magnitude
will be testable. Future Casimir experiments will probe
chameleons in uncharted regions of their parameter space.
Before concluding, we remark on potential improve-

ments to this setup that would maximize the chameleon
signal. If one is operating within the regime that the SFA
works well, then Eq. (5.1) shows that three attributes are
desirable: (i) R as large as possible, (ii) Dnear as small as
possible, and (iii) Dfar as large as possible, all within the
limits of applicability of the SFA and practical limitations.
However, if one goes beyond the region of applicability of
the SFA, a richer story emerges. Although we were unable
to confirm this fact numerically, it is likely that the PFA is
accurate for very small values of D=R. Indeed, Fig. 3(a)
shows that the numerical determination of the force appears
to increase at smaller values of D=R, a trend that may
continue to even smaller values to match onto the PFA
result. If this is the case, then the force curve has a local

minimum atD=R ≈ 1. In this case, the optimal setup would
be to have (i) R as large as possible, (ii) Dnear as small as
possible, and (iii) Dfar situated at the minimum of this
curve, at D=R ≈ 1. Alternatively, one could have Dnear at
the minimum and Dfar as large as possible, although this
would sacrifice sensitivity to forces with range smaller
than Dnear.
Going slightly further, we consider another scenario that

would enable detection of chameleons at the dark energy
scale Λ ¼ 2.4 meV. In this picture, the experimental
sensitivity is further increased to 0.1 fN, and the trench
depth is increased to 200 μm. We set Dnear ¼ R, so that we
are safely within the regime in which the SFA is confirmed
to be reasonably accurate [as seen in Fig. 3(a)]. The
experimental sensitivity of this setup is plotted in
Fig. 6 as a function of the sphere radius. We see that
increasing the sphere radius to R≳ 600 μm would be
sufficient to test chameleons down to the dark energy
scale Λ ¼ 2.4 meV.

VI. CONCLUSIONS

In this paper, we have compared the numerical results for
nonlinear field theories inducing a classical force between a
plate and a sphere with the proximity force approximation,
commonly used to evaluate the Casimir interaction
between nonplanar objects. We have focused on nonlinear
scalar field theories that modify gravity and are screened in
dense environments. More particularly, our analysis has
been performed with inverse power law chameleons.
After recalling that the PFA is exact for linear theories
such as Newtonian gravity or Yukawa interactions, we have
shown how the PFA can be implemented for chameleons
and compared it to another approximation method, the
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FIG. 6. Sensitivity of experimental setup to n ¼ 1 chameleons
at the dark energy scale Λ ¼ 2.4 meV. The experimental sensi-
tivity is assumed to be 0.1 fN, the sphere is Dnear ¼ R, and the
trenches are 200 μm deep so that Dfar ¼ Rþ 200 μm. We see
that an experiment with these parameters will be able to test
chameleons at the dark energy scale provided that the sphere
radius is R≳ 600 μm.
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screening factor approximation, which is commonly used
to calculate the force on extended bodies in screened
theories. It turns out that for chameleons we find a good
agreement between the SFA and numerical results, while
the PFA fares rather poorly, even in the regime in which it
was expected to work well. This is also the regime in which
current state-of-the-art Casimir force sensors operate.
Using the SFA we can forecast what future Casimir

experiments should measure, in particular, in the n ¼ 1
inverse chameleon case as well as for more general values
of n. We have shown that future Casimir experiments will
test chameleon models in a wide range of parameters for
larger values of the potential scale Λ than the dark energy
scale and for indices n characterizing the inverse power law
of the interaction potential as large as n ¼ 10 for coupling
scales to matter ranging over as much as 15 orders of
magnitude. We also showed that moderate improvements in

the sensitivity of these experiments will allow access toΛ at
the dark energy scale. The numerical techniques that we
have used to validate the SFA compared to the PFA could
also be amenable to extensions closer to exact experimental
situations, such as ones with more novel geometries [28]
and where dynamical effects could be taken into account,
i.e., the case of a moving sphere over steplike geometries. A
treatment of these more realistic setups, both numerically
and analytically, are left for future work.
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