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We consider polar perturbations of static Ellis-Bronnikov wormholes and derive the coupled set of
perturbation equations for the gravitational and the scalar field. For massless wormholes the perturbations
decouple, and we obtain two identical master equations for the scalar and gravitational modes, which
moreover agree with the master equation for the axial modes. Consequently there is isospectrality with
threefold degenerate modes. For a finite mass of the background wormhole solutions, the equations are
coupled. We then obtain two distinct branches of polar quasinormal modes for a given multipole number /,
associated with the presence of the two types of fields. We calculate the quasinormal mode frequencies and
decay rates for the branches with / = 2, 3 and 4. For a given [ the real frequencies of the two branches get

the closer, the higher the multipole number gets.
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I. INTRODUCTION

The Einstein-Rosen bridge is obtained by solving the
vacuum Einstein equations of the general theory of rela-
tivity for the static spherically-symmetric case [1]. It
represents a nontraversable wormhole, encumbered by
event horizons. Decades later, when considering the
Einstein equations in the presence of a scalar field,
Ellis [2,3] and Bronnikov [4] were able to obtain travers-
able wormhole solutions, provided they employed a non-
standard scalar field, i.e., a phantom field. The necessity of
the presence of a phantom field or, more generally, some
form of exotic matter violating the energy conditions in
classical general relativity was nicely discussed by Morris
and Thorne [5], who also contemplated the use of worm-
holes for rapid interstellar travel, see also [6,7].

In contrast to classical general relativity, however,
alternative theories of gravity do not necessarily require
the presence of exotic matter. Here the energy conditions
can be violated by the gravitational degrees of freedom
alone, as it happens, for instance, in Einstein-scalar Gauss-
Bonnet theories [8—10]. On the other hand, quantum
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degrees of freedom like Dirac particles also allow for
the violation of the energy conditions and thus the
emergence of traversable wormholes [11-14]. Recently,
traversable wormholes have been constructed in Einstein-3-
form theory since the 3-form field can violate the energy
conditions as well [15,16].

Clearly, besides the pure theoretical interest the various
possible ways of detecting a wormhole are of even more
interest. Considering that wormholes might exist, one of the
possibilities to detect them would be optically. For instance,
one may look for the gravitational-lensing effects created
by a wormhole [17-28], one may search for their shad-
ows [16,26,29-33], seek their accretion disks and radiation
associated with quasiperiodic oscillations [34—40], etc.

Another interesting possibility for detecting wormholes
could arise via studies of scattering some scalar field.
Recently analytic expressions for the transmission and
reflection amplitudes of the corresponding effective potential
and the absorption cross section of wormholes have been
calculated and it has been shown that for both a massless and
amassive field, an observer at infinity can easily differentiate
between a wormhole and a Schwarzschild black hole by
examining the scattering data for the scalar field [41].

Currently, gravitational-wave astronomy [42—44] is giv-
ing us a new potential approach to observe wormholes
through their damping modes called quasinormal modes
(see e.g. [45-47]). Quasinormal modes are characteristic
modes of a freely oscillating space-time. When a compact

© 2023 American Physical Society
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object like a black hole, a neutron star or a wormhole
oscillates the system is open, and the gravitational waves
lose energy and decays in time, so these type of modes are
called quasinormal modes.

Quasinormal modes of wormholes have been considered
before in a variety of contexts [48-59]. A particularly
interesting aspect here is presented by the inverse problem,
which can allow to find the shape of the wormhole by its
quasinormal modes [52,54]. This is different from the case
of black holes where a family of effective potentials
produces the same quasinormal mode spectrum [60].

A particular example where the quasinormal modes have
allowed to reconstruct the metric near the throat are the
symmetric Ellis-Bronnikov wormholes [54]. The quasinor-
mal modes of the general family of Ellis-Bronnikov
wormholes have been investigated only partially up to
now [48,49,55]. A systematic analysis of the scalar, axial,
and radial perturbations was given in [55].

Here we calculate the quasinormal modes for the polar
perturbations for the multipole numbers / = 2, 3 and 4. The
presence of the scalar field always leads to two such
families of modes, as the mass of the background worm-
holes is varied, whereas in the massless case the eigenval-
ues of the modes coincide. Indeed, for massless wormholes
we obtain two identical master equations for the scalar and
metric perturbations. Moreover, the previously obtained
master equation for the axial modes [55] is also identical to
these master equations.

The paper is organized as follows. In Sec. II we present
the theoretical setting, comprising the action, the equations
of motion and the family of static spherically symmetric
Ellis-Bronnikov wormhole solutions. These serve as the
background solutions for the perturbations discussed in
Sec. III, where a brief reminder of the formalism is given,
before the equations for the different multipoles, / = 0,
[ =1, and [ > 2 are obtained. Additionally, it is shown that
the spectrum possesses a threefold degeneracy for the
massless wormholes, since in this case all (scalar, polar
metric, and axial metric) perturbations satisfy the same
master equation. Starting with a description of the applied
methods, we then present our results for the polar quasi-
normal modes in Sec. IV, and we conclude in Sec. V.

II. THEORETICAL SETTING

We consider the Einstein-Hilbert action

1

=1 | dxy=g(R+2V,4V9) (1)

with a massless minimally-coupled phantom field ¢. By
varying the action we obtain the coupled set of equations of
motion

R;uz = _2aﬂ¢al/¢’ (2)
v, Vigp = 0. (3)

The family of static spherically symmetric Ellis-Bronnikov
wormbholes is then given by

b = ®)(r) = rg [tan_l (i> - %] , (4)

0 ro

ds> = g,(f,’,) dx*dx?
: 1
= —eldr® + —[dr* + (r* + 15)(d6” + sin® 0dg?)],
e
(5)

G

and Q, ry, and C are constants discussed below. The
superscript (b) indicates, that these are the background
solutions to be employed in the perturbation expansions.

Asymptotically, for r — +oco the metric function f
tends to zero, f — 0, and the metric approaches
Minkowski spacetime. On the other hand, for r — —oo,
a coordinate transformation is needed to approach
Minkowski spacetime,

with

_ _Cn ~ e ~ o
f=e ot 7= e¥r, Fo = e¥ory. (7)

Thus, the spacetime has two asymptotically flat regions,
which are connected by a throat where the circumferential
radius R(r),

R*(r)=e /(P + 1)), (8)

assumes its minimal value.

The global charges of the solutions can be read off from
the asymptotic expansion of the phantom field and the
metric. The charge of the phantom field is given by the
constant Q. The mass of the wormhole solution as extracted
in the asymptotically flat region r — +o0 is given by

C =2M. (9)

Besides determining the mass, the constant C represents
also a measure of the symmetry of the wormhole. When
C =0, the wormhole is massless and symmetric with
respect to reflections of r — —r at the throat r = 0.
However, when C # 0, the wormhole possesses mass,
and it is asymmetric, its throat being located either in
the region r < 0 or r > 0. There is also a symmetry relation
between solutions with a positive value of C and those with
a negative value, which reads

F(rnC) = f(=r.—C) —%,
$(r.C) = —(~r.~C) —%. (10)
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This relation relates the part of the spectrum of quasinormal
modes with C < 0 with the C > 0 part.

III. PERTURBATION THEORY

A. Formalism

We decompose the metric and the phantom field as
follows:

b
G = )+ M (11)

¢ =" +y. (12)
where the superscript (b) stands for the background, and the

perturbations are assumed to be small. The variation of the
Einstein equations with the phantom field source term is

where
26R,, = vaﬂhf,’ + V/,V,,h,fj - VDV”h - th, (14)
and

5(0,00,¢) = 0,w0," + 9,0 0,y (15)

The variation of the scalar field equation leads to
1
o0¢p = Oy + Evihaiqs(b) —V,(ho,p®)) =0. (16)

Employing the Regge-Wheeler gauge [61] the polar

ORy, = —26(6”¢6U¢), (13) perturbations of the metric are given by
|
ef(r)H()l(r> Hy(r) 0 0
A Hy(r e TOH, (r 0 0
hﬂgl(t, r,0,¢) = Z/da)e"“”P,(cose) u(r) 21(r) ,
; 0 e + 15)K (1) 0
0 0 e (r? + r2)sin?0K (1)

(17)

which contains no m dependence because of the spherical symmetry of the background solutions. Likewise, we employ a
spherical-harmonic decomposition (m = 0) of the perturbation y of the scalar field, yielding

w(tr) =Y / dwe™"u)(r)P,;(cos 0). (18)
]
For given values of [ and @ the Laplacian of the phantom field perturbation then becomes
u(r 2r (141 io
Oy = (%wz 4 el (marul(r) + uy(r) — r(z - r%) ul(r)>>e "P;(cos6). (19)

In the following the index / of the perturbation functions
of the metric and the scalar field will be omitted to simplify
the notation. With the scalar spherical harmonics defined
for [ > 0, the vector spherical harmonics for / > 1, and the
tensor spherical harmonics for / > 2, the monopole (I = 0)
case and the dipole (I = 1) case will be treated in separate
subsections, following the quadrupole (/ = 2) case, which
will include also the higher multipoles (I > 2).

B.1>2

We first consider the set of equations to be solved in
order to obtain / > 2 polar quasinormal modes, since these
represent the main objective of the present investigations.

In the derivation of the equations we need to distinguish
between the two cases C # 0 and C = 0 which are treated
consecutively in the following two subsections.

1.C#0

From the Einstein field equations we obtain seven
nontrivial equations, associated with the perturbations of
the Ricci tensor 6R,,, 5R,,, 6R,y (6R,,), OR,,, 6R,y (6R,,),
ORgp, and 6R,,,. We extract K" from 6Rgy and replace it in
OR,,. We then find the equality

Pp*

H2 :Ho. (20)
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Next, we eliminate H, in the remaining six equations and obtain

2 0T 2(r2—|—r(2)) 0

+
2(r2 + r(z)) 2
C—-4r I Ce*
27+ ") T2+ 1)

ok — (<L (WD

+ iwe* <—H’1 + K + a)zK) e~ 'P(cos ) =0, (21)

c-2 C- 11+ 1)e¥ .
SR, = (—ia}(z " Hy+ - k- K’) +&Hl>e‘”‘”Pl(cos 0)

(r*+r3) r?+r; 2(r* +13)
= 2iw e *'u(r)P;(cos 0)0,¢"), (22)
1 . 2f C ! —iwt
6R,9:§ la)(H0+K)+€ 5 2H1+H1 e 09P,(c089)20, (23)
r-+rj
1/ (1(1+1) C+2r
ot = (o (g - g+ )
C C—4r .
+iwel | ——5——H, + H’> +—— K - K”) e P, (cos @
Qw+%>l A+ ) feos?)
= —4e™ 9,u(r)P;(cos 0)a,p", (24)

1 C ) .
OR,g == (ﬁHo + Hjy 4+ we™'H, - K/> e 9y P (cos 0)
r+rg

2
= —2e7 y(r)dyP(cos 0)0,¢"), (25)
and
C-2r iw 3 1 _
SRy = (HO -— Hj, +7(C—2r)e 'H, +§((l_ D +2)—a?(r* +r3)e K
+ % (C-4r)K' - % (r* + r%)K”) e~ P, (cosd) = 0. (26)

Equations (22), (23), and (25) are of first order. We now solve the equation of 5R,, for K’(r), the equation of 6R,, for H/ (r),
and the equation of 6R,y for H(r) after inserting K’(r) here. This leads to

1 Cc-2 (r+1) .
K/:r2+r2 (— 5 rH0+ (Zw )ele+(C—r)K+\/C2+4r(2)u(r)>, (27)
0
H' = —iwe (Hy+ K) ——C— H 28
1 lwe ( ot ) r2+r2 1s ( )
0

and

1 (2r-3C i (104 1) )
Hy= i (M5 e (e =200 e Y+ (€K =[G ar)). 09)

Now we extract K”(r) from 6Ryy and H{j(r) from 6R,, and insert these together with the first derivatives of the metric
functions in OR,,. This leads to the algebraic relation
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2u' u(C—4r) 2(1-1)(1+2) 3C(C-2r) 2w(C-2r) _, l(I+1)C ,
J tar - - Hy+ i - N\u
I (r2 G r%)2> " ( A )T s et )

[-1)(+2)  C(C-r
+2<2wze—zf_( r2)45rg )+(r2(+r%))2>1<—0. (30)

When solving this algebraic relation for u’, we are left with four first-order equations for the four variables. By taking the
first and second derivative of the algebraic relation we obtain the three metric perturbation functions H, H;, and K in terms
of u and its derivatives. If we would set u(r) = 0 (i.e., turn off the scalar perturbation) the metric perturbations would also
vanish. This means that the metric perturbations are coupled with the phantom field perturbation, and we can not decouple
the phantom field from metric perturbations, in general. We next need to study the behavior of the perturbation functions at
both radial infinities. We therefore make series expansions for the functions assuming asymptotic flatness. Employing the
tortoise coordinate r*

dr*

— o f 31
dr ¢ (31)
the expansion for » — 400 becomes
s U u, us
— Lor - = — PPN s 32
u(ry=e <r+r2+r3+ ) (32)
- 3iCw—(I+2)(I—-1
Ho(r) = " (inor+ BiCo ~( 2+ =Wy ) (33)
- 3iCo—(I+2)(I -1
H\(r) = e™" (—ia)Kor—( iCo = ( ;— I ))K0+-'~), (34)
- 0?(C? +4r3) + 6iCow — I* = 21> + I> 4 21
K(r) =e"™" (KO - ( 0) 5 Ky+-- ) , (35)
8w r
where u; = AY and K, = A] are free amplitudes that fix the rest of the parameters of the expansion
1
U, :4—(( C?* + 413Ky — 2u;)Co + 2il(1 + 1)uy), (36)
0)
1
=g 5 (0*(C? = 4r3) = 2iwC (21> + 21— 1) = I* = 2P + I> + 2])u,
0]

+ iwCy/C? + 4r3(1 +2)(1 - 1)K,). (37)

On the other hand, for » - —oo the expansion becomes

i(r) = e-ior <b_‘r‘+i‘§+i‘§+ . ) (38)

Ho(r) = e7o <—ia)rec”/’0[_(0 _3iCwetn +2(l TAU=Dg o ) (39)

(1) = e (=ioreoR, - O T U=V, . ) (40)

R(r) = e-ior (]_(0 _@*(C* +4r5) - 6iCa)e‘C”;’a0) 2—r 2(14 + 28 = P = 21)e=2C/70 Rt > (1)
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where again it; = A7 and K, = Ay are free amplitudes and

1 _
iy =~ ((, /C* + 4r3K, — 2&1) Co —2il(1 + 1)e—Cﬂ/’oa1>, (42)
w
1

=g (@?(C? = 4r3) + 2iwe™C"C (212 + 21 — 1) — (I* + 213 — P = 2)e™2"/"0) iy,

+ iwe=CmC\[C? + 4r3(1 4 2)(1 — 1)Ky). (43)

2.C=0

In the massless case the first-order equations reduce to

1 .
K = P (il(l + V) H, = 20(rK — rHy — 2rou)). (44)
1 . .
H) = m((_Zsz(rz +r3) +il(l+1))H| = 20(rK — rHy + 2rou)), (45)
H = —iw(H, + K), (46)
1 2
w == (@A ) + (4 2= 1)K+ (L+2)(1 = 1 H = 2iorH,) —ﬁr,z”- (47)
0

The asymptotic expansions shown in the previous section remain valid when we substitute C = 0.
Calculating u” by taking the derivative of (47) leads to a decoupled equation for the scalar perturbation,

2r 1
= Tt = s (R + (20 = P = L )+ (P = P = (48)
0 0

A nontrivial solution to this equation can be written in closed form,

Cr 1 rro? 1 r?
u(r):mHeunC<0,5,—2,— 04 ,Z(F%wz—lz—l-f—S),—r—%
()

G, 1 rgw? 1 r
2 HeunC(0,—5, 2, =0 Z (202 — 2 —145),-5), 49
TR eun( 2 gl )z (49)

where HeunC is the Heun Confluent function, C; and C, are constants.
The equations for the space-time perturbations can be cast into a single second-order differential equation for H;,

iwrgru' + 16iwrgr?u/(r* + r3) — 2re?(r* + r3)H)
Fr1-2- (P4 RaAP 1 1)
(r*+ r(z))za)4 +[6r% + Zr% -2(r* + r%)l(l + D]w? + 1* + 28 - > -2))H,
(P+1-2=(rP+r})a?)(r*+1}) '

/A
H =

+

(50)

The previous perturbation equations can be written in terms of a single master equation, that coincides with the master
equation of the axial perturbations. First note that, if we parametrize the scalar perturbation in terms of the master variable
Z(r) such as

u:;Z(r), (51)

084024-6
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then Eq. (48) can be written as a Schrodinger-like master
equation

d*z
20 4 vz =0. ()
with effective potential,
I(1+1) 3r2
V(r) = - . 53
(r) P+ (rP+rd)? (53)

Note that, for C = 0 the tortoise coordinate (31) r* is the
same as r. This potential is the same as the one found
in [55] for the axial perturbations with C = 0.

(r2+r, )‘/—‘3/2

A(r):lerl 2—w (r2+r0)

{Dl r* HeunG < o*p,—

+ D, HeunG (—r(z)a)zﬂ, -

roa)zﬂ ne’p  5V3 53

It is also possible to cast the space-time perturbation
equation (50) into the same master equation. However the
transformation is more involved. We define

(54)

(55)

where Z(r) is the new master variable and A(r) and B(r)
are

5 34+—V14 V3.V3+ é——”ré()ﬁ“)

o’ V3 3 1 V149 1 V149 1 2.2
5 2 Ty T+\/§,\/§—Z—T,—§7O,ﬁw r )], (56)
iw(ry+ r?) i(r%+r2)(lz+l—2—w2(r(2)+rz))A,’ (57)

B(r) = - A—

4r0

where ! = I +

4rorw

[ =1 - rjw? and HeunG is the Heun General function, D; and D, are two arbitrary constants.

Then it is possible to show that Eq. (50) simplifies into Eq. (52) for Z(r) and with the same axial perturbations potential.
As we will explicitly calculate later, this means that the spectrum of polar quasinormal modes of the C = 0 wormbholes is

exactly the same as the axial spectrum.

C.l=1

For [ = 1 three of the Einstein’s equations are identically zero,

OR,, = 6R,, = 6Ry, = 0. (58)
From the nontrivial equations we obtain the following three first-order differential equations,
K= L (i C- (C=r)K +1/C? + 412 (59)
— — -r rpu ),
2rr\o 0
H = —LH1 —iwe™ (H, + K), (60)
r+r
C- ! c C- V/C? +4r}
Hy=-———" rzHO—i<a)e‘f—ze ; )Hl— Y Ay A i P (61)
re+rg o(r* +rp) 2(r* +rg) re+rg r*+r;
and the following algebraic equation,
C?*-3Cr-2r3 i C w(C =2r)e™ ct+4r3
- 2 2 Ho+5 2 7 2 2 Hy-7— 2702
2(r* +rg) 2 \o(r* +rj) (r*+r5) 4(r* +r§
C(C - VC*+4rs [ 4r—-C
+ (a)ze‘f + (2 r)2>K+ 5 * 2r0 < : u—+ u) =0. (62)
2(r* +r3) re+rg 2(r* + r3)
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This set of equations still has a gauge freedom that we can use to simplify the system further. Let us discuss here two
possibilities.
Imposing the gauge H; = 0, we obtain from R,

K =—H,. (63)

Then it is possible to simplify the remaining perturbation equations and obtain the following system of first-order
differential equations

- (4r —=3C)H, + 24/ C? + 4rhu (64)
’ 2(r% +13) ’

1

2r —=3C /
H(/) = r2 + r(% ((r— C)HO + 2 H2 - C2 —|—4r%u>, (65)

and
C?-3Cr-2r2 1 . r? 3C2 - 2Cr C—-4r
u = O Hy+——u <a)ze_f + 0 ) + ———-u. 66
2P+ 1) /Crar ' /Ot an Pl AR +2)) 7 2P+ ) (66)

We are then left with three first-order equations to calculate the quasinormal modes.
Alternatively, we may consider the variation of the phantom field (16), which leads to the second-order equation for the
function u

N | 2 2
' =Y I (g i Hy 4 HY — 2K — (w2 4o Vu—— . (67)
4(r* +1g) 4+ r?+r3

This equation is compatible with (59)—(62). We may now choose the gauge

Hj +2iwe™"H| + Hy, = 2K' =0, (68)
to simplify the equation, yielding
2 2
W' =—-(we + 55— |u—— r su'. (69)
re+rg re4rg

This is the equation for [ = 1 scalar field perturbations in the background of the Ellis wormhole as shown in [55], from
which we can calculate the scalar quasinormal modes.

D.1=0

In this case the function H does not contribute in the Einstein equations. Thus for simplicity we put H; = 0. We now
again consider the variation of the phantom field (16), yielding for u the equation

\/C? + 472 2
u”z%(Hé—l—H’z—ZK’)—a)ze_zfu— 5 r su'. (70)
4(r* +rj) re+rg

We now fix the gauge as follows:
The scalar field equation decouples from space-time perturbations

2
W = —w*eHu—— r su'. (72)
r+rg

084024-8
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Nontrivial solutions to this equation result in the spectrum of / = 0 scalar quasinormal modes. The space-time perturbations
can be cast into a second-order differential equation for K,

2Cr + 43K’ 2CK AR

Ky = ZCran)k 2 e O Al (73)
21y —2r (P +r —2r e+ -2r
(r+r)(C=2r) ~ (r* +15)(C=2r) (r* +rg)(C =2r)

The unstable modes are found for solutions with u = 0. With help of the function Z,

M €ﬁ arctan ()

W Z, 74
g (74)

and the tortoise coordinate * [Eq. (31)] we rewrite the equation into a Schrodinger-like equation,

K =

d*z
—+ (0 = V,(r)Z =0, (75)
dr
with the effective potential V,.(r)
e
V, = (C*=8rC® +12(r* = r3)C* = 16r(r* — r3)C = 16r3(3r* + 2r3)). (76)

4(C=2r(r* +1d)

The above expression corrects the misprints in the corresponding effective potential in [55]. Since the effective potential
has a singularity at C = 2r, we study its behavior near this singularity

C

v ( C) 26%(131171(%)—%) 8Ce%(tan"(%)—’§’) 46%“3“71(%)—5)
r\r— =

5 + - 77
2 (r=%)? (C+4rd)(r=%) C*+4r} (77)
|
For r — 40 the effective potential becomes e o N e’%(12c2—48rg)
V. (r—=-0)=—5—- —1 N
c -1¢437 r ’
r r
and for r -» —oo0 We exhibit the effective potential V,(r), multiplied by the

factor (r — C/2)? to cancel the singularity, in Fig. 1 for
C=0,0.1, 025, 0.5 and 1 (ry = 1). We note, that this
figure corrects the corresponding figure in [55]. The
calculations of the perturbation equations and the quasi-
normal modes were, however, not affected by the misprints.

IV. RESULTS

We now study the spectrum of polar quasinormal modes.
Since these characteristic modes of oscillation are damped,
the modes are complex,

® = wg + iwy, (80)

with frequency wp and decay rate w; (and sign convention
w; < 0 for stable modes). In the following we first discuss
the method used to calculate the quasinormal modes and
FIG. 1. Effective potential V,(r)-(r—C/2)* versus radial  present the numerical results for / > 2. Subsequently we
coordinate r for C =0, 0.1, 0.25, 0.5 and 1 (ry = 1). briefly recall the method and results for / =1 and [ = 0.
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A l>2

1. Method

For the numerical calculation of the quasinormal modes
with [ > 2, we rewrite the system of equations (27)—(30).
This system can be simplified into a second-order ordinary
differential equation (ODE) for u, coupled with two first-
order ODEs for the functions H; and K (the other
perturbation functions are then given algebraically in terms
of these three functions). Schematically this set may be
expressed as

d - -
—Z+MZ= 1
P + 0, (81)

where Z denotes the column vector with components u, u’,
H, and K. The matrix M contains the coupling among the
perturbation functions and the background functions.

To obtain the quasinormal modes we need to solve the
coupled set of equations (81) subject to the corresponding
set of physically motivated boundary conditions, i.e., we
have to impose that we do not have any incoming waves
from infinity. Therefore the modes are purely outgoing at
infinity, r* — oo [see (32)—(35) and (38)—(41)], with
components Z;

e r— oo,
—lwr

e , I —> —o0.

For the numerical integration we divide space at some
value r, into two regions. In the region r > r., perturbation
functions Z;(r) possess the asymptotic behavior for r —
~+o0 [60]

r>r,, Zi(r) = e ZP(r), (83)

while in the region r < r. the asymptotic behavior for
r — —oo is given by

4 T T T T
1
1

branch | ——
branch 2 —<—

=2,
=2,

R Ty

0.3

r<re Z7(r) = e ZN(r). (84)
Based on the corresponding expansions for r — 4oo0, we
then generate independent solutions (with different values
for the scalar and gravitational amplitudes AY and Agi) for
the functions Z¥(r) and Z? (r) for some chosen value of .
Then we match these functions at r = r,. and calculate the
derivatives of the functions. We obtain the quasinormal
mode, when a linear combination of the two independent
solutions in one region smoothly matches a linear combi-
nation of the solutions of the other region (see Sec. 4.1.3 for
further details).

In order to integrate numerically the equations subject to
the corresponding boundary conditions, we use the package
Colsys [62], a collocation method for systems of ordinary
differential equations with error estimation and adaptive
mesh selection.

2. Spectrum

For [ > 2 we have two families of modes [63]. For black
holes they can be labeled as gravitational-led modes, that
are dominated by the gravitational perturbations, i.e., their
dominant amplitude is A}, and scalar-led modes with
dominant amplitude Af. Here such a clear distinction
seems not possible. Therefore we refer to the two families
of modes for a given [ as branch 1 and branch 2, where we
currently focus on the fundamental branches. However, we
might obtain such a classification if we were to consider
larger wormhole masses, since in this limit the wormhole
modes are expected to approach those of the Schwarzschild
black hole [55].

We exhibit the two fundamental branches of polar
quadrupole (/ = 2) modes in Fig. 2. Here the left figure
shows the scaled frequency wgr, versus the scaled mass
M /ry, while the right figure shows the scaled decay time
wyr versus the scaled mass. We note, that the two branches
cross precisely at M = 0, since the eigenvalue @ degen-
erates in the massless case. Away from the crossing, the
frequencies and decay times are quite distinct for the two

0
2 0.5
g
qt 1=2, branch 1 —+— |
‘ ‘ ‘ 1;2, branch 2‘ —x—
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

FIG. 2. Polar [ =2 quasinormal modes: dimensionless frequency wgr, (left) and dimensionless decay rate w;r, (right) vs

dimensionless mass M/ry (ry = 1).
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TABLEI. Polar / = 2, 3 and 4 quasinormal modes: dimension-
less frequency wgry and dimensionless decay rate w;ry vs
dimensionless mass M/ry (ro = 1).

=2 [=3 =4

M/ry Branch wg W wpg Wy R Wy
0.2 1 1.10 -0.157 1.76 —-0.199 239 -0.223
2 0.738 -0.275 1.70 -0.330 2.35 -0.320
0.15 1 122  -0.177 198 -0.230 2.69 -0.258
2 0.955 —-0.303 191 -0.348 2.66 —0.346
0.1 1 1.37 -0.205 2.24 -0.271 3.06 -0.305
2 .19 -0.292 2.18 -0.364 3.03 -0.375
0.05 1 1.54 -0.245 2.56 -0.329 3.51 -0.367
2 144  —-0.290 252 -0.382 3.50 -0.408
0 1 &2 174 —-0.305 295 -0.410 4.08 -0.449
—0.05 1.97 -0.398 3.45 -0.524 4.78 -0.559
2.10 -0.336 3.50 —0.451 4.81 -0.502
-0.1 223 -0.547 4.08 -0.681 5.68 —0.703
256 -0.384 420 -0.509 5.73 -0.571

1
2
1
2
-0.15 1 245  =0.779 4.90
2 3.14 -0.453 5.07
1
2

-0.2 2.59 —-0.965 597 -1.16 827 -1.12
3.87 —0.550 6.19 —-0.696 8.39 -0.784
8 T T T T :
1=3, branch 1 ——
1=3, branch 2
6,
p
3
4,
:\,\N‘\\
2 | | | ‘\‘\f\,,,
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
M/r,
FIG. 3.

dimensionless mass M/ry (ro = 1).

1=4, branch 1
1=4, branch 2 —>—

R Ty

) ‘ ‘ ‘ ‘ ‘
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
M/,

branches. A selection of values for these quasinormal
modes is also reported in Table I.

We exhibit the polar [ = 3 and [/ = 4 modes in Figs. 3
and 4, respectively. Again we notice the crossing of the two
branches in the massless case. Away from the crossings the
frequencies wg of both branches are getting closer for / = 3
and even closer for [ =4 than for the quadrupole. The
decay rates show a smoother behavior for the higher [ as
compared to the quadrupole. Table I shows again a
selection of values for these quasinormal modes.

We have collected the branches for / =2, 3 and 4 in
Fig. 5 to allow for a better comparison of the different /.
The left figure shows that the frequencies rise monoton-
ically with increasing /. From the right figure we note the
overall trend on an increase of the decay rates with
increasing /. However, here the branches of the different
[ intertwine. For large positive masses, the decay rate of the
branches 1 increases with [ and is smaller than the decay
rate of the branches 2, where the [ = 4 decay rate is smaller
than the [ = 3 decay rate. For large negative masses, the
decay rate of the branches 2 increases with / and is smaller
than the decay rate of the branches 1, where again the [ = 4
decay rate is smaller than the / = 3 decay rate. We note, that

0
05 )
g
g
-1t
1=3, branch 1 —+—
L5 ‘ ‘ ‘ 1:3, branch 2‘
=03 -0.2 -0.1 0 0.1 0.2 0.3

Polar [ =3 quasinormal modes: dimensionless frequency wgr, (left) and dimensionless decay rate w;r, (right) vs

0
-0.5
<
g
1+
1=4, branch 1
LS ‘ ‘ ‘ 1:{1, branch 2‘ —x—
03 -0.2 -0.1 0 0.1 0.2 0.3

M/r,

FIG. 4. Polar [ =4 quasinormal modes: dimensionless frequency wgr, (left) and dimensionless decay rate w;r, (right) vs

dimensionless mass M/ry (ry = 1).
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11

1=2, branch 1
1=2, branch 2
1=3, branch 1
1=3, branch 2
1=4, branch 1
1=4, branch 2

—_—

—_——

—_——

0.1 0.3
M/r,

FIG. 5. Comparison of polar / = 2, 3 and 4 quasinormal modes:
w;r, (right) vs dimensionless mass M/ry (rg = 1).

1=3, axial
1=4, branch 1
1=4, branch 2 —v—

1=2, branch | —+—
1=2, branch 2 —¢—
1=2, axial

1=3,branch 1 —=—  1=4, axial ---------
51 1=3, branch 2
<
o
3
2 L
-0.1 -0.05 0 0.05 0.1
M/,

, branch 1
, branch 2
, branch 1
, branch 2
, branch 1
, branch 2

0.1 0.2

—_—

1=
1=
1=
1=
1=
=

2
2
3
3
4
4

—_—e—

0.3

-0.1 0
M/r,

dimensionless frequency wgr, (left) and dimensionless decay rate

1=2, branch 1
1=2, branch 2
1=2, axial --------
1=3, branch 1
1=3, branch 2
1=3, axial
1=4, branch 1
1=4, branch 2
1=4, axial

0.1

0.05

-0.05 0
M/,

-0.1

FIG. 6. Comparison of axial and polar [ = 2, 3 and 4 quasinormal modes: dimensionless frequency wgr, (left) and dimensionless

decay rate w;ry (right) vs dimensionless mass M/rq (rg = 1).

the decay rates of the branches 1 are very close for [ =3
and [ = 4.

Comparison with the [ > 2 axial modes [55] shows that
the wormhole solutions do not possess isospectrality of
their modes, as long as they possess a finite mass. The
spectrum degenerates only in the massless case and all three
fundamental branches for a given [ possess the same
eigenvalue. This is demonstrated in Fig. 6 for [ =2, 3
and 4.

3. Isospectrality for C=0

We now briefly comment on the mode degeneracy for the
massless wormholes from our numerical point of view. For
[ > 1, we look for a linear combination of two independent
solutions on the left side, Z; () and Z; (1I), that smoothly
matches a linear combination of two independent solutions
on the right side, Z; (1) and Z; (II). Written explicitly, this
implies that, at r = r,

det M =0 (85)

where

u (I) w (Il) wut(I) wut()

i u’:([) u’:(][) Wt(1) ut(I) (86)
Hi(1) H(D) H{() HG(D)
K~(I) K-(11) K*(1) K*(n)],_,

When C # 0, this determinant becomes zero for two
different values of w, one of them belonging to branch 1
and the other one belonging to branch 2." At each of these
zeros of the determinant, there is a single linear combina-
tion of the perturbation functions that results in a smooth
solution across all of the space-time (for each value of w,
the kernel of matrix M has dimension one). As we have
seen in the previous subsection, as we decrease the value
of C, the two branches of modes get closer and closer. What
happens is that, in the limit when C vanishes, the deter-
minant possesses a single double-zero at one particular
value of . In this case it is possible to find, for this value of

'Of course the determinant has more than two ZEeros, corre-
sponding to excited modes, with larger imaginary part of w. We
here focus only on the fundamental modes.
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4.5 T . . . :
1=2, n=0, branchl —+—
4 1=2, n=0, branch2 ——¢«— |
1=2, n=1, branchl
35t 1=2, n=1, branch2 —8— |
3 L
=
-
3::4 2.5
2 i B
L5} N
0.5 . . .
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

M/r,

0
-0.5
1k
=
3
_1'5 L
1=2, n=0, branch] ——
2 1=2, n=0, branch2 —— |
1=2, n=1, branch1
2.5 s ‘ . 1=2,n=1, branch2 —&—
. -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M/,

FIG.7. Fundamental (n = 0) polar / = 2 quasinormal modes and their first overtone (n = 1): dimensionless frequency wgr, (left) and
dimensionless decay rate w;r, (right) vs dimensionless mass M/r, (ro = 1).

the eigenfrequency, two distinct linear combinations of the
perturbation functions that result in two independent
smooth solutions of the perturbation equation (the kernel
of matrix M has dimension two). In other words, the
massless wormhole possesses a doubly-degenerate funda-
mental polar mode, as predicted in Sec. III in terms of the
master equations.

In Fig. 7 we demonstrate the degeneracy of the polar
modes in the massless case (C = 0) for the first overtone
(n = 1) of [ = 2. For comparison the figure also shows the
corresponding fundamental (n = 0) modes.

B.I=1and /=0

To obtain the damped quasinormal modes for the [ = 1
and [ =0 perturbations, we solve Eqgs. (69) and (72)
respectively. These equations can be cast into a second-
order Schrodinger-like equation, as discussed in Sec. III

&’z
——+ (@ = V,(r)Z=0, (87)
dr
where V is the scalar perturbation potential for / =0, 1
(see [55]). Assuming again, that the modes are purely
outgoing at infinity r* — oo

7 ~ eiimr*7 o ﬁ:OO, (88)
we then solve the second-order equation subject to these
boundary conditions. The quasinormal modes are obtained
when the condition

1 dzZ*
Zt dr*

r=r.

1z
Z- dr*

=0 (89)

r=r.

is satisfied.

The polar / =0 and / =1 quasinormal modes corre-
spond to the scalar branches obtained previously [55].
Clearly, we obtain only one branch of fundamental modes
for each of these values. The frequencies of these modes
increase with [, although their decay rates don’t change

much. For large masses the corresponding Schwarzschild
scalar modes are approached.

For [ = 0 there is in addition an unstable mode [55,64—67].
In this case, the unstable mode can be obtained solving
equation (75). This unstable radial mode decreases in
strength with increasing wormhole mass. Thus, the worm-
hole gets more stable as its mass increases, however, the
wormhole always retains a radial instability as long as its
mass is finite.

V. CONCLUSIONS

Here we have considered the polar modes of Ellis-
Bronnikov wormholes. We have obtained the sets of
perturbation equations for general multipole number L
For [ > 2 we have then solved numerically the correspond-
ing system of equations subject to purely outgoing boun-
dary conditions at both radial infinities. For/ = 1 and [ = 0
we have shown, that analogous to the case of the axial
modes single master equations result.

The massless wormholes are special, however. Here
isospectrality with a threefold degeneracy arises, since
the set of polar equations can be reduced to the same
master equation for both types of polar modes, which
moreover agrees with the master equation for the axial
modes, obtained previously [55].

For finite wormhole masses the spectrum of polar
quasinormal modes possesses two distinct branches for a
given multipole number /. For large wormhole masses these
may possibly be associated with the scalar and the
gravitational modes of a Schwarzschild black hole. The
modes exhibit an overall increase of the frequencies with
the multipole number /. Similarly, the decay rates show an
overall increase with /. For a given [, the two branches of
polar modes also differ from the branch of axial modes,
except for the degenerate massless case.

Since we now have access to the complete spectrum of
quasinormal modes of the static spherically-symmetric
Ellis-Bronnikov wormholes, we may next consider the
inclusion of rotation. This will be done perturbatively for
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small angular momenta analogous to [68]. Of particular
interest will, however, be the influence of rotation on the
unstable radial mode of the Ellis-Bronnikov wormholes.
Could rotation have a stabilizing influence in four space-
time dimensions analogous to what has been observed
before in five spacetime dimensions [69].
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