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A dispersionless shock wave in a fluid without friction develops an acoustic spacetime singularity which
is naked (not hidden by a horizon). We show that this naked nondispersive shock-wave singularity is
prohibited to form in a Bose-Einstein condensate, due to the microscopic structure of the underlying æther
and the resulting effective trans-Planckian dispersion. Approaching the instant of shock tshock, rapid spatial
oscillations of density and velocity develop around the shock location, which begin to emerge already
slightly before tshock, due to the quantum pressure in the condensate. These oscillations render the acoustic
spacetime structure completely regular, and therefore lead to a removal (censoring) of the spacetime
singularity. Thus, distinct from the cosmic censorship hypothesis of Penrose formulated within Einsteinian
gravity, the quantum pressure in Bose-Einstein condensates censors (prohibits) the formation of a naked
shock-wave singularity, instead of hiding it behind a horizon.
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I. INTRODUCTION

In Einsteinian gravity, singularities are ubiquitous [1–3].
However, the physical spacetime nature of these singular-
ities is still under debate. The singularity theorems by
Hawking and Penrose state that if there either exists a
trapped surface due to gravitational collapse or the Universe
is assumed to be spatially closed, spacetime singularities are
formed with the following conditions being satisfied: We
have Einstein gravity at zero or negative cosmological
constant, the weak energy condition is maintained, closed
timelike curves are absent, and every timelike or null
geodesic enters a region where the curvature is not specially
aligned with the geodesic [4–7]. As these theorems guar-
antee that if there exists a trapped surface in spacetime, a
singularity must form, one may ask the question if the
reverse holds true, and whether a singularity may form
without a horizon enclosing it (naked singularity). The
cosmic censorship hypothesis (CCH), then, in itsweak form,
states that generic gravitational collapse, starting from a
nonsingular initial state, cannot create a naked singularity in
spacetime [2,8,9].
However, explicit counterexamples to the CCH, for physi-

cally viable processes, have been found cf., e.g., [10–14].
On the other hand, mechanisms arguing that naked singu-
larities are indeed hidden were developed, among which
backreaction is a prominent example [15–18]. It is thus fair
to say that the CCH is still widely debated, as regards the
possible mechanisms for either violating or preserving it,
and whether these mechanisms are of quantum or
classical origin, also cf. Ref. [19]. This is largely due to
the fact that there is no applicable quantum theory of
gravity, in particular complete in the ultraviolet, with which

to ascertain whether a given argument for (or against) the
CCH is true.
The seminal paper of Unruh [20] triggered, especially

recently, with a substantial improvement of experimental
capabilities, on a broad front a field which was coined
analog gravity [21]. Its essence is that it models the
propagation of classical and quantum fields on curved
spacetime backgrounds, exploring various phenomena
inaccessible at present in the realm of gravity proper,
see, e.g., Refs. [22–39]. A particularly promising arena
are Bose-Einstein condensates (BECs) due to the atomic
precision control and accurate correlation function reso-
lution they offer [40–61].
Acoustic black holes (“dumb” holes [62]) or cosmo-

logical horizons are thus well established and experimen-
tally realized within the analog gravity realm. On the other
hand, distinct from Einstein gravity, where singularities
are ubiquitous, singularities in quantum fluids, and with
particular regard to their acoustic spacetime properties,
have not been much studied yet, to the best of our
knowledge. It is important here to pause, and to clearly
state at the outset the most important differences of analog
gravity and Einstein gravity: In analog gravity, the acoustic
spacetime metric is governed by nonlinear fluid dynamics
and not by a solution of the Einstein equations. In Einstein
gravity, black holes (and, as a result, also singularities in
spacetime due to the theorems by Hawking and Penrose)
are formed from gravitational collapse of matter. In fluids,
it is the transition of subsonic to supersonic flow which
creates an effective dumb hole horizon for linear sound in
the medium. Distinct from Einstein gravity, this analog
gravitational field, providing a background effective
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spacetime for linear perturbations on top of it, is governed
by a velocity scalar [63], in a comparable way to a
nonlinear self-interacting scalar field theory of gravity [64].
In the present work, we establish a highly nonlinear process
creating a naked singularity in the acoustic spacetime
metric, physically represented by a shock wave in a
BEC without dispersion included [that is in the so-called
Thomas-Fermi (TF) limit]. For this nondispersive shock,
the nonlinearity causes a stepwise discontinuity in the
acoustic metric components, and as a result a naked
timelike Ricci curvature singularity of the effective space-
time emerges.
In the real quantum fluid, dispersive effects can, how-

ever, not be neglected, due to the quantum pressure, which
occurs because of the stiffness of the condensate order
parameter (scalar field) against spatial variations of its
modulus. We reveal as a result a dispersive censorship of
the spacetime singularity, when a nondispersive shock
wave [65] would develop a singularity of the effective
spacetime at its front. Because of the dynamical differences
of Einsteinian and analog gravity based on fluid-dynamical
motion, here the singularity is censored (prohibited to
form), instead of being dressed by a spacetime horizon. Our
aim in the present investigation is thus to provide a realistic
scenario, which can be experimentally implemented in a
BEC, wherein the quantum pressure censors prohibits the
formation of a singularity in an acoustic spacetime metric.
We therefore demonstrate that the CCH, which asserts that
the naked singularity is hidden behind a horizon, is in
general not necessary, provided one admits alternative
theories of gravity.

II. FLUID DYNAMICS OF DILUTE
BOSE-EINSTEIN CONDENSATES

A. Fluid perturbations

Dilute BECs represent inviscid, barotropic, and irrota-
tional fluids, where, importantly, the quantum pressure
term is added to the Euler equation. Setting the atomic mass
m ¼ 1, we have to solve the following set [66]:

∂tρþ∇ · ðρvÞ ¼ 0; ð1Þ

∂tvþ v ·∇v ¼ −
∇p
ρ

þ ℏ2

2
∇
�∇2 ffiffiffi

ρ
p
ffiffiffi
ρ

p
�
−∇Vext; ð2Þ

p ¼ pðρÞ ¼ 1

2
gρ2; ð3Þ

∇ × v ¼ 0 ⇒ v ¼ ∇Φ: ð4Þ

These equations are the only field equations occurring in
our problem for condensate density ρðr; tÞ and condensate

velocity vðr; tÞ, and the spacetime metric for sound is then a
derived and not fundamental (also see below). In the above
relation (4), Φ is a velocity potential due to the irrotation-
ality of the superfluid (excluding quantized vortex lines).
The scalar potential Vext is employed by the cold quantum
gas experimentalist to create certain classes of effective
spacetimes (see for an overview [21]), while the condensate
pressure p arises from the two-body repulsive contact
interaction between atoms, where the coefficient g is
proportional to the s-wave scattering length in the dilute

gas [66]. Finally, the term ℏ2
2
∇ð∇2 ffiffi

ρ
pffiffi
ρ

p Þ in the Euler equa-

tion (2), is the so-called quantum pressure term [66]. From
the barotropic equation of state (3), the sound speed

cs ¼
ffiffiffiffi
dp
dρ

q
¼ ffiffiffiffiffi

gρ
p

; stability implies that g > 0. We linearize

the fluid equations over the background of a dispersive
shock wave in a BEC [67]. The quantum pressure term is
negligible until the shock is closely approached. Due to the
quantum pressure term, the discontinuity in the flow, which
were expected to be present in the nondispersive postshock
phase [65], is regularized. One observes instead an oscil-
lation pattern in the density profile upon approaching the
shock (Fig. 5 in Appendix B). To physically distinguish
classical sound wave from the background, one works with
a linear perturbation with different space and time scale
than the background flow, as discussed in the literature for
linear sound propagation over background [21], and for
nonlinear sound as well [63]. We denote background
quantities with subscript (0) and the linear perturbations
with subscript (1). We write v ¼ vð0Þ þ∇Φð1Þ by following
the conventions of Ref. [63]. For example, with a dispersive
nonlinear wave as the background, initially, when t is much
less than the shock time tshock, the wave is linear and
nondispersive. For t ≪ tshock, such a linear wave satisfies
the massless Klein-Gordon (KG) field equation over the
analog Minkowski spacetime of a uniform static medium as
background. We call this the initial background, and denote
it with subscript 0. According to the Riemann wave
equation for travelling one-dimensional (1D) waves, see
Eq. (12) below, the intrinsic nonlinearity of the fluid-
dynamical equations becomes significant in the course of
time as the wave approaches the shock [65]. The KG
analogy then does not hold anymore. In Ref. [63], we have
described the classical backreaction of the nonlinear
perturbation onto the accoustic metric, and defined a
new background by absorbing these nonlinear perturba-
tions into it. Here, we go near and beyond the shock time,
with now in addition the quantum pressure, which origi-
nates from the spatial stiffness of the macroscopic BEC
wave function against deformations, becoming significant.
Linearizing (1) gives

∂ρð1Þ
∂t

þ∇ · ðρð0Þ∇Φð1Þ þ ρð1Þvð0ÞÞ ¼ 0: ð5Þ
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The linearized Euler equation follows from the Eq. (2):

_Φð1Þ þ
c2sð0Þ
ρð0Þ

ρð1Þ þ vð0Þ · ∇Φð1Þ

þ ℏ2ρð1Þ
4ρ2ð0Þ

�
∇2ρð0Þ −

1

ρð0Þ
ð∇ρð0ÞÞ2

�

þ ℏ2

4ρð0Þ

�
1

ρð0Þ
∇ρð0Þ ·∇ρð1Þ −∇2ρð1Þ

�
¼ 0: ð6Þ

Incorporating only the gradient terms from the background,
thus neglecting ∇ρð1Þ, and ∇2ρð1Þ, we get

ρð1Þ
ð1þ ℏ2αÞc2sð0Þ

ρð0Þ
¼ − _Φð1Þ − vð0Þ ·∇Φð1Þ: ð7Þ

Here, we introduced a parameter α via

α ¼ 1

4c2sð0Þ
∇ ·

�∇ρð0Þ
ρð0Þ

�
: ð8Þ

We can then define a new length scale l ¼ lðx; tÞ via l−2 ≔
ℏ2jαj=ξ2 which characterizes the background spatial varia-
tion, and where the spatiotemporally local healing length is
given by ξðx; tÞ ¼ ξðρð0ÞÞ ¼ ℏffiffiffiffiffiffiffigρð0Þ

p .

The competition of the “microscopic” structure dictated
by ξ and the “background” scale l is expressed by αðx; tÞ
which thus appears in the metric qμν in Eq. (9) below.

B. Spacetime metric in the dispersive fluid

Now, we substitute ρð1Þ from Eq. (7) into Eq. (5),
dropping the terms in the last closed bracket of Eq. (6).
This is the limit where the linear perturbation of all physical
quantities such as ρð1Þ; pð1Þ can be written in terms of partial
derivatives in Φð1Þ, and the full solution can be obtained
when Φð1Þ over a known background has been solved for.
Going beyond this limit requires to solve for ρð1Þ also, and
the equation of motion for Φð1Þ becomes an integro-
differential equation [41]. As a result, the acoustic space-
time metric is not local in space and time anymore. Here,
we restrict ourselves to small wave number k excitations,
i.e., perturbations with wavelength larger than the coher-
ence length ξðρð0ÞÞ. In this limit, we can construct an
acoustic metric local in spacetime.
Linearizing in the perturbation amplitude now proceeds

still as conventionally carried out in the analog gravity
literature [20,21]. The difference is found in the dispersive
nature of the background. The latter is controlled by well-
posed initial (and/or boundary) conditions by the exper-
imentalist. Over such an externally fixed, albeit nonlinear
and dispersive background, any excitation to linear order is
called a perturbation. In our particular case, the highly

nonlinear and dispersive background flow is clearly distinct
from the linear nondispersive perturbations which experi-
ence the effective spacetime produced from such a back-
ground medium. We then compare the equation of the
scalar field Φð1Þ to that of a minimally coupled massless
KG field equation, and find the following effective space-
time metric in 3þ 1D,

qμν ≔
ρð0Þ
cð0Þ

2
6664
−ðc2ð0Þ − v2ð0ÞÞ ..

.
−vTð0Þ

� � � � � � � � � � � �
−vð0Þ ..

.
I3×3

3
7775; ð9Þ

with a modified local sound speed

cð0Þ ¼ csð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ℏ2α

p
; ð10Þ

due to the dispersive nature of the background. Evidently,
the ℏ2 small length scale correction term is present for a
general background flow. Note that for stability, we have to
impose the lower bound α > −1=ℏ2.
The qμν are no longer simple algebraic functions of

background density and velocity, and interpolate between
the fully nonlinear metric without dispersion gμν introduced
in [63] and the linear perturbations metric without
dispersion gμν. See Table I for an overview of the various
concepts and the classification of spacetime metrics in the
presence of nonlinearity and/or dispersion due to quantum
pressure. We note that the effective spacetime metric for
linear perturbations of wavelength larger than the healing
length, qμν, does not represent a so-called rainbow space-
time [68,69]. Distinct from such a rainbow spacetime, the
metric qμν does not depend on the wave vector k of the
excitations.

TABLE I. Defining background flows from nonlinearity and
dispersion and their associated metrics, where l is the length scale
defined below (8). For Background (i), ρ0, v0 represent a solution
of the nondispersive fluid equations without quantum pressure,
and are initially chosen as the background before the shock
develops, with perturbations treated to linear order. This initial
Background (i) corresponds to the conventional analog gravity
metric and may or may not derive from nonlinear fluid equations;
for example, a uniform static medium does not represent a
nonlinear background. For the Background (ii), ρð0Þ; vð0Þ, are
found from the fully nonlinear, coupled fluid equations for both
background and perturbations, however without quantum pres-
sure included. Cf. Ref. [63]. Finally, for the Background (iii),
ρð0Þ; vð0Þ are found from the nonlinear fluid equations applied to
the background motion alone, but now with quantum pressure
included.

Background (i) Background (ii) Background (iii)

ρ0, v0 ρð0Þ, vð0Þ ρð0Þ, vð0Þ
l ≫ ξ l ≫ ξ l ∼ ξ
gμν gμν qμν
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III. DISPERSIVE SHOCK WAVES

We consider the propagation of a wave, initially created
as a Gaussian distribution, in the condensate. We consider a
realistic situation, with the effect of quantum pressure
included, i.e., a highly nonlinear dispersive wave [67]. The
acoustic metric of such nonlinear dispersive pulse wave in
our quasi-1D BEC set up, is given by the Eq. (9) with vð0Þ
having only one component along the x axis, vð0Þðx; tÞ.
We choose the initial wave profile [67] as the Gaussian

ρð0Þðx; t ¼ 0Þ ¼ ρ∞

�
1þ 2η exp

�
−

x2

2σ2

��
;

vð0Þðx; t ¼ 0Þ ¼ 0; ð11Þ

where σ ≫ ξðρð0ÞÞ. Here, at the center of our quasi-1D BEC
set up, we produce a source of gravitational wave (GW) with
density being almost uniform towards the boundary, mim-
icking asymptotically flat effective spacetime with a GW
source. This longitudinalGWis different from its counterpart
in Einstein gravity, in that the spacetime lacks general
covariance, and the GW cannot be represented in its usual
transverse and traceless form, cf. the discussion in [61].
The Thomas-Fermi profile in Eq. (11) (neglecting the

impact of quantum pressure on the initial state) can be
created by focusing a laser detuned from atomic resonance
onto the center of the one-dimensional condensate, with a
size ≫ σ [67]. Switching off the laser creates a nonlinear
dispersive propagating wave with high frequency oscilla-
tions when the shock occurs, as previously described
in [67], see for a detailed description Appendix B.
Shock waves in quasi-1D BECs have been experimentally
observed [70], and also in nonlinear photon fluids [71]. In
particular, Ref. [70] captures density modulations which
may be compared to the high-frequency postshock oscil-
lations predicted by Damski [67].
We numerically solve the fluid equations (in a box

potential with∇Vext ¼ 0), that is Eqs. (1)–(4), employing a
4th order Runge-Kutta method to perform the time inte-
gration, and expanding the spatial derivatives within a
central difference method scheme up to the same 4th order
accuracy [72]. We now consider only nonlinearity taken
into account for the fluid motion, i.e., Eqs. (1)–(4) without
quantum pressure, and with the initial profile of Eq. (11).
After a certain time, the initial Gaussian density wave
profile separates completely into two identical smaller
pieces (while respecting mass conservation), and moving
in opposite directions. The right-moving traveling wave in
the polytropic gas with pressure pð0Þ ∝ ργð0Þ (for BECs

γ ¼ 2) can be described in terms of single variable vð0Þðx; tÞ
by the Riemann wave equation [73]:

∂vð0Þ
∂t

þ
�
cs0 þ

�
γ þ 1

2

�
vð0Þ

�
∂vð0Þ
∂x

¼ 0; ð12Þ

ρð0Þ ¼ ρ0

�
1þ

�
γ − 1

2

�
vð0Þ
cs0

� 2
γ−1
: ð13Þ

The second identity directly relating density to flow speed
perturbations is valid for a simple wave [65]. The left-
moving traveling wave comes with a − sign in front of cs0
in the above equations; ρð0Þ ¼ ρ∞ for vð0Þ ¼ 0, ρ∞ ≃ ρ0 of
Eq. (11) since σ ≪ size of the condensate. This first-order
quasilinear partial differential equation leads to multivalued
valued solution by the method of characteristics [74].
By obeying momentum and mass conservation across

the discontinuity, one is led to the equal area ruleH ðx − xsÞdvð0Þ ¼ 0 where xs is the shock location (location
of discontinuity), to avoid such a multivalued solution from
the shock time (¼tshock) onward [65]. We discuss this issue
further in Appendix A. In the presence of quantum
pressure, the solution (density, velocity, etc.) becomes
oscillatory around the discontinuity, in comparison in
Fig. 2. Therefore, the solution becomes a well behaved
function of x and t [67], see Appendix B. The numerical

FIG. 1. Behavior of qμν for the dispersive shock wave as
background, found by numerically solving Eqs. (1)–(4). We use
here units in terms of a length L, chosen appropriately for the
purpose of our numerical calculation. For example, in the
experiment [70] the size of the condensate is roughly 500 μm,
whereas the full x-axis range of our numerical simulation is 500.
Therefore Lwould be approximately 1 μmwith the parameters of
Ref. [70]. Time t is then measured in units of L2, when setting
ℏ ¼ 1. In these units, the parameters we choose are g ¼ 7500,
ρ∞ ¼ 0.002, η ¼ 0.2, σ ¼ 8.838. We then obtain tshock ≃ 13.43,
using the method described in Ref. [67]. Only after and slightly
before the instant of shock, the dispersive nature of the back-
ground flow becomes important in the oscillatory region, and
hence in qμν. Top left (at t ¼ 27): We plot qtt in the postshock
phase; the behavior of other metric components is similar.
(Bottom row): In the postshock phase, the amplitude of the
parameter α defined in Eq. (8) in the nonoscillatory region is
essentially negligible compared to its amplitude in the oscillatory
region; it, however, increases rapidly as t approaches tshock.
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solution of Eq. (1) together with Eq. (4) produces qtt in
Fig. 1. As expected, α is practically zero in the non-
oscillatory region. The α-correction term in the metric qμν,
which is usually hidden in a slowly varying background, is
amplified in a region where quantum pressure is important:
It is a significant contribution relative to the other forces in
the Euler-type evolution of momentum (2) in the oscillatory
region (cf. Fig. 7 in the Appendix B). Remarkably, the
oscillations in the solution starts just slightly before the
shock time tshock (see Fig. 6 in Appendix B), whereas tshock
is computed in the zero quantum pressure limit. Therefore,
tshock maintains its importance as a timescale even with
quantum pressure, signifying the time of initiation of
oscillation. A linear traveling 1D wave cannot stay linear
forever; after a certain time nonlinearity makes the
vð0Þ profile steeper, with negative

∂vð0Þ
∂x . This renders, in

turn, the quantum pressure significant. Thus nonlinearity
invites dispersion due to quantum pressure to play a
significant role, also see the Appendices A and B.

IV. CENSORING THE NAKED SINGULARITY

We now aim to find what a discontinuity in the solution
means for the effective spacetime. We denote the acoustic
metric for the nondispersive metric as gμν, cf. Table I. We
stress that, while the metric is derived nondispersively, it is
still taking the nonlinearity of the fluid into account [63].
It reads

ds2 ¼ gμνdxμdxν ¼
ρð0Þ
csð0Þ

�
−ðc2sð0Þ − v2ð0ÞÞdt2

−2vð0Þdtdxþ
X

i¼1;2;3

ðdxiÞ2
�
: ð14Þ

Note that this metric is also not identical to the conventional
analog gravity metric gμν, which assumes that the dynamics

of perturbations is linear instead of nonlinear, cf. Table I for
a classification of metrics. The linear approximation is valid
only for small amplitudes and short time intervals, while
the quantities ρð0Þ, vð0Þ in the metric are found from the
solution of the nonlinear fluid equations without quantum
pressure. This isBackground (ii) in Table I. For nonlinear
dispersive shock wave, Background (ii) and Background
(iii) coincide very well in every region except in the
oscillatory region, i.e., the region around shock location
xs. In the asymptotic region, i.e., near the condensate wall,
Background (ii) and Background (iii) coincide with the
Background (i) which is uniform and static, i.e., an acoustic
analog of Minkowski spacetime.
Evidently the acoustic metric is discontinuous at x ¼ xs

after the shock has occurred. We compute the Ricci scalar,
R [75] for gμν for the right-moving traveling wave satisfy-
ing Eq. (12). We perform the calculations in Mathematica,
replacing ∂t by ∂x derivatives, employing the Riemann
wave equation (12). This procedure leads to the surpris-
ingly simple relation

R ¼ ð1þ γÞ
ρð0Þ

∂
2vð0Þðx; tÞ

∂x2
; ð15Þ

expressing the curvature scalar solely by the second spatial
derivative of the background flow field. At x ¼ xs,
vð0Þ ¼ v1, and ρð0Þ ¼ ρ1, which are the preshock values
of velocity and density, respectively, related to each other
by Eq. (13). Since, in this case the wave is propagating from
left to right, at x ¼ xs, vð0Þ first has v1 then it jumps to
postshock value v2ð<v1Þ, thus unrealistic multivalued vð0Þ
is avoided. limx→xsvð0Þðx; tÞ does not exist, but it has a
definite value which is v1, and as a consequence; this
discontinuity can be written mathematically in terms of a

Heaviside step function, see Appendix A.
∂vð0Þðx;tÞ

∂x ¼ −∞ at

x ¼ xs, and
∂
2vð0Þðx;tÞ
∂x2 at x ¼ xs can be expressed as a

summation of δð0Þ and δ0ð0Þ (with definite coefficients)
type of infinities (in Appendix A); where 0 denotes a x
derivative. We discuss the visualization of Dirac delta
distributions through a delta-sequence function in Fig. 4
of Appendix A.
We plot in Fig. 3 the Ricci scalar of the nondispersive

wave as it approaches the curvature singularity in the
preshock phase t < tshock. As can be seen, the expression
(15) implies the existence of a (strong) curvature singularity
at x ¼ xs, where xs is the position of discontinuity at
t ≥ tshock. Since the velocity at any x remains always very
much less than the minimum value of sound speed cs0
ð¼ ffiffiffiffiffiffiffi

gρ0
p Þ, there is no event horizon present in the

acoustic metric. Since at x ¼ xs, vð0Þ ¼ v1; sound speed

csð0Þ ¼ cs1 ¼ cs0 þ ðγþ1
2
Þv1, and the travel speed of the

discontinuity is u ¼ cs0 þ ðγþ1
4
Þðv1 þ v2Þ, v2 ð<v1Þ is

0
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FIG. 2. (Left) Multivalued solution of postshock Riemann wave
by the method of characteristics (dotted): physical solution with
discontinuity (nondispersive shock) and by equal area rule [65]
(solid line). (Right) Discontinuity in the flow is avoided as the
wave approaches the shock time when we take quantum pressure
into account. Inclusion of quantum pressure in the equation
creates oscillation and thus continuous solution of vð0Þ removes
singularity in the acoustic metric, i.e., censorship of singularity.
The wave profile with quantum pressure is a good match with the
nondispersive nonlinear wave profile in the region except the
rapidly oscillatory region. Parameters as in Fig. 1.
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the postshock value of vð0Þ [65]. Hence cs1 > u. In
Eq. (14), by putting dx ¼ udt, dy ¼ dz ¼ 0, we find
ds2 ¼ ρ1

cs1
ð−c2s1 þ ðu − v1Þ2Þdt2, from the above discus-

sion, we notice that cs1 > ju − v1j. Therefore, at x ¼ xs,
the discontinuity follows a timelike trajectory, representing
a naked singularity. When we, on the other hand, solve the
fluid equations with quantum pressure, the solution oscil-
lates instead of discontinuity; we render the curvature for
the metric qμν ∀ x and t finite, thus removing the singu-
larity, cf. Fig. 2. However, for nondispersive waves, the
discontinuity does not persist for t → ∞, and ðv1 − v2Þ
then falls to zero [65].

V. COMPARISON WITH HYDRAULIC JUMP

To put the above discussion on dispersively censoring
shock-wave spacetime singularities in perspective, we
compare it with another example for a possible spacetime
singularity, the so-called hydraulic jump [76].
In general relativity, the components of the spacetime

metric reflect a choice of coordinate system, and there is no
preferred coordinate system. Hence constructing scalar
quantities, such as the Ricci scalar, quantifying the curvature
is important to distinguish genuine spacetime singularities
from singularities removable by coordinate transformations.
However, the acoustic metric components for analog gravity
(in the present nonrelativistic background framework) are
functions of physical quantities (velocity and density of the
background flow). Then, a discontinuity in the acoustic
metric can also be regarded as a physical singularity, i.e.,
some kind of boundary between two different spacetime
manifolds. Therefore, the singularity for the postshock
simple wave is not only a Ricci scalar curvature singularity
at x ¼ xs, but also can be regarded as the boundary between
two different manifolds with two distinct acoustic spacetime
metric defined on them.

The hydraulic jump possesses a physical singularity at an
effective radial white hole horizon (for the circular
hydraulic jump), as represented by a sudden increase in
fluid height at the circular boundary [77]. The white-hole
horizon for the circular jump has, for example, been
experimentally studied for viscous silicon oil with low
surface tension (and with therefore no capillary
dispersion) [78]. Distinct from the singularity for shock
wave, the singularity for the hydraulic jump is neither
naked nor hidden behind a horizon, as the hydraulic jump
spacetime singularity occurs exactly at the horizon [77]. If
the hydraulic jump is “noticeably” sharp, as observed in
liquid helium [79] as well as in viscous silicon oil [78], such
a jump can indeed be considered a physical singularity.
However, the continuum approximation in fluid dynam-
ics is valid after coarse graining over a certain length scale.
For example, in the case of the flow of a real gas, the fluid
descriptions of physical quantities such as velocity and
density are valid on a length scale much bigger than the
mean free path of the constituent particles. Similarly, for a
BEC with quantum pressure included, the number of
atoms per healing length has to be much greater than
unity for the mean-field hydrodynamical description to
apply. Therefore, the description in terms of a spacetime
singularity due to a discontinuity in the background
flow holds on the length scales for which fluid dynamics
is valid.
In rectangular channel flows, the jump in fluid height is

however noticeably smooth instead of sharp [80,81], and
for narrow channel flow, the hydraulic jump is followed by
a post-jump undulation, constituting the so-called undular
hydraulic jump [82,83]. The undular hydraulic jump has
been studied in viscous flows, e.g., in [84], as well as
turbulent flows, e.g., in [85]. The dissipation due to
turbulence and viscosity for the channel undular hydraulic
jump prevents a sharp rise in fluid height.
The dispersive shock wave problem that we consider

here for a BEC is structurally similar to the Korteweg–
De Vries equation, which includes nonlinearity and
dispersion [86,87]. In our case, the dispersion is due to
quantum pressure, which modifies the acoustic metric
Eq. (9), and, as a consequence, resolves the singularity
in the metric. By contrast, the undular jump in channel
flows involves dissipation in addition, which is complicat-
ing its analysis.
To summarize, in distinction to the (undular) hydraulic

jump, in our simplified 1D shock-wave setup we have no
turbulence (flow speeds remaining well below the speed of
sound), and no spacetime horizon. We also have no
dissipation for a BEC at T ¼ 0. Finally, the dispersion
we consider in a BEC, while in the shallow water limit
formally similar to quartic order in wave number, has a
different physical origin than for the hydraulic jump [78].
Finally, as far as we are aware, our study presents the first
confirmation of a spacetime singularity by explicitly

FIG. 3. Time evolution of the Ricci scalar of gμν in Eq. (15),
when approaching the shock singularity of the nondispersive
Riemann wave. Parameters are identical to those of Fig. 1.
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calculating the corresponding divergence of the Ricci
curvature scalar.

VI. CONCLUSION

We demonstrated that the quantum pressure term leads to
a regular oscillatory numerical solution for traveling waves
in a quasi-1D BEC, thus prohibiting the otherwise naked
singularity. Analog gravity is effectively an æther theory,
for which we have shown, using a particular initial
condition, that the occurrence of a naked singularity is
forbidden. Whether singularities in the dispersive æther of
the BEC arise for any given nonsingular initial condition is
an open question.
We have thus provided, for a BEC laboratory analog

simulating curved spacetimes, a censor prototype operating
in the trans-Planckian sector of the dispersion relation,
which is based on the microscopic physics of the system,
and is thus naturally complete in the ultraviolet. To
ultimately resolve the question of whether the CCH holds
true, this latter property is crucial also for any proper
quantum gravity.
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APPENDIX A: NONDISPERSIVE SHOCK WAVES
AND THE CURVATURE SINGULARITY

In this appendix, first we briefly introduce the equal area
principle introduced in [65] for nondispersive shock waves,
and then we proceed to calculating the Ricci scalar
curvature for such a nondispersive shock wave.
The Riemann wave equation (12) can be solved by the

analytical techniques for partial differential equations, i.e.,
the method of characteristics. This analytical solution [61]
gives rise to multivalued solution after a certain time, tshock.

At t ¼ tshock,
∂vð0Þ
∂x reaches infinity [65]. If we follow the

method of characteristics [63,65] to solve Eq. (12) for the
case without quantum pressure to avoid multivalued sol-
ution of density and velocity after tshock, the solution has to
become discontinuous. This jump in velocity (and density)
approximately satisfies the equal area rule [65]:Z

v2

v1

ðx − xsÞdvð0Þ ¼ 0; ðA1Þ

where v1 and v2 (v1 > v2) are the preshock and postshock
values of discontinuous velocity vð0Þ across the position of
discontinuity (shock) at x ¼ xs. As a result, ρ1 and ρ2 are
preshock and postshock values of density ρð0Þ related to v1
and v2 by

ρ1;2 ¼ ρ0

�
1þ

�
γ − 1

2

�
v1;2
cs0

� 2
γ−1
: ðA2Þ

With this discontinuity, velocity and density profiles are not
multivalued anymore, which is discussed in detail by the
classic textbook [65]. The expression of Ricci scalar
[Eq. (15)] in the nondispersive limit is proportional to
the second derivative in vð0Þ, here we discuss an analytical
way to calculate the second derivative of vð0Þ with a
discontinuity at x ¼ xs. This discontinuous velocity profile
vð0Þðx; tÞ at fixed time t > tshock can written in a compact
approximate way,

vð0Þðx;tÞ¼ ð1−Θðx−xsÞÞf1ðxÞþΘðx−xsÞf2ðxÞ; ðA3Þ

where Θ is the Heaviside step function, defined by
Θðx − xsÞ ¼ 1 for x > xs and Θðx − xsÞ ¼ 0 for x ≤ xs.
Furthermore, f1ðxÞ, f2ðxÞ are Newton interpolation poly-
nomials [72], constructed from a finite number of points on
the preshock curve segment and on the postshock curve
segment of vð0Þðx; tÞ, respectively, at a fixed time t > tshock,
e.g., from the left of Fig. 2. Thus we approximately
describe vð0Þðx; tÞ at fixed t > tshock by these two poly-
nomials with finite coefficients in a compact way.
Therefore, f1ðxÞ and f2ðxÞ, for a reasonably accurate
fitting, should satisfy (a) f1ðxsÞ ∼ v1 > f2ðxsÞ ∼ v2, and
(b) the slopes of f1ðxÞ and f2ðxÞ, at x ¼ xs smoothly fits
into the preshock curve segment and postshock curve
segment, respectively. We find

∂vð0Þ
∂x

¼ ð1 − Θðx − xsÞÞ
df1
dx

þ Θðx − xsÞ
df2
dx

þ δðx − xsÞðf2ðxÞ − f1ðxÞÞ; ðA4Þ

where δðx − xsÞ is the Dirac delta distribution. The first two
finite terms of the equation has a similar pattern to the
Eq. (A3) for obvious reasons. Therefore,

∂vð0Þ
∂x

����
x¼xs

¼ δð0Þðv2 − v1Þ þ
df1
dx

����
x¼xs

: ðA5Þ

Evidently, the first term on the right-hand side dominates

over the second term, rendering
∂vð0Þ
∂x jx¼xs to be −∞, since

v2 < v1.

∂
2vð0Þ
∂x2

¼ ð1 − Θðx − xsÞÞ
d2f1
dx2

þ Θðx − xsÞ
d2f2
dx2

þ 2δðx − xsÞ
�
df2
dx

−
df1
dx

�

þ δ0ðx − xsÞðf2ðxÞ − f1ðxÞÞ: ðA6Þ
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Therefore, at x ¼ xs, ignoring the finite term d2f1
dx2 jx¼xs , we

write down the infinite terms as follows:

∂
2vð0Þ
∂x2

����
x¼xs

¼ 2δð0Þ
�
df2
dx

����
x¼xs

−
df1
dx

����
x¼xs

�
þδ0ð0Þðv2−v1Þ:

ðA7Þ

According to Fig. 2, df2
dx jx¼xs is negative; it always stays

negative in the postshock phase, and df1
dx jx¼xs is positive.

Numerics in fact shows that, initially after tshock,
df1
dx jx¼xs is

negative, but eventually it becomes positive over time. The

quantity
∂
2vð0Þ
∂x2 jx¼xs above consists of two different kinds of

infinity. One can represent them by δ-sequence func-
tions [88]. We choose here a particular one to describe
these infinities (see also Fig. 4),

δnðxÞ ¼
nffiffiffi
π

p expð−n2x2Þ; ðA8Þ

δ0nðxÞ ¼ −
2n3xffiffiffi

π
p expð−n2x2Þ; ðA9Þ

where n is a positive integer. Using the relations xδ0ðxÞ ¼
−δðxÞ and x2δ0ðxÞ ¼ −xδðxÞ ¼ 0, we observe from
Eq. (A6)

ðx − xsÞ
∂
2vð0Þ
∂x2

¼ ðx − xsÞð1 − Θðx − xsÞÞ
d2f1
dx2

þ ðx − xsÞΘðx − xsÞ
d2f2
dx2

− δðx − xsÞðf2ðxÞ − f1ðxÞÞ: ðA10Þ

Then it follows that

ðx − xsÞn
∂
2vð0Þ
∂x2

����
x¼xs

¼ −δn;1δð0Þðv2 − v1Þ: ðA11Þ

This is how “strange” the second derivative
∂
2vð0Þ
∂x2 jx¼xs in fact

behaves.

APPENDIX B: INITIATION OF OSCILLATIONS
IN DISPERSIVE SHOCK WAVES

In this appendix, we collect our numerical findings on
dispersive shock waves with initial conditions (11), as
described in the main text. Some of these results have been
presented already in Ref. [67], but for the convenience of
the reader we reproduce here these results together with a
few additional observations, where our overall aim is to
inspect closely the initiation of the oscillation of the
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FIG. 5. (Top) Evolution of density profile with time. At t ¼ 0,
the laser at the center of the condensate is switched off. The initial
Gaussian density profile splits in two parts, moving in opposite
directions, and an oscillation pattern is created, as described in
Ref. [67]. (Bottom) Zoomed-in view of the density profile in the
oscillation region at t ¼ 27. Parameters as in Fig. 1.

FIG. 4. Sequences up to n ¼ 4 are shown to represent
the delta distribution function (left) and its first deriva-
tive (right). limn→∞

R
∞
−∞ fðxÞδnðxÞdx ¼ R

∞
−∞ fðxÞδðxÞdx, and

limn→∞
R∞
−∞ fðxÞδ0nðxÞdx¼

R∞
−∞ fðxÞδ0ðxÞdx [for arbitrary fðxÞ]

are used to define a relation of the Dirac delta distribution and its
derivative with their respective sequence functions [88].
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dispersive shock waves, which is due to the quantum
pressure term.
Specifically, in Fig. 5, we observe how the oscillation

region is slowly spreading with progressing time. In Fig. 6,
we display how the shock wave enters the oscillation phase,
just prior to the shock time tshock. Finally, in Fig. 7, we
display in some detail the onset of oscillations due to the
quantum pressure becoming significant.
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