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We study the time evolution of spherical, excited—with n radial nodes—scalar boson stars in general
relativity minimally coupled to a complex massive scalar field with quartic self-interactions. We report that

these stars, with up to n ¼ 10, can be made dynamically stable, up to timescales of t ∼ 104

cμ , where μ is the

inverse Compton wavelength of the scalar particle, for sufficiently large values of the self-interactions
coupling constant λ, which depends on n. We observe that the compactness of these solutions is rather
insensitive to n, for large λ and fixed frequency. Generically, along the branches where stability was
studied, these excited boson stars are not compact enough to allow for innermost stable circular orbits or
light rings. Finally, we discuss the angular velocity of particles along timelike circular orbits, suggesting an
application, for solutions in the Newtonian limit, to galactic rotation curves.

DOI: 10.1103/PhysRevD.107.084022

I. INTRODUCTION

Bosonic stars are localized self-gravitating lumps of
bosonic fields, sustained by their own gravitational pull
and (possibly) self-interactions, depending on the chosen
model—see Refs. [1,2] for reviews. These hypothetical
stars could be an alternative to (or coexisting with) black
holes, e.g. [3–11]. Their dynamics can match real gravi-
tational wave signals [12,13], and they have long been
hypothesized as possible dark matter constituents [14–17].
In order for such stars to be realizable in the real world,
however, they must be stable against small perturbations,
which are unavoidable in any realistic astrophysical
environment.
Let us consider spherically symmetric scalar boson stars,

which will be the focus of this work—see e.g. [18–26] for
different models. These stars may be found in different
states, ranging from the fundamental or ground state
(n ¼ 0) to an infinitude of excited states (n ≥ 1), analogous
with the orbitals of the hydrogen atom—the ðnþ 1Þs
orbital. The value of n is the number of nodes of the
radial scalar profile. When a scalar field with no self-
interactions is considered (i.e. mini-boson stars), excited
states are possible, but they are unstable, decaying either to
the fundamental state or collapsing into a black hole [27].
Mini-boson stars in the ground state, by contrast, are stable
(along the appropriate branch) [28]. It was recently
reported [29], however, that when a quartic self-interaction
is introduced, it has a healing power which does stabilize
n ¼ 1 stars, for high enough values of λ, the coupling
constant ruling the self-interactions. It may be expected that

such healing behavior could extend to higher values of n.
To assess and establish this possibility is a central purpose
of this paper.
If excited stars are dynamically stable, they may have

astrophysical applications. An interesting question is if
such stars can be black hole foils, for instance, if they can
be compact enough to allow the existence of special orbits
that are characteristic of black holes, namely light rings [30]
or an innermost stable circular orbit (ISCO) [31]. The
lensing properties of ultracompact spherical bosonic
stars (i.e. possessing light rings) has been considered
in [32]. But recent evidence suggests such stars may be
generically unstable [33,34]. On the other hand, even if
they are not ultracompact, a certain structure of the timelike
circular geodesics could void the central region of bosonic
stars of emitting matter, therefore creating an “effective”
shadow [9,10]. We will investigate if this can occur for the
excited models we consider here. We remark that even if
none of these features is present (ISCOs, light rings or the
aforementioned special structure of timelike circular geo-
desics), boson stars could still mimic black hole data in
certain situations, such as the emission of gravitational
waves in particular events [12,13]. As another potential
astrophysical application, we will consider the possibility
that the excited boson stars could fit galactic rotation
curves [14], and, consequently, whether they could be
realistic models for dark matter galactic halos.
This paper is organized as follows. In Sec. II we describe

the excited states of spherical boson stars, as solutions of
the appropriate Einstein-Klein-Gordon system, discussing

PHYSICAL REVIEW D 107, 084022 (2023)

2470-0010=2023=107(8)=084022(15) 084022-1 © 2023 American Physical Society

https://orcid.org/0000-0002-2612-2757
https://orcid.org/0000-0002-9619-2013
https://orcid.org/0000-0002-0503-896X
https://orcid.org/0000-0001-5375-7494
https://orcid.org/0000-0002-7089-5570
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.084022&domain=pdf&date_stamp=2023-04-12
https://doi.org/10.1103/PhysRevD.107.084022
https://doi.org/10.1103/PhysRevD.107.084022
https://doi.org/10.1103/PhysRevD.107.084022
https://doi.org/10.1103/PhysRevD.107.084022


their masses and compactness. In Sec. III we discuss the
numerical relativity framework for our evolutions. In
Sec. IV we discuss the main results both in the stability
and formation scenarios. In Sec. V we study timelike
geodesics around boson stars’ spacetimes, probing if
ISCOs or light rings are possible in any of our boson star
models. We also study the structure of timelike circular
orbits and a possible connection to galactic rotation curves.
We close with a discussion and final remarks. For the rest of
the article we shall use the metric signature ð−;þ;þ;þÞ
and set c ¼ G ¼ 1.

II. THE MODEL

A. The action and field equations

We consider the following action describing Einstein’s
gravity minimally coupled to a complex, massive, self-
interacting scalar field Φ (with complex conjugate Φ�):

S ¼
Z �

R
16π

−
1

2
ðΦ�

;μΦ;μ þ UðjΦj2ÞÞ
� ffiffiffiffiffiffi

−g
p

d4x; ð1Þ

which results in the following field equations:

Rμν −
1

2
gμνR ¼ 8πTμν; ð2Þ

□Φ ¼ dU
djΦj2Φ; ð3Þ

where

Tμν ¼ Φ�
;ðμΦ;νÞ −

1

2
gμν½Φ�

;αΦ;α þ UðjΦj2Þ� ð4Þ

and

UðjΦj2Þ ¼ μ2jΦj2 þ λ

2
jΦj4; ð5Þ

where μ is the inverse reduced Compton wavelength of the
quantum of the field and λ is the self-interaction coupling
constant. We also define Λ ≔ λ=ð4πμ2Þ. We choose units
where μ ¼ 1, so that the only free parameter of the problem
is Λ.

B. The ansatz

We are interested in spherically symmetric static con-
figurations. These can be described by ansatz for the metric
(in isotropic coordinates)

ds2¼−e2F0ðrÞdt2þ e2F1ðrÞ½dr2þ r2ðdθ2þ sin2 θdφ2Þ� ð6Þ

and an ansatz for the scalar field

ΦðxμÞ ¼ ϕðrÞe−iωt; ð7Þ

where ω > 0 is the field’s frequency. The time dependence
is necessary to avoid Derrick-type obstructions (also
known as virial theorems in this context [35]) to the
existence of time independent stable scalar lumps [36].
Such dependence is canceled in the stress-energy tensor,
since it only depends on the absolute value of the field and
its gradients.

C. The boundary conditions

We have to solve the Einstein-Klein-Gordon equation
system, composed by Eqs. (2) and (3). The system consists
of second-order ordinary differential equations for the
functions F0, F1 and ϕ along with two boundary conditions
for each function. The boundary conditions at the origin to
ensure regularity are given by

∂rF0;1ð0Þ ¼ 0; ∂rϕð0Þ ¼ 0;

whereas asymptotic flatness requires

F0;1ðr → ∞Þ ¼ ϕðr → ∞Þ ¼ 0:

D. Solutions

Solving the equations above will result in a set of infinite
solutions with a different number of radial nodes n. The
solutions will only exist for values of the frequency
between ωmin < ω < μ. The solutions are located on curves
such as the ones given in Fig. 1, which relate the Arnowitt-
Deser-Misner (ADM) mass with the frequency of the stars.
In the ground state, solutions located between the

maximum of the ADM mass and ω ¼ μ are stable.
Analogously, for excited boson stars the corresponding
region will be called the candidate stable branch, follow-
ing [29], but in this case not every solution in this branch is
stable. Although they have been found stable under
infinitesimal perturbations that conserve the total mass
and particle number [37], for generic perturbations they
turn out to be unstable, both in the candidate stable and
unstable branch [27]. As we will see, however, for large
enough values of the self-interaction coupling constant they
can be made stable.
These excited solutions, due to the existence of nodes,

will be composed of a sphere of matter at the center,
surrounded by n shells of matter. This can be seen in Fig. 2.

E. Mass and compactness

Knowing the mass of the obtained solutions is important
to not only discuss the compactness of the stars, but also to
study its evolution in time, because mass loss during the
evolution signals a decay of the excited state, since states
with lower n have less mass than their more excited
counterparts [38], for the same frequency. As we are
considering an asymptotically flat spacetime, with the
vector k⃗ ¼ ∂t being timelike everywhere, the ADM mass
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equals the Komar mass evaluated at infinity, and therefore
we have

MADM ¼ −
1

8π

I
∇αkβdSαβ

¼
Z

ðT − 2Tt
tÞ

ffiffiffiffiffiffi
−g

p
drdθdϕ: ð8Þ

The mass of these stars increases with the value of Λ as
M ∝

ffiffiffiffi
Λ

p
[18] and, for appropriate ranges of the scalar field

mass and of the self-interactions coupling, it can be in the
solar mass range, supermassive black holes range or dark
matter halos range.
Furthermore we can define the compactness of an object

as C ≔ M=R, where M is its mass and R its areal radius.
There is a maximum compactness of C ¼ 0.5 which
corresponds to an object whose radius equals its own
Schwarzschild radius, therefore becoming a black hole.
Highly compact (but horizonless) stars could, in principle,
permit the existence of light rings or ISCOs, if their areal
radius is smaller than 3M or 6M respectively, at least in the
case of an exterior Schwarzschild metric. The latter is only

an approximation for spherical bosonic stars; indeed, scalar
boson stars (for instance) are modeled by a scalar field
which decays exponentially as r → ∞, but only reaches
zero at infinity. This means that unlike a fluid star where
Tμν vanishes for r > rsurface, there is no well-defined
surface radius for boson stars. Still it is possible to define
an effective radius for the star, beyond which we can
neglect the remaining mass of the field, so that the
spacetime beyond that radius is approximately a vacuum
spacetime, i.e. Tμν ≃ 0. We shall define such an effective
radius as the areal radius containing 99% of the ADMmass
of the spacetime, denoted R99 [1,29]. Furthermore we
define compactness of a boson star as

C ≔
M99

R99

; ð9Þ

where M99 ≔ 0.99MADM.
It is expected that the compactness can attain higher

values with increasing Λ as the case for boson stars in the
fundamental state [39], since the self-interaction is repul-
sive, and the mass increases with Λ. It should also increase

FIG. 2. Energy density of excited boson stars (omitting the θ coordinate) for Λ ¼ 500, ω ¼ 0.92, where Rareal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

FIG. 1. ADM mass versus the frequency for boson star solutions with fixed Λ (left) and fixed n (right).
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as ω becomes smaller (within the candidate stable branch)
since as ω → 1 we approach the Newtonian limit. One
might thus expect that, for high enough values of Λ, the
models may start exhibiting ISCOs and unstable circular
orbit, as its compactness approaches that of a black hole. It
turns out, however, that by increasingΛ, one seems to reach
a limit of compactness [39], still well below that of black
holes. Thus it is not possible to turn the star arbitrarily close
to a black hole in this way. Our results reinforce this
conclusion—Fig. 3—where one can see that the value of
the compactness seems to asymptote to a value still far from
the black hole value, for two fixed (illustrative) values of
the frequency. One further notices that for Λ close to zero,
stars with a larger n are more compact than stars with
smaller n. But as Λ → ∞ such behavior is reversed, and
stars with smaller n are now more compact than stars with
larger n.
As n increases there is a fairly common asymptotic value

for the compactness. This is a trend observed in most
quantities depending on n and Λ. The effective radius also
increases with Λ and n as seen in Fig. 4, for boson stars

with ω ¼ 0.90. As a consistency check, it was reported [39]
that the maximum compactness in the stable branch for
ground state solutions is Cmax ≈ 0.16. Since the maximum
value of the compactness is for n ¼ 0, our results are in
agreement with this limit, whereCmax ¼ 0.0965. In order to
reach this limit one would have to study stars with lower
values of ω in the candidate stable branches. Moreover, for
n > 10, we would not be able to go past this limit, since the
trend for large Λ is that the compactness decreases as n
increases.

III. NUMERICAL EVOLUTION

A. BSSN formalism and basic equations

Using a standard 3þ 1 spacetime decomposition, a
generic spacetime metric can be written in the form

ds2 ¼ gμνdxμdxν ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ;

where α is the lapse function, βi are the shift functions and
γij is the induced metric on the spatial hypersurfaces [40].
For the numerical evolutions the spatial metric is further

written in the form

dl2 ¼ e4χ ½aðt; rÞdr2 þ r2bðt; rÞdΩ2�;

where dΩ2 ¼ dθ2 þ sin2 θdφ2 and aðt; rÞ and bðt; rÞ are
two nonvanishing conformal metric functions, being
related to the physical metric by the conformal decom-
position γij ¼ e4χ γ̂ij with eχ ¼ ðγ=γ̂Þ1=12, where γ and γ̂ are
the determinant of the physical and conformal 3-metrics
respectively. We shall use the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formulation [41,42] in spherical coor-
dinates [43–45], which are suited for the problem at hand.
The relevant differential equations for the problem are
given in [29].

FIG. 3. Compactness as a function of Λ and n for ω ¼ 0.90 (left) and ω ¼ 0.92 (right).

FIG. 4. Effective radius, R99, as a function of Λ and n for
ω ¼ 0.90.
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B. Numerical grid and stability

For the numerical evolutions we use the NADA code, a
code for numerical relativity simulations in 1þ 1D in
spherical symmetry described in [44–50]. The BSSN
and Klein-Gordon coupled equations are solved using a
second-order partially implicity Runge-Kutta (PIRK)
scheme [51,52]. The evolutions are performed in a loga-
rithmic grid, with a maximum resolution of Δr ¼ 0.05, a
time step of Δt ¼ 0.3Δr, the number of radial points being
nr ¼ 50000 for stars with n ≤ 7 and nr ¼ 80000 for the
rest, and the outer boundary placed at rmax ¼ 10000. We
impose radiative boundary (Sommerfeld) conditions at the
outer boundary [44,53]. For the special case of n ¼ 2,
ω ¼ 0.90, Λ ¼ 125 the number of radial points is nr ¼
100000 and the outer boundary is placed at rmax ¼ 20000,
since we extend the evolution to t ¼ 20000 and we want to
avoid reflections from the outer boundary. There are always
some reflections, especially from the logarithmic grid when
the resolution gets coarse.
We will not apply any specific perturbations to the stars,

since the numerical truncation error suffices to break the
staticity of the models, in case instabilities are present,
triggering their time evolution. Moreover, since the stars are

being evolved in a 1þ 1D code in spherical coordinates
under the assumption of spherical symmetry, the perturba-
tions must be spherical. For nonspherical perturbations we
need to evolve this model using a 3þ 1D evolution code.

IV. DYNAMICAL EVOLUTION AND STABILITY

We now report the results of the evolution of the static
configurations which are solutions to the Einstein-Klein-
Gordon system up to a timescale1 of t ∼ 104 (where t is
measured in units where μ ¼ 1). The evolutions were
performed for n ¼ 0; 1;…; 10 for a variety of values of
Λ in order to find stable boson stars. By stable boson stars
we mean that within the considered timescale the initial and
final radial profiles coincide, notwithstanding the existence
of oscillations around an equilibrium point between the
initial and final times.

FIG. 5. Radial profile for different times (top left), minimum value of the lapse (top right), violation of the Hamiltonian constrain for
certain times (bottom left) and the L2 norm of the Hamiltonian constraint (jjHjj2) (bottom right) for the boson star model n ¼ 2, Λ ¼ 75
and ω ¼ 0.92.

1For stars whose composing bosons have the mass of the Higgs
(125 GeV), the timescale is around 5 × 10−23 s, with a maximum
mass around 1010 kg, much smaller than stellar masses. But for
an ultralight boson with a mass of, say 10−10 eV, we have a
timescale around 0.066 s with a maximum mass of 10M⊙.
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Wehavemade a detailed studyof solutionswithω ¼ 0.90,
0.92, and we shall present illustrative cases for one or the
other frequency.2 For the n ¼ 2 case we shall present a more
detailed study of the solutions, but such results are similar to
the ones we have obtained for other n > 2.

A. n= 2 stars

1. Collapse into a black hole

For small values of Λ, the star cannot support itself
against its own gravity, and thus it collapses into a black
hole—see Fig. 5. This is supported by the fact that the
minimum value of the lapse function α drops abruptly after
a certain time (t ≈ 3000 in this case), which typically means
there was the formation of an apparent horizon.

2. Decay into a lower state

For intermediate values of Λ the stars are still unstable,
but with a different outcome—see Fig. 6. The intermediate

value of the self-interaction constant Λ is still unable to
sustain the star, but it manages to prevent a complete
gravitational collapse. It is clear that up to the end of the
simulation, the star has not completely relaxed to the final
state, as the minvalðαÞ function shows, but we see in Fig. 6
(bottom left) that, since r ¼ 200 can be considered as
infinity (cf. Fig. 4), the star is losing mass/energy to infinity,
which signals a decay. Furthermore this is accompanied by
a redistribution of mass inside the star which is expected
since during a decay the star will lose some of its shells, in
this case seemingly losing all nodes. Since the star is not
relaxed after t ¼ 10000, we allowed the evolution to run for
t ¼ 20000. Even after t ¼ 20000 the star is not completely
relaxed; the plausible conclusion is that it decayed to the
n ¼ 0 state with a different frequency (ω ¼ 0.85), since the
energy at r ¼ 200 is around E ≈ 2.54 which is the value of
the ADM mass of the considered n ¼ 0 star, which has an
MADM ≈ 2.44. This suggests that the latter might be the end
state of the evolution. Furthermore the central value of the
scalar field is consistent with the one from a star with
n ¼ 0, Λ ¼ 125, ω ¼ 0.85. For the rest of our models, we
were not able to observe a decay of a boson star into a n ≠ 0
state. We evolved several different unstable models that do
not collapse into a black hole and found that they all ended

FIG. 6. Radial profile for different times and radial profile of candidate final state (top left), minimum value of the lapse (top right), the
energy of the star at different spatial hypersurfaces (bottom left) and violations of the Hamiltonian constraint for certain times and the L2
norm of the Hamiltonian constraint (bottom right) for the boson star model n ¼ 2, Λ ¼ 125 and ω ¼ 0.90.

2These frequencies were chosen since for all values n ¼
0;…; 10 they belong to the candidate stable branch. The smaller
frequency approaches the maximum ADM mass, for n ¼ 10.
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up in the fundamental nodeless state. However, we have not
explored the entire parameter space and therefore it seems
likely that lower excited states can be formed from the
decay of unstable excited boson stars.
Let us take this case to discuss the violations of the

Hamiltonian constraint, which provide a diagnostic of the
accuracy of our numerical evolution. Discussing it for this
case is sufficient since it has the same features for all other
cases, except when we have a collapse to a black hole, in
which case the violation of the Hamiltonian constraint
almost vanishes shortly after the initial instants. The radial
profile of the Hamiltonian constraint in the region where
the stars have support shows that the initial small viola-
tions decrease with time. However, the L2 norm of the
Hamiltonian constraint in a larger radial region slowly
increases as we get to the end of the evolution, t ¼ 10000,
but it remains small in the relevant region where the field is
mostly located. It is worth noting that for all evolutions, the
violation of the L2 norm of the Hamiltonian constraint at
later times is larger for ω ¼ 0.90 than for ω ¼ 0.92, when it
does not collapse into a black hole.
The spikes seen in the violation of the Hamiltonian

constraint come from taking second derivatives of the

variables interpolated from the initial data, which has a
much lower number of points compared with the grid of
the evolution code, especially at r ≥ 50. This is further
supported by the fact that after r ≈ 400 we have no spikes
since the last point of the initial data is around that value.

3. Threshold of stability for n = 2 stars

For high enough values of Λ we found that the stars
become stable. We call such value of Λ the threshold of
stability, since for Λ > Λthreshold the stars are always stable.
We have found the threshold of stability for a star with
ω ¼ 0.90 to be Λ ≃ 160 and for a star with ω ¼ 0.92 to be
Λ ≃ 150. As seen in Fig. 7 on the leftmost picture, the star
is fully relaxed. There is no mass loss since the star is
stable. For the n > 2 boson stars studied, we also found a
threshold of stability.

B. Stability of n > 2 stars

For the remaining cases of excited boson stars, with
n > 2 we found a similar picture as for the n ¼ 2 case, with
distinct behaviors for low, intermediate and high values of
Λ. Thus, we shall focus now on the thresholds of stability,

FIG. 7. Radial profile for different times (top left), minimum value of the lapse (top right), the energy of the star at different spatial
hypersurfaces (bottom left) and violations of the Hamiltonian constraint for certain times and the L2 norm of the Hamiltonian constraint
(bottom right) for the boson star model n ¼ 2, Λ ¼ 150 and ω ¼ 0.92.
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that is, the values of Λ for which boson star models become
stable. For Λ < Λthreshold the stars either collapse to black
holes or into a lower state.
The results are quantitatively similar to the previous case,

but now we have an n node star, and the threshold of
stability happens for larger values of Λ. In Fig. 8 we have
radial profiles for stable models of boson stars for illus-
trative values of n, and the threshold of stability is shown
for two fixed frequencies, in terms of n in Table I. It is
worth mentioning that for the n ¼ 0 stars, we must evolve
models with negative Λ, to find the threshold of stability,
since they are already stable at Λ ¼ 0. The potential
UðjΦj2Þ in (5) becomes unbounded from below allowing
for infinite negative energies. However, if we stick around
the minimum of the potential we can avoid such problems,
at least classically, where there is no quantum tunneling.
But when Λ is negative enough, we cannot stick around the
minimum and such models cannot even be evolved. For this
case the thresholds of stability are Λ ¼ −4 for ω ¼ 0.90
and, at the very least, Λ ¼ −6 for ω ¼ 0.92, since for
Λ < −6 the evolution crashes.
To conclude, we found that self-interactions can stabilize

boson stars if Λ is greater than a certain threshold value. It
is worth remarking that, as Λ grows, stars, initially
collapsing to black holes, begin to avoid the collapse

and eventually become stable when they reach Λthreshold.
We found that as n increases so does Λthreshold, and it
appears that they are related by a quadratic function as seen
in Fig. 9. This suggests that for all values of n we can
stabilize the stars as long as Λ is very large. It would be
interesting to establish a mathematical proof of this
statement.

FIG. 8. Radial profiles jΦn;Λ;ωj for the threshold of stability for several n.

TABLE I. Λthreshold for several boson star models. For n ¼ 0, 1
the Λ of the last unstable model was taken to be Λn − 1. For
n > 1 it was taken to be Λn − 10.

n ω ¼ 0.90 ω ¼ 0.92

0 −4 −6
1 75 74
2 160 150
3 300 250
4 450 390
5 650 550
6 850 760
7 1160 1000
8 1380 1240
9 1750 1580
10 2080 1850
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Adjusting a quadratic function to our points we obtain

Λ¼1.31þ49.79nþ15.84n2 forω¼0.90; R2¼0.9997;

Λ¼7.82þ36.16nþ14.97n2 forω¼0.92; R2¼0.9997;

where R2 is the r-squared of the fit.

V. PHYSICAL FEATURES

A. Innermost stable circular orbit

Having established that sufficiently strong self-
interactions can stabilize excited scalar boson stars, it
becomes plausible, within the hypothesis that such scalar
field models could exist, to consider the potential role of
such stars in an astrophysical scenario. Then, they could
have matter surrounding them. If they are compact enough,
tidal disruptions might affect nearby objects leading to the
appearance of an accretion disk, just like in some black
holes and neutron stars. It is thus interesting to see if the
models presented here are compact enough so they support
special timelike orbits, like null unstable circular orbits and
the ISCO.
In order to find the special orbits for the boson stars, we

consider the effective potential that a particle in a timelike
path feels when orbiting a boson star. We will work with an
areal radius, since it is more intuitive to compare with the
well-known values for the ISCO and unstable orbits of the
Schwarzschild black hole. The transformation is easily
done knowing that Rareal ¼ risoeF1ðrisoÞ. From now on we
denote the areal radial coordinate as R. Then our line
element (6) becomes

ds2 ¼ −e2F0ðRÞdt2 þ ð1 − RF1;RÞ2dR2 þ R2dΩ2: ð10Þ

The derivation of the effective potential is a standard
textbook exercise—see e.g. [54]. Consider now a particle
orbiting a boson star. Due to spherical symmetry the orbit
can be taken to lie on the equatorial plane, and thus

θ ¼ π=2 and pθ ¼ 0 throughout the whole trajectory,
where p⃗ is the particle’s four-momentum. Also since we
have ∂t and ∂φ as Killing vectors due to the static

3 spherical
symmetry of the problem, we can identify −p0 as the
energy E and pφ as the angular momentum L. From the
normalization of the momentum

gμνpμpν ¼ −m2; ð11Þ

where m is the mass of the particle, we obtain

e2F0ð1 − RF1;RÞ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Always positive

�
dR
dτ

�
2

þ e2F0

�
L̃2

R2
þ 1

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

V2
effðR;L̃Þ

¼ Ẽ2; ð12Þ

where Ẽ ¼ E=m, L̃ ¼ L=m, τ is the affine parameter and
V2
effðR; L̃Þ is the effective potential, plotted in Fig. 10.
The ISCO is found by searching the minimum radius

such that

dV2
eff

dR

����
RminðL̃Þ

¼ 0: ð13Þ

For our potential such operation must be done numerically.
Since the ISCO is the last stable orbit, we must find out for
which values of L̃, Rmin is the smallest. Again we do

dRminðL̃Þ
dL̃

����
L̃ISCO

¼ 0 ð14Þ

so that we find at which L̃ a particle will stay on the
ISCO and then RminðL̃ISCOÞ≕RISCO. There is no ISCO or

FIG. 9. The Λthreshold as a function of n. FIG. 10. Effective potential for n ¼ 0;Λ ¼ 3000;ω ¼ 0.90, the
most compact star studied.

3Our boson stars are only static after they relax to the final state
since during the evolution they are dynamical.
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unstable circular orbits for the boson stars studied here
since there are stable orbits all the way down to R → 0. The
effective potential of the star is qualitatively analogous to
the Newtonian potential of an orbiting particle in the
Kepler problem, exhibiting a potential barrier. We con-
clude that the stars are not compact enough to support an
ISCO. In fact the compactness of our stars is around
C ¼ R99=M99 ∼ 0.1. In order to see an ISCO the effective
radius must be at least below 6M. Even in the case reported
by [39], C−1 ¼ 6.25, we still do not have an ISCO.
A similar analysis, with adequate adaptations, shows these
stars, within the branch studied, have no light rings.

B. Angular velocity of particles

In [9] (see also [10]) it was observed that if the structure
of timelike circular orbits around a spherical boson star are
such that the angular velocity along the orbits attains a
maximum, for an orbit with a nonvanishing radius, then the
magnetorotational instability (MRI)—a mechanism driving
the loss of angular momentum, and therefore driving matter
toward the center of the star—could cease to be efficient.
Thus, such a feature could create a void of matter in the
core of the star and an effective shadow, under particular
observation conditions. It is thus interesting to examine if
such a feature could exist for the models of excited boson
stars we are considering.
The angular velocity of a particle, as measured by an

observer at infinity, is given by dφ=dt which is, for an
equatorial orbit,

Ω ≔
dφ
dt

¼ dφ=dτ
dt=dτ

¼ L
E
e2F0ðRÞ

R2
: ð15Þ

For circular orbits we know that Ẽ2 ¼ V2
eff and that

d
dR V

2
eff ¼ 0, since _RðτÞ ¼ R̈ðτÞ ¼ 0; ∀ τ. This allows us

to obtain the energy and angular momentum for each
circular orbit. In our case this results in

Ẽ ¼ eF0

�
−F0;R

F0;R − 1=R
þ 1

�
1=2

L̃ ¼
�

−F0;R

F0;R=R2 − 1=R3

�
1=2

for circular orbits with radius R. Then as a function of the
radius of the orbit we have

ΩðRorbitÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eF0

Rorbit

deF0

dR

����
Rorbit

s
: ð16Þ

We are interested in studying how the angular velocity
changeswithR to assess the appearance of amaximum in the
angular velocity for a certain orbit which can give accretion
disks an inner edge even without the presence of an ISCO

and resulting in an effective shadow for the compact
object [9,10], due to the quenching of the MRI [55]. For
mini-boson stars such features only show up for the unstable
branch, having thus no relevance in an astrophysical sce-
nario. For a free vector field instead of a scalar one, such
features do show up [10] in the stable branch. Our excited
boson stars, being composed of multiple spherical shells
surrounding one another, and having a self-interaction,
might behave differently from mini-boson stars.
The existence of nodes in our boson star models has an

influence in the angular velocity of a particle, depending on
whether its orbit is located around a node or not. In fact the
existence of nodes causes the appearance of plateaus in the
angular velocity, located in between the nodes of the radial
function as seen in Fig. 11. As R → 0, the angular velocity
stops increasing, and a new plateau starts to appear. This
holds even in the mini-boson star case, where the plateau is
very small, being much more pronounced for large values
of Λ. The reason is that as one approaches the origin, the
matter contained inside a sphere of radius R also vanishes,
and in a way that so does the variation of the orbital
velocity.
In between the nodes we have a similar situation since, at

the nodes we have a vacuum, which is followed by a shell of
matter. Since part of the mass of the star is enclosed in a
2-sphere of R < Rnode, near the node the mass function is
approximately constant which allows the particle to increase
its angular velocity approximately4 as ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. But

similarly to the R → 0 case, as we cross the shell of mass
between the nodes, the enclosedmass in a sphere of radiusR
will decrease, and ΩðRÞ will change as ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðRÞ=R3

p
,

FIG. 11. Angular velocity as a function of Rorbit for n ¼ 6,
Λ ¼ 800, ω ¼ 0.92. The vertical lines show the location of
the nodes.

4This holds in a Newtonian approximation which does not take
into account the pressure of the scalar field. This holds in a
Newtonian approximation which does not take into account the
pressure of the scalar field.
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which decreases the slope of the angular velocity curve.Also
the radius of the star increaseswithΛ (although themass also
increases), which explains why the region of the plateaus
is wider.
It is also worth noting that, as the value of Λ increases,

the angular velocity near the center seems to approach an
asymptotic value. The same also happens when Λ is fixed
and n varies, again suggesting that for very large Λ the
number of nodes seems not to matter. These features can be
seen in Fig. 12.
Furthermore we report that for every n ≥ 3 and for all Λ,

for both of our studied frequencies, there is a maximum in
the angular velocity, just before the angular velocity decays
in a Keplerian fashion. That maximum is very small,
questioning if it is a mere numerical artifact. However
performing several tests, such as increasing the number of
points, obtaining the solutions in other coordinate systems,
and changing the interpolation, we were not able to get rid
of this unexpected behavior. Assuming it is physical raises
the question as to why it occurs and, moreover, only for
n > 2, since no qualitative difference between n ¼ 2 and
n ¼ 3 was to be expected.

C. Galactic rotation curves

The existence of nodes in boson stars has important
consequences for the rotational velocity of matter around
them. Facing these boson stars as dark matter suggests
comparing these rotational velocities to galactic rotation
curves.
As it is well known, the rotational velocity of stars in

galaxies does not follow the expected Keplerian behavior
vrot ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðRÞ=Rp

, the further we get from the center of
the galaxy, where MðRÞ is the mass of the visible or
luminous matter enclosed in a sphere of radius R (for a
review of dark matter in galaxies and its interaction with the
baryonic matter see Ref. [56]). Since we have a high
density of matter distributed around the center, at first vrot

increases, but once we are past that region, vrot should
decrease as ∝

ffiffiffiffiffiffiffiffi
1=R

p
. Instead it has been famously found

that the rotational velocity does not decrease in this way
well past the region which contains the luminous matter.
One proposed explanation is that galaxies are surrounded
by dark matter halos, which could hypothetically be
galactic scale boson stars.
The existence of plateaus in the ΩðRÞ plots hints at an

increase of the rotational velocity in certain regions. The
rotational velocity is defined as vrot ≔ RΩ, and a plot
versus the radius of orbit is given in Fig. 13. Excited boson
stars with self-interactions had already been proposed as
candidates to galaxy halos in [14]. This analysis is,
however, different from ours, since therein the
Newtonian rotational velocity is used, which does not take
into account the pressure which is non-negligible [57].
We can divide the plots in Fig. 13 into three regions.

First, near R ¼ 0 there is a steep linear increase in vrot. This
is expected since galaxies have a distribution of visible
mass at the center which decreases as R → R1st node. This is
also what is expected assuming a Keplerian vrot for
galaxies, since the observable mass is also mainly located
at the center. However beyond the visible mass, vrot should
decay as

ffiffiffiffiffiffiffiffi
1=R

p
, which is not the case, as experimental

evidence shows that it increases linearly. Then there is a
second region where the rotational velocity increases
almost linearly albeit with some small oscillations, caused
by the nodes. As the number of nodes increases the size of
this region also increases, so stars with many nodes could
explain the increase of rotational velocities in galaxies. In
the last region we recover the expected

ffiffiffiffiffiffiffiffi
1=R

p
decay, which

would correspond to a particle outside the galactic halo.
For a certain number of nodes, the increase of Λ only

increases the effective radius of the star and thus the
rotational velocity of the stars; although the qualitative
features are the same for all Λ, they happen at a larger
radius as Λ increases. The putative astrophysical

FIG. 12. Angular velocity as a function of Rorbit for n ¼ 6, ω ¼ 0.92 for several Λ (left). Angular velocity as a function of Rorbit for
Λ ¼ 300, ω ¼ 0.92 for several n (right). Same qualitative behavior for ω ¼ 0.90.
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importance of Λ here is that a sufficiently large value can
stabilize a boson star with a large number of nodes.
The foregoing discussion is, however, only a statement

of principle. If we try to apply the studied models to real
galaxies, the rotational velocity does not drop below
∼104 km=s, whereas in realistic galaxies, velocities are
∼102 km=s. The studied models are way too compact for
applications to real galaxies and were studied within the
context of stellar compact objects. If boson stars are to be
the galactic dark matter halos, much more dilute boson
stars, approaching the Newtonian limit, would be the
correct framework.

VI. DISCUSSION AND CONCLUSION

It is well known that scalar boson stars in the ground
state are stable against perturbations even in the absence of
self-interactions, in some regions of the parameter space.
In [29], however, it was shown that self-interactions can
stabilize excited boson stars with one radial node, n ¼ 1,
for certain values of Λ. Using the same approach we have
shown that such is also the case for stars with a number of
nodes 2 ≤ n ≤ 10, as long as Λ is greater than a certain
threshold value. It is also expected that for sufficiently high
enough values ofΛ, stars with n > 10 should also be stable,
since there is no reason for any qualitative difference
between n < 10 and n > 10 stars. It would be interesting
to attempt a mathematical proof of this statement.
Furthermore, we have obtained an empirical quadratic
relationship between Λthreshold and n. We, however, leave
the question of stability with respect to more general
(nonspherical) perturbations for a future work, since it
requires these models to be evolved in a 3þ 1D code.
Although differing from mini-boson stars in many ways,

these self-interacting excited boson stars are not compact
enough so that features like ISCOs or light rings can be
observed. We are focusing on candidate stable branch

solutions, since only those can be made dynamically stable.
It has been reported before that mini-boson stars can be
highly compact in the unstable branch, which, however, has
limited physical significance. The compactness was also
found to be increasing with Λ, and it tends to an asymptotic
value as Λ → ∞, where stars with lower n are more
compact than stars with larger n. But for large n the
compactness of the stars seems to become (roughly)
independent of n.
The angular velocity of test particles in circular orbits in

boson stars’ spacetimes was also studied, and it was found
that the angular velocity as a function of r has several
plateaus, that is, tends to become constant, near the
location of the nodes. The existence of plateaus hints at
peculiar angular velocity profiles, as found in Fig. 13,
where there is a region far from the center where we
witness an almost linear increase of the rotational velocity,
which is qualitatively similar to what has been observed in
galactic rotation curves. This suggesting fitting such
models (after the threshold of stability) to real galactic
rotation curves. No such comparison with data was made,
since this required stars with a frequency ω close to 1,
the Newtonian limit. Solutions with ω ¼ 0.9999 were
obtained but even in that case the velocities were ten
times larger than the velocities of realistic galaxies. One
would need to obtain solutions in the Newtonian limit
(solving the Schrödinger-Poisson equation), as done
in [58] to fit with real galactic data, and then repeat the
stability analysis. This is an interesting research direction
for future work. We remark that it was previously dis-
cussed that stars with nodes could have a rotational
velocity profile similar to those of galaxies; the potential
stability of these objects, however, was not discussed. Our
work shows that the stability issue could be solved within
the paradigm of self-interactions.
Since these excited stars can, in principle, be realizable in

an astrophysical context (even the dynamical formation of

FIG. 13. Rotational velocity as a function of Rorbit for n ¼ 10, ω ¼ 0.92 for several Λ (left). Angular velocity as a function of Rorbit for
Λ ¼ 500, ω ¼ 0.92 for several n (right). Same qualitative behavior for ω ¼ 0.90.
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such objects can be possible as discussed in [29] for n ¼ 1
stars), one could also consider simulations of the collision
of these objects, to assess their gravitational wave signals
and compare them with real data from LIGO-Virgo-
KAGRA detections.
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APPENDIX: NUMERICAL CONVERGENCE

In order to assess the quality of our numerical simu-
lations we perform a convergence test, consisting of
comparing different quantities from various grid resolu-
tions and seeing if the results converge to the expected
value. In order to perform our numerical evolutions we
imported initial data into the code which was then inter-
polated to the evolution grid. We consider only numerical
error coming from the finite difference operations, which
dominates the error if we use resolutions coarser than the
initial data resolution. In Fig. 14 we show the absolute
value of the Hamiltonian constraint for four different
resolutions at an instant of time t ¼ 1200 for a stable
boson star with n ¼ 2, ω ¼ 0.92 and Λ ¼ 250. We find the
expected second-order convergence, since the PIRK time
integrator is second order [44], for the first three resolutions
(Δr ¼ 0.8, Δr ¼ 0.4, Δr ¼ 0.2). However, as the resolu-
tion is further increased, the convergence order is reduced

to between first and second order. This is due to the fact
that for high resolutions we are not improving anything
compared with the initial grid.
We can also compare the drift of the evolution of

the total mass as in Fig. 15. Since we consider a stable
model the total mass should be constant throughout the
evolution. However, due to numerical error, the mass
decreases with time, and for low resolutions the numerical
solutions are not good enough. Taking the deviation from
the initial value of the mass Eðt ¼ 0Þ we find that the
order of convergence is 3, due to the fourth-order
interpolatation, the second-order PIRK and the fourth-
order finite differencing. The scaled functions can be seen
in Fig. 16.

FIG. 14. Absolute value of the Hamiltonian constraint at
t ¼ 1200 for different resolutions for a boson star with n ¼ 2,
ω ¼ 0.92, Λ ¼ 250.

FIG. 15. Evolution of the total mass/energy for different
resolutions.
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