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The γ-spacetime metric is a static and axially symmetric vacuum solution of the Einstein equation. This
spacetime represents a naked singularity and it has an extra parameter γ which signifies deviations from
spherical symmetry. In this work, we study the possibility of constraining the deformation parameter with
astrophysical observations. We start with gravitational lensing in the weak- and strong-field limits and
calculate the respective deflection angles to show that only strong-field lensing observations will be able to
constrain γ independently. Later we study two other classical tests of gravity: Shapiro time delay and
precession of perihelion. We show that, out of these two experiments, the deformation parameter affects the
observables only in perihelion shift.
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I. INTRODUCTION

The γ-metric, also known as Zipoy-Voorhees spacetime
[1,2] is an exact vacuum solution of Einstein’s field
equations. The metric belongs to the Weyl class of space-
times and is static, axially symmetric and asymptotically
flat. In Erez-Rosen coordinates [3] the spacetime is given
by the line element

ds2 ¼ −fγdt2 þ fγ
2−γg1−γ

2

�
dr2

f
þ r2dθ2

�
þ f1−γr2sin2θdϕ2; ð1Þ

where

f ¼ 1 −
2M
r

;

g ¼ 1 −
2M
r

þM2sin2θ
r2

: ð2Þ

There are two parameters that characterize the spacetime:
M > 0 is related to the mass of the source and γ > 0
quantifies deformation from spherical symmetry as for γ >
1 (γ < 1), the spacetime is oblate (prolate). The spacetime
is spherically symmetric for γ ¼ 1, and it corresponds to a
Schwarzschild solution. The total Arnowitt-Deser-Misner

(ADM) mass measured by an observer at infinity
is MADM ¼ γM.
The metric contains a genuine curvature singularity at

r ¼ 2M for γ ≠ 1, meaning the spacetime is a naked
singularity [4,5]. However, this surface at r ¼ 2M must be
regarded as an infinitely redshifted one which may show
features similar to the Schwarzschild event horizon obser-
vationally [6]. For this reason, the γ-metric can be considered
a “black hole mimicker.” It was shown in Ref. [7] that the
singularity at r ¼ 2M can be resolved in theories of
conformal gravity leaving only the infinitely redshifted
surface.
Geodesic motion of massive and massless particles in

this spacetime was studied in Refs. [8–11]. The γ-metric
has also been used to describe the exterior of a general
relativistic disk; for details see Ref. [12]. Recently, the
oscillation of neutrinos and its lensing was studied in the
γ-metric and it was shown that constraints on γ can be
obtained from the detection of extrasolar neutrinos. There
have been studies on optical properties and shadows of the
γ-metric which verified the “black hole mimicking” prop-
erty of the spacetime [6,13]. However, the γ-metric is
nonintegrable in general, as shown in Ref. [14] and leads to
interesting chaotic behavior for the motion of test particles.
The fact that the γ-metric mimics a black hole and the
particle motion scenario is very much similar to that in
Schwarzschild spacetime enables it as a well-motivated and
simple candidate to study toy models of astrophysical
scenarios where the exterior of a massive compact object is
not given by a usual black hole line element but by the
deformed metric.
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Despite this interesting motive, there have not been
many efforts to study different types of experiments in
γ-spacetime. In this work, we discuss the possibility of
constraining the γ parameter with astrophysical observa-
tions in the weak- and strong-field limits. We start with the
calculation of the deflection angle in the γ-metric for
gravitational lensing in the strong- and weak-field limits.
The weak lensing deflection angle can be directly applied to
Solar System experiments. However, we show that the
parameter γ cannot be independently constrained with weak
lensing observations. On the other hand, the strong lensing
observations would be able to constrain γ with future very-
long-baseline interferometry (VLBI) projects. Finally, we
shift our attention to other two Solar System experiments:
radar echo delay and precession of perihelia.
The rest of the paper is organized as follows. In Sec. II,

we study the strong- and weak-field limits of gravitational
lensing in the γ-metric. Then in Secs. III and IV we
investigate the Shapiro time delay and precession of
perihelia in the γ-metric. Finally, we summarize and discuss
our findings in Sec. V. Throughout the paper we use natural
units setting G ¼ c ¼ 1.

II. GRAVITATIONAL LENSING

In this section, we calculate the angle of deflection of
light in the γ-metric and see if any observational constraints
can be obtained. First, we work in the weak-field limit to
find an analytical expression for the deflection angle. Later,
we extend our calculations to the strong-field limit using a
method first described in Refs. [15,16].

A. Weak-field limit

Theworld lines of light rays in a curved spacetime can be
described by giving the coordinates xα as functions of any
one of a family of affine parameters λ. Now, the null vector
vα is a tangent to the world line given by

vα ≡ dxα

dλ
: ð3Þ

The γ-metric is independent of t and ϕ coordinates and
hence we shall have two conserved quantities along the
light ray trajectories,

e≡ −ε:v ¼ fγ
�
dt
dλ

�
⇒

�
dt
dλ

�
¼ e

fγ
;

l≡ η:v ¼ r2f1−γ
�
dϕ
dλ

�
⇒

�
dϕ
dλ

�
¼ l

r2f1−γ
; ð4Þ

where ηα ¼ ð0; 0; 0; 1Þ and εα ¼ ð1; 0; 0; 0Þ are Killing
vectors of the field. A third integral can be written
considering the requirement that the tangent vector be null

v:v ¼ gαβ
dxα

dλ
dxβ

dλ
¼ 0: ð5Þ

Now, on the equatorial plane (θ ¼ π=2), the previous
equation can be written explicitly as

fγ
�
dt
dλ

�
2

−
g1−γ

2

f1þγ−γ2

�
dr
dλ

�
2

− f1−γr2
�
dϕ
dλ

�
2

¼ 0: ð6Þ

From Eq. (4), we replace ðdt=dλÞ and ðdϕ=dλÞ to obtain

e2

fγ
−

g1−γ
2

f1þγ−γ2

�
dr
dλ

�
2

− fγ−1
�
l2

r2

�
¼ 0: ð7Þ

Multiplying by ðfγ=l2Þ, it gives

1

u2
¼ 1

l2
½fγ2−1g1−γ2 �

�
dr
dλ

�
2

þWeffðrÞ; ð8Þ

where u ¼ l=e is the impact parameter and

WeffðrÞ ¼
1

r2
f2γ−1 ð9Þ

is the effective potential felt by the photons. From Eq. (4),
we know �

dϕ
dλ

�
2

¼
�

l
r2f1−γ

�
2

: ð10Þ

Dividing Eq. (10) by Eq. (8), we get�
dϕ
dr

�
2

¼ fγ
2−1g1−γ

2

r4f2ð1−γÞ
�

1
u2 −

f2γ−1

r2

� ¼ Z: ð11Þ

This equation gives us the change in azimuthal angle with
respect to the radial coordinate and it can be integrated to
obtain the deflection angle Δϕ. The magnitude of the total
angle swept out Δϕ as the light-ray proceeds in from
infinity and back out again is twice the angle swept out
from a turning point r ¼ r1 to infinity. Therefore,

Δϕ ¼ 2

Z
dϕ ¼ 2

Z
∞

r1

ffiffiffiffi
Z

p
dr; ð12Þ

and the turning point r1 is the radiuswhere 1=u2 ¼ Weffðr1Þ.
The integral here is very complicated and cannot be solved
analytically. Hence, we would consider a weak-field limit
where M=r ≪ 1. To obtain an analytical solution, we
introduce a new variable w, such that

r ¼ u
w
⇒ dr ¼ −

u
w2

dw: ð13Þ

With the newvariable, the functions of themetric coefficients
in the weak-field limit are
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f ≃ g ≃
�
1 −

2M
u

w

�
: ð14Þ

Now using Eqs. (13) and (14) in the integral, we obtain

δϕ ¼ 2

Z
w1

0

1þ M
u w

½1þ ð2γ − 1Þ 2Mu w − w2�1=2 dw; ð15Þ

where the limitw1 is the value ofw at which the denominator
vanishes. This integral can be solved analytically using
standard algebraic manipulation software. The result is

Δϕ ¼ 2

�
−a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a1w − w2

q

− arctan

�
a2 − 2w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a1w − w2

p ��
w1

0

; ð16Þ

where a1 ¼ M=u and a2 ¼ ð2γ − 1Þð2M=uÞ. Taking the
limit, we get

Δϕ ¼ π þ 4γM
u

: ð17Þ

The deflection angle δϕdef is related to Δϕ by the following
relation:

δϕdef ¼ Δϕ − π: ð18Þ

Thus, the deflection angle in the weak-field limit is

δϕγ
def ¼

4γM
u

¼ 4MADM

u
: ð19Þ

Now, we can see from the deflection angle that even if the
expression involves the parameter γ, it is unlikely to constrain
it by observing gravitational lensing in the weak-field limit.
The gravitational mass of the system isMADM ¼ γM and the
observationswill only provide information about it, unable to
break the degeneracy. In the following subsection, we shall
see if it is possible to break this degeneracy in the strong-
field limit.

B. Strong-field limit: Bozza’s method

In this subsection, we attempt to obtain an analytical
expression for gravitational lensing in the strong-field limit
in the γ-metric in the equatorial plane. This analytical
procedure was developed in Ref. [17] for Schwarzschild
spacetime and later extended to general cases in Ref. [16].
Other works on gravitational lensing of black holes and
naked singularities can be found in Refs. [18–21]. We shall
first describe the method briefly and then apply it to the
γ-metric. For convenience, we shall keep the notation used
in Ref. [16].

Let us first express the metric in the equatorial plane as

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdϕ2; ð20Þ

where AðrÞ, BðrÞ andCðrÞ are metric coefficients. To check
the existence of the photon sphere around a compact object
described by the γ-metric, we require that the equation

C0ðrÞ
CðrÞ ¼ A0ðrÞ

AðrÞ ð21Þ

admits at least one positive solution and the largest root of
this equation will be called the photon sphere, rm. Also note
that A;B;C; A0 and C0 must be positive for r > rm.
The strong-field expansion takes the photon sphere as

the starting point. For the γ-metric, the photon sphere is at
rm ¼ ð2γ þ 1ÞM [6]. Note that, when γ ≠ 1, the coordi-
nates are not spherical and hence the photon sphere will not
be a sphere. However, in the equatorial plane, this issue
does not make any difference and the strong lensing
method can be applied to γ-spacetime.
A photon coming from infinitywith an impact parameteru

will be deviated while approaching the compact object,
reaching a minimum distance r0 and then emerging in
another direction. The approach phase will be symmetrical
to the departure phasewith the time reversed. Now, using the
conservation of angular momentum, the closest approach
distance can be related to the impact parameter u by the
equation

u ¼
ffiffiffiffiffiffi
C0

A0

s
; ð22Þ

where the subscript 0 indicates that the functions are
evaluated at r0. Similar to the previous section, the geodesic
equation can be easily used to extract the quantity

dϕ
dr

¼
ffiffiffiffi
B

p
ffiffiffiffi
C

p ffiffiffiffi
C
C0

q
A0

A − 1
; ð23Þ

which gives the angular shift of the photon as a functionof the
radial coordinate. Now, in the strong-field limit, the deflec-
tion angle can be calculated as a function of the closest
approach

αðr0Þ ¼ Iðr0Þ − π; ð24Þ
where

Iðr0Þ ¼
Z

∞

r0

ffiffiffiffi
B

p
ffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
C0

A0

A − 1
q dr: ð25Þ

We can see that for a vanishing gravitational field, αðr0Þ
vanishes identically. In theweak-field limit, the integrand can
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be expanded to the first order in the gravitational potential
reproducing Eq. (15). Decreasing the impact parameter
increases the deflection angle and at some point, it will
exceed 2π resulting in a loop around the compact object
spacetime. r0 ¼ rm corresponds to the impact parameter
u ¼ um, and at this point the deflection angle diverges
meaning the photon gets captured.
The divergence here is logarithmic [16,17]. The analyti-

cal expansion for the deflection angle close to the diver-
gence has the form

αðr0Þ ¼ −a log
�
r0
rm

− 1

�
þ bþOðr0 − rmÞ; ð26Þ

where the coefficients depend on the metric functions
evaluated at rm.
The deflection angle, αðr0Þ can be expressed as a

function of the angular separation of the image from the
lens, θ. The angular separation of the lens from the image is
defined as θ ¼ u=DOL, where DOL is the distance between
the lens and the observer. In terms of this variable the
deflection angle is expressed as

αðθÞ ¼ −ā log
�
θDOL

um
− 1

�
þ b̄þOðu − umÞ: ð27Þ

The coefficients ā and b̄ are as follows:

ā ¼ a
2
¼ Rð0; rmÞ

2
ffiffiffiffiffiffi
βm

p ;

b̄ ¼ −π þ bR þ ā log

�
2βm
ym

�
: ð28Þ

Here, Rð0; rmÞ, βm, ym are again functions of metric
coefficients evaluated at r0 ¼ rm. The derivation of the
deflection angle along with the forms of the coefficients in
the strong-field limit is rather long and is omitted from the

main text. For reference we have included the derivation in
the Appendix, and it can also be found in Ref. [16]. Below,
we apply this procedure to the γ-metric.
Our task is to find the coefficients ā, b̄ and um to check

how the deflection angle varies with respect to the
parameter γ. We rewrite the metric coefficients again as
A, B and C for the γ-metric

AðrÞ ¼
�
1 −

2M
r

�
γ

;

BðrÞ ¼
�
1 −

2M
r

�
γ2−γ−1

�
1 −

2M
r

þM2

r2

�
1−γ2

;

CðrÞ ¼
�
1 −

2M
r

�
1−γ

r2: ð29Þ

We can calculate the radius of the photon sphere by solving
the equation α ¼ 0 [first equation of Eq. (A4) in the
Appendix]. This yields

rm ¼ ð2γ þ 1ÞM: ð30Þ

Now, β [Eq. (A9)] at r0 ¼ rm is

βm ¼ ð2γ − 1Þð2γ þ 1Þ½ð2γ−1
2γþ1

Þγ − 1�2
4γ2ð2γ−1

2γþ1
Þγ : ð31Þ

The integral (A14) cannot be solved exactly to find bR.
Therefore we expand the integrand in powers of (γ − 1) and
evaluate the single coefficients. We get

bR ¼ bR;0 þ bR;1ðγ − 1Þ þOðγ − 1Þ2: ð32Þ

Here bR;0 is the value of the coefficient for Schwarzschild
spacetime [16]

bR;0 ¼ 0.9496: ð33Þ

FIG. 1. Left panel: coefficients of the deflection angle [Eq. (28)] ā; b̄ and um with respect to γ evaluated at u − um ¼ 0.003. Right
panel: the deflection angle αðθÞ with respect to γ evaluated at u − um ¼ 0.003.
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bR;1 represents the correction term for the γ-metric (see the
Appendix for the expression for this term).
Finally, we can compute the coefficients of lensing in the

strong-field limit. For MADM ¼ γM ¼ 1,

ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

4γ2

4γ2 − 1

�
1−γ2

s
;

b̄ ¼ −π þ bR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

4γ2

4γ2 − 1

�
1−γ2

s

× log

��
2 −

1

2γ2

��
1 −

�
2γ − 1

2γ þ 1

�
−γ
�
2
�
;

um ¼
�
2þ 1

γ

��
2γ − 1

2γ þ 1

�1−2γ
2

: ð34Þ

These parameters are functions of γ only, since we have
fixed the observable mass. Now we can calculate the
dependence of the deflection angle on the parameter γ.
In Schwarzschild spacetime, it was shown in Ref. [16]
that the most external image appears where αðθÞ falls below
2π and this happens at the location u − um ¼ 0.003264. To
see the dependence of the strong lensing parameters and
deflection angle on γ, we evaluate them at u ¼ um þ 0.003
and plot the result in Fig. 1.
We can see from the left panel of Fig. 1 that um increases

while ā decreases with increasing γ. b̄ on the other hand
initially decreases with increasing γ reaching a minimum
value at γ ¼ 0.89 and later again increases. The panel
shows the decrease of the deflection angle αðθÞ with
increasing γ. Both these plots show an asymptotic behavior
when we approach γ → 0.5. This is precisely because of the
disappearance of the photon sphere at γ ¼ 0.5 as the photon
sphere radius becomes rm ¼ 2M and it coincides with the
singularity which is also an infinitely redshifted surface at
the equatorial plane.
Let us now have a look at one realistic numerical

example. We have significant evidence that the center of
our Galaxy hosts a supermassive black hole with mass
MBH ≃ 4 × 106M⊙. Gravitational lensing by such a black
hole was discussed in detail by Virbhadra and Ellis in
Ref. [22] for the Schwarzschild case and Bozza in

Ref. [15] comparing modified spacetimes. Considering a
distance of DOL ¼ 8.5 kpc between the black hole and the
Sun, they showed that the separationbetween each set of rela-
tivistic images with respect to the central lens would be
θ∞ ¼ 17 μarcsec. Now we are on the verge of achieving
such a resolution through actual VLBI projects such as the
Event Horizon Telescope [23]. Here we follow the same
procedure [15,22] for the γ-metric and estimate the quantities
required for a complete strong-field limit reconstruction.
The observables for gravitational lensing were discussed

in Refs. [15,22,24]. Basically we are interested in two
quantities:

s ¼ θ1 − θ∞;

p ¼ μ1P∞
n¼2 μn

: ð35Þ

Here, s and p represent the separation between the first
image and the others and the ratio between the flux of the
first image and that coming from the others respectively.
Clearly, θ1 is the angular separation for the first image and
θ∞ signifies the asymptotic position of the other set of
images. μn is the flux, where the subscript represents the
corresponding image. The parameters s and p can be
related to the coefficients of strong lensing as

s ¼ θ∞exp
b̄
ā−

2π
ā ;

p ¼ exp
2π
ā : ð36Þ

So, just by measuring the angular separation and a ratio of
flux, one can reconstruct the full strong-field limit expan-
sion of the deflection angle.
In Table I, we show the estimates of these parameters

for different values of γ, including γ ¼ 1 which is the
Schwarzschild case. Looking at the table, it is immediately
clear that the easiest quantity to evaluate is the minimum
impact parameter um. Once we achieve μarcsec resolu-
tion in the coming years, it will become possible to
distinguish between a Schwarzschild black hole and a
naked singularity represented by the γ-spacetime metric.
On the other hand, to fit all other coefficients into any
compact object model, we need to separate at least the

TABLE I. Estimates of the observables and the coefficients ā; b̄ and um of strong lensing for the black hole
at the center of our Galaxy considering the γ-metric as the spacetime geometry of the exterior. θ∞; s and
pmðpÞ ¼ 2.5 logp are defined in the text. Here Rs ¼ 2GM

c2 is the Schwarzschild radius.

Parameters γ ¼ 0.95 γ ¼ 0.97 γ ¼ 1.0 (Schwarzschild) γ ¼ 1.02 γ ¼ 1.05

θ∞ðμarcsecÞ 16.81 16.85 16.9 16.94 16.98
sðμarcsecÞ 0.02303 0.0221 0.0211 0.02057 0.01984
pm(magnitude) 6.714 6.758 6.821 6.859 6.912
um=Rs 2.58 2.589 2.598 2.603 2.609
ā 1.0159 1.0091 1.0 0.9944 0.9869
b̄ −0.4148 −0.4097 −0.4002 −0.3927 −0.3801
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outermost relativistic image from the others. This can only
be done with an increase in optical resolution of at least
2 orders of magnitude concerning actual observational
projects [15].

III. SHAPIRO TIME DELAY

Another interesting relativistic effect in the propagation
of light rays is the apparent delay in propagation time for a
light signal passing near the Sun. This is important because
radar-ranging techniques can measure this delay and give
constraints on the γ-metric. This effect is called the Shapiro
time delay effect.
The idea is to measure the time required for radar signals

to travel to an inner planet or satellite in two circumstances:
a) when the signal passes very near the Sun and b) when the
ray does not go near the Sun. The time required to travel for
light t0 between two planets sitting far away from the Sun is
given by

t0 ¼
Z

l2

−l1
dy; ð37Þ

where dy is the differential distance in the radial direction
in the Solar System and l1 and l2 are the distances of the
planets from the Sun. When the radar signal travels close to
the Sun, the previous equation should be modified as

t ¼
Z

l2

−l1

dy
v

¼
Z

l2

−l1

ffiffiffiffiffiffi
grr
gtt

r
dy: ð38Þ

Here, v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt=grr

p
is the speed of light in the presence

of the gravitational field, and gtt and grr are the metric
components. Now the time difference is

Δt ¼ t − t0 ¼
Z

l2

−l1

� ffiffiffiffiffiffi
grr
gtt

r
− 1

�
dy: ð39Þ

The radial coordinate can be expressed as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊙ þ y2

p
,

where R⊙ is the radius of the Sun. Now Eq. (39) becomes
an integral of the variable y, so we can write

Δt ¼
Z

l2

−l1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊙ þ y2

p
Þ

gttð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊙ þ y2

p
Þ

s
− 1

!
dy: ð40Þ

Now grr and gtt can be replaced in the above integral

Δt ¼
Z

l2

−l1
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fγ

2−2γ−1g1−γ
2

q
− 1Þdy: ð41Þ

Explicitly, in the equatorial plane

Δt ¼
Z

l2

−l1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊙ þ y2

p �
γ2−2γ−1

�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊙ þ y2

p þ M2

R2
⊙ þ y2

�
1−γ2

s
− 1

!
dy: ð42Þ

Now the integration can be performed considering the Earth-Sun-Mars system. The relevant quantities here are the
distance to the Earth from the Sun RE ¼ l1 ¼ 1.525 × 1013 cm, the distance to Mars from the Sun RM ¼ l2 ¼
2.491 × 1013 cm, the mass of the Sun M⊙ ¼ γM ¼ 1.989 × 1033 g and the radius of the Sun R⊙ ¼ 6.955 × 1010 cm.
For the Schwarzschild metric, with the above-mentioned values of the parameters the radar echo delay has the value

ΔtðSchÞRD ≃ 4M⊙ lnð4l1l2=R2
⊙Þ ≃ 2.4927 × 10−4 s: ð43Þ

In γ-spacetime, the radar echo delay expression can be written as

ΔtγRD ¼ 2

Z
l2

−l1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2ðM⊙=γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊙ þ y2

p �
γ2−2γ−1

�
1 −

2ðM⊙=γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊙ þ y2

p þ ðM⊙=γÞ2
R2
⊙ þ y2

�
1−γ2

s
− 1

!
dy: ð44Þ

First let us check the weak-field limit of the above integral. We expand the expression under the square root in terms of
M=R⊙ and keep only the terms of order OðM=R⊙Þ. The integral becomes

ΔtγRD ¼ 2

Z
l2

−l1

2γðM⊙=γÞ
R⊙

�
1 −

y2

R2
⊙

�−1
dy

¼ 2

Z
l2

−l1

2M⊙

R⊙

�
1 −

y2

R2
⊙

�−1
dy

≃ 4M⊙ ln

�
4l1l2
R2
⊙

�
¼ ΔtSchRD ; ð45Þ
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which is nothing but the expression for Shapiro time delay
in Schwarzschild spacetime. Therefore, the light rays in the
time delay experiment will not experience the effect of γ.
Let us now verify this in the strong-field regime. We

numerically integrate Eq. (44) without any approximations.
The result of the integration is shown in Fig. 2, which
clearly shows that the Shapiro time delay in the γ-metric is
independent of the parameter γ.

IV. PERIHELION PRECESSION

To find the precession rate of the perihelion in the
γ-metric, let us now concentrate on the motion of massive
particles. The metric is independent of the t and θ
coordinates and hence we shall again have two timelike
Killing vectors

e≡ −ε:v ¼ fγ
�
dt
dτ

�
⇒

�
dt
dτ

�
¼ e

fγ
;

l≡ η:v ¼ r2f1−γ
�
dϕ
dτ

�
⇒

�
dϕ
dτ

�
¼ l

r2f1−γ
: ð46Þ

A third constant of motion is given by considering the
requirement that the tangent vector is timelike for massive
particles

v:v ¼ gαβuαuβ ¼ −1: ð47Þ

In the equatorial plane, this equation can be written as

−fγ_t2 þ
�
fγ

2−γg1−γ
2

f

�
_r2 þ f1−γr2 _ϕ2 ¼ −1; ð48Þ

where _t ¼ dt=dτ, _ϕ ¼ dϕ=dτ and τ is the proper time. Now
we can replace _t and _ϕ using Eq. (46) and the equation
becomes

−f−γe2 þ
�
fγ

2−γg1−γ
2

f

�
_r2 þ l2

r2f1−γ
¼ −1: ð49Þ

With some algebraic manipulations, this equation can be
written as

_r2 þ AðrÞ−1 l2

r2f1−γ
¼ AðrÞ−1ðf−γe2 − 1Þ; ð50Þ

where

AðrÞ ¼ fγ
2−γg1−γ

2

f
: ð51Þ

Now we employ a change of variable of the form r ¼ 1=w
and replace d=dτ with ðlw2=f1−γÞd=dϕ and obtain

�
dw
dϕ

�
2

þ f1−γ

AðwÞw
2 ¼ f2ð1−γÞ

l2AðwÞ ðf
−γe2 − 1Þ: ð52Þ

Arranging the terms

�
dw
dϕ

�
2

þ w2 ¼ e2

l2
XðwÞ − 1

l2
YðwÞ − w2ZðwÞ; ð53Þ

where

FIG. 2. Numerical integration of Eq. (44). This plot shows the time delay with respect to γ when a radar signal travels back and forth
along a path close to the Sun where the exterior of the Sun is assumed to be described by the γ-metric.
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XðwÞ ¼ f2−3γ

AðwÞ ;

YðwÞ ¼ f2ð1−γÞ

AðwÞ ;

ZðwÞ ¼ f1−γ

AðwÞ − 1: ð54Þ

By taking the derivative of the previous equation with
respect to ϕ, we find

d2w
dϕ2

þ w ¼ FðwÞ; ð55Þ

which is the orbit equation. Here,

FðwÞ ¼ 1

2

dGðwÞ
dw

; ð56Þ

and

GðwÞ ¼ w2ZðwÞ þ e2

l2
XðwÞ − 1

l2
YðwÞ: ð57Þ

Using the method shown in Refs. [25,26], we work with the
previous orbit equation. The deviation angle δϕ can be
found analytically using

δϕ ¼ π
dFðwÞ
dw

				
w0

; ð58Þ

along with the constraint Fðw0Þ ¼ w0 for a near-circular
orbit. In the weak-field regime (Mw ≪ 1), we can expand
XðwÞ, YðwÞ and ZðwÞ in powers of w to write GðwÞ and
FðwÞ

GðwÞ ¼ w2ð3ð3γ2 − 4γ þ 1Þe2M2 − 3ðγ − 1Þ2M2Þ
l2

þ wð4ðγ − 1Þe2M − 2γM þ 4MÞ
l2

þ e2 − 1

l2
− ðγ − 1Þðγ þ 1ÞM2w4 þ 2Mw3;

FðwÞ ¼ Mð−γ þ 2ðγ − 1Þe2 þ 2Þ
l2

þMwð3ðγ − 1Þð3γ − 1Þe2M − 3ðγ − 1Þ2MÞ
l2

− 2ðγ − 1Þðγ þ 1ÞM2w3 þ 3Mw2: ð59Þ

So the circular orbits will be given by the roots of the
equation Fðw0Þ ¼ w0. Explicitly

A0 þ A1w0 þ A2w2
0 þ A3w3

0 ¼ w0; ð60Þ

where

A0 ¼
Mð−γ þ 2ðγ − 1Þe2 þ 2Þ

l2
;

A1 ¼
M2½3ðγ − 1Þð3γ − 1Þe2 − 3ðγ − 1Þ2�

l2
;

A2 ¼ 3M;

A3 ¼ −2ðγ − 1Þðγ þ 1ÞM2: ð61Þ

Neglecting higher-order corrections, the solution to the
equation Fðw0Þ ¼ w0 can be written as

w0 ¼
A0

1 − A1

; ð62Þ

which reduces to w0 ¼ M=l2 for γ ¼ 1. Using the above
results, the perihelion precession δϕ can be written as

FIG. 3. Perihelion shift as a function of the deformation parameter for Mercury (left) and the star S2 (right) with respect to γ.
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δϕ ¼ π
dFðwÞ
dw

				
w0

¼ π

�
M2½3ðγ − 1Þð3γ − 1Þe2 − 3ðγ − 1Þ2�

l2

− 6ðγ − 1Þðγ þ 1ÞM2w2
0 þ 6Mw0

�
: ð63Þ

For γ ¼ 1, we recover the classical general-relativistic
result δϕGR ¼ 6πðM2=l2Þ.
For the γ-metric, we report the variation of the perihelion

precession angle of Mercury around the Sun (left panel)
and the star S2 around Sgr A* (right panel) with respect
to the deformation parameter γ in Fig. 3. In Table II, we
show the numerical estimates of perihelion precession for
Mercury for values of γ ¼ 0.95, 0.97, 1.0, 1.02 and 1.05.
We can put constraints on the parameter γ in the Solar
System using the measured values of perihelion precession
for Mercury δϕprec. The observed value of the perihelion
shift of Mercury is 42.98� 0.04 arcsec/century [27,28].
Using this data, γ can be constrained at 1.0000� 0.0005
where we clearly recover the Schwarzschild limit. On the
other hand, for S2, the measured value of the orbital
precession per orbit is [29] δϕprec ¼ 12.1 × ð1.10� 0.19Þ
arcmin/orbit. This constrains γ at 0.96� 0.08 for Sgr A* in
the plane of the orbit in the weak-field limit. We still
recover the Schwarzschild limit. However, note that this
analysis is preliminary. For better constraints, full numeri-
cal simulations with all orbital parameters should be done.
With the projected increase in precision of the measured
value in the coming years, we will be able to obtain a
more stringent constraint on the deformation parameter.
Similarly, an analysis in the strong-field regime would also
require full numerical simulations of the orbit equations,
which then can be applied to the motion of S2 star to
constrain deviations from spherical symmetry.

V. OUTLOOK AND DISCUSSION

In the present work, we tested the applicability of the
γ-metric for astrophysical observations. We studied strong
and weak gravitational lensing, radar echo delay and
perihelion precession in the context of the considered
metric spacetime. We demonstrated that most of the
weak-field experimental observables do not show any

dependence on γ, except perihelion precession. However,
strong lensing shows a significant effect on light bending in
the γ-metric.
We started with gravitational lensing in the weak-field

limit and calculated the deflection angle of photons. The
expression of the deflection angle depends on the defor-
mation parameter γ and the parameter related to the mass
M. This dependence comes in the form γM which is the
observable mass of the system. Therefore, it is unlikely to
independently constrain γ with weak lensing experiments.
On the other hand, the mechanism in strong lensing is quite
involved and we can see a clear dependence of the
observational quantities on the deformation parameter.
This can be seen in Fig. 1. The deflection angle in strong
lensing increases with decreasing γ and blows up at
γ ¼ 0.5. This is because of the disappearance of the photon
sphere at the corresponding value of γ.
We then concentrated on two classic Solar System

experiments, namely Shapiro delay and perihelion preces-
sion. We showed that light rays in the time delay experi-
ment are not affected by the deformation parameter. Finally,
we studied the precession of perihelion in this spacetime
and showed that perihelion shift depends on the deforma-
tion parameter, i.e. with increasing γ the shift in perihelion
decreases as can be seen in Fig. 3. Using the currently
accepted value of the perihelion shift of Mercury, we
obtained a numerical constraint on the deformation param-
eter which is γ ¼ 1.0000� 0.0005. Similarly, data from the
star S2 constrains γ at 0.96� 0.08. Shapiro time delay is
still a weak-field effect in the Solar System and it is
expected that the deformation parameter of a modified
spacetime will affect the travel time of a signal if the
signal passes close to the massive object. However, in our
analysis of the γ-metric, we can see that the integrand of the
time delay integral does not depend on the nontrivial gϕϕ
term of the metric and the contribution from γ in gtt and grr
seems to contribute only towards the observable mass
of the massive object. On the other hand, in strong
lensing and perihelion precession, the deviation from the
Schwarzschild value comes from the gϕϕ term.
Finally, concerning the possibility of constraining devi-

ations from spherical symmetry through observations of
gravitational lensing, our results show that only precise
measurements of observables in strong-field lensing would
allow us to distinguish a black hole from the γ-spacetime
metric. On the other hand, more precise observations of the
perihelion shift of Mercury and S stars in the future would
allow us to put much tighter bounds on γ in the respective
systems.
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APPENDIX: DEFLECTION ANGLE IN THE
STRONG-FIELD LIMIT: BOZZA’S METHOD

To find the coefficients of the deflection angle in
Eq. (28), first two new variables are defined as

y ¼ AðrÞ;
z ¼ y − y0

1 − y0
ðA1Þ

where y0 ¼ A0 ¼ Aðr0Þ. In terms of these new variables the
integral (25) in the deflection angle (24) becomes

Iðr0Þ ¼
Z

1

0

Rðz; r0Þfðz; r0Þdz;

Rðz; x0Þ ¼
2
ffiffiffiffiffiffi
By

p
CA0 ð1 − y0Þ

ffiffiffiffiffiffi
C0

p
;

fðz; r0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 − ½ð1 − y0Þzþ y0� C0

C

q ðA2Þ

where all functions without the subscript 0 are evaluated
at x ¼ A−1½ð1 − y0Þzþ y0�.
Here the function Rðz; r0Þ is regular for all values of z

and r0 but fðz; r0Þ diverges for z → 0. The argument
under the square root in fðz; r0Þ is expanded to the second
order in z,

fðz; r0Þ ∼ f0ðz; r0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αzþ βz2
p ; ðA3Þ

where,

α ¼ 1 − y0
C0A0

0

ðC0
0y0 − C0A0

0Þ;

β ¼ ð1 − y0Þ2
2C2

0A
03
0

½2C0C0
0A

02
0 þ ðC0C00

0 − 2C02
0 Þy0A0

0

− C0C0
0y0A

00
0�: ðA4Þ

In the case of a nonzero α, the leading-order divergence is
z1=2, which can be integrated to give a finite result. The
integral diverges when α ¼ 0, since the leading-order
divergence is z−1. Analyzing the form of α, we can see
that it vanishes for r0 ¼ rm, resulting in the capture of each
photon having r0 < rm.
Now to solve the integral, it is split into two parts, ID

(contains the divergence) and IR (regular):

Iðr0Þ ¼ IDðr0Þ þ IRðr0Þ;

IDðr0Þ ¼
Z

1

0

Rð0; rmÞf0ðz; r0Þdz;

IRðr0Þ ¼
Z

1

0

gðz; r0Þdz; ðA5Þ

where

gðz; r0Þ ¼ Rðz; r0Þfðz; r0Þ − Rð0; rmÞf0ðz; r0Þ: ðA6Þ

We can see that IRðr0Þ is the original integral with the
divergence subtracted. Now both the integrals should
be solved separately and then summed to rebuild the
deflection angle.
Let us first handle the integral IDðr0Þ. It can be solved

exactly. The result is

IDðr0Þ ¼ Rð0; rmÞ
2ffiffiffi
β

p log

ffiffiffi
β

p þ ffiffiffiffiffiffiffiffiffiffiffi
αþ β

pffiffiffi
α

p : ðA7Þ

We are interested only in the terms up toOðr0 − rmÞ, so we
expand α as

α ¼ 2βmA0
m

1 − ym
ðr0 − rmÞ þOðr0 − rmÞ2; ðA8Þ

where

βm ¼ Cmð1 − ymÞ2ðC00
mym − CmA00

mÞ
2y2mC00

m
: ðA9Þ

We then substitute it into IDðr0Þ

IDðr0Þ ¼ −a log
�
r0
rm

− 1

�
þ bD þOðr0 − rmÞ ðA10Þ

where

a ¼ Rð0; rmÞffiffiffiffiffiffi
βm

p ;

b ¼ Rð0; rmÞffiffiffiffiffiffi
βm

p log
2ð1 − ymÞ
A0
mrm

: ðA11Þ

IDðr0Þ yields a logarithmic leading-order divergence of the
deflection angle.
Now let us concentrate on the regular term. To find b we

need to add an analogous term coming from the regular part
of the integral to bD. First we expand IRðr0 − rmÞ

IRðr0Þ ¼
X∞
n¼0

1

n!
ðr0 − rmÞn

Z
1

0

∂
ng
∂rno

				
r0¼rm

dz ðA12Þ

and evaluate the single coefficients.
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Not subtracting the divergent part would have resulted in
an infinite coefficient for n ¼ 0, but the other coefficients
would be finite. However, gðz; r0Þ is regular for z ¼ 0 as
r0 → rm. We are only interested in terms up to Oðr0 − rmÞ,
so just retaining the leading-order term

IRðr0Þ ¼
Z

1

0

gðz; rmÞdzþOðr0 − rmÞ: ðA13Þ

Then we have

bR ¼ IRðrmÞ ðA14Þ

which is the term that needs to be added to bD to get the
regular coefficient. So finally,

b ¼ −π þ bD þ bR: ðA15Þ

The term bR can be evaluated numerically for all metric
forms since the integrand does not contain any divergences.
However, for the Schwarzschild metric, it is solved exactly.
For the γ-metric we expand the integrand over (γ − 1) and
try to obtain an analytical expression.
Now to go from αðr0Þ to αðθÞwe expand the equation for

the impact parameter

um ¼
ffiffiffiffiffiffiffi
Cm

ym

s
;

u − um ¼ cðr0 − rmÞ2; ðA16Þ

where

c ¼ C00
mym − CmA00

m

3
ffiffiffiffiffiffiffiffiffiffiffiffi
y3mCm

p ¼ βm

ffiffiffiffiffiffiffi
ym
C3
m

r
C02
m

2ð1 − ymÞ2
: ðA17Þ

Using this relation, the deflection angle can be expressed as
a function of θ

αðθÞ ¼ −ā log
�
θDOL

um
− 1

�
þ b̄ ðA18Þ

where

ā ¼ a
2
¼ Rð0; rmÞ

2
ffiffiffiffiffiffi
βm

p ;

b̄ ¼ −π þ bR þ ā log
2βm
ym

: ðA19Þ

So finally, in order to calculate the deflection angle as a
function of θ, we need to:
(1) solve Eq. (21) to find rm;
(2) write βm and Rð0; rmÞ from Eqs. (A9) and (A2)

respectively;
(3) compute bR from Eq. (A14) by an expansion of the

parameters of the metric; and
(4) compute um, ā and b̄ from Eqs. (A16) and (A19)

respectively.
The only integral involved in the process is calculating bR.
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