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In this paper we propose a new way to detect sublunar-mass primordial black holes (PBHs) by direct
observations of the Earth-Moon binary system. Our method is based on treating PBH as a perturbation
term, by assuming that the PBH is sweeping across the Solar System with a sublunar mass and is far away
from the Earth-Moon binary (much greater than 1 AU). This perturbation treatment allows us to develop a
framework to calculate the orbits of a generic binary system such as the Earth-Moon binary system. Our
numerical results show that the Earth-Moon distance is sensitive to the initial values of the system. In most
cases, the long-duration interactions between the PBH and the Earth-Moon system can induce lasting
imprints on the Earth-Moon’s orbit, and these imprints can accumulate over time, eventually giving rise to
observable deviations which can be used to infer the properties of the PBH.
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I. INTRODUCTION

Astrophysical and cosmological observations provide
convincing evidence that more than one quarter of the total
energy density of the Universe is in the form of cold and
weakly interacting matter, the dark matter (DM) [1–4].
The experimental and theoretical searching for particle DM
has lasted for several decades and a great deal of well-
motivated particle DM candidates have been proposed.
However, as the parameter space of particle DM models
becomes tighter and tighter constrained by experiments
[5,6], more and more nonparticle candidates are coming
into view. Among them primordial black holes (PBHs) as
a candidate that could contribute a fraction of DM have
attracted considerable attention in the past years. The
research on PBHs could trace back to the 1960s, which
was initiated by Zel’dovich and Novikov [7], and devel-
oped by Hawking and Carr [8–10]. It was generally
believed that they could have been formed in the early
Universe via the collapse of large density perturbations.
Various mechanisms have been proposed to create such
black holes in the past years [11–42]. Most mechanisms
predict that the mass of PBHs may exist in a wide range,
from ∼1014 g (below which they would have been evapo-
rated completely via the Hawking radiation), to tens of
thousands of solar masses. Hence, PBHs are a good

candidate in explaining the origin of the black holes that
cannot be formed in standard astrophysical processes, for
instance, the intermediate mass black holes as recently
observed by LIGO [43,44].
Various techniques have been developed in order to

probe PBHs in a large range of masses in the past decades
[45–49]. This process was further accelerated by the direct
detection of gravitational waves [50,51]. Up to now, there
are numerous observational constraints on the fraction of
DM comprised of PBHs, see [52–79] for an incomplete list.
However, there still exist wide windows (masses from 1016

to 1021 g) where PBHs can form whole or a significant
fraction of the DM. It is extremely difficult to detect these
PBHs in a direct way, considering that they are only of
atomic size. Despite all this, there are proposals that try to
detect them in an indirect way. More specifically, these
schemes consider that these PBHs are captured by neutron
stars (NSs) or white dwarfs in dwarf galaxies [80–82]. It is
generally believed that once a PBH is captured by a NS, the
NS would be accreted onto the PBH such that the NS gets
destroyed in a much shorter time than its normal lifetime.
Hence, observations of NSs, in turn, will effectively impose
constraints on the abundance of PBHs. This method, very
recently, has been extended to the capture of PBHs by main
sequence, Sun-like stars [83], which have the advantage,
as compared to NS and white dwarfs, that they can be
observed in dwarf galaxies more frequently. However,
these methods are model dependent, and, as mentioned
before, are indirect.
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This motivates us to explore alternatives that can over-
come these flaws. One possibility is to study the interaction
between PBHs and astronomical binary systems, for
instance, the Earth-Moon binary system, which has been
studied for tens of centuries and is of the most accurate
detections among all astronomical binary systems. The idea
is simple. As PBHs pass nearby the Solar System, the long-
duration interactions between PBHs and the Earth-Moon
system could leave lasting imprints on the Earth-Moon’s
orbit. As the interactions continue, these imprints can
accumulate over time, eventually giving rise to observable
deviations which can be used to infer the properties of
PBHs. Based on this idea, in this work we propose a new
way to detect these sublunar-mass PBHs by direct obser-
vations of the Earth-Moon system. By treating PBHs as a
perturbative term, we also develop a new formalism for
calculating the PBH-induced evolution of an astronomical
binary system like the Earth-Moon system.
It is helpful to note that our proposal only focuses on

PBHs sweeping past the Solar System rather than lurking
within it, as sketched in Fig. 1. Since the Solar System is a
stable bound system, the perturbations caused by other
celestial bodies can be considered as background noise
for the Earth-Moon binary system. In our calculations, we
subtract the background noise from the deviation of the
Moon’s orbit caused by the PBH sweeping across the Solar
System, which we represent as Δr. Since the population of
PBHs near the Solar System is generally very low. Actually,
even under the most favorable scenario of PBH DM
(ρ ≈ 0.3 GeV=cm3) and considering a solar system with
a radius of 100 AU, the upper bound on the expected
probability of a 1020 kg PBH sweeping past the Solar
System is approximately 0.16 per year (for more details,
please refer to the conclusion section of this paper). Thus,
the rate of a PBH sweeping across the Solar System is low,
roughly speaking, about one case every six years. This
means that the background noise can be readily deduced
from the lunar laser ranging (LLR) data. In summary,

we determineΔr by subtracting the LLR data from the year
when the PBH sweeps across the Solar System from the
LLR data of the year when it does not.
The remainder of this paper is organized as follows.

In Sec. II we give a brief review on the osculating orbital
elements and the perturbed Kepler problem. In Sec. III we
compute the evolution of the osculating orbital elements of a
binary system due to the influence of the perturbing force
produced by the PBH. In this section, we establish amodel of
the perturbed two-body problem to detect the PBH. In Sec. IV
we show our numerical results for different initial conditions.
We summarize our main results in the last section.

II. FORMALISM

In this section we would like to study the osculating
orbital elements and the perturbed Kepler problem. We
begin by briefly reviewing the fundamental properties of
Keplerian orbits, and then introducing the description of
Keplerian orbits in space relative to a reference frame and
the equations of motion for the osculating orbital elements
in the perturbed Kepler problem.

A. Keplerian orbits

The Keplerian orbits are determined by considering the
motion of two bodies interacting only within the framework
of the Newtonian gravity, and assuming that each body is
taken to be spherically symmetric. The equation of motion
is given by

̈r ¼ −
μ

r3
r; ð1Þ

where μ ¼ GMtot ¼ Gðm0 þm1Þ and r ¼ jrj, with G
being the universal gravitational constant, Mtot being the
total mass, and r being the position vector from m0 to m1.
Equation (1) indicates that the force is radial, which

implies r × ̈r ¼ dðr × _rÞ=dt ¼ 0. As a consequence,
H≡ r × _r is a constant vector. The constancy of H has
two direct results: One is that the motion is constrained in
the orbital plane, a fixed plane which is normal to H. The
second is that the magnitude of the vector can be written as

H ¼ r2 _θ; ð2Þ

where θ is the position angle measured from some fixed
line in the plane.
With the help of Eq. (2), one can get the shape of the

orbit by solving the radial portion of Eq. (1). The solution
of Eq. (1) is given by [84]

r ¼ að1 − e2Þ
1þ e cos f

; ð3Þ

where e is the eccentricity, and f ¼ θ − ω is the true
anomaly, with ω being the argument of pericenter. Since ω

Solar system

=350km/s

PBHs

FIG. 1. Sketch of PBHs sweeping across the Solar System. As
the Solar System rotates around the Galactic Center, PBH, as a
candidate of dark matter, will sweep past the Solar System with a
relative velocity v ∼ 350 km=s [53].

LI, HUANG, HUANG, and SHU PHYS. REV. D 107, 084019 (2023)

084019-2



is constant, the relation between the angle f and time is
given by Eq. (2),

df
dt

¼ H
r2
: ð4Þ

According to Kepler’s third law, we can get the relation
between the period and the semimajor axis,

2π

P
¼

ffiffiffiffiffi
μ

a3

r
; ð5Þ

where P is the period, and a is the semimajor axis of the
elliptical orbit.

B. Keplerian orbits in space

Let us first introduce a fundamental frame with coor-
dinates (X, Y, Z) and an orbital frame with coordinates
(x, y, z) as shown in Fig. 2. In the fundamental (X, Y, Z)
frame, let us adopt the X − Y plane as a reference plane,
with the Z axis as a reference direction. We also assign a
constant vectorial basis eX, eY and eZ to the fundamental
frame. In the orbital (x, y, z) frame, the x-y plane is the

orbital plane of two-body motion, the x direction is the
radial direction of m1 relative to m0, and the z direction is
aligned with the angular-momentum vector. The orbital
frame comes with time-dependent basis vectors ex, ey
and ez. The orientation of the elliptical orbit relative to the
fundamental (X, Y, Z) frame is represented by the longitude
of ascending node Ω, the inclination i and the argument of
pericenter ω.
With these definitions and conventions, we can go from

the orbital (x, y, z) frame to the fundamental (X, Y, Z) frame
by performing three consecutive Euler rotations,

eX ¼ ½cosΩ cosðωþ fÞ − cos i sinΩ sinðωþ fÞ�ex
þ ½− cosΩ sinðωþ fÞ − cos i sinΩ cosðωþ fÞ�ey
þ sin i sinΩez; ð6Þ

eY ¼ ½sin Ω cosðωþ fÞ þ cos i cosΩ sinðωþ fÞ�ex
þ ½− sin Ω sinðωþ fÞ þ cos i cosΩ cosðωþ fÞ�ey
− sin i cosΩez; ð7Þ

eZ ¼ sin i sinðωþ fÞex þ sin i cosðωþ fÞey þ cos iez:

ð8Þ
Therefore, the elliptical orbit in space can be described

in terms of six orbital elements: a, e, i, Ω, ω, M, which are
called semimajor axis, eccentricity, inclination, longitude
of ascending node, argument of pericenter, and mean
anomaly, respectively [85].

C. Osculating orbital elements
and the perturbed Kepler problem

Let us return to the two-body problem, but now suppose
that the binary is subjected to some small perturbing
force [86]. The equation of motion is

̈r ¼ −
μ

r3
rþ F; ð9Þ

where F is the perturbing acceleration. We decompose F as

F ¼ Rex þ Tey þ Nez; ð10Þ
in terms of components R, T and N. Under the action of
perturbing acceleration, the binary will deviate from its
Keplerian ellipse, causing its orbital elements to vary. We
thus treat (a, e, i, Ω, ω, M) as functions of time, called the
osculating orbital elements.
Following Refs. [87,88], we write the final equations for

the osculating orbital elements,

da
dt

¼ 2

nβ
½Re sin f þ Tð1þ e cos fÞ�; ð11Þ

de
dt

¼ β

na

�
R sin f þ T

�
cos f þ cos f þ e

1þ e cos f

��
; ð12Þ

FIG. 2. Schematic picture of the model for detecting PBH with
the Earth-Moon binary system. m0, m1, m2 denote the Earth, the
Moon, and the PBH, respectively. The elliptical orbit of m1 is
described by the blue line in the figure. The trajectory of them2 is
described by the solid red line, which always falls on the Y-Z
plane and parallels to the Y axis. d ¼ cðtÞeY þ beZ is the position
vector from m0 to m2, with cðtÞ and b being the components of d
on the Y axes and Z axes, respectively. v is the velocity vector of
the m2 and r is the position vector from m0 to m1.
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di
dt

¼ N
β

na
cosðωþ fÞ
1þ e cos f

; ð13Þ

dΩ
dt

¼ N
β

na
sinðωþ fÞ
1þ e cos f

csc i; ð14Þ

dω
dt

¼ β

nae
½−R cos f þ Tð1þ γÞ sin f� − cos i

dΩ
dt

; ð15Þ

dM
dt

¼ nþ β2

nae
½Rðcos f − 2γeÞ − Tð1þ γÞ sin f�; ð16Þ

with

df
dt

¼ n
β3

ð1þ e cos fÞ2 þ β

nae
½R cos f − Tð1þ γÞ sin f�;

ð17Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
, γ ¼ 1

1þe cos f and n ¼ 2π
P .

III. DETECTING PBH WITH BINARY SYSTEM:
THE MODEL

In this section we turn to calculate the evolution of the
osculating orbital elements of a binary system due to the
influence of the perturbing force produced by a PBH.
We first introduce the model for detecting PBH with the
Earth-Moon binary system, before obtaining the analytical
expression of the perturbing force, and the evolution of the

osculating orbital elements with time under different initial
conditions by numerical calculation. We also discuss the
dependence of the Earth-Moon distance variation Δr on φ,
i, Ω, ω, b, and m2 under different initial conditions.
Let us assume that the mass of the PBH is very small

compared to the Earth and the Moon, and the distance of
the PBH is very far away from the Earth-Moon binary
system, then we can establish a model of the perturbed two-
body problem for detecting the PBH, as sketched in Fig. 2.
In this model, the Earth is placed as the origin of the frame,1

the Moon performs the Kepler motion relative to the Earth,
and the force of the PBH on the Moon is regarded as a
perturbing one.
The perturbing acceleration is then given by

F ¼ Gm2ðd − rÞ
jd − rj3 ; ð18Þ

where r ¼ rex and d ¼ cðtÞeY þ beZ. Suppose that the
observation starts from the moment cð0Þ ¼ −100b, then
cðtÞ ¼ vt − 100b with v ¼ 350 km · s−1, which is the
typical velocity for halo dark matter relative to the
Earth [53]. Since dðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ cðtÞ2

p
≫ r, F can be

approximated as

F ≈
Gm2

dðtÞ3 ½cðtÞeY þ beZ − rex�: ð19Þ

Substituting Eqs. (6) and (7) into Eq. (19), we have

F ≈
Gm2

dðtÞ3 fðcðtÞ½sinΩ cosðωþ fÞ þ cos i cosΩ sinðωþ fÞ� þ b sin i sinðωþ fÞ − rÞex
þ ðcðtÞ½− sinΩ sinðωþ fÞ þ cos i cosΩ cosðωþ fÞ� þ b sin i cosðωþ fÞÞey
þ ½cðtÞð− sin i cosΩÞ þ b cos i�ezg: ð20Þ

Since F ¼ Rex þ Tey þ Nez, the components of the perturbing acceleration in the basis vectors (ex, ey, ez) are

R ¼ Gm2

dðtÞ3 fcðtÞ½sinΩ cosðωþ fÞ þ cos i cosΩ sinðωþ fÞ� þ b sin i sinðωþ fÞ − rg;

T ¼ Gm2

dðtÞ3 fcðtÞ½− sin Ω sinðωþ fÞ þ cos i cos Ω cosðωþ fÞ� þ b sin i cosðωþ fÞg;

N ¼ Gm2

dðtÞ3 ½cðtÞð− sin i cosΩÞ þ b cos i�; ð21Þ

where i, Ω and ω are parameters describing elliptical orbit
of the Moon. We can change the trajectory of the PBH
relative to the Earth-Moon binary system by changing the

initial values of i, Ω and ω. Substituting Eq. (21) into
Eqs. (11)–(17), we can get the variation of (a, e, i,Ω, ω,M)
with time.
Since the orbit under the perturbing force is tangent to

the Keplerian ellipse at each moment, and the position and
velocity of the particle in the real orbit are consistent with
the corresponding point in the osculating orbit at that

1We also assume that the center of mass of the binary is on the
Earth considering the small mass of the Moon compared to the
Earth.
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moment, so the relationship between a, e and r still satisfies
the two-body motion relationship [Eq. (3)]. Differentiating
Eq. (3), we can get the variation of r with time.

IV. NUMERICAL RESULTS

A. When the initial position is coplanar

We first discuss the influence of the perturbing force of
the PBH on the Earth-Moon binary system, when the
trajectory of the PBH is coplanar to the elliptical orbit of the
Moon, as shown in Fig. 3. Throughout the calculations of
this subsection, we set the following initial condition: i ¼ π

2
,

Ω ¼ π
2
, ω ¼ π

2
, b ¼ 10 AU and m2 ¼ 1020 kg.

Substituting the initial condition into Eq. (21), the
components of the perturbing acceleration are given by

R ¼ Gm2

dðtÞ3 ½cðtÞð− sin fÞ þ b cos f − r�; ð22Þ

T ¼ Gm2

dðtÞ3 ½cðtÞð− cos fÞ − b sin f�; ð23Þ

N ¼ 0: ð24Þ

Plugging them into Eqs. (11) and (12), the rate of change
of a and e then becomes

da
dt

¼ −
2

nβ
Gm2

dðtÞ3 ½cðtÞðeþ cos fÞ þ ðreþ bÞ sin f�; ð25Þ

de
dt

¼ −
β

na
Gm2

dðtÞ3
cðtÞ½1þ 2e cos f þ cos2f� þ ½rþ beþ ðreþ bÞ cos f� sin f

1þ e cos f
: ð26Þ

Combined with Eq. (3), evolutions of Δa, Δe, Δr with
time are obtained by numerical calculations. The results
are shown in Fig. 4. From these figures, we can see that

both Δa and Δr are oscillating quasiperiodically over
time, and their amplitudes first increase and then de-
crease. Δe, in contrast, increases and then decreases over
time monotonously. It is worth noting that all of them
(Δa, Δe and Δr) reach to zero in the end, which means
that the perturbing force of PBHs has no long-term effects
on the elliptical orbit of the Moon. The significance here
can be understood by analyzing Eqs. (3), (25), and (26).
First, since the term sin f is a periodic function with time,
its time integral over the total process is equal to zero.
Then, since the trajectory of the PBH is symmetrical
about the Z axis, the time integral of the term cðtÞ ¼
vt − 100b over the total process is also equal to zero.
Therefore, the time integral of Eq. (25) over the total
process will be equal to zero, which means that the
semimajor axis of the elliptical orbit does not change
in the end. In the same way, we can also understand both
Δe and Δr are equal to zero in the end, by analyzing
Eqs. (26) and (3).
In order to quantitatively study the change of the distance

between the Earth and the Moon under the perturbing
force of PBH, we calculate the evolution of Δr with time
under a fixed observation angle φ. The observation angle φ
is defined as

f ¼ 2mπ þ φ; ð27Þ

where m ¼ 0; 1; 2… and φ ∈ ½0; 2πÞ. For instance, φ ¼ 0
and φ ¼ π correspond to the moments when the Moon is at
perigee and apogee, respectively, which are called “normal
points.” In the case of φ ¼ 0, the evolution of the distance
between the Earth and the Moon corresponds to make

FIG. 3. Schematic diagram when the trajectory of the PBH is
coplanar to the elliptical orbit of the Moon. The elliptical orbit of
the Moon is depicted by the blue solid line, when cðtÞ ¼ −100b.
The elliptical orbit of the Moon is depicted by the red dotted line,
when cðtÞ ¼ 0.
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measurements when the Moon is at perigee. The rate of
change of a and e in this case are then given by

da
dt

¼ −
2

nβ
Gm2

dðtÞ3 ð1þ eÞcðtÞ; ð28Þ

de
dt

¼ −
2β

na
Gm2

dðtÞ3 cðtÞ: ð29Þ

Finally, the evolution of Δr with time can be obtained by
numerical calculating Eqs. (3), (28) and (29). The results
are presented as the black solid line in Fig. 5. From the
black solid line with φ ¼ 0, we can see that jΔrj increases
first and then decreases over time monotonously, and
reaches a maximum at a certain moment. The significance
here can be understood by analyzing the perturbing force
of PBH on the Moon. When the Moon is at perigee with
φ ¼ 0 in Fig. 3, the direction of the Moon’s velocity is
along the negative direction of the Y axis and the perturbing
force of PBH on the Moon can be decomposed into the
component ReY along Y-axis direction and the component
TeZ along the Z-axis direction. The component ReY is
consistent with the direction of the Moon’s velocity when

cðtÞ < 0, which causes the Moon’s velocity to increase.
The greater the velocity, the smaller the orbital radius,
according to the law of universal gravitation. The above
means that jΔrj increases with time when cðtÞ < 0.
Similarly, it can be analyzed that the component ReY is
opposite to the direction of the Moon’s velocity when
cðtÞ > 0, which causes jΔrj to decrease with time. The
component TeZ is perpendicular to the direction of the
Moon’s velocity throughout the process, which does not
change the magnitude of the Moon’s velocity. Therefore,
jΔrj increases and then decreases over time monotonously
throughout the process, and reaches the maximum when
cðtÞ ¼ 0.
In order to quantitatively analyze the relationship

between Δr and φ, let us plot the evolution of Δr with
time at different observation angles φ as shown in the
left panel of Fig. 5, and the dependence of the maximum
of Δr on φ as shown in the right panel of Fig. 5. From the
right panel of Fig. 5, we can see that Δr acts like a
trigonometric function of φ. The value of Δr is equal to
zero when φ tends to π

2
and 3π

2
, and jΔrj reaches its

maximum value (≈6.46 mm) when φ is equal to 0 or π.
This means that the greatest change in the distance between
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the Earth and the Moon can be observed by the normal
point measurement. Since the current detection accuracy
of the Earth-Moon distance can reach the millimeter
level [89–92], we can accurately detect PBH with the
Earth-Moon binary system, when the system reaches
certain initial conditions.
Recalling the change curve of e with time in Fig. 4 and

the above analysis, we can roughly speculate that the
elliptical orbit of the Moon first moved down as a whole
and then moved up back to its initial position over time.
The offset and eccentricity of the elliptical orbit reach the
maximum when cðtÞ ¼ 0. In the end, we can roughly
represent the elliptical orbit of the Moon with the red dotted
line in Fig. 3.

In what follows, let us turn to investigate the effects of
the perturbing force on the Earth-Moon binary system
when the observation angle φ ¼ 0 under different azi-
muths, distances and masses of the PBH, which is
equivalent to vary a parameter in i, Ω, ω, b, m2 and keep
other parameters unchanged. The details are shown in
the left panels of Figs. 6–10. In addition, the dependence of
Δr on i, Ω, ω, b, m2 is presented in the right panels of
Figs. 6–10, respectively.
From the left panel in Figs. 6 and 7, we can see that

simply changing i has little effect on Δr, while changing Ω
(with other parameters fixed) has larger effects on Δr, and
Δr can always return to zero in the end, regardless the
values of i and Ω. This implies that the perturbing force of
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when cðtÞ ¼ 0.

0 50 100 150 200 250 300 350

-8

-6

-4

-2

0

180 181 182 183
-8.0

-7.6

-7.2

-6.8

-6.4

-6.0

-5.6

T(months)

�r
(m

m
)

i	���
i	���

i	�
i	���

i	����

-7.8

-7.5

-7.2

-6.9

-6.6

-6.3

�r
(m

m
)

i(rad)
� ������� � ��

FIG. 6. Left panel: the evolution of Δr over time when φ ¼ 0 under different i and other parameters fixed. Right panel: the peak value
ofΔrðTÞ (i.e., the values ofΔr at the dotted line in the figure on the left panel) as a function of i, which corresponds to the dependence of
Δr on i when cðtÞ ¼ 0.

DETECTING SUBLUNAR-MASS PRIMORDIAL BLACK HOLES … PHYS. REV. D 107, 084019 (2023)

084019-7



PBH has no long-term effects on the elliptical orbit of the
Moon. From the right panels in Figs. 6 and 7, we can see
that Δr acts like a sinusoidal function of i and Ω when
cðtÞ ¼ 0, which is consistent with the calculated results
in Ref. [93].
Figure 8, however, presents another situation. It can be

seen thatΔr cannot return to zero for any ω ≠ π
2
or 3π

2
, which

means that the perturbing force of PBH will have long-term
effects on the elliptical orbit of the Moon. Again Δr acts
like a trigonometric function of ω as shown in the right
panel in Fig. 8.
The left panel in Fig. 9 shows that the widths of the peaks

of the ΔrðTÞ curve increase as b increases, which means
that the farther the PBH is from Earth, the longer

observation time is required. In addition, the peak value
of Δr is almost inversely proportional to b, as clearly
shown in the right panel of Fig. 9. This means that the
farther the PBH from the Earth-Moon binary system is, the
smaller the offset of the Moon’s elliptical orbit will be.
Finally, let us turn to Fig. 10, which shows that Δr is

proportional to m2, and is consistent with the results in
Refs. [94,95]. Therefore, the greater the mass of the
PBH is, the greater the offset of the Moon’s elliptical
orbit will be. Roughly speaking, the heavier the
PBHs are, the more possibilities to detect them are.
However, PBHs with mass greater than the lunar mass
(∼1023 kg) will make our perturbative calculations
breakdown.
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B. When the initial position is noncoplanar

We now discuss the influence of the perturbing force
of the PBH on the Earth-Moon binary system, when the
trajectory of the PBH is noncoplanar to the elliptical orbit
of the Moon. Throughout the calculations of this subsec-
tion, we set the following initial condition: i ¼ π

4
, Ω ¼ π

4
,

ω ¼ π
4
, b ¼ 10 AU and m2 ¼ 1020 kg.

Evolutions ofΔa,Δe,Δrwith time are shown in Fig. 11.
One can see that, after the PBH passes through, the
semimajor axis of the orbit remains unchanged, while
the eccentricity of the orbit increases which leads to the
distance between the Earth and the Moon changing. This
means that the perturbing force of PBH has long-term
effects on the Earth-Moon binary system.
Comparing Fig. 4 with Fig. 11, we find that Δr is mainly

determined by Δe. This result can be explained by
analyzing the relationship between Δa, Δe and Δr via
Eq. (3). According to Eq. (3), Δr is obtained by

Δr ¼ 1 − e2

1þ e cos f
Δa

þ a

�
−2eð1þ e cos fÞ − ð1 − e2Þ cos f

ð1þ e cos fÞ2
�
Δe; ð30Þ

where a ≈ 3.847 × 108 m and e ≈ 0.055 are the initial
values of the semimajor axis and eccentricity of the
Moon’s elliptical orbit, respectively. When the observation
point is at perigee, namely, φ ¼ 0, we have

1 − e2

1þ e cos f
≈ 1; ð31Þ

−2eð1þ e cos fÞ − ð1 − e2Þ cos f
ð1þ e cos fÞ2 ≈ −1: ð32Þ
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Then

Δr ≈ Δa − aΔe: ð33Þ

Comparing Fig. 11, one can see that the magnitude ofΔa is
much smaller than the term aΔe, therefore Δr is mainly
determined by Δe.
The evolution of Δr with time under different observa-

tion angles φ and the dependence of Δr on φ are shown in
Fig. 12. From the right plane of Fig. 12, one can see that the
long-term effects of the perturbing force of PBH on the
Earth-Moon distance are different under different obser-
vation angles. Combining the right plane of Figs. 5 and 12,
one can further see that the dependence of Δr on φ is the
same when i, Ω and ω take different initial values. This
means that Δr always acts as a cosine function of φ, no
matter where the orientation of the PBH is relative to the
Earth-Moon binary system.
The effects of the perturbing force of PBH on the Earth-

Moon binary system under different azimuths, distances
and masses of the PBH, which is equivalent to varying one
of the parameters i, Ω, ω, b, m2 and let other parameters

fixed, are shown in the left panels of Figs. 13–17,
respectively. The dependences of Δr on i, Ω, ω, b, m2,
on the other hand, are shown in the right panels of
Figs. 13–17, respectively.
From these figures, one can see that Δr is insensitive to

Ωwhen cðtÞ ¼ 100b, comparing to i andω, whose changes
would have larger effects onΔr. In the coplanar case we see
the same behavior. Comparing the right panels of Figs. 8
and 15, one can see that Δr always acts as a cosine function
of ω, regardless of whether the PBH and the elliptical orbit
of the Moon are coplanar or not. In addition,Δr can always
return to zero, as long as the value of ω is π

2
or 3π

2
, no matter

what the values of i andΩ are. This point can be understood
as follows. First, the elliptical orbit of the Moon is perfectly
symmetrical about the Z axis when the value of ω is π

2
or 3π

2
.

Additionally, the trajectory of the PBH is symmetrical
about the Z axis. This results in the work done by the
perturbing force of PBH being equal to zero over the
process. So the perturbing force of the PBH will not have
long-term effects on the Earth-Moon binary system when
the initial value of ω is π

2
or 3π

2
, no matter what the initial

values of i and Ω are. Combining Figs. 9, 10, 16, and 17,
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one can see that the dependence of Δr on b or m2 is the
same, regardless of whether the initial position of the PBH
is coplanar with the Earth-Moon binary system or not.
It is worth noting that in most cases, the values of Δr are

within the sensitivity of the current observations, such as
the lunar laser ranging (LLR), whose normal point meas-
urement can determine the Earth-Moon distance to as
precise as 1 mm [92]. That is to say, taking b ¼ 10 AU
and cðtÞ ¼ 100b as an example, signals for PBHs with
mass larger than 1019 kg should be able to detect by the
normal point measurement.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we give a new proposal which can be used
to detect sublunar-mass PBHs. In addition, by treating
PBH as a perturbative term, we develop a framework to
calculate the orbits of a generic binary system such as the
Earth-Moon binary system. In order for the perturbative
calculations to be trustable, one needs to assume that the
PBH is far away from the Earth-Moon binary (far greater
than 1 AU); the mass of the PBH should be less than the
Moon. These requirements constrain that the motivated
PBH should have the mass less than 1022 kg, a sublunar-
mass PBH.
Our numerical results show that the Earth-Moon distance

is sensitive to the initial values of the system. Our
discussion divides into two cases. One is for the case
where the initial position of the PBH is coplanar to the
Earth-Moon binary system, the other is the opposite, i.e.,
the PBH is noncoplanar to the Earth-Moon binary. Both
cases exhibit many similar behaviors. For example, in both
cases, the Earth-Moon distance difference between with
and without PBH Δr always acts as a cosine function of φ,
and jΔrj reaches its maximum value when φ is equal to 0
or π, which means that the greatest change in the distance
between the Earth and the Moon can be observed by the
normal point measurement. Similarly, in both cases, Δr
acts as a trigonometric function of i, ω and Ω, and there
always have been long-term effects to the Earth-Moon
orbits except for the case with ω ¼ π

2
; 3π
2
, no matter what the

initial values of other parameters are. Also, the long-term
effects to the Earth-Moon orbits are insensitive to the initial
value of Ω, comparing to those of i and ω, whose initial
values would have a significant impact on the long-term
effects. In addition, we observe the similar behavior of Δr
varying with the distance b in both cases. The peak value of
Δr gradually decreases as b increases, which means that the
further the PBH from the Earth-Moon binary system is, the
smaller the offset of the Moon’s elliptical orbit will be. Our
results also show that Δr is proportional to m2, which is
consistent with the calculated results in Refs. [94,95].
Therefore, the greater the mass of the PBH is, the greater
the offset of the Moon’s elliptical orbit will be.

Our results provide strong motivation for further work
to develop the binary system as an accurate measurement
tool for sublunar-mass PBHs. It is of great interest to
develop some data analysis pipelines to conduct PBH
searches with laser-ranging data, such that one can
efficiently study the sublunar-mass PBHs, and put new
observational constraints on searching these sublunar-
mass PBHs. Furthermore, we can extend our analysis
to investigate the impact of PBHs on other binary systems,
such as the Sun-Mercury and Sun-Mars binary systems.
As a concrete example, let us consider the impact of PBHs
on the Sun-Mercury system. To do this, we first substitute
the initial value of Mercury’s orbit into our setup, choose
the initial conditions as i ¼ π

2
, Ω ¼ π

2
, ω ¼ π

2
, b ¼ 100 AU,

m2 ¼ 1022 kg, and then follow the methodology presented
in this paper. Finally, we find that the deviation of
Mercury’s orbit caused by PBH perturbations is approx-
imately 20 cm. With current measurement accuracy of the
distance between Earth and Mercury at approximately
20 cm [96], monitoring the distance between Earth and
Mercury may provide a means to detect PBHs.
In this work, we focused on the effects of a single

PBH sweeping past the Solar System. However, it is also
interesting to investigate the effects of multiple PBHs with
different masses passing close to the Earth-Moon system.
To see the possibility of this phenomena, let us estimate the
upper bound on the expected rate of two PBHs sweeping
past the Solar System simultaneously. To estimate the event
rate, we first consider the fraction of dark matter in the form
of PBHs, denoted as fPBH ¼ ρPBH

ρDM
. For a given mass, the

event rate P of a PBH sweeping past the Solar System with
a radius of 100 AU can be calculated using the following
equation [94]:

P ¼ 0.1607 yr−1 ·
fPBH
1.0

·
ρDM

0.3 GeV · cm−3 ·
v

350 km · s−1

·
1020 kg
MPBH

·

�
b

100 AU

�
2

: ð34Þ

From the equation, we can see that the event rate P is
0.1607 yr−1 for a PBH with a mass of 1020 kg, a distance
of b ¼ 100 AU, a velocity of v ¼ 350 km · s−1 [53], and
the assumption that all dark matter is composed of PBHs
with a certain mass, i.e., fPBH ¼ 1. Based on this esti-
mation, we roughly get that the probability of two PBHs
with a mass of 1020 kg sweeping past the Solar System
simultaneously is about 0.0258 yr−1. Therefore, inves-
tigating the effects of multiple PBHs passing close to
the Earth-Moon system is a promising avenue for future
research.
As a future work, it is also of great interest to extend our

model to analyze the relationship between fPBH and MPBH
in Eq. (34) to study the signatures in the usual plane
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abundance vs PBH mass. This can be done under the
assumption that MPBH is monochromatic. Simply put, as
suggested in our work, the observed quantity Δr is
proportional to mPBH and inversely proportional to b, that
is, Δr ∼ MPBH

b . Substituting this into Eq. (34), we obtain

fPBH ∼
P ·△r2

ρDM · v ·MPBH
: ð35Þ

Since ρDM and v are known quantities, and P and Δr are
observed quantities in Eq. (35), fPBH is inversely proportional
to MPBH. This means that it will be possible to obtain new
boundsonPBHDMwith amonochromaticmass distribution.
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