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We complete the nonlocal-in-time effective-one-body (EOB) formalism of the conservative dynamics
for massless scalar-tensor (ST) theories at third post-Newtonian (PN) order. The nonlocal-in-time EOB
Hamiltonian is obtained by mapping the order-reduced Hamiltonian corresponding to the nonlocal-in-time
Lagrangian derived in [Phys. Rev. D 99, 044047 (2019)]. To transcribe the dynamics within the EOB
formalism, we use a strategy of order-reduction of nonlocal dynamics to a local ordinary action-angle
Hamiltonian. We then map this onto the EOB Hamiltonian to determine the nonlocal-in-time ST
corrections to the EOB potentials ðA; B;QeÞ at 3PN order.
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I. INTRODUCTION

The direct observation of gravitational waves by the
LIGO-Virgo Collaboration in 2015 [1] emitted by inspiral-
ling compact binary, opened new avenues for probing the
dynamics in the strong gravity regime [2–8] and led to the
first bounds on high-order post-Newtonian coefficients [9].
In the future, the next generation of detectors, such as the
Einstein Telescope [10] and Cosmic Explorer [11] will
allow a better understanding of the strong-field dynamics,
by constraining the parameters of the gravitational theories
alternative to Einstein’s general relativity (GR).
The simplest well-posed theory among the alternative

theories of gravity is the addition of a massless scalar field
to GR, scalar-tensor (ST) theories, which are thoroughly
studied and tested [12–17]. Besides the motivation to explain
the accelerated expansion of the universe as fðRÞ-theories
[18], the additional gravitational scalar field also naturally
arises in UV complete alternate theories of GR.
The detection of gravitational waves requires a bank of

highly accurate waveform templates, which are match
filtered against the data observed in detectors. Therefore,
to conduct the tests of GR, accurate waveform templates are
required for the alternative theories of gravity. Currently,
the vast majority of tests conducted on GW signals detected
from the coalescing black-hole and neutron-star binaries is
based on theory-independent tests such as searches for

generic GR-violating features (dispersion, nontensorial
polarizations, etc.) [19–22]. Here, we focus on a specific
model of massless scalar-tensor theory.
The analytical knowledge of the two-body problem in

ST theories, both for the dynamics [23–29] and the wave-
form generation [30,31] through post-Newtonian (PN)
theory is widely increasing. The presence of the finite-size
(tidal) effects in ST theories further modify the dynamics at
the 3PN order [27], and the tidal Love numbers (hence the
tidal polarizability) in ST theories might be very different
from their GR counterparts [32]. This can then further
impact the constraints put on the equation of state of cold
matter at extreme densities [33–37].
The important violations for ST theories arises through

the nonperturbative strong field effects in neutron stars such
as spontaneous scalarization [14]. The most stringent
constraints for ST theories come from binary pulsar
observations. There is hope that future gravitational wave
(GW) detections of coalescing compact binaries will
complement current studies on constraints using genuine
strong-field information and additional terms in the radi-
ation, i.e., dipolar radiation which is not present in GR, due
to the scalar extension of GR [16,38,39].
This present work is a part of a series of articles to

construct the waveform templates for ST theories by
recasting the PN results within the effective-one-body
(EOB) description of the two-body problem [40–46].
The generalization of the EOB method to ST theories at
the 2PN level has been recently worked out [47,48]. The
aim of this paper is to determine the complete nonlocal-in-
time EOB potentials following our results of [49] at 3PN
order starting from the 3PN nonlocal-in-time Lagrangian in
ST of [25,26]. Hereafter, the companion paper [49] will be
referred as Paper I.
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The paper is organized as follows. In Sec. II, we give a
summary of results obtained in Paper I. Then, in Sec. III we
derive the conserved energy for nonlocal-in-time part using
two methods, (i) non-order-reduced nonlocal Hamiltonian
using nonlocal phase shift, and (ii) order-reduction of non-
local dynamics to local ordinary action-angle Hamiltonian.
Finally, in Sec. IV we map the nonlocal-in-time ordinary
Hamiltonian into an EOB Hamiltonian at 3PN order.

II. SUMMARY OF PREVIOUS RESULTS

We consider monoscalar massless ST theories described
by the following action in the Einstein frame (the scalar
field minimally couples to the metric),

S ¼ c4

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μφ∂νφÞ

þ Sm½Ψ;AðφÞ2gμν�; ð2:1Þ

where gμν is the Einstein metric, R is the Ricci scalar, φ is
the scalar field, Ψ collectively denotes the matter fields,
g≡ detðgμνÞ, and G is the bare Newton’s constant. As in
Paper I (see Table I therein), we adopt the conventions and
notations of Refs. [12,14]. In the Einstein frame, the
dynamics of the scalar field arises from its coupling to
the matter fields Ψ, and the field equations can be found in
Ref. [12] where the parameter

αðφÞ ¼ ∂ lnA
∂φ

; ð2:2Þ

arising in the equations of motion measures the coupling
between the matter and the scalar field. The scalar field is
nonminimally coupled to the metric in the Jordan frame
(physical frame)

g̃μν ¼ AðφÞ2gμν; ð2:3Þ

where g̃μν is the metric in the Jordan frame.
We follow the approach suggested by [50] to “skeleton-

ize” the compact, self-gravitating objects in ST theories
as point particles, i.e., the total mass of each body is
dependent on the local value of the scalar field. The
skeletonized matter action with the scalar field dependent
mass m̃IðφÞ is then given by

Sm ¼ −
X
J¼A;B

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃μν

dxμ

dλ
dxν

dλ

r
m̃JðφÞ; ð2:4Þ

where λ is the affine parameter. Since g̃μν ¼ AðφÞ2gμν, the
Einstein-frame mass is defined as

mðφÞ ¼ AðφÞm̃ðφÞ: ð2:5Þ
In Paper I, we first derive the ordinary Hamiltonian

(dependent only on the positions and momenta) using the

contact transformation at 3PN order starting from the
Lagrangian of Ref. [26] only for the local-in-time part of
the dynamics. The Jordan-frame parameters of Ref. [26]
that encompass the scalar field effect are converted to the
dimensionless Einstein-frame parameters (see Table I). The
mass function mðφÞ is used to define these dimensionless
body-dependent parameters following Refs. [12,14,48] i.e.

αI ¼
d lnmðφÞI

dφ
; ð2:6Þ

βI ¼
dαI
dφ

; ð2:7Þ

β0I ¼
dβI
dφ

; ð2:8Þ

β00I ¼
dβ0I
dφ

: ð2:9Þ

Here, we follow the notations of Paper I for the binary
parameters and use the same notation as [25,26] to denote
weak-field and strong-field parameters.
Finally, we then determine the ST corrections to the EOB

metric potential ðA; B;QeÞ at 3PN order for the local in
time (instantaneous) part of the dynamics by mapping the
EOB Hamiltonian in Damour–Jaranowski–Schäfer (DJS
hereafter) gauge, first mentioned in [42]

Ĥeff ¼
Heff

μ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr̂Þ

�
1þ p̂2

r

Bðr̂Þ þ
p̂2
ϕ

r̂2
þ Q̂e

�s
; ð2:10Þ

where p̂r; p̂ϕ are the dimensionless radial and angular
momenta, and r̂ð¼ r=ðGABMÞ is the dimensionless radial
separation, to the ordinary two-body Hamiltonian (here,
and after the superscript hat is used to denote the dimen-
sionless variables).
The three EOB potentials at 3PN formally read

Aðr̂Þ ¼ 1 −
2

r̂
þ a2

r̂2
þ a3

r̂3
þ a4

r̂4
; ð2:11Þ

BðrÞ ¼ 1þ b1
r̂
þ b2

r̂2
þ b3

r̂3
; ð2:12Þ

Q̂eðr̂Þ ¼ q3
p̂4
r

r̂2
. ð2:13Þ

The GR and ST corrections in the ν-dependent coefficients
(ai, bi) are then separated as

ai ¼ aGRi þ δaSTi ; ð2:14Þ

bi ¼ bGRi þ δbSTi ; ð2:15Þ
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q3 ¼ qGR3 þ δqST3 : ð2:16Þ

Since there are also nonlocal-in-time and tidal contribu-
tions at 3PN order in ST theory, all the 3PN ST coefficients
can thus be decomposed as Eq. (5.23) of Paper I. The
complete expressions of local-in-time ST corrections at
3PN can be found in Eqs. (5.14)–(5.16) of Paper I.
In Paper I, we also derive the nonlocal-in-time (tail) and

tidal corrections only for the circular orbits using the gauge
invariant energy for circular orbits given in Refs. [26,27].
The complete expression for these coefficients can be found
in Eqs. (5.25)–(5.27) of Paper I.

III. TAIL CONTRIBUTION TO THE 3PN
DYNAMICS

The nonlocal-in-time two-body 3PN Lagrangian for
massless ST theory obtained in Ref. [26] is in harmonic
coordinates, i.e., it depends (linearly) on the acceleration of
the two bodies. In this section, we will use two different
methods to derive the Noetherian conserved energy for the
tail contributions. First, we will remove the acceleration
dependence from the Lagrangian (hence, the Hamiltonian)
and stay within the non-order-reduced nonlocal framework
(as done in Refs. [51,52] for GR). Second, we will derive
the order-reduced, local Hamiltonian using the action-angle
variables (see, Ref. [45] for GR).

A. Non-order-reduced ordinary Hamiltonian

In Paper I, we derived the ordinary (dependent only
on positions and momenta) Hamiltonian for local-in-time
contribution using contact transformation (see, Appendix A
of Paper I for the contact transformation). Now, due to
presence of nonlocal piece in the nonlocal-in-time part of
the Hamiltonian we need to find the nonlocal coordinate
shift that removes the acceleration dependence from the tail
part of the Lagrangian of Ref. [26] (see, Refs. [51,52] for
GR). Corresponding to this ordinary Lagrangian, we can
then derive the ordinary Hamiltonian.
The tail part of the Lagrangian at 3PN order reads [26],

Ltail ¼ 2G2M
3c6

ð3þ 2ω0ÞPf2rAB=c
Z

∞

−∞

dτ
jτj I

ð2Þ
s;i ðtÞIð2Þs;i ðtþ τÞ;

ð3:1Þ

where Pf is the Hadamard partie finie function, Hadamard
scale rABð¼ rÞ is the relative separation of two bodies, and

Ið2Þs;i is the second time derivative of the dipole moment.
Here, we find the coordinate shift that transforms this
Lagrangian into the same expression but with the deriva-
tives of the dipole moment evaluated using the Newtonian
equations of motion. In the center-of-mass (COM) frame in
notations of Ref. [25,26] it is,

I
´ ð2Þ
s;i ¼ 2MνðsA − sBÞ

ϕ0ð3þ 2w0Þ
�
−
GABM
r2

niAB

�
; ð3:2Þ

where sA, sB are the sensitivity of two bodies.
As the nonlocal contribution starts at 3PN order, the

ordinary Lagrangian is

Ltail
ord ¼ Ltail þ

X
J¼A;B

mJ

�
−aiJ −

X
J≠K

GABmK

r2
niJK

�
ξJ;i;

ð3:3Þ

where Ltail
ord is given by the same expression as Eq. (3.1) but

with the second time derivative of the dipole moment
replaced by its on-shell value given in Eq. (3.2), and the
nonlocal coordinate shift, ξJ;j,

ξJ;j ¼
1

mJ

2G2M
3c6

ð3þ 2w0Þ
�
−
mJð1 − 2sJÞ
ϕ0ð3þ 2w0Þ

�
δij

× Pf2r=c

Z
∞

−∞

dτ
jτj I

´ ð2Þ
s;i ðtþ τÞ: ð3:4Þ

The ordinary Hamiltonian is then derived using
the ordinary Legendre transformation, Hord ¼

P
A pAvA −

Lord which reads Hord ¼ Hloc
ord þHtail

ord, where the local
contribution Hloc

ord is derived in Paper I (see Appendix C)
and the tail contribution is

Htail
ord ¼ −

2G2M
3c6

ð3þ 2w0ÞPf2r=c
Z

∞

−∞

dτ
jτj I

´ ð2Þ
s;i ðtÞI

´ ð2Þ
s;i ðtþ τÞ:

ð3:5Þ

The tail part of the Hamiltonian is just opposite to the tail
part of Lagrangian.
As shown in Ref. [46,52] for the non-order-reduced,

nonlocal framework the Noetherian conserved energy
(Econs) is not given by the Hamiltonian but is given by,
Econs ¼ Htail

ord þ δH. This additional term δH consists of
purely a constant term (DC type) and time oscillating term
with zero average value (AC type) and is same as given in
Eq. (4.10) of Ref. [26].

B. Order-reduced ordinary Hamiltonian

The second method to derive the conserved energy for
tail part is to work in the order-reduced, local framework as
given in Refs. [45,46] for GR.
The tail part of the Hamiltonian in ST theory is,

Htail ¼ −
2G2M
3c6

ð3þ 2ω0Þ
�
Pf2r=c

Z
∞

−∞

dτ
jτj I

ð2Þ
s;i ðtÞIð2Þs;i ðtþ τÞ

− 2 ln

�
r̂
a

�
Ið2Þs;i ðtÞ2

�
: ð3:6Þ
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As mentioned in Ref. [52], in the action-angle form there
should be an additional term [second term in Eq. (3.6)]
which is local and accounts for dependence of Hadamard
partie finie function on the radial separation (r) at time t
i.e., r̂ ¼ að1 − e cosðuÞÞ in action-angle variables.
The basic methodology we use to order-reduce the

nonlocal dynamics of the above form is based on
Refs. [45,46] for GR, and consists of four main steps:
(i) Reexpress the Hamiltonian in terms of action angle
variables, (ii) “order-reduce” the nonlocal dependence on
action angle variable, (iii) expand it in powers of eccentric-
ity, and (iv) eliminate the periodic terms in order-reduced
Hamiltonian by a canonical transformation. All of these
steps lead to the order-reduced ordinary local Hamiltonian
for the tail part in terms of action-angle variables.
Let us consider the expression of nonlocal-in-time piece

of Eq. (3.6), i.e.

Kðt; τÞ ¼ ̈Is;iðtÞ̈Is;iðtþ τÞ: ð3:7Þ

To order reduce the nonlocal piece, we use the equations of
motion to express the phase-space variables at shifted time
tþ τ in terms of the phase-space variables at time t. As the
zeroth order equations are Newtonian equations, it will be
convenient to use the action-angle form of the Newtonian
equations of motion,

∂l
∂t̂

¼ ∂H0

∂L
¼ 1

L3
¼ ΩðLÞ; ∂L

∂t̂
¼ ∂H0

∂l
¼ 0;

∂G
∂t̂

¼ ∂H0

∂g
¼ 0;

∂g
∂t̂

¼ ∂H0

∂G
¼ 0; ð3:8Þ

where t̂ ¼ t=ðGABMÞ is the dimensionless time variable,
ðL; l;G; gÞ are the action-angle variables. The zeroth-
order (Newtonian) Hamiltonian in action-angle variable
is H0 ¼ −1=ð2L2Þ.
Here, the variable L is conjugate to the “mean anomaly”

l and G is conjugate to argument of periastron g. In terms
of the Keplerian variables, semimajor axis a, and eccen-
tricity e, these are

L ¼ ffiffiffi
a

p
; G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2Þ

q
: ð3:9Þ

From Eq. (3.8), the variables L, G and g are independent
of time, and l varies linearly with time, hence it will be
sufficient to use

lðtþ τÞ ¼ lðtÞ þΩτ̂; ð3:10Þ

where τ̂ ¼ τ=ðGABMÞ. The order-reduced nonlocal in time
expression of Eq. (3.7) becomes

Kðt; τÞ ¼
�

1

GABM

�
4

Kðt̂; τ̂Þ

¼
�

Ω
GABM

�
4 d2

dl2
Is;iðlÞ

d2

dl2
Is;iðlþ Ωτ̂Þ: ð3:11Þ

Using the Fourier decomposition of dipole moment
given in Eq. (A11), we find the structure of nonlocal-in-
time expression Kðt; τÞ and hence the Hamiltonian. As
shown in [45] for GR, all the periodically varying terms
can be eliminated by a suitable canonical transformation.
Hence, the order-reduced Hamiltonian can be further
simplified by replacing Htail with its l-average value

Htail ¼
Z

2π

0

dlHtail: ð3:12Þ

Using the result

PfT

Z
∞

0

dv
v
cosðωvÞ¼−ðγEþ lnðωTÞÞ ∀ ðω> 0Þ; ð3:13Þ

where γE is the Euler’s constant, and inserting the expres-
sion of r from Eq. (A7), the Hamiltonian, Eq. (3.12), reads

H̄tail ¼
8G2M

3

�
Ω

GABM

�
4

ð3þ 2w0Þ
X∞
p¼1

p4jIs;iðpÞj2

× ln

�
eγE

2paΩ
c

�
: ð3:14Þ

Now, inserting the Fourier-Bessel expansion of scalar
dipole moment from Eqs. (A13)–(A14) (see, Appendix for
derivation) in Eq. (3.14), the real two-body nonlocal-in-
time Hamiltonian in order-reduced, local framework is (in
notations of Paper I)

ˆ̄Htail ≡ H̄tail

μ
¼ 2ν

3a4

�
2δþ þ γ̄ABðγ̄AB þ 2Þ

2

�X∞
p¼1

p2

e2
f4e2J2p−1ðpeÞ þ ð8 − 4e2ÞJ2pðpeÞ − 8eJp−1ðpeÞJpðpeÞg

×

�
γE þ ln

�
2pa−1=2

c

��
: ð3:15Þ

Expanding the result in powers of eccentricity, the Hamiltonian as an expansion in eccentricity up to order of e4 reads
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ˆ̄Htail ¼
2ν

3a4

�
2δþ þ γ̄ABðγ̄AB þ 2Þ

2

��
2 lnð2Þ − lnðaÞ þ 2γE þ e2ð14 lnð2Þ þ 6γE − 3 lnðaÞÞ

þ e4
�
45

4
γE −

3

4
lnð2Þ þ 729

32
lnð3Þ − 45

8
lnðaÞ

�
þOðe6Þ

�
: ð3:16Þ

IV. SCALAR TENSOR CORRECTIONS TO
EFFECTIVE ONE BODY AT 3PN:TAIL

In this section, we will derive the complete tail
corrections to the EOB metric potentials ðA;B;QeÞ for
ST theories at 3PN order.
Similar to the decomposition of complete 3PN coeffi-

cient δaST4 in Eq. (5.23) of Paper I, we decompose the
complete 3PN ST coefficients δbST3 ; δqST3 as

δbST3 ¼ δbST3;loc þ δbST3;nonloc þ δbST3;tidal; ð4:1Þ

δqST3 ¼ δqST3;loc þ δqST3;nonloc þ δqST3;tidal; ð4:2Þ

where the local contributions ðδbST3;loc; δqST3;locÞ are derived in
Paper I [see, Eqs. (5.14)–(5.15)], ðδbST3;nonloc; δqST3;nonlocÞ are
the nonlocal contributions, and ðδbST3;tidal; δqST3;tidalÞ are the
tidal contributions. The nonlocal contributions can be
further decomposed similar to Eq. (5.24) of Paper I as

δaST4;nonloc ¼ δaST4;nonloc;0 þ δaST4;nonloc;log lnðr̂Þ; ð4:3Þ

δbST3;nonloc ¼ δbST3;nonloc;0 þ δbST3;nonloc;log lnðr̂Þ; ð4:4Þ

δqST3;nonloc ¼ δqST3;nonloc;0 þ δqST3;nonloc;log lnðr̂Þ: ð4:5Þ

Inserting the split of the EOB functions (A, B, q3) using
Eqs. (4.1)–(4.2) and Eq. (5.23) of Paper I in the effective
Hamiltonian of Eq. (2.10), and then after expanding the
right-side into a Taylor series of 1=c2, we obtain

Ĥeff ¼ Ĥloc
eff þ Ĥnonloc

eff ; ð4:6Þ

where Ĥloc
eff is computed only by the local contribu-

tions ðδaST4;loc; δbST3;loc; δqST3;locÞ and Ĥnonloc
eff is the nonlocal

contribution of Hamiltonian computed by ðδaST4;nonloc;
δbST3;nonloc; δq

ST
3;nonlocÞ. The nonlocal contribution Ĥnonloc

eff

reads

Ĥnonloc
eff ¼ 1

2

�
δaST4;nonloc

1

r̂4
− δbST3;nonloc

p̂2
r

r̂3
þ δqST3;nonloc

p̂4
r

r̂2

�
:

ð4:7Þ

To map the real two-body dynamics to EOB, we express
the nonlocal effective Hamiltonian, Ĥnonloc

eff , in action-
angle variables L, l, G, and g (hence the Keplerian variables
a and e) and compute its l-averaged value,

ˆ̄Hnonloc
eff ¼ 1

2π

Z
2π

0

dlĤnonloc
eff : ð4:8Þ

The explicit expression of Ĥnonloc
eff depends on l-average

monomials involving powers of 1=r̂ and p̂r [and also lnðr̂Þ
from Eqs. (4.3), (4.4), and (4.5)]. These computations can
be performed by expanding Eq. (4.7) in terms of eccen-
tricity up to e5 using the Newtonian equations of motion in
action-angle form recalled in Sec. III B. The l-averaged
value we obtain is

ˆ̄Hnonloc
eff ¼ 1

2a4

�
δaST4;nonloc;0 þ δaST4;nonloc;log lnðaÞ þ

�
3δaST4;nonloc;0 −

7

4
δaST4;nonloc;log −

1

2
δbST3;nonloc;0 þ 3δaST4;nonloc;log lnðaÞ

−
1

2
δbST3;nonloc;log lnðaÞ

�
e2 þ

�
45

8
½δaST4;nonloc;0 þ δaST4;nonloc;log lnðaÞ� −

5

4
½δbST3;nonloc;0 þ δbST3;nonloc;log lnðaÞ�

þ 3

8
½δqST3;nonloc;0 þ δqST3;nonloc;log lnðaÞ� −

171

32
δaST4;nonloc;log þ

9

16
δbST3;nonloc;log

�
e4 þOðe6Þ

�
: ð4:9Þ

The final step is then to map the real two-body dynamics to EOB metric by the nontrivial map,

Ĥreal ¼
Hreal

μ
¼ 1

ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
; ð4:10Þ

between the EOB Hamiltonian ðĤeffÞ and real two-body Hamiltonian ðĤrealÞ. The quadratic map relating the two
Hamiltonians is proven at all PN orders in GR and STwithin the post-Minkowskian scheme in Ref. [53]. However, it can be
seen that only for the nonlocal contributions at 3PN order, the map relating the two nonlocal Hamiltonians is
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ˆ̄Hnonloc
eff ¼ ˆ̄HII

real;nonloc; ð4:11Þ

where ˆ̄HII
real;nonloc ¼ ˆ̄Htail. The unique nonlocal ST contri-

butions at 3PN from this matching are

δaST4;nonloc;0 ¼
4

3
ν

�
2δþ þ γ̄ABðγ̄AB þ 2Þ

2

�
ð2 ln 2þ 2γEÞ;

ð4:12Þ

δaST4;nonloc;log ¼ −
4

3
ν

�
2δþ þ γ̄ABðγ̄AB þ 2Þ

2

�
; ð4:13Þ

δbST3;nonloc;0 ¼
4

3
ν

�
2δþ þ γ̄ABðγ̄AB þ 2Þ

2

��
21

2
− 16 ln 2

�
;

ð4:14Þ

δbST3;nonloc;log ¼ 0; ð4:15Þ

δqST3;nonloc;0 ¼
4

3
ν

�
2δþ þ γ̄ABðγ̄AB þ 2Þ

2

�

×

�
−
31

4
−
256

3
ln 2þ 243

4
ln 3

�
; ð4:16Þ

δqST3;nonloc;log ¼ 0: ð4:17Þ

The ST tensor correction δaST4;nonloc for the circular orbit
case, Eqs. (4.12)–(4.13), matches with the results obtained
in Paper I [see, Eqs. (5.25)–(5.26)] using the results of
Ref. [26] except a negative sign in Eq. (4.13). The negative
sign is due to the difference in the definition of δaST4;nonloc in
Eq. (4.3) used in this work with the Eq. (5.24) of Paper I.

V. CONCLUSIONS

In Paper I, building upon the results of [26] for massless
scalar-tensor theory, we determined the EOB coefficients at
3PN order though restricting ourselves to local-in-time part
of the dynamics and nonlocal-in-time and tail contributions
only for the circular case. In the present paper, we derived
the complete nonlocal-in-time EOB coefficients starting
from the nonlocal-in-time Lagrangian of Ref. [26]. First,
we derived the two-body conserved ordinary Hamiltonian
(dependent only on positions and momenta) for nonlocal-
in-time part by two methods: (i) non-order-reduced non-
local Hamiltonian using nonlocal shift (see, Ref. [51,52] for
GR), and (ii) order-reduction of nonlocal dynamics to local
ordinary action-angle Hamiltonian [45]. We then expressed
the effective Hamiltonian in Delaunay variables to recast
the order-reduced ordinary action-angle Hamiltonian into
equivalent, 3PN-accurate, nonlocal part of EOB potentials
ðA;B;QeÞ, see Eqs. (4.12)–(4.17).
By combining the results of Paper I and the present work,

we could transcribe the two-body Hamiltonian into

equivalent 3PN-accurate EOB potentials ðA;B;QeÞ for
both local-in-time and nonlocal-in-time part of dynamics.
During the preparation of the final manuscript of this work,
we became aware of an independent effort computing
similar contributions [54]. We have cross-checked our
results with the results presented in [54], specifically the
complete (including both local and nonlocal) correction in
A, B, and Qe EOB potentials. Although computed follow-
ing different steps, we found that the two results are
consistent.
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APPENDIX: FOURIER COEFFICIENTS OF
DIPOLE MOMENT IN ST THEORY

In this appendix, we will determine the explicit expres-
sions of Newtonian dipole moment in ST theory using the
known Fourier decomposition of the Keplerian motion
(see, Refs. [55,56] for GR).
The dipole moment, Is;iðtÞ, in COM frame is

Is;iðtÞ ¼
2MνðsA − sBÞ
ϕ0ð3þ 2w0Þ

xi; ðA1Þ

where xi ¼ ðZA − ZBÞi is the relative separation vector and
ZA;B indicate the positions of the two bodies.
Since the motion is planar, we can choose the coordinate

system ðx; y; zÞ such that it coincides with the xy-plane.
Using the polar coordinates ðr̂;ϕaÞ,

x ¼ r̂ cosðϕaÞ; y ¼ r̂ sinðϕaÞ: ðA2Þ

The coordinates ðx; yÞ are the coordinates of the dimen-
sionless relative separation, r̂ ¼ xA − xB with xJ ¼
xJ=ðGABMÞ denoting the position of two bodies.
As mentioned in Ref. [45,55,56] for GR, for leading

order contributions it is convenient to use the Delaunay
(action-angle) form of the Newtonian equations of motion.
In terms of the action-angle variables ðL; l;G; gÞ, the
Cartesian coordinates ðx; yÞ are given by (Here, we follow
the notations of [57])

x ¼ x0 cosðgÞ − y0 sinðgÞ; ðA3Þ

y ¼ x0 cosðgÞ þ y0 sinðgÞ; ðA4Þ

x0 ¼ r̂ cosðfÞ ¼ aðcosðuÞ − eÞ; ðA5Þ
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y0 ¼ r̂ sinðfÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sinðuÞ; ðA6Þ

r̂ ¼ að1 − e cosðuÞÞ; ðA7Þ

where a is the semimajor axis, e is the eccentricity, f is the
“true anomaly” and the “eccentric anomaly” u in terms of
Bessels functions is given by

u ¼ lþ
X∞
n¼1

2

n
JnðneÞ sinðnlÞ: ðA8Þ

The Bessel-Fourier expansion of cosðuÞ and sinðuÞ, which
directly enters x0, y0 are:

cosðuÞ ¼ −
e
2
þ
X∞
n¼1

1

n
½Jn−1ðneÞ − Jnþ1ðneÞ� cosðnlÞ; ðA9Þ

sinðuÞ ¼
X∞
n¼1

1

n
½Jn−1ðneÞ þ Jnþ1ðneÞ� sinðnlÞ: ðA10Þ

From Eqs. (A3)–(A8), the dipole moment Is;i is a
periodic function of l (and hence time) at the Newtonian
order. Thus it can be decomposed into Fourier series

Is;iðlÞ ¼
X∞
p¼−∞

Ii;sðpÞeipl; ðA11Þ

with

Is;iðpÞ ¼
1

2π

Z
2π

0

dlIs;ie−ipl: ðA12Þ

The Fourier coefficients of the scalar dipole moment at
the Newtonian order are derived using Eq. (A12) in terms
of combinations of Bessel functions.
Inserting the expression of Cartesian coordinates in

terms of action-angle variables using Eqs. (A3)–(A10),
we find the Fourier-Bessel coefficients of the scalar dipole
moment are

Is;xðpÞ ¼ GABM

�
2MνðsA − sBÞ
ϕ0ð3þ 2w0Þ

a
2p

f½Jp−1ðpeÞ − Jpþ1ðpeÞ� cosðgÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
½Jp−1ðpeÞ þ Jpþ1ðpeÞ� sinðgÞg

�
; ðA13Þ

Is;yðpÞ ¼ GABM

�
2MνðsA − sBÞ
ϕ0ð3þ 2w0Þ

a
2p

f½Jp−1ðpeÞ − Jpþ1ðpeÞ� sinðgÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
½Jp−1ðpeÞ þ Jpþ1ðpeÞ� cosðgÞg

�
: ðA14Þ
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[48] F.-L. Julié and N. Deruelle, Two-body problem in scalar-
tensor theories as a deformation of general relativity: An
effective-one-body approach, Phys. Rev. D 95, 124054
(2017).

[49] T. Jain, P. Rettegno, M. Agathos, A. Nagar, and L. Turco,
preceding paper, Effective-one-body Hamiltonian in scalar-
tensor gravity at third post-Newtonian order, Phys. Rev. D
107, 084017 (2023).

[50] D. M. Eardley, Observable effects of a scalar gravitational
field in a binary pulsar, Astrophys. J. Lett. 196, L59 (1975).

[51] L. Bernard, L. Blanchet, A. Bohé, G. Faye, and S. Marsat,
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