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We determine the general local-in-time effective-one-body (EOB) Hamiltonian for massless scalar-
tensor (ST) theories at third post-Newtonian (PN) order. Starting from the Lagrangian derived in Bernard
[Phys. Rev. D 99, 044047 (2019)], we map it to the corresponding ordinary Hamiltonian describing the
two-body interaction in ST theories at 3PN level. Using a canonical transformation, we then map this onto
an EOB Hamiltonian so as to determine the ST corrections to the 3PN-accurate EOB potentials (A, B, Q,,)
at 3PN. We then focus on circular orbits and compare the effect of the newly computed 3PN terms, also
completed with finite-size and nonlocal-in-time contributions, on predictions for the frequency at the
innermost stable circular orbit. Our results will be useful to build high-accuracy waveform models in ST
theory, which could be used to perform precise tests against general relativity using gravitational wave data

from coalescing compact binaries.
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I. INTRODUCTION

Among the gravitational theories alternative to Einstein’s
general relativity (GR), scalar-tensor (ST) theories with
massless scalar fields are those most thoroughly studied and
tested [1-6]. Besides their manifestly well-posed nature, the
presence of an additional gravitational scalar field arises as a
natural feature in theories of gravity designed to serve as UV
completions of GR. The nonminimally coupled scalar field
also gives interesting phenomenology, both in gravitating
astrophysical systems and in cosmology [7].

The recent breakthrough in experimental gravity, with
the first direct observation of gravitational waves (GW)
by the LIGO-Virgo Collaboration in 2015 [8], opened new
unexplored pathways toward probing the dynamics of
gravity at extreme conditions [9-15] and led to the first
bounds on high-order post-Newtonian coefficients [16].
With the sensitivity of the LIGO [17], Virgo [18], and
now KAGRA [19] detector network continuously improv-
ing [20], a wealth of detected GW signals emitted by
coalescing black-hole (BH) and neutron-star (NS) binaries
has been thoroughly analyzed in order to test the strong-
field dynamics of GR and probe the nature of the observed
compact objects [21-24]. So far, in their vast majority, these
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are either null-hypothesis tests or searches for generic GR-
violating features (dispersion, nontensorial polarizations,
etc.), due to the lack of accurate and complete waveform
models in any gravitational theory alternative to GR, that are
reliable from the early binary inspiral all the way to merger.
Nevertheless, much progress has been achieved for a
selective set of promising theories, including ST as we
shall see in detail below. With this work, we make the next
step toward obtaining a model sufficiently accurate for
performing apples-to-apples comparisons between ST and
GR. This is already important for reliably interpreting
observational bounds using GW data from the current
network of detectors, and will become even more crucial
for probing the strong-field dynamics of gravity to much
greater accuracy with the next generation of detectors, such
as the Einstein Telescope [25] and Cosmic Explorer [26].

For ST theories in particular, although currently the most
stringent constraints come from binary pulsar observations,
studying the effects of scalarized NSs on the orbital
evolution [4], there is hope that future gravitational wave
detections of coalescing compact binaries will complement
current knowledge by placing additional constraints on the
ST parameters using genuine strong-field information from
the binary inspiral. GWs from compact binary inspirals
may also reveal effects of ST gravity in scenarios where the
scalarization process is suppressed for weakly gravitating
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systems (therefore circumventing binary pulsar bounds) but
still arises during the late stages of the inspiral where
gravity is strong, a phenomenon known as dynamical
scalarization [5,27,28].

The interpretation of detected GW signals relies on
Bayesian data analysis techniques, where the theoretical
prediction of a waveform is matched against the data. To this
aim, there is an increasing effort in improving the analytical
knowledge of the two-body problem in ST theories, both for
what concerns the dynamics [29-34] and the waveform
generation [35,36] through post-Newtonian (PN) theory.
Finite-size effects in ST theories further modify the binary
dynamics by the contribution of dipole-sourced scalar
radiation to the outgoing energy flux [33]. In addition,
tidal Love numbers might be very different from their GR
counterparts [37]. This can eventually impact the measure-
ment of tidal polarizability and related constraints put on the
equation of state of cold matter at extreme densities [38—42].

To robustly describe the binary dynamics and waveform
in a strong field up to merger, PN results should be recast
within the effective-one-body (EOB) description of the
two-body problem [43-49]. The generalization of the EOB
method to ST theories at the 2PN level has been recently
worked out [50,51]. The aim of this paper is to extend the
results of Refs. [50,51] to 3PN order building upon the 3PN
Lagrangian in ST of [31,32].

The paper is organized as follows. In Sec. II we briefly
recall the definition of massless ST theories. Then, in
Sec. III we derive the order-reduced Lagrangian for ST
theory at 3PN, and from this we obtain the center-of-mass
ordinary Hamiltonian in Sec. IV. Finally, in Sec. V, we map
the ordinary Hamiltonian into an EOB Hamiltonian at 3PN
order and in Sec. VI we explore the relevance of the 3PN
ST terms (including nonlocal and finite-size contributions)
by studying the innermost stable circular orbit (ISCO). We
use geometric units throughout the paper, with c = G = 1.

II. SCALAR-TENSOR THEORY REMINDER

We consider monoscalar massless ST theories and
mostly adopt the notations and conventions of Damour
and Esposito-Farese (DEF hereafter, see Table I) [1,3]. The
theory is defined by the following action in the Einstein
frame:
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where g, is the Einstein metric, R is the Ricci scalar, ¢ is
the scalar field, W collectively denotes the matter fields,
g=det(g,,), and G, is the bare Newton’s constant. In
the Einstein frame, the scalar field is minimally coupled to
the Einstein metric g,,, and the dynamics of the latter is
governed only by the usual Einstein-Hilbert action. The

TABLE I. Relation between the ST parameters used in the two-
body Lagrangian by Laura Bernard (LB hereafter) in Ref. [31],
the DEF ones, and the slightly simplified notation that we are
using here. The index O signifies a quantity evaluated at ¢ = ¢,
where ¢, is the asymptotic constant value of the scalar field.
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dynamics of the scalar field arises from its coupling to the
matter fields W. The scalar field couples nonminimally to
the metric in the Jordan frame (physical frame),

G = A@)* G- (2.2)

where g, is the metric in the Jordan frame. The function
A(@) uniquely fixes the ST theory, and general relativity
is recovered when A(@) = cst. The Einstein frame field
equations can be found in Ref. [1]. The parameter

dln A
op

a(p) = (2.3)

arising in the equations of motion measures the coupling
between the matter and the scalar field. For compact, self-
gravitating objects in ST theories, we follow the approach
suggested by [52] to “skeletonize” the extended bodies as
point particles. The skeletonized matter action is then
given by

dxt dx

ar (2.4)

g/w
I= AB

where the Jordan frame mass 712;(¢) of body I is dependent
on the local value of the scalar field, and A is the affine
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parameter. Since g, = A(p)? 9> the Einstein frame mass
is defined as

m(p) = A(p)m(p).

The mass function m(¢) is used to define dimensionless
body-dependent parameters to encompass the scalar field
effect [1,3,51] i.e.

(2.5)

a = dlndL(p(@I, (2.6)
B = ‘jli(p 2.7)
=9 (28)
- ‘Z’. (2.9)

Reference [31] defines the two-body Lagrangian ST
parameters at 3PN in the Jordan frame. Table I converts
these Jordan-frame parameters into the Einstein frame
ones (DEF conventions), and the corresponding ones used
in this paper.

III. SCALAR-TENSOR 3PN ORDINARY
LAGRANGIAN

The ST two-body 3PN Lagrangian was obtained in
Ref. [32] in harmonic coordinates. As such, it depends
(linearly) on the acceleration of the two bodies. In this
section, we transform the Lagrangian of [32] into an
ordinary Lagrangian, that only depends on positions and
velocities. To do so, we can either boldly replace the
acceleration by the equations of motion or use the contact
transformation (modulo a total time derivative which is
irrelevant in a Lagrangian) [53]. Here we choose the second
approach, i.e. we use the contact transformation to make a
four-dimensional coordinate change to eliminate the accel-
eration dependence. The contact transformation at 3PN
order is based on the algorithm presented in Ref. [54],
constructed so to eliminate higher order derivative terms
from the Lagrangian. As the dependence on accelerations

|

starts at 2PN order, the contact transformation also starts at
2PN order. However, the 2PN method presented in [51] for
ST theory cannot be extended at the 3PN because of the
presence of the acceleration-dependent terms in the func-
tional derivative 5£/6Z', of the contact transformation. By
contrast, following Ref. [55], we have to introduce some sort
of “counterterm” at 3PN for ST theory in order to eliminate
the acceleration dependence from the Lagrangian (an over-
view of contact transformation at 3PN order is given in
Appendix A). To construct a general contact transformation,
we can freely add a term of the type dyi F/m§ to the contact

transformation (see Ref. [56]), where JF is an arbitrary
function that starts at 2PN and only depends on positions and
velocities. The total time derivative of F eliminates the
acceleration produced by the addition of this term, without
affecting the dynamics of the system. Therefore, the ordinary
(reduced) Lagrangian, E;Ed, is given by

dF oL
L =L+ —+ E 57", (3.1)
A

dt 57"

where L is the Lagrangian in the harmonic coordinate
system, and 5Z/, indicates the contact transformation. Since
JF starts at 2PN order, it can be formally written as

F = Fopn+ Fapn (32)
where F,py 1S the 2PN contribution given in Ref. [51], and
Fspn 1S the 3PN contribution, the most general form of
which is given in Eq. (3.3). This 3PN contribution depends
on 56 parameters, and the factor G,p appears in the
definition of parameters F; of Fipy for dimensional
convenience. We first derive the contact transformation at
3PN order for ST theory (see Appendix B), and then use it to
derive the reduced Lagrangian, £, at 3PN order. This
reduced Lagrangian is an ordinary Lagrangian, dependent
on F; and f i.l

Hence, we have a whole class of coordinate systems
(dependent on the parameters F; and f;) in which our
derived Lagrangian, £, is ordinary, while harmonic
coordinates do not belong to this class. For completeness,
let us give here the explicit expression of F3FN that readse

Faon = GapmmQy[Fy(Vy - Va) + Fy(Va-Va)lVa- Vg + F3(Va- V)2 + Fy(Va-Va) (V- Vi) + Fs(Vg - V)Va- Vi
+ Fe(Vg-Vp)iiap - Va—[F1(Va-Va) + Fg(Vy-Va)lVa Vg +Fo(Va- V) (Vg V) + Fio(Va - Vg)?
+F1 (Ve Vp)lVa Vg + Fia(Vi - V) liiap - Vi + [F1sVa - Va+ FiyVa - Vg + F1sVi - Vil(iiag - Va)?

'By f;, we denote the parameters of the generic function at 2PN order given in Ref. [51].
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where, G 45 is the effective Newton’s gravitational constant A 3PN 3PN £ PPN TN
- H % PNPS h3PNP6P2 h3PNP4P4
in DEF coordinates (see Table I), V4 p are the velocities of ! T k7 R
the two bodies, 7i 5 = (Zfl_ Zg)/R the unit vector of the A 1 3PN p6
relative separation, where Z, 5 indicates the positions of the 4 R 5 TR R\®
two bodies and R = |Z, — Zp|. . o )
+ WPNPAPR 4+ hiNP2 Py + thNPg>
IV. CENTER-OF-MASS FRAME 1 A o A
TWO-BODY ORDINARY + (h?gNP“ + hENP2 PR + h?gNPj§>
HAMILTONIAN AT 3PN
1 A A 1
Let us now derive the ordinary Hamiltonian, in the +F (h%)NP2 + hﬁNP%> + = 4h?§N, (4.1)

center-of-mass (COM) frame, corresponding to the class of
ordinary Lagrangians of Sec. III. We do so by ordinary
Legendre transformation. In_the COM frame, the total
momentum vanishes, PA + PB =0, where PA p are the
momenta of the two bodies, so the conjugate variables are
7= ZA —ZB and P = PA = —PB Since we are consid-
ering nonspinning bodies, the motion is planar and we use
polar coordinates (R,¢) with conjugate momenta
(Pg.P,), setting @ = n/2. The general structure of the
isotropic, time-translation-invariant Hamiltonian at 2PN in
the COM frame is presented in Eqs. (III.15)—I1.16) of
Ref. [51]. By defining M = m§ + mY the total mass of the
system and y = m4m% /M its reduced mass, it is conven-
ient to use mass reduced variables (always indicated
with hat superscript, here and below) (P, Py, R), where
P*=P/y? = Py + P5/R*, Pr=Py/u, Py=Py/(uM)
and R=R/M, so that the 3PN contribution formally
reads

where the 73PN’s formally indicate the numerical coeffi-
cients we are going to calculate. Before doing so explicitly
and introducing our results, let us recall an important
technical fact. The ordinary Hamiltonian directly obtained
from the class of Lagrangians of Sec. III via Legendre
transformation contains two undetermined constants r
and 7. These constants parametrize logarithmic terms and
are directly inherited from the harmonic-coordinates
Lagrangian of Ref. [32], where they arise due to the
regularization procedure (via Hadamard partie finie tech-
nique). However, Ref. [57] found that these constants are
absent in the 3PN ordinary Hamiltonian in GR. As shown
in Ref. [58], the reason why it is so is that the two
constants, and the related logarithmic terms, can be gauged
away from the harmonic coordinate Lagrangian, in accor-
dance with the fact that these are pure gauge quantities.
More precisely, Ref. [55] showed that, in the GR case, the
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regularization constants can also be eliminated by includ-
ing a logarithmic dependence in the function F of the
contact transformation. Therefore, to gauge away the
dependence on | and r} from the ordinary Hamiltonian
of ST theory, we take analogy with the approach of
Ref. [55] in GR and add the most generic logarithmic
dependent terms,

G3 (m0)3m0 v G3 .m0 (m0)3 7
CanlB 5 (10 ) + a8 (10072,

(4.2)

to our arbitrary function F3py. In ST theory, the coef-
ficients F5; and Fsg must be

11 B

Fs; = [—Z(Z‘FVAB)z +5A]v (4.3)
.,

Fsg = _7(24'}’/43) + g/, (4.4)

in order to remove the gauge dependence on 7 and r}, from
the ordinary class of Hamiltonians. The so-obtained
complete expression of the ordinary Hamiltonian coeffi-
cients of Eq. (4.1) at 3PN is given in Appendix C.

V. SCALAR-TENSOR DEFORMATION OF 3PN
EFFECTIVE ONE-BODY HAMILTONIAN

Let us now turn to discussing the main result of this
work, i.e. the instantaneous 3PN contribution to the EOB
potentials in ST theory. The mapping between the two-
body ordinary (ADM-like) Hamiltonian and the EOB
Hamiltonian can be done using different procedures (e.g.,
Delaunay Hamiltonian, canonical transformation, compari-
son of the periastron advance, see e.g. [43,45,59,60]). Here
we will use the canonical transformation approach, adapting
the procedure of Ref. [45].

A. Canonical transformation at 3PN

To fix notation, we indicate with (Q, P) the conjugate
variables of the real, ordinary, two-body Hamiltonian,
while with (g, p) those of the EOB Hamiltonian. We start
from the 2PN-accurate canonical transformation in ST
theory of Ref. [51] [see Eqgs. (II1.23) and (II1.25) therein]
and augment it with 3PN terms. We do so by modifying the
generating function of the canonical transformation, whose
3PN contribution reads

=Rp, [<03P6 + By P DE+ 73 PP + 531’39)

[u—

+= <€3734 + 3PP + 93?’?‘)

[

N O
+ 7 </13732 +P3P3> + R—i} ) (5.1)

where P, p,, and R are the dimensionless variables with
22

P2 =p?+ %, and (a3, B3, .., 03) formally indicate the ten

3PN coefficients. We will then follow the same procedure

as Ref. [51], i.e. we will express the real and effective

Hamiltonian in an intermediate coordinate system (Q, p) in

order to match the two.

B. Scalar-tensor effective-one-body Hamiltonian
at 3PN: Instantaneous part

Within the EOB approach, the real EOB Hamiltonian is
related to the effective Hamiltonian as

7y H real

1 7 N
Hreal = =—y/1+ 2V(Heff - 1)’
U v

where v = u/M is the symmetric mass ratio and H.q =
H/p is the reduced-mass effective Hamiltonian. This
relation was originally proved to be correct up to 3PN in
GR [45]. Recently, within the post-Minkowskian scheme,
Ref. [61] proved it to hold at all PN orders, both in GR and
in ST theories. Here we choose to incorporate the 3PN
terms within the EOB Hamiltonian following the scheme of
Ref. [45], i.e. by writing the effective Hamiltonian H.g as

(5.2)

~2 ~D
7 PN p(l) Pr A (non
Hm—¢ﬁn@+p+mﬂ+@vmw (53)

Here, we indicated with (¢, py. 7, p,) the canonical vari-
ables, with p* = pj + p3/7*, while (A,B,Q,) are the
EOB potentials. The structure of the nongeodesic term
0, = 0,/u* at 3PN reads

0,(#.p) = = (@1 p* + @up*P? + qsp).  (5.4)

~
N| —

Following Ref. [45], we use the gauge freedom at our disposal
to set g = g, = 0, so that the Q, function only depends on
the radial momentum. This choice is known as Damour-
Jaranowski-Schifer (DJS) gauge, first introduced in
Ref. [45]. We recall, in passing, that this is just one among
the many (actually infinite) possibilities of devising an
effective dynamics based on a generalized mass shell con-
dition ¢.;p,p,+Q.(p)=0 and the relation between the
effective and real Hamiltonian given by Eq. (5.2) [61-67]. In
the DJS gauge, the three EOB potentials at 3PN formally read
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2 a a
A(?)=1—:+?—§ 2+, (5.5)
by b, b
BR) =1+ +2+2, (5.6)
r r
A a3
Q.(F,p) =3 bt (5.7)

where the a; and b, terms are the v-dependent deformations of
the Schwarzschild metric potentials, that take into account
both GR and ST corrections.” The GR and ST contributions
are separated as

A = AR 4 5AST, (5.8)
B = BR + 5B°T, (5.9)
0, = 0% + 50T, (5.10)

which reflects on the v-dependent contributions as
a; = a;(v) = aSR ) + 6a5T (v), (5.11)
b; = b;(v) = bR(v) + 5b5T (v), (5.12)
|

8a31oc = —27ap — ?YA

7 = q3(v) = ¢§*(v) + 645" (v). (5.13)

The GR terms are known analytically up to 6PN [68,69],
except for some yet unknown coefficients proportional to
v%. As mentioned above, the 2PN ST corrections to the
EOB potentials have been computed in Refs. [50,51].

Starting from the 3PN, nonlocal-in-time contributions
have to be added to the local terms. In this section, we will
focus on the latter and we defer the computation of the
complete nonlocal terms into the companion paper [70].
See, however, the next section for the nonlocal terms
restricted to the circular case.

Let us now compute the local ST contributions to the
EOB potentials at 3PN, i.e. (6a3 .. 553 . 645 ..). We do
so by first applying the canonical transformation of
Sec. VA to both the real two-body ordinary Hamiltonian
(H y) of Sec. IV and the 3PN EOB Hamiltonian (H) to
express them in the intermediate coordinate system (Q, p).
Then, the canonically transformed H ., is matched with the
PN expanded H,., obtained using Eq. (5.2) to find the
unique solution of a;, b;, and g; up to 3PN. For the new
3PN-order ST contributions, we get

_ 2 2
oo =T+ [~ 22 T + 9720 ()~ 7asle) + 3 R) + 31+ 27)(6) + 6082 +42)

2 11 y 32
—12Xpp_pi + g(ﬂ—(‘s— + Xapdy) = (6)B4) + V{4aAB (2+748)748 aAB<( >:_ 7 ) < B (B - B~)
+ _i [ﬂ— <€— — Xap€y + : (26_ - XA35+)> + (4 (264 — Xap6-) ]
VAB 3

581 75

239 5

1 4 7 2 _
+7AB|:18 61" n? 85—_<ﬂ>—20ﬂ++5<5>+<3+32 >5++2€+:|+yAB<18 _§”2_§<ﬁ>>

3 7 5, 3 8 _
+ 7AB< 3T ﬁ”2> +3C=6(8% +p2) - 3 B) + EXAB,B— —12X4pP P — 3 (6,(B) +p-5-)

92 7 1 2 4
—5+(3—R” > "‘_XAB(S 3< k) — §K++<€>}+V2(—4ﬁ%)a (5.14)
o 131, 47 . )
0b31oc = 2978 + — 1 Vap +— 1 7ag +22(1 +7a5)(B) — 5(1 +745) () — (€)
v [—937/43 — 4275 = 37ap — TC +2(3 + 274)8, +2(8) + €, + Xage_
ST - 3 20105 =
-2 Z+7/AB XapP- —2(4 =974 | ()| +v° (10745 + 745 — 60 — 186, + 45, +2¢.), (5.15)

?Let us remember in this respect that the 1PN term in the a; function, a,, is identically zero in GR [43], while it is nonzero in ST

theory [51].
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26 _ 5_ 2 -0 2
ouhoe = (S ran + 30 +3 ) -3 0))

— (4748 — 2(B)).

where we combine the notations of Refs. [35,51]. More
precisely, introducing X, 5 = mg.B /M, we have

(5.16)

Xap = X4 — Xz, (5.17)
(B) = =X apB- + Bs. (5.18)
(&) = =X pk_ + Ky (5.19)
(8) = Xapd_ +6,. (5.20)
() =—Xapr-+xy = —%, (5.21)
(€) = —Xape_ + €. (5.22)

with the “+” subscript denoting the symmetric and anti-
symmetric parts of the ST parameters, e.g. x. = (x4 £x3)/2.

As expected, the functions (A, B, 0,) do not depend on
the function F of Sec. Il since, similarly to the 2PN case of
Ref. [51], it is absorbed by the canonical transformation. As
a consistency check of our results, we verify that the
binding energy of the system along circular orbits, obtained
from the condition 0;H . = 0, exactly matches the corre-
sponding function given in Eq. (5.4) of [32]. Similarly, we
correctly obtain the GR terms up to 3PN as well as the ST
ones at 2PN calculated in Refs. [50,51].

The results of Egs. (5.14)—(5.16) can also be found in the
Mathematica file attached as a supplementary
material [71].

C. Completing the circular conservative 3PN dynamics
with contributions from tails and tides

Throughout this paper, we focused on the instantaneous
contributions to the EOB Hamiltonian at 3PN. However, at
3PN, there are two more contributions entering the PN
computations: (i) the (nonlocal-in-time) tail terms [31,32],
and (ii) the finite-size (tidal) effects [33]. The coordinate-
invariant circular case real two-body energy for tail and
finite-size contributions at 3PN in ST theory are given in
Eq. (5.5) of Ref. [32], and Eq. (8) of Ref. [33], respectively.
In this section, we will restrict ourselves to circular orbits
and compute the corrections to the EOB A potential due to
both tail and finite-size effects. For the circular case, the
complete 3PN term Sa3' is decomposed as

ST _ ST ST
(3614 - 5a4,loc + 6a4,n0nloc

+ 603 iga- (5.23)
When only considering circular systems, the EOB metric

potential A is simply computed by comparing the circular

case real two-body ordinary Hamiltonian with the circular
case EOB Hamiltonian using Eq. (5.2).

Let us now compute the complete 3PN metric potential
A. We do so first by computing the gauge-invariant circular
case EOB energy. Then, this gauge-invariant EOB energy is
matched with the gauge-invariant real two-body energy
using Eq. (5.2) to find ST corrections to A.

We leave the extension to noncircular orbits with the
complete computation of the B and Q, corrections to
future works.

1. Tail effects

Following the procedure discussed above, the tail con-
tribution to A reads

1
5aésl:l;10nloc = 5aésl:l;10n10c,0 + 5aéstj£10nloc.log log (;) ’ (524)

where
Va2 +7 8
6aésl,r£10nloc,0 =v <25+ + 7//43(271413)) |:3 (1Og 2+ J/E):| »
(5.25)
and
4 V(2 +7¥
5a§:£10nloc,log = §y<25+ =+ M) s (526)

with 6, defined as above. For the equal-mass case, the tail
contribution, Eq. (5.24), vanishes as the common factor of
Egs. (5.25) and (5.26) for the equal mass case is zero. It can
be seen from Table I and that } = % as scalar charge for

both the bodies are the same for the equal-mass case.

2. Finite-size effects

When considering extended bodies, tidal effects have an
impact on the binary dynamics. Therefore, by considering
the finite-size addition to the 3PN circular case energy,
Eq. (8) of Ref. [33], the procedure discussed above yields:

0 0
8aST o = 4ved | A 5 +%5Ak§;) . (527)

M
where kg“;)B are the dimensionless scalar ¢ =1 tidal
Love numbers of the two bodies. The contributions in
Eqgs. (5.24) and (5.27) are also included in the Supple-
mental Material [71].

To estimate the magnitude of the scalar-mediated finite-
size effect, we observe that the prefactor in Eq. (5.27) for the
equal-mass case is O(1078) in the dynamical scalarization
regime, i.e. for @ ~ 10~!. The correction to A is then linear in
the scalar Love numbers, which we take of the order same as

084017-7



JAIN, RETTEGNO, AGATHOS, NAGAR, and TURCO

PHYS. REV. D 107, 084017 (2023)

GR k&).B} < 107! (see, Ref. [37] for # > 2), depending on
the equation of state. This results to a correction of at most
0O(107?), thus rendering the effect of scalar tides on the

ISCO frequency practically unmeasurable.

VI. MODIFICATIONS OF THE CONSERVATIVE
BINARY DYNAMICS AT THE INNERMOST
STABLE CIRCULAR ORBIT

Let us now study the impact of the 3PN ST corrections to
the circular dynamics. We do so by evaluating the fre-
quency at ISCO.

For the GR part, we rely on the NR-informed A potential
used within the TEOBResumS waveform model [72-74].
More precisely, the ASR is based on (formal) SPN infor-
mation where the nonlogarithmic SPN coefficient, ag(v), is
informed by NR simulation after the full potential has been
resummed using a (1,5) Padé approximant, and is given by
Eq. (33) of Ref. [72]. In practice, we have

Acr(#:v) = P3[AZR (7 v)] (6.1)
where A2 indicates the GR A function expanded at 5PN.
Focusing on the sequence of circular orbits (p, = 0), the

ISCO orbital radius and angular momentum (#5°°, pl3¢0)

are defined by the conditions 0;H. = G%I:Ieff =0, and
Qisco 1is obtained from the corresponding Hamilton’s
equation. Reference [51] already considered two ways of
flexing the GR potential so as to include the scalar-tensor
contribution. First, SAST was just considered as a contri-
bution simply added to the Padé resummed GR potential of
Eq. (6.1), but this choice was not found to be robust versus
the ST coupling constant. As an alternative, Ref. [51]
proposed to resum, with a Padé approximant, the full PN-
expanded function with GR and ST contributions. We
follow here this approach and define

AGF) = P! [Ag§N + 5AST] , 62)

where now SAST includes up to the 3PN instantaneous
correction of Eq. (5.14) and tail correction of Eq. (5.24).
Focusing on the equal-mass case, Ref. [51] noted that
the 1PN and 2PN ST corrections are numerically of
the same order, so that, for simplicity, in the numerical
analysis of the ISCO frequency behavior they were
considered to be exactly the same. For completeness we
stick here to using the correct analytical expression without
any approximation.

Figure 1 focuses on an equal-mass binau'y3 and depicts
Qisco as a function of the ST coupling constant «

’The ST tail correction vanishes for equal-mass case as
mentioned in Sec. V C2.

0.015 1PN /
\\ ---- 2PN /
/
\ —— 3PN /
- 0.010 N /
| AN ¥
o g . / %
%(@) \.\‘ \\\\ // /~/
<0005 N Sl
o ~ . ’ .
3 N0 Pt
& ~3ne sts
0.000 1 =S .-
B=—42
—0.005 s
—0.10 —0.05 0.00 0.05 0.10
(%
FIG. 1. Fractional change in ISCO frequency with respect to

GR for equal-mass systems, v = 1/4, as a function of the ST
parameter a, with f fixed to f = —4.2. We show different PN
orders for the ST corrections [included in the overall Padé
resummation, Eq. (6.2)]. They all reduce to the GR limit when
a — 0. The results obtained by simply adding the nonresummed
ST terms are reported using dashed lines.

considered in a reasonable range of values compatible
with the experimental constraints, where we fix f = —4.2.
Here, for simplicity we neglect the corrections from the ST
parameters ' and f”, by fixing them to zero. Their impact
on the 2PN and 3PN ST corrections to A, 5a3' and 5aj3’,
when varying ' and #” within a reasonable range of values
[-10,10], is at the level of 5% and 1% respectively.
Therefore, their overall contribution to the potential A
[see Egs. (5.5) and (5.11)], that controls the circular
conservative dynamics and thus the correction to the
ISCO frequency, will indeed be negligible.

For comparison, the figure also shows, as dashed lines,
the curves obtained when not applying a resummation on
the ST part of the potential. In Fig. 2 we also show the
modification of Qgcq as a function of both « and f within a
viable range, again for the equal-mass case.

0.09805
—4.2 0.09790
0.09775
—44 y
0.09760
@ 0.00745 2
—16 o]
0.09730
_4g 0.09715
0.09700
—5.0+ | 0.09685
~0.10

—0.05 0.00 0.05 0.10
o

FIG. 2. Frequency at the innermost stable circular orbit at 3PN
order for equal-mass systems, as a function of the ST parameters
a and S.
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VII. CONCLUSIONS

Building upon recent results [32] for massless scalar-
tensor theory, we have generalized the 2PN EOB
Hamiltonian of Ref. [51] to 3PN order, though restricting
ourselves to the local-in-time contribution. First, we
derived a class of two-body ordinary Hamiltonians (i.e.
dependent only on position and momenta) for ST theory
by (i) reducing the two-body harmonic coordinate local-
in-time Lagrangian of [32] to an ordinary class of
Lagrangians by constructing a general contact transforma-
tion for ST theories; (ii) augmenting the general contact
transformation with the logarithm-dependent terms to
gauge away regularization constants from the ordinary
Lagrangian by taking analogy with general telativity
results of [55]; and (iii) performing Legendre transforma-
tion of this ordinary Lagrangian to derive the ordinary
Hamiltonian. We then recasted this local-in-time ordinary
Hamiltonian into equivalent, 3PN-accurate, EOB poten-
tials (A, B, Q,), see Eqgs. (5.14)—(5.16). As a test of our
results, we checked that the energy along circular orbits
computed from the EOB Hamiltonian precisely coincides
with that given in Eq. (5.4) of Ref. [32]. We also computed
the corrections due to the tail and finite-size effects at
3PN for ST theories only for the circular conservative
dynamics using the gauge-invariant circular case energy of
Refs. [32,33]. We additionally studied the shift in the
orbital frequency of the innermost stable circular orbit
induced by scalar-tensor corrections. After the submission
of this work, an independent work computing similar
contributions appeared [75]. We cross-checked the results
of EOB potentials (A, B, Q,) presented there and, although
computed following different steps, we found them to be
consistent with ours.

This paper must be seen as a first step in the effort of
incorporating massless scalar-tensor corrections within the
EOB waveform model TEOBResumS-GIOTTO [76,77]
for coalescing, precessing, BH-NS and NS-NS binaries.
We leave to future work the extension to the radiative
sector. PN results for the scalar-tensor corrections to the
waveform and radiation reaction are already present in the
literature [29,30,35,36,78]. For quasicircular orbits, we will
only need to compute their factorized and resummed forms
so to improve the expansions behavior in the strong-field
regime (as is done for their GR counterparts, see e.g.
Refs. [79-82]). Instead, when considering general orbits
[30,36], more computations will be needed (e.g., Refs. [8§3—
87]). Finally, NR simulations of binaries evolving in scalar-
tensor theories [88—91] will be of great importance to assess
the overall accuracy of our EOB description and complete it
through plunge and merger.
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APPENDIX A: REMINDER OF 3PN-ACCURATE
CONTACT TRANSFORMATION

The four-dimensional coordinate change through the
contact transformation at 3PN order is based on the
application of the method introduced in Ref. [57] to
eliminate higher order derivative terms. The new
Lagrangian based on the coordinate change 6Z, is

oL dF
L= L+ Y 62 —+——=LF, (A1)
2005
where F is the generic function introduced in Sec. III, and

(?7% is the functional derivative term. Since the contact
1

transformation coordinate change §Z' starts at 2PN order,
according to Eq. (A1), the fractional derivative term at 3PN
should be considered up to 1PN order, i.e.,

oL 0 : GABmJ . 1 .
=m(—ay =S TR p o C ). (A2

where Ci can be derived using the harmonic-coordinate
Lagrangian given in Ref. [32].

The 1PN term C§ depends on accelerations; therefore, it
will give additional acceleration-dependent terms (on
multiplying with 2PN contribution of contact transforma-
tion 5Z¢) in the Lagrangian at 3PN order. Therefore, as
shown in Ref. [55] in the GR case, we will have to
introduce some sort of counterterm, Xﬁ, for scalar-tensor
theory as well as to eliminate the acceleration dependence
from the Lagrangian. Hence, the contact transformation at
3PN order becomes [55]

. 1 . oF .
67, =— g4\ +—+ X} ), A3

I m? <CIA+6V’,+ 1) (A3)
with the counterterm, X, as defined in Eq. (3.17) of
Ref. [55], and ¢} :g—j is the conjugate momenta of

acceleration.
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APPENDIX B: CONTACT TRANSFORMATION FOR SCALAR-TENSOR THEORY AT 3PN

The final result of our contact transformation dependent on the parameters of the function F are as follows. The first and
second terms of Eq. (A3) are readily obtained by differentiating Lagrangian and function F with respect to acceleration and
velocity, respectively. The third term, i.e. the counterterm Xg 5> purely 3PN order term, is

i i 0,07 .U o~ - 1 1 N- 5
X}y = Vi | Gapmymp(V4-Vy) ——fz(”AB'VA)+ §f5+§7/AB+§ nag Vg

G2, (m%)2mY, AT TR 74
+%[f3(7+4m3)m3 Va- Jo(T+47ap)ap - V]

G4,my(m 7 1374 21 i V
+%(B) |: 2( 3 ZyAB)nAB VA+ (2 A 2 >nAB‘VB:|>

7 — -l = s — - — 7 — -l — -
+VA(GABmAmB[< f3— VAB 8>”AB'VA(VB'VB)+<_2f2”AB'VA+<f5+7AB+Z>nAB'VB)VA'VB
N 7/ 7oV, V 7oV.)3 SRR VARV - 4 AT A
+ (3fariap-Ve—=a4f1ag-Va)Va-Va=3f1(1iap-Va) =2fs(fiap-Va)tiap- Vg + f9+§ iag-Va(liag-Vp)
Gag(my)*my

B 7 _ _ 49\ _ - _ 7 . o
R |:<2YABf2 +§f2 — 1 +27i5 + 77 a8 +8> nag-Vat+fs <—2}’AB —2> NAp VB:|

G2 .m0 (m0)2 . . e =
+M+(B)[(_f12—6fl —47af1)1ipp - Va+ f4(6+47ap) a5 V5])

. 3 - - — 7 77
+ﬁ7AB<GABm91m(I)i‘|:<_§f7(nAB'VA) — f3(ap - VA)(”AB VB)+< >+ 16> (”AB'VB)Z‘F(—ﬂ—&——) V- Vg

1—>—»1—>—»—»—»G2m2m0 7 _, 15y B i\ =
_Efl(VA'VA)_§f2(VA'VB)>VA'VA]+%|:(_§_73\3_ 4AB_2}’ABf4_4f4_%>VA'VA

- No O e o 11 3y . =
+f5(—4—27’A3)VA‘V3+f6(—4—27AB)VB'VB+(8 +$+ f2+f8(4+27AB)>(nAB'VA)2

1 N S > ~ . -
+ <f3 —Efs —4f9(2+77AB)> (7apVa)(Hap- Vi) +(=f6=6f10(2+748)) (7ap" VB)Z]

G2 zm% (m%)? _ 1 s -
%(B)K 1(_3_2yAB)_§f12>VA VA+f2( —3-2%ap)Va-Vp+

+f3<—3—27AB>)VB-VB+3f7<—3—27AB><r7AB-VA>2+2f8<—3—27AB><ﬁAB-VA><EAB-VB>

_ 3 (00\3
+ <z+“—3+f9(3+27A3)>(ﬁAB'VB)2:| +W[ 13(=4=2745)]
3 (02 2 300,013
+GAB(m;;#[ 11(—3—27AB)+f14(—4—27AB)]+GABmR+mQ[ 12(_3_27A3>])’ (B1)

7 .o L. 7 - \- -
Xy = VB (GABmAmB Kf4 +sVap+ 8) fiag - Vp(Va-Va)+ <2f5nAB Vg — <f2 +7aB +4) nyp VA> Va-Vp

+ (4f671AB Vg —3f3iiap - VA)VB Vi + 3f10(7iap - ‘73)3 +2fo(tiap - VA)(ﬁAB : ‘73)2

= | | Gig(my)y’my . .5 _ .5
g+ (”AB VA) Hap-Vp +T[(_47A8f3_6f3)n148'VA+(47ABf6+6f6 + f13)7iap - V]

G,%BmA (m%)z

_ 7 . . _ 7 49 -
+T [(2J’A3f2 +5f2)”AB Va+ <—2}’A3f5 _Efj + f14 = 2735 — T7as —§>”AB 14 ])

084017-10



EFFECTIVE-ONE-BODY HAMILTONIAN IN SCALAR-TENSOR ... PHYS. REV. D 107, 084017 (2023)

_ R 2 U T ) W D
+Va <GABmgm%VB Vg [<_§f2 ~57aB —§> nag-Va +§f5nAB : VB:|
Gap(my) my
R
G%Bm,(i(m%)z
R

13 21

[(_277A3f2 —3f, =273 — 57 ) nap - VA + (27apf5 + 3f5> Ve VB:|

[(47af1 +7f1)Hag - ‘7A — (47afa+Tfa)lsp ‘780
N TN /2 S DA IS RS
+nyp( Gapmymy _EfS(nAB'VA) +f9(nAB'VB)(nAB'VA)+§f10(nAB'VB) +§f4VA‘VA +§f5VA'VB
AP E N (Y, [ .
+§f6(VB'VB)_E<nAB'VA) +ZVABVA'VA+RVA'VA Ve Vg

Gap(m®)2mY 13y 21
+ AB(RA) £ [( Yap+ zAB+(2}/AB+3)f4+ 3

S
)VA VA + <(2}’AB +3)f6+ 13) Vg- VB + f5(27ap + 3)VA VB

3 1 . . _ N R . _ o -
+ <(—27AB -3)fs— 3~ Z?AB) (ag - Va)*+ fo(47ap + 6)(iiag - V) (fiap - Va) + f10(67ap +9) (Hap - VB)2:|

G pm® (m", 157 _ f -
_‘_AB+(B)|:]C1(2J/AB +4)VA VA +f2(2yAB+4)VA VB+ <}/AB+#+(27AB+4)JC3 +%+2>VBVB

_ . - B f . o - -
+((6745 +12)f7 +f1) (iiag - Va) + ((47/AB +8)f3 +?2—f4 (iap - Va)(ni2- V)

11 mS)*m

3 Gj
+<—%— (2748 +4)fo —%—§> (iiag V) } M(T[fm(Z?AB +3)]

G (m§)* (my)?
RZ

M

n [f12(2nw+4)]> (B2)

[f11(27a8 +4) + f14(2745 +3)] +

Here, f; are the parameters of the generic function F at 2PN order given in Ref. [51].
With these results, the full expression of the coordinate change (based on contact transformation) at 3PN, and that
depends on the parameters of the function F, is derived. This is then used to obtain the class of ordinary Lagrangian in ST

theory at 3PN

APPENDIX C: 3PN TWO-BODY HAMILTONIAN

For the whole class of ordinary Hamiltonians of Sec. IV, the 15 coefficients 4;™N of the Hamiltonian at 3PN for ST theory
in COM frame are

5 35 70 35
h3PN:__ e, T2 o 3, h3PN:h3PN:h3PN:h3PN:0,
128 T 128" T128 T128" 2 3 4 5
7 5 3 m9 23
hN = GAB< 16_33 87A3+ (2f6 F12)+ﬁ3(2f1—F1)+V<4+§7AB+F1+F2—F6—F7
3 m 3 3
+F11+F12_2[f1+f6]__[f2+f5]+_[f3+f4]+— —F,+F;+3Fp+5fo—5fa——= T
2 2 M 2 2 2
m9 13 3 3 331 93 _
+WB[3F1+F6—F11—7f1—5f3+—f5]>+V2<—1—6—§}’AB—2[F1+F2—F6—F7+F11+F12]

9 7 mO
+E[f1+f6]+§[f2_f3 fa+fs]+ —A[F2+F5—F7—F9—F10—F12—3f2+3f4+3f6]

mO

+ﬁ3[—F1—Fs—F4—F6+F8+F11+3f1+3f3—3f5]>>,
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3 mY 27
RPN = GAB<_EV +_[F12_3F24_2f6+6f10] ﬁB[Fl_3F13_2fl+6f7]+y<_R_YAB_F1_FZ

3
+Fs+F;—Fy = Fip+3[Fi3+Fiy+ Fig+ Fa + Fo3 + Fou] +2[f) +f6]+§[f2+f5—f3—f4]
0

1
_6[f7+f10]_§[f8+f9]+%|:F2_F7+73(f6_3f10)_ <F12+F14+F16—3F24+1(f f4—3f8)>]

0

m 1 13 169 89
+WB[F11—F6—3(F1+F21+F23 3Fi;3+5 (f - fi— 3f9)>+7(f1—3f7)}) <4 +4VAB

9
+2[F1+F2_F6_F7+F11+F12_3F13_3F14_3F16_3F21_3F23_3F24]_§[f1+f6_3f7_3f10]
7 mY
+§[f3—f2—f5+f4+3f8+3f9]+HA[—F2—F5+F7+F9+F10+F12+3<F14+F16+F18—F20—F22
0
m
_F24+f2_f4_f6_3f8+3f10>]+WB[F1+F3+F4+F6_F8_F11+3(_F13_F15_F17+F19

+Fy+Fu—fi—f3+fs +3f7—3f9)]))’

3 ml) 5 3
thN:GAB<_RV +—[3F24 5F30—6f10]+ﬁ[3F13—5F25—6f7]+ (16+ 7ap = 3[Fi3+ Fiy+ Fig

9 mY
+ Fay + Foz + Fou] + 5[Fps + Fag + Fag + F30] + 6[f7 +f10]+§[f8 +f9]+3ﬁ [F14+F16—3F24

5 O
_§F26+5F30__f8+ f10:| +3

117 129
+V2(_T_?7AB+6[F13 +Fiy+ Fig+ Fo + Fo3 +F24]_10[F25+F26+F29+F30]__[f8 + fo]

5 3 13
[F21 + Fy3 —3F 3 —§F29+5F25 ——f9 +—f7}>

7 m 5
—7[f7 +f10}+3ﬁ[_F14_F16_F18+F20+F22+F24+§<F26_F28_F30)+3<f8_f10):|
0 5
+3 {F13+F15+F17 F19—F21—F23+§(F29—F27—F25)+3(f9—f7>])>,

5 ml m$
h3PNGAB(_EV3+5 AF30+5 F25+5V< Fas = Fag — Fa9 — F30+M[F26 3F3O]+ﬁB[F29—3F25]>

15 1._ mY m9
+5V2<E+§7AB+2[F25 + Fae + Fag + F +VA[F28 + F30 — Fog) +WB[F25 + Fy —F29]))’

1772, 17,5 29 m) ) m) _
h3PN:GfZAB<—16M—4AB—16+A[F12 F36+(97’AB+12)f6+f13]+ﬁB[Fl_F41+(97AB+12)f1+f12]

41 199 67 _ 1
+V< 487/243"‘8 B_Fl_F12+F36+F41_(97AB+12)[f1+f6]+§[f11+f14]_f12_f13

0

+— |:F6_F11_3F12_F33+F35 +2F36 = Fa6 +9745(f3 — f5s — f6) + (27f3—26f5 +f14_11f6_5f13):|
0

m _ 1
+ﬁB[F7_3F1_FZ_F31+F42+2F41_F44+97AB(f4_f1_f2)+§(27f4_26f2+f11_11f1_5f12)]>
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+2F +Fy—Fg—F7+ F i +2F 1+ F31 + F3p+ Fy3 = Fyy — F35 — F36 — Fyy

(395 77745 29748
48 12 4

13
—Fp—Fp+Fu+Fis+Fapt5 [f3 + fa] = [f2+f5}—7[f1+f6]+2[f12+f13—f11—f14]

mY m?
+VA[F12—F5—F6+F9+F10+F11+3(f3—f5—f6)]+ﬁ3[F1+F2+F3+F4—F7—F8+3(f4—f1—fz)]>>v

1 m’ _ _
hiN =Gl (16(}’AB +2)? +VA[4F12+3F24+2F36_3F40_12f6(2+}’AB)+9f10(4+3}’AB)_2f13]

211 71 137

3 +5 3 Yapt+—5 43 7as —4F1 +F1o

—3[F13 + Foy—Fao—Fu7] = 2[F36+ Fay ]+ 12247 ap](f1 + f6) =914 +3745](f7+ f10) = [f 11 + fra] +2[f 12+ f13]

o
+_B[4Fl+3F13+2F41_3F47_12f1(2+7AB)+9f7(4+37AB) 2f 1] +v (

+—- 4(F6—F11—3F12—F36)—3[F21+F23+3F24—F39—2F40+F50}+2[F33—F35+F46]

5 19 27 27
—12(2+74p)[f3—f5—f6] —Efs +7f6_7f9(3+237AB) —7f10(1 +27a8) +5f 13— f14]

+——=|4(F7=Fy=3F—F4)=303F 3+ F 4+ Fi6+F3;+2F 47 +3F5) +2(F31 — Fap + Fa4)

27

19 5 2
+12(2+7ap)f 1+ f2—f4] +7f1 —§f2—7f7(1 +2745) _77f8(3+2}7AB) -fu +5f12}>

889 149
+12 (12 63745 +—+ B Vap +42F |+ Fy—Fg—F74F 11 +2F 5] 4 32F 134+ F 14+ F16+ Fy + Fo3 +2F,

+F3y74+Fsg—Fsg—Fag—Fayg—Fag+ Fag+ Fso| =2[F31+F3y+ Fa3—F3s—F3s—F3s—Fy —Fayn—Fa3+ Fuy
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As a consistency check with the results of GR, we find that our ST 3PN Hamiltonian reduces to the Hamiltonian of
Ref. [57] in the GR limit by setting the F3py parameters as
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with the remaining parameters of F;py set to zero and F,py coinciding with the expression in Ref. [51].
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