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We examine the semiclassical backreaction of a conformally coupled scalar field on an overspinning
(Bañados-Teitelboim-Zanelli) BTZ geometry. This extends the work done on a similar problem for
(2þ 1)-anti–de Sitter geometries of the BTZ family with jMj > jJj. The overspinning classical solutions
correspond to jMj < jJj and possess a naked singularity at r ¼ 0. Using the renormalized quantum
stress-energy tensor for a conformally coupled scalar field on such a spacetime, we obtain the semiclassical
Einstein equations, which we attempt to solve perturbatively. We show that the stress-energy tensor is
nonrenormalizable in this approach, and consequently the perturbative solution to the semiclassical
equations in the overspinning case does not exist. This could be an indication of the fact that the naked
singularity at the center of an overspinning geometry is of a more severe nature than the conical singularity
found in the same family of BTZ geometries.

DOI: 10.1103/PhysRevD.107.084015

I. INTRODUCTION

Since the dawn of general relativity, many black hole
solutions to Einstein’s field equations have been found. All
these black holes contain a spacetime singularity hidden by
an event horizon. However, for some range of values of the
integration constants (mass M, angular momentum J,
electric charge Q) these solutions have no event horizon.
Although paradoxical, these naked singularities are exact
solutions to the classical equations of general relativity as
well. In the vicinity of a naked singularity causality and
other physical laws can be arbitrarily violated, which is
why Roger Penrose suggested the existence of a (weak)
cosmic censorship principle in nature [1], requiring singu-
larities to be hidden behind an event horizon. In that case,
an outside observer would be causally disconnected from
the singularity.
Classically, naked singularities cannot be ruled out on

mathematical grounds, and it is difficult to prove that every
possible collapse process leads to the formation of an event
horizon. The fact that so far no naked singularities have
been observed in the Universe may be interpreted as
an indication that, in the strong gravity regime near a

singularity, quantum gravity effects dominate eliminating
singularities altogether, or at least making sure that a
horizon forms around them.
The accumulation of experiments and observations that

confirm the predictions of general relativity puts very tight
constraints on possible theories incorporating both general
relativity and quantum theory. Since both theories are so
well established in their regimes, it is sensible to look
for a common area where a semiclassical approach could be
used to obtain a better understanding of the issues at
hand. Calculating quantum effects on a curved back-
ground spacetime is notoriously difficult, but in (2þ 1)-
dimensional anti–de Sitter (AdS) spacetime this problem
becomes significantly simpler and still provides meaningful
information to learn from.
The Bañados-Teitelboim-Zanelli (BTZ) black hole in

(2þ 1)-dimensional AdS spacetime [2,3], obtained for
M ≥ jJj are particularly interesting geometries in this
respect, but these are not the only solutions of physical
interest in this theory and with the same global symmetries.
Locally constant curvature 2þ 1 spacetimes include,
besides the BTZ black hole family, the self-dual Coussaert-
Henneaux spacetimes [4], and the toroidal time-dependent
geometries [5], with global isometry groups SOð2Þ × R
SOð2Þ × SOð2; 1Þ and SOð2Þ × SOð2Þ, respectively.
Recently, the quantum back reaction on the classical

singularities was studied for several geometries, including
static, rotating, and extremal BTZ black holes, as well as for
static and rotating conical naked singularities [6–9]. The
naked singularities considered in these papers are contin-
uations of the BTZ spacetime to the case of negative
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mass [10]. The interesting aspect of this result is that the
quantum fluctuations of a conformally coupled scalar field
generate a nonvanishing stress energy-momentum tensor
that through Einstein’s equations produces a back-reacted
geometry with a horizon of order Planck length in radius.
This dressing up of the naked singularity, turning it into a
black hole, could be viewed as a mechanism that imple-
ments cosmic censorship. These results have also been
confirmed by an alternative holographic approach in [11].
Here we are concerned with the overspinning BTZ

spacetime, which occurs if the absolute value of the angular
momentum is greater than that of the mass. This geometry
is also endowed with a naked singularity at r ¼ 0, as in the
case of the conical singularity obtained for M ≤ −jJj.
We show that the stress-energy tensor contains incurable

divergences, making the perturbative ansatz to the semi-
classical equations of motion ill defined. While the equa-
tions of motion can still be formally integrated, the first
order corrections to the metric functions would become
large, further demonstrating the inapplicability of a per-
turbative approach to this type of geometry. This strongly
suggests that the naked singularity of an overspinning
geometry is of a more severe nature than the conical
singularities appearing in the other BTZ geometries so
that they cannot be cured by a perturbative quantum censor.

II. OVERSPINNING BTZ SPACETIME

The rotating BTZ metric [2,3], is given by

ds2 ¼ −
�
r2

l2
−M

�
dt2 − Jdtdθ

þ
�
r2

l2
−M þ J2

4r2

�−1
dr2 þ r2dθ2; ð1Þ

where the coordinate ranges are −∞ < t < ∞, 0 < r < ∞,
and 0 ≤ θ < 2π; Λ ¼ −l−2 is the cosmological constant;
andM and J are mass and angular momentum respectively.
This metric describes different spacetimes that can be
classified by the values of M and J which determine the
nature of the four roots of the equation grr ¼ 0,

λ� ¼ l
2

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ J

l

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M −

J
l

r #
: ð2Þ

These roots are real for M ≥ jJj=l (black holes) and take
complex values for M < jJj=l (naked singularities). The
full classification is explained in detail in [2], but here we

will consider the so-called overspinning geometry
(jMjl < jJj). This geometry was examined in [12] through
the study of classical geodesics around it. In particular, we
will analyze the back reaction of the geometry to the
presence of a conformally coupled quantum scalar field,
following the steps in [6–9], where the back reaction for
conical naked singularities in the parameter range
M ≤ −jJj was studied. The strategy followed in those
references is quite straightforward:
(a) The back-reacted metric due to the presence of a

quantum field can be found solving the Einstein
equations sourced by the renormalized stress-energy
tensor (RSET) hTμνi.

(b) The first correction to the classical solution corre-
sponds to the quantum fluctuation around the vacuum
of the scalar field, which can be expressed in terms of
the Green/two-point function (cf., (19) below) [13].

(c) Since the BTZ geometries are quotients of a constant
negative curvature 2þ 1 spacetime by appropriate
Killing vector fields [2,12], the Green’s function for
a quantum scalar field can be found by the method of
images from the Green function in the universal
covering of anti-de Sitter space-time (CAdS3), as
proposed in [14].

(d) The Green function of a conformally coupled field can
be obtained by a conformal transformation from that in
flat space; the two-point function is completely de-
termined by the cordal distance σðx; x0Þ.

The only critical step in the construction is the con-
vergence of the sum over distinct images needed for
the RSET.
The starting point of the analysis is the observation that

the BTZ spacetimes (1) are quotients of CAdS3 by the
appropriate Killing vector. The constant negative curvature
spacetime AdS3 is defined by a pseudosphere of radius l
embedded in Rð2;2Þ as

ηABXAXB ¼ −ðX0Þ2 þ ðX1Þ2 þ ðX2Þ2 − ðX3Þ2 ¼ −l2: ð3Þ

The metric reads as

ηABdXAdXB¼−ðdX0Þ2þðdX1Þ2þðdX2Þ2−ðdX3Þ2; ð4Þ

where the embedding coordinates XA must be specified as
functions of ðt; r; θÞ. As shown in [12], the overspinning
geometry (1) with jMj < jJj corresponds to embedding
coordinates given by

X0 ¼ l
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 1

p
cosh ½aðt=l − θÞ�fcos½bðθ þ t=lÞ� − sin ½bðθ þ t=lÞ�g

þ ϵ
l
2

ffiffiffiffiffiffiffiffiffiffiffi
A − 1

p
sinh ½aðt=l − θÞ�fsin½bðθ þ t=lÞ� þ cos ½bðθ þ t=lÞ�g; ð5Þ
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X1 ¼ l
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 1

p
sinh ½aðt=l − θÞ�fcos ½bðθ þ t=lÞ� − sin ½bðθ þ t=lÞ�g

þ ϵ
l
2

ffiffiffiffiffiffiffiffiffiffiffi
A − 1

p
cosh ½aðt=l − θÞ�fsin ½bðθ þ t=lÞ� þ cos ½bðθ þ t=lÞ�g; ð6Þ

X2 ¼ l
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 1

p
sinh ½aðt=l − θÞ�fsin ½bðθ þ t=lÞ� þ cos ½bðθ þ t=lÞ�g

− ϵ
l
2

ffiffiffiffiffiffiffiffiffiffiffi
A − 1

p
cosh ½aðt=l − θÞ�fcos ½bðθ þ t=lÞ� − sin ½bðθ þ t=lÞ�g; ð7Þ

X3 ¼ l
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 1

p
cosh ½aðt=l − θÞ�fsin ½bðθ þ t=lÞ� þ cos ½bðθ þ t=lÞ�g

− ϵ
l
2

ffiffiffiffiffiffiffiffiffiffiffi
A − 1

p
sinh ½aðt=l − θÞ�fcos ½bðθ þ t=lÞ� − sin ½bðθ þ t=lÞ�g; ð8Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijJj=lþM

p
2

; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijJj=l −M

p
2

; A ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
4
þ r4

l2 −Mr2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − l2M2

p ; ð9Þ

with ϵ ¼ signðM − r2=l2Þ. Note that both cases (ϵ ¼ �1)
lead to the same RSET, and hence to the same end
results.1

The overspinning BTZ spacetime is now obtained
through identifications generated by a Killing field ξ [2].
In the overspinning case the corresponding Killing vector is
given by

ξ ¼ −aðJ01 − J23Þ þ bðJ03 − J12Þ ð10Þ

(see Ref. [12] for details). This can also be written as
ξ ¼ 1

2
ωABJAB, where the antisymmetric matrix ωAB char-

acterizes the identification. The Killing field in matrix form
reads as

ξ ¼

0
BBB@

0 −a 0 −b
−a 0 −b 0

0 b 0 −a
b 0 −a 0

1
CCCA: ð11Þ

The identification in the embedding space Rð2;2Þ under
the action of the Killing field is a mapping defined by the
matrix, HðξÞ ¼ e2πξ, which takes the form

H¼

0
BBB@

CðaÞcðbÞ −SðaÞcðbÞ SðaÞsðbÞ −CðaÞsðbÞ
−SðaÞcðbÞ CðaÞcðbÞ −CðaÞsðbÞ SðaÞsðbÞ
−SðaÞsðbÞ CðaÞsðbÞ CðaÞcðbÞ −SðaÞcðbÞ
CðaÞsðbÞ −SðaÞsðbÞ −SðaÞcðbÞ CðaÞcðbÞ

1
CCCA;

ð12Þ

where CðaÞ≡ coshð2πaÞ, SðaÞ≡ sinhð2πaÞ, cðbÞ≡
cosð2πbÞ, and sðbÞ≡ sinð2πbÞ.
An important feature of the Killing vector (10) is that the

boost and rotation generators K ≡ J01 − J23 and J ≡ J03 −
J12 commute, ½K; J� ¼ 0. Consequently, H ¼ e2πξ can be
factored as H ¼ Ha ·Hb ¼ Hb ·Ha, where Ha ¼ Hjb¼0

and Hb ¼ Hja¼0. Iterating the identification by H is
equivalent to acting with

Hn ¼

0
BBB@

CðnaÞcðnbÞ −SðnaÞcðnbÞ SðnaÞsðnbÞ −CðnaÞsðnbÞ
−SðnaÞcðnbÞ CðnaÞcðnbÞ −CðnaÞsðnbÞ SðnaÞsðnbÞ
−SðnaÞsðnbÞ CðnaÞsðnbÞ CðnaÞcðnbÞ −SðnaÞcðnbÞ
CðnaÞsðnbÞ −SðnaÞsðnbÞ −SðnaÞcðnbÞ CðnaÞcðnbÞ

1
CCCA ¼ Hn

a ·Hn
b: ð13Þ

1Without loss of generality, we will assume J > 0 for the rest of this work.
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Quotienting a manifold by a rotation Killing vector
requires the identification angle to be a rational fraction
of 2π. Otherwise, each point is identified with infinitely
many images which densely cover a circle, and the
resulting image set would not be a smooth manifold [9].
This means that the coefficient b in (10) must be rational,
namely,

b ¼ k=m; ð14Þ

with k,m relative primes. No restrictions are necessary for a,
as boosts act transitively in a noncompact manner. Note that
the mth iteration produces a pure boost (and a rotation by
2kπ, which is equivalent to the identity, Hm

b ¼ 1). In fact,
we can treat the rotated plane and the boosted plane
separately by splitting the identification matrix as follows:
consider writing n ¼ qmþ p, wherep ∈ f0; 1;…; m − 1g,
q ∈ f0; 1;…;∞g, and m is some positive integer.
Hence, the powers of H ¼ Ha ·Hb can be arranged as

follows:

1 HaHb H2
aH2

b H3
aH3

b … Hm−1
a Hm−1

b

Hm
a Hmþ1

a Hb Hmþ2
a H2

b Hmþ3
a H3

b … H2m−1
a Hm−1

b

H2m
a H2mþ1

a Hb H2mþ2
a H2

b H2mþ3
a H3

b … H3m−1
a Hm−1

b

..

. ..
. ..

. ..
. ..

. ..
.

:

ð15Þ

Here each column corresponds to a fixed p and includes
infinitely many boosts, while each row has a fixed q
comprising a finite set of rotations. In this pattern, an
interesting observation becomes apparent. First note that
Ha is precisely the identification matrix of the rotating
nonextremal BTZ black hole, and Hb the identification
matrix of the rotating nonextremal naked singularity [9].
Now, using trigonometric identities, one can write in
general, as can be seen in (15),

Hqmþp ¼ Hqm
a Hp

aH
p
b ¼ Hq

a·mH
p
aH

p
b; ð16Þ

so that the pth column reads as

Hp
aH

p
bf1; H1

a·m;H2
a·m;H3

a·m; � � �g: ð17Þ

Or in other words, each column contains the powers of the
identification matrix associated with the rotating nonex-
tremal black hole, multiplied by some constant.

III. RENORMALIZED STRESS-ENERGY TENSOR

To describe the quantum effects on the spacetime
geometry, in particular the backreaction of the naked
singularity to the presence of a quantum field, we consider
the semiclassical Einstein equations

Gμν − l−2gμν ¼ κhTμνi; ð18Þ

where hTμνi is the renormalized expectation value of the
RSET for a conformally coupled scalar field [6–9],

κhTμνðxÞi ¼ πlP lim
x0→x

�
3∇x

μ∇x0
ν − gμνgλρ∇x

λ∇x0
ρ −∇x

μ∇x
ν

−
1

4l2
gμν

�
Gðx; x0Þ; lP ¼ ℏκ

8π
: ð19Þ

Using the method of images, the propagator,
Gðx; x0Þ ¼ fϕðxÞ;ϕðx0Þg, is the anticommutator of the
scalar field, which takes the form [9,14–18]

Gðx; x0Þ ¼ 1

2
ffiffiffi
2

p
π

X
n∈I

Θðσðx;Hnx0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðx;Hnx0Þp ; ð20Þ

where σðx; x0Þ is the chordal distance connecting x and x0,
which can be expressed in terms of the corresponding
embedding coordinates in Rð2;2Þ as

σðx; x0Þ ¼ 1

2
½−ðX0 − X00Þ2 þ ðX1 − X01Þ2

þ ðX2 − X02Þ2 − ðX3 − X03Þ2�: ð21Þ

The Heaviside step functionΘ in (20) was introduced in [9]
because σðx;HnxÞ can be negative in the rotating case.
Calling dnðxÞ the cordal distance between a spacetime
point and its nth image,

dn ¼ 2σðx;HnxÞ
¼ 2l2½−1þ coshð2πanÞ cosð2πbnÞ
− BðrÞ sinhð2πanÞ sinð2πbnÞ�; ð22Þ

with

BðrÞ ¼ l2M − 2r2

4abl2
; ð23Þ

and the RSET takes the form [9,14]

κhTμνi ¼
3lP
2

X
n∈Inf0g

ΘðdnðxÞÞ
�
Snμν −

1

3
gμνgλρSnλρ

�
; ð24Þ

with

Snab ¼
Hn

ab

d3=2n

þ 3Hn
acXcH−n

bdX
d −Hn

acXcHn
bdX

d

d5=2n

: ð25Þ

The set I in the sum (24) includes all distinct images. With
the splitting (16) between boosts (Ha) and rotations (Hb),
one must sum over different ranges for q and p.
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A. Explicit form for hTμ
νi

Note that for any rational value of b there are infinitely many values of n for which 2bn is an integer, which occurs for
p ¼ 0, which implies bn ¼ kq and consequently the last term in (22) vanishes, making the distance function dn
independent of r. This causes an infinite number of terms in the sum (24) to diverge, signaling a breakdown of the
perturbative approach. This can be seen in the nonvanishing components of the stress-energy tensor,

κhTt
ti¼

lPl2

8ab

X∞
n¼1
m∤n

0�6ða2þb2ÞBbn−4abb̄nþ12Bān
d5=2n

þ½3ða2−b2ÞB−2ab�ðc̄n−8Þþ ½3ða2−b2Þþ2abB�cnen
d5=2n

�
; ð26aÞ

κhTt
θi¼−

3lPl3

8ab

X∞
n¼1
m∤n

02½ða2−b2ÞBþ4ab�bnþ4Banþða2þb2Þ½Bðc̄n−8Þþencn�
d5=2n

; ð26bÞ

κhTr
ri¼ lP

X∞
n¼1
m∤n

0 cn
d3=2n

ð26cÞ

κhTθ
ti¼

3lPl
8ab

X∞
n¼1
m∤n

02½ða2−b2ÞB−4ab�bnþ4Banþða2þb2Þ½Bðc̄n−8Þþcnen�
d5=2n

; ð26dÞ

κhTθ
θi¼−κ½hTt

tiþhTr
ri�; ð26eÞ

where
P

n
0 sn ≡P

nΘðdnÞsn, and

an ¼ a2 cosð4πbnÞ þ b2 coshð4πanÞ; ān ¼ a2 cosð4πbnÞ − b2 coshð4πanÞ; ð27aÞ

bn ¼ cosð4πbnÞ − coshð4πanÞ; b̄n ¼ cosð4πbnÞ þ coshð4πanÞ; ð27bÞ

cn ¼ 2 coshð2πanÞ cosð2πbnÞ þ 2; c̄n ¼ 2 coshð4πanÞ cosð4πbnÞ þ 2; ð27cÞ

en ¼ 4 sinhð2πanÞ sinð2πbnÞ: ð27dÞ

The presence of BðrÞ in the numerator of the hTμ
νi compo-

nents makes them grow as r2 for large distance. Hence, as the
denominators are independent of r for n ¼ qm, these sums
contain infinitely many asymptotically divergent terms. The
problem is that to renormalize the stress-energy tensor using
the Hadamard regularization scheme simply removes one
divergent term corresponding to n ¼ 0 (or p ¼ q ¼ 0) in the
sum (20). However, we see that the stress-energy tensor has
infinitelymanydivergent terms, forp ¼ 0 and all possibleqs.
A “natural” scheme to avoid the problem would be to
eliminate the b’s that generate the issue, but this would mean
eliminating all rational b’s, contradicting (14).
It is still possible in principle that, in spite of the

divergences in hTμ
νi, they cancel out in the equations,

yielding a finite result for the back-reacted metric. We will
see next that such cancellation does not occur, so that the
field equations do not allow for a perturbative solution.

B. Back-reacted metric

The back-reacted geometry is expected to belong
in the same family of spherically symmetric stationary

BTZ metrics. It is therefore natural to assume the
ansatz

ds2 ¼ −NðrÞ2fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ þ kðrÞdtÞ2:
ð28Þ

Additionally, based on the previous results [9] we write

NðrÞ ¼ N0ðrÞ þ lPN1ðrÞ þOðl2PÞ; ð29Þ

fðrÞ ¼ f0ðrÞ þ lPf1ðrÞ þOðl2PÞ; ð30Þ
kðrÞ ¼ k0ðrÞ þ lPk1ðrÞ þOðl2PÞ: ð31Þ

The zeroth order equations describe the unperturbed sit-
uation that yields the BTZ metric,

N0ðrÞ¼1; f0ðrÞ¼
r2

l2
−Mþ J2

4r2
; k0ðrÞ¼−

J
2r2

: ð32Þ

The first order corrections in lP of the field equations
yield
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N1ðrÞ ¼
κ

lP

Z
dr

r
f0ðrÞ

�
hTr

ri − hTt
ti −

J
2r2

hTt
θi
�
þ K1;

ð33Þ

f1ðrÞ ¼
Z

dr

�
−2f0ðrÞN1

0ðrÞ þ
�
J2

r3
−
2M
r

�
N1ðrÞ ð34Þ

þ 2

r3

Z
dr

�
2MrN1ðrÞ þ

κ

lP
r3hTr

ri
��

þ K2

r2
þ K3; ð35Þ

Jk1ðrÞ ¼ −f1ðrÞ − 2f0ðrÞN1ðrÞ

þ 2

Z
rdr

�
2

l2
N1ðrÞ þ

κ

lP
hTr

ri
�
þ K4: ð36Þ

Here the integration constants must be chosen as Ki ¼ 0
(i ¼ 1, 2, 3, 4) so that the OðlPÞ metric corrections vanish
for hTμ

νi ¼ 0. Even before integrating these expressions, it
can be directly checked that the divergences of the stress-
energy tensor do not cancel out, leading to unbounded
results for N1, f1, and k1. Consequently, the perturbative
ansatz (29)–(31) does not work, since the first order
corrections cannot be shown to be small.

IV. SUMMARY

We have shown that a naked singularity of an over-
spinning BTZ geometry conformally coupled to a quantum
scalar field does not lead to a renormalized stress-energy
tensor. This causes incurable infinities to appear in the
equations of motion and in the purportedly perturbative
solutions. This is contrary to the previously studied cases of
conical singularities, where the quantum corrections of the

conformally coupled scalar field yields a finite renormal-
ized stress-energy tensor and the resulting back-reacted
geometry acquires a horizon, which provides a mechanism
that enforces cosmic censorship [6–9]. Our result indicates
that the overspinning geometry is plagued by a more severe
form of naked singularity, inaccessible by a perturbative
approach. Consequently, it is not possible to claim that the
singularity may become dressed by perturbative quantum
corrections.
Our result seems to indicate that coupling a conformal

quantum scalar field to an overspinning geometry may
cause the metric to be significantly different from the
original BTZ metric. In any event, it is not possible to
assert, as in the other cases of naked singularities, that
quantum mechanics provides a cosmic censor in this case.
It would be interesting to understand whether there is a

more profound problem with this type of geometry, or if the
strongly rotating behavior simply prevents the application
of perturbative methods. Perhaps one way to approach this
problem would be by numerical methods, hoping to get a
better understanding of the nature of this particular type of
singularity and to see if this is purely a problem of the
perturbative approach, or if there is a more fundamental
issue with the overspinning singularity.
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