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We consider the low-energy effective action of string theory at order α0, including R2 corrections to the
Einstein-Hilbert gravitational action andnontrivial dilaton coupling.Bymeans of a convenient field redefinition,
we manage to express the theory in a frame that enables us to solve its field equations analytically and
perturbatively in α0 for a static spherically symmetric ansatz in an arbitrary number of dimensions. The set of
solutionswe obtain is compatiblewith asymptotically flat geometries exhibiting a regular event horizon atwhich
the dilaton is well behaved. For the four-dimensional case, we also derive the stationary black hole configuration
at first order in α0 and in the slowly rotating approximation. This yields string theory modifications to the Kerr
geometry, including terms of the form a, a2, α0, and aα0. In addition, we obtain the first α0 correction to the C
metrics, which accommodates accelerating black holes.Wework in the string frame and discuss the connection
to the Einstein frame, for which rotating black holes have already been obtained in the literature.
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I. INTRODUCTION

Higher-curvature corrections to Einstein’s general rela-
tivity (GR) are ubiquitous in any sensible approach to
quantum gravity, and they are a solid prediction of string
theory [1]. Even before the formulation of the latter,
effective actions containing higher-order contractions of
the Riemann tensor were known to emerge in quantum field
theory on curved spacetime [2] and in the semiclassical
approach to quantum gravity. Such actions are the natural
generalization of the Einstein-Hilbert action, thus correcting
GR in the UV regime. Also, from the mathematical point
of view it was understood early on that higher-curvature
terms were natural in higher dimensions [3–5] and, on
general grounds, it is widely accepted that any attempt
to formulate a sensible UV-complete theory will involve
higher-curvature corrections in one way or another. In 1976,
Stelle argued that gravitational actions that include terms
quadratic in the curvature tensor are renormalizable [6].

This is due to the fact that nonlinear renormalization of
the graviton and the ghost fields suffices to absorb the
non-gauge-invariant divergences that might arise. Stelle
explained how these and other divergences may be elimi-
nated in a way that simplifies the renormalization procedure,
even when matter fields are coupled. Nevertheless,
renormalizability is not the only issue: the inclusion of
quadratic-curvature terms in thegravitational action typically
introduces massive local degrees of freedom, apart from the
massless graviton of GR [7]. These extra modes organize
themselves as amassive spin-2 excitation and amassive spin-
0 excitation, yieldinga total of eight local degrees of freedom.
The massive spin-2 part of the field has negative energy, and
this is the reason why it is usually asserted that, with the
exception of a few remarkable cases [4,5,8,9], augmenting
the Einstein-Hilbert action with a finite set of higher-
curvature terms yields ghosts when the theory is expanded
about maximally symmetric vacua. In the early 1980s, the
observations of Ref. [7] motivated the search for ghost-free
higher-curvature theories and consistent UV completions.
Since then, actions containing higher-curvature terms were
considered in the context of cosmology [10], black hole
physics [11], and string theory [12]. In 1985, Zwiebach
studied the compatibility between the presence of curvature-
squared terms and the absence of ghost modes in the
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low-energy limit of string theory [12]. He argued that
the so-called Einstein-Gauss-Bonnet (EGB) action was a
good candidate for the string effective action as it yields a
ghost-free nontrivial gravitational self-interacting theory
in any dimension greater than four, d > 4. The EGB action
is made from a dimensionally extended version of the
quadratic Chern-Gauss-Bonnet topological invariant
which, while being dynamically trivial in d ≤ 4, does yield
a UV correction to GR in d > 4 with a single massless
spin-2 excitation and with field equations of second order.
The latter property makes the EGB theory free of
Ostrogradsky instabilities. Still, in Ref. [11] Boulware
and Deser showed that the EGB model proposed in
Ref. [12] as a stringy action contains, in addition to flat
spacetime, a second nonperturbative anti–de Sitter (AdS)
vacuum which turns out to be unstable due to the presence
of ghosts. This is nothing but the fact that actions that are
polynomials of degree k in contractions of the Riemann
tensor generically yield k different vacua, many of them
being artifacts of the truncation of the effective theory. In
ref. [13] the authors noticed that the inclusion of the dilaton
field in the EGB effective action suffices to remove the
spurious (A)dS vacuum permitted in its absence. They also
showed that the spherically symmetric static solutions
to the dilatonic EGB theory might have a well-defined
asymptotic behavior, being nontrivial, and being compat-
ible with the existence of a regular event horizon at which
the dilaton is well behaved.1 This was later confirmed by
explicit examples, and here we also provide a concrete
realization of it.
Soon after Ref. [12], in a foundational paper of string

theory [24], Gross and Witten finally proved that the
gravitational field equations of string theory actually
contain higher-curvature corrections to GR. More precisely,
they derived the modifications of the classical gravitational
equations for the type II string theory by studying tree-level
gravitational scattering amplitudes, and they determined
the effective gravitational action up to quartic order in the
curvature tensor, which corresponds to order Oðα3Þ string
corrections. Unlike bosonic string theory, type II super-
string theory in d ¼ 10 dimensions does not contain
quadratic corrections to GR, and the cubic ones can be
set to zero by field redefinitions, although quadratic
corrections can actually appear in Calabi-Yau compactifi-
cation of the quartic actions, with the moduli playing
the role of the couplings, cf. Refs. [25–27]. In contrast,
quadratic corrections do appear in critical bosonic and
heterotic string theories. They were studied in Refs. [28,29]
by Metsaev and Tseytlin, who checked the equivalence of
the string equations of motion and the σ-model Weyl

invariance conditions at order OðαÞ. They obtained the
functional dependence on the dilaton, graviton, and
antisymmetric tensor. To do so, they first determined
the OðαÞ terms in the string effective action starting from
the expressions for the three- and four-point string
scattering amplitudes; then, they computed the two-loop
β function in the world-sheet σ model. This resulted in an
effective gravity action with quadratic-curvature (R2)
corrections coupled to the other massless fields of the
theory; see also the important works in Refs. [30,31], and
for modern developments on α0 corrections in relation to T
duality and double field theory see Refs. [32–42] and
references therein and thereof.
In recent years, with the advent of the AdS=CFT

correspondence and its ramifications, higher-curvature
terms were reconsidered in the context of holography
and the interest in them was revived. Probably the best-
known example of this is the discussion of the higher-
curvature terms in relation to the Kovtun-Starinets-Son
(KSS) viscosity bound [43,44] which showed that, for a
class of conformal field theories (CFTs) with a gravity
dual with the EGB action, the shear viscosity to entropy
density ratio could violate the conjectured KSS lower
bound. This proved that the presence of higher-curvature
terms could result in qualitatively new phenomena; see also
Refs. [45,46]. Microcausality violation in the CFTwas also
studied in the same type of scenario [43], which was rapidly
interpreted as evidence supporting the idea of a universal
lower bound on the shear viscosity to entropy density ratio
for all consistent theories. This triggered a long series of
works devoted to checking the consistency conditions
of effective theories with higher-curvature modifications.
For example, in Ref. [47] the authors discussed causality
conditions in R2 theories, and they studied causality
violation in holographic hydrodynamics focusing on the
EGB theory as a working example. In the latter theory,
the value of the only R2 coupling constant is related to the
difference between the two central charges of the dual four-
dimensional CFT, and the authors of Ref. [47] showed that,
when such a difference is sufficiently large, causality is
violated. This problem was also studied in Ref. [48], where
the author discussed the relation between causality con-
straints in the bulk theory and the condition of energy
positivity in the dual CFT. He specifically argued that
special care is needed when solving the classical equations
of motion in the higher-curvature gravity theory, for which
the study of causality problems may be subtle. Holography
in the presence of EGB gravity actions was further studied
in Ref. [15] and references thereof. The authors of Ref. [15]
studied the problem in an arbitrary number of dimensions d
and established a holographic dictionary that relates the
couplings of the gravitational theory to the universal
numbers in the correlators of the stress tensor of the dual
CFT, cf. Ref. [49]. This allowed the authors to examine
constraints on the gravitational couplings by demanding the

1Higher-curvature black holes were also studied in the context
of thermodynamics [14] and many other subjects, like hologra-
phy [15] and the weak-gravity conjecture [16], among others. For
related early works on this subject, see Refs. [17–23].
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consistency of the CFT, and this yielded a much more
general set of causality constraints.
Both in the context of AdS=CFT and in other scenarios,

the consistency conditions for higher-curvature theories
were intensively studied over the last 15 years. This line of
research has continued and a much more general picture
of the set of consistency conditions has been obtained.
Causality, locality, stability, hyperbolicity, and other
aspects were revisited. In Ref. [50], it was shown how
causality constrains the sign of the stringy R4 corrections to
the Einstein-Hilbert action, giving a general restriction on
candidate theories of quantum gravity. In Ref. [51], a
special type of pathology that the truncated EGB theory
exhibits was studied. This is a phase transition driven by
nonperturbative effects that might take place in gravita-
tional theories whenever higher-curvature corrections with
no extra fields are considered. In Ref. [52], Maldacena et al.
studied causality constraints on corrections to the graviton
three-point coupling. They considered higher-curvature
corrections to the graviton vertex in a weakly coupled
gravity theory and derived stringent causality constraints.
By considering high-energy scattering processes, they
noticed a potential causality violation that might occur
whenever additional Lorentz-invariant structures are
included in the graviton three-point vertex. They argued
that such a violation could be cured by the addition of an
infinite tower of extra massive higher-spin fields such as
those predicted by string theory. This problem was later
reconsidered by many authors, cf. Ref. [53].
Motivated by this renewed interest in higher-curvature

gravity, in the last years there have been important
developments in the subject, and many new higher-
curvature models were proposed and studied. The list
includes the quasitopological theories [54–56], the criti-
cal gravity theories in AdS [8,9], the so-called Einsteinian
cubic gravity [57,58], and their generalizations [59,60].
Black holes were recently studied in all of these setups
[55,61–63], as well as in string-theory-inspired scenarios
[64–66]; see also Refs. [67–69] and references therein
and thereof. Here we present and study analytic, static,
spherically symmetric solutions to the α0-corrected grav-
ity action in arbitrary dimension d and including a
nonvanishing dilaton coupling. We consider the gravi-
ton-dilaton sector of the low-energy effective action of
string theory with R2 terms in a specific frame that enable
us to solve the problem explicitly to order Oðα0Þ in the
entire spacetime. Our solutions manifestly show that the
theory is compatible with static, spherically symmetric
solutions that are asymptotically flat and exhibit a regular
event horizon at which the dilaton is well behaved. The
paper is organized as follows. In Sec. II we present the
gravity theory in a convenient frame. We briefly discuss
the field redefinition ambiguity to the relevant order, and
we use it to solve the adequate ansatz. The field equations
are written down and solved, and the black hole solution

for d ¼ 4 is presented. In Sec. III we study the black hole
thermodynamics. This amounts to working out the Wald
entropy formula which, as is usual in this type of setup,
yields corrections to the Bekenstein-Hawking area law.
The mass of the solution may then be inferred from
the first law of black hole mechanics. In Sec. IV we
perform a consistency check of the previous formulas by
explicitly computing the black hole mass by means of the
Iyer-Wald method for conserved charges, which shows
perfect agreement. We also show the agreement with the
Euclidean action approach. In Sec. V we generalize our
result by introducing angular momentum in the slowly
rotating approximation. We derive a stationary metric that
represents stringy modifications to the Kerr geometry. In
Sec. VI we obtain the α0 correction to the Cmetric, which
accommodates accelerating black holes. While we work
in the string frame, in Sec. VII we discuss the frame
transformation that maps our theory to the Einstein frame,
including the higher-curvature corrections. In the latter
frame, rotating solutions were already studied in the
literature, and we discuss the precise relation between the
two frames. In Sec. VIII we generalize the static solution
by presenting the explicit form of the dilatonic black hole
solution in arbitrary dimension d.

II. DILATONIC BLACK HOLE

We consider the low-energy effective action of string
theory including α0 corrections to the graviton-dilaton
sector, namely [28,29],

I½gμν;ϕ�

¼
Z
M
ddx

ffiffiffiffiffiffi
−g

p
e−2ϕ½Rþ4ð∇ϕÞ2þαRμνλρRμνλρþOðα2Þ�;

ð1Þ

where we denote α ¼ 1
8
α0. We are not considering the

dependence on the B field here. Performing the field
redefinition gμν → gμν þ δgμν, ϕ → ϕþ δϕ with

δϕ ¼ −
α

2
ðRþ 4ð2d − 5Þ∂μϕ∂μϕÞ; ð2Þ

δgμν ¼ −4αðRμν − 4∂μϕ∂νϕþ 4gμν∂αϕ∂αϕÞ; ð3Þ

one obtains the action in a frame that is convenient for the
computation we want to undertake, namely,

I½gμν;ϕ� ¼
Z

ddx
ffiffiffiffiffiffi
−g

p
e−2ϕ½Rþ 4ð∇ϕÞ2

þ αðRμνλρRμνλρ − 4RμνRμν þR2 − 16ð∂μϕ∂μϕÞ2Þ
þOðα2Þ�; ð4Þ
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up to six-derivative operators of order Oðα02Þ, cf. Ref. [70].
As the R2 terms take the form of the 4d Euler characteristic,
the field equations of the theory in this frame are of
second order in a explicit manner. Let us first consider the
case in d ¼ 4. The field equations derived from Eq. (4) are
given by

Gμν þ 4∂μϕ∂νϕ − 2gμν∂ρϕ∂ρϕþ 2Sμν

− 2gμνSρρ þ αHμν ¼ 0; ð5Þ

Rþ 4∂ρϕ∂
ρϕþ 4Sμμ þ αLGB − 32α

�
∇μð∂ρϕ∂ρϕÞ∂μϕ

þ ð∂ρϕ∂ρϕÞSμμ þ
1

2
ð∂ρϕ∂ρϕÞ2

�
¼ 0; ð6Þ

where Gμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor, and where

Sρσ ≡ e2ϕ∇ρðe−2ϕ∇σϕÞ;
LGB ≡ RμνρσRμνρσ − 4RμνRμν þ R2; ð7Þ

and

Hμν ¼ SμνR − 4SσðμRνÞσ þ 2SσσRμν

þ 2SσλRμσλν − 8ð∂ρϕ∂ρϕÞ∂μϕ∂νϕ
þ gμνð2ð∂ρϕ∂ρϕÞ2 − SσσRþ 2SσλRλ

σÞ: ð8Þ

The Lagrangian LGB is the integrand of the four-
dimensional Chern-Gauss-Bonnet topological invariant
which, in the absence of the dilaton and in d ¼ 4, yields
the Euler characteristic; this is the EGB quadratic gravity
Lagrangian.
We are interested in solving the equations above for

a static spherically symmetric spacetime with nontrivial
dilaton profile. (In Sec. V, we will generalize the solution to
the stationary, nonstatic case.) In order to do so, we work
perturbatively at order OðαÞ, and propose the ansatz

ϕðrÞ ¼ ϕ0 þ αϕ1ðrÞ; ð9Þ

ds2 ¼ −ð1þ αN1ðrÞÞ2
�
1 −

μ

r
þ αf1ðrÞ

�
dt2

þ dr2

1 − μ
r þ αf1ðrÞ

þ r2dΩ2; ð10Þ

where ϕ1ðrÞ, N1ðrÞ, and f1ðrÞ are functions of the radial
coordinate r to be determined, μ is an arbitrary constant,
and dΩ2 is the constant-curvature metric on the unit sphere.
The solution that we find in this way will be valid up to
order OðαÞ. Plugging this ansatz into the field equations
and expanding up to first order in α, we obtain a remarkably
simple system of equations that lead to the following
general solution:

ϕðrÞ ¼ ϕ0 þ α

�
Aþ B log

�
r − μ

r

�
−

2

μr
−

1

r2
−

2μ

3r3

�
;

ð11Þ

with A and B being two arbitrary constants. The former
constant appears merely as a shift of ϕ0 which does not
enter in the metric, and so it can be absorbed by redefining
ϕ̄0 ¼ ϕ0 þ αA, which gives the value that the dilaton takes
at infinity; notice that, at infinity, Eq. (11) goes like
ϕ ≃ ϕ̄0 þOð1=rÞ. Up toOðαÞ terms, for the metric we find

grr ¼ 1−
μ

r
þ α

�
−
μB
r
log

�
r− μ

r

�
þC

r
þ 2

r2
þ μ

r3
−
10

3

μ2

r4

�
;

gtt ¼
μ

r
− 1− α

�
Bð2r− 3μÞ

r
log

�
r− μ

r

�
þDþ 4

r2
þ 5μ

3r3

þ 2μ2

r4
−
μ2D− μCþ 2μ2Bþ 8

μr

�
;

where D and C are two other integration constants. The
former can be eliminated by rescaling the time coordinate
as t → t=ð1þ αDÞ.
If we define rþ ¼ μþ αμ1, we can easily find the

α-corrected location of the event horizon by solving for
μ1 as a function of the integration constants. This amounts
to demanding grrðrþÞ ¼ gttðrþÞ ¼ 0, which is actually
required for the horizon to be regular. Expanding up to
first order in α, this yields

�
B log

�
μ

αμ1

�
þ μ1 þ C

μ
−

1

3μ2

�
αþOðα2Þ ¼ 0; ð12Þ

�
Blog

�
μ

αμ1

�
−2Bþμ1þC

μ
−

1

3μ2

�
αþOðα2Þ¼0; ð13Þ

from which we consequently obtain that B ¼ 0. Therefore,
the α0-corrected black hole configuration reads

grrðrÞ¼1−
μ

r
þα

�
C
r
þ 2

r2
þ μ

r3
−
10

3

μ2

r4

�
þOðα2Þ; ð14Þ

gttðrÞ¼
μ

r
−1−α

�
4

r2
þ 5μ

3r3
þ2μ2

r4
−
8−μC
μr

�
þOðα2Þ; ð15Þ

ϕðrÞ ¼ ϕ̄0 − α

�
2

μr
þ 1

r2
þ 2μ

3r3

�
þOðα2Þ; ð16Þ

and, up to OðαÞ corrections, the location of the horizon is

rþ ¼ μþ α

�
1

3μ
− C

�
: ð17Þ
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The solution we have just derived is asymptotically flat,
and it exhibits a smooth event horizon at rþ, where the
dilaton remains finite:

ϕðrþÞ ¼ ϕ̄0 −
11

3

α

r2þ
þOðα2Þ; ϕð∞Þ ¼ ϕ̄0 þOðα2Þ:

ð18Þ

In the following sections we will analyze the physical
properties of this solution, compute its conserved charges,
and generalize it to d ≥ 4 dimensions.

III. THERMODYNAMICS

The thermodynamics of higher-curvature black holes
has been studied for a long time [14,71,72] and in a vast
number of contexts. Here we focus on the properties of the
black hole solution we just presented. The Wald formula
gives the entropy as a Noether charge computed at the
horizon. This is given by an integral on the horizon H,

S ¼ β

4

Z
H

ffiffiffiffiffiffi
−g

p
ϵμνρσqμνdxρ ∧ dxσ; ð19Þ

in d ¼ 4 spacetime dimensions, with β being the perio-
dicity of the Euclidean time. The Noether prepotential
associated with this charge is given by

qμν ≡ −2ðEμνρσ∇ρξσ þ 2ξρ∇σEμνρσÞ ð20Þ

and

Eμν
ρσ ≡ ∂L

∂Rρσ
μν
: ð21Þ

For the action (4), the tensor (21) and the Noether
prepotential take the form

Eμν
ρσ ¼

1

2
e−2ϕ

�
δμνρσ þ αδμνμ3μ4ρσν3ν4R

ν3ν4
μ3μ4

�
þOðα2Þ; ð22Þ

qμν ¼ 2e−2ϕTμνþαe−2ϕð4TμνRþ 16Tσ½μRν�
σ þ 4TρσRμν

ρσÞ
þOðα2Þ; ð23Þ

respectively, where we have defined Tρσ ≡ 4ξ½ρ∇σ�ϕ−
∇½ρξσ�. Evaluating the Wald entropy (19) for our solution,
we obtain

S ¼ 16π2e−2ϕ̄0μ2 − 32π2αe−2ϕ̄0ðCμ − 8Þ þOðα2Þ: ð24Þ

If we naturally identify

e−2ϕ̄0 ¼ 1

16πG
; ð25Þ

with G being the 4d Newton constant, the leading term
in Eq. (24) reproduces the Bekenstein-Hawking entropy,
while the order OðαÞ terms yield corrections to it. More
precisely, we find

S ¼ πμ2

G
þ 16πα

G

�
1 −

1

8
Cμ

�
þOðα2Þ: ð26Þ

Notice that Eq. (26) depends on both μ and C. The
dependence of C can be traced back to the fact that
αð8 − CμÞ=μ is the OðαÞ correction to the parameter in
front of the Newtonian piece ∼1=r in the component gtt of
the metric, cf. Eq. (15). Then, using Eq. (17), the entropy
can also be written as

S ¼ πr2þ
G

þ 46πα

3G
þOðα2Þ: ð27Þ

Notice that the potential term linear in rþ [i.e., the one that
could come from the term linear in μ in Eq. (26)] has
canceled out. In fact, at order OðαÞ, by virtue of the
field equations, the computation reduces to that of the full
action evaluated on the undeformed GR solution f1 ¼
N1 ¼ ϕ1 ¼ 0. This means that, at that order, the only
correction to the area law S ¼ A

4G is given by a positive
constant. On the same grounds, corrections of the form
Oðαrd−4þ =GÞ are expected in higher dimensions.
Next, let us compute the Hawking temperature. We can

do this by resorting to the Euclidean formalism. However, it
is convenient to first simplify the expressions a bit. We can
write μ as a function of rþ by simply inverting Eq. (17),
which yields

gttðrÞ ¼ −1þ 1

r

�
rþ þ 23α

3rþ

�
− α

�
4

r2
þ 5rþ

3r3
þ 2r2þ

r4

�

þOðα2Þ; ð28Þ

grrðrÞ ¼ 1 −
1

r

�
rþ −

α

3rþ

�
þ α

�
2

r2
þ rþ

r3
−
10r2þ
3r4

�

þOðα2Þ; ð29Þ

ϕðrÞ ¼ ϕ̄0 − α

�
2

rþr
þ 1

r2
þ 2rþ

3r3

�
þOðα2Þ: ð30Þ

This gives the periodicity condition for the real section of
the Euclidean geometry to be regular at r ¼ rþ, namely,

β ¼ 4πrþ þ 44πα

3rþ
þOðα2Þ; ð31Þ

which results in the black hole temperature

T ¼ 1

4πrþ

�
1 −

11

3

α

r2þ

�
þOðα2Þ: ð32Þ
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This corrects the Hawking formula for GR at scales
rþ ≃ α1=2. This result, together with the expression (27)
for the entropy, yields the first-law-type relation

δE≡ TδS ¼ δ

�
rþ
2G

þ 11α

6Grþ

�
þOðα2Þ; ð33Þ

from which, up to subleading orders in α, we can obtain the
gravitational energy

E − Eð0Þ ¼ rþ
2G

�
1þ 11

3

α

r2þ

�
; ð34Þ

with E0 being an integration constant that corresponds to
the energy of the reference background. Below, we will
confirm this result by rederiving the gravitational energy

using the Iyer-Wald method for computing Noether
charges. It is also worth noticing that, if we insist on
extrapolating the formulas above for small values of rþ,
which is not well justified as higher-order terms are
expected to be relevant in that regime, then the formula
obtained for the specific heat changes its sign and becomes
positive within the range 11

3
α < r2þ < 11α; the black hole

temperature (32) vanishes at the lower bound r2þ ¼ 11
3
α.

IV. CONSERVED CHARGES

In order to compute the gravitational energy of the
solution, we have to supplement the bulk action with the
appropriate boundary terms. In the case of the higher-
curvature action (4), the boundary term to be added reads

IBT ≡
Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
e−2ϕ

�
2K þ 4αδμ1μ2μ3ν1ν2ν3 K

ν1
μ1

�
1

2
Rν2ν3

μ2μ3 −
1

3
Kν2

μ2K
ν3
μ3

��
≡

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
B; ð35Þ

where K is the trace of the extrinsic curvature Kμ
ν , and

Rμν
ρσ and hμν are the intrinsic curvature and induced metric

on ∂M, respectively, cf. Ref. [73]. The contribution (35)
renders the variational principle well posed. Then, the
energy of the spacetime, which corresponds to the black
hole mass, is given by the following integral on the sphere
at infinity, S2∞:

M ¼
Z
S2∞

ðQ½t� − t · BÞ; ð36Þ

whereQ½t� is the Hodge dual of the Noether prepotential for
the killing vector t ¼ ∂t and

B ¼ 1

3!
Bnσ

ffiffiffiffiffiffi
−g

p
ϵμνρσdxμ ∧ dxν ∧ dxρ: ð37Þ

In flat spacetime, the trace of the extrinsic curvature is
Kð0Þ ¼ 2

r which gives a divergent piece in the action
principle as the volume element contributes with r2. To
obtain a finite action principle and a finite energy defi-
nition, we have to subtract the extrinsic curvature of flat
spacetime to each piece of the extrinsic curvature appearing
in the formulas above. In other words, we have to define

K̄μν ≡ Kμν − Kð0Þ
μν ;

using flat space as a background reference; this corresponds
to setting Eð0Þ ¼ 0 for Minkowski spacetime. According to
this, the energy content of the spacetime, as defined in
Eq. (36), precisely gives

M ¼ rþ
2G

�
1þ 11

3

α

r2þ

�
; ð38Þ

which agrees with Eq. (34).
Another cross-check for this result can be done by means

of the Euclidean action formalism. In the saddle-point
approximation, the on-shell Euclidean action gives the
partition function, namely,

logZ ≃ IE þ IEBT; ð39Þ

where the superscript E stands for Euclidean. It is worth
emphasizing that, at order OðαÞ, the computation of the
Euclidean action reduces to the evaluation of the full action
IE þ IEBT on the undeformed GR solution. Therefore, the
energy of the configuration can be simply derived from
Eq. (39) by computing

Ē ¼ −
∂ logZ
∂β

: ð40Þ

The on-shell action computed with K̄μν for the configura-
tion (28)–(30) with the Euclidean time periodicity (31)
turns out to be finite, and it reads

IE þ IEBT ¼ −
πr2þ
G

−
10απ

3G
: ð41Þ

From this expression, we easily find

Ē ¼ rþ
2G

�
1þ 11

3

α

r2þ

�
; ð42Þ
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which, again, exactly reproduces Eq. (34) at the right order.
This results in an OðαÞ, rþ-dependent correction to the GR
Smarr formula, namely,

TS −
1

2
Ē ¼ 2α

Grþ
: ð43Þ

At order OðαÞ this is equivalent to an additive constant in
the entropy.

V. ADDING ANGULAR MOMENTUM

The black hole solution (10) can be generalized to the
stationary nonstatic case, and the analytic expression in the
slowly rotating approximation can also be found following
a similar perturbative method as before. At first order in α
and including the rotation parameter in linear and quadratic
terms as well as in terms of the form aα, the solutions reads

ds2 ¼ −
�
1 −

μ

r
þ μa2cos2θ

r3
þ αf1ðrÞ

�
dt2

þ 2a

�
−
μsin2θ

r
þ αhtφðr; θÞ

�
dtdφ

þ
�

1

1 − μ
r þ αg1ðrÞ

−
ððμ − rÞcos2θ þ 2rÞa2

ðr − μÞ2r
�
dr2

þ ðr2 þ a2cos2θÞdθ2

þ
�
ðr2 þ a2Þsin2θ þ a2μsin4θ

r

�
dφ2; ð44Þ

with

f1ðrÞ ¼
2μ2

r4
þ 5μ

3r3
þ 4

r2
−

8

μr
; ð45Þ

g1ðrÞ ¼ −
40

3r4
þ μ

r3
þ 2

r2
; ð46Þ

htφðrÞ ¼ sin2 θ

�
Ĉ
r
þ 2μ2 þ 3μrþ 6r2

r4

�
; ð47Þ

and with Ĉ being a new integration constant that, at this
order, comes to renormalize the angular momentum; see
Eq. (51) below. The scalar configuration is

ϕðrÞ ¼ ϕ0 − α

�
2μ

3r3
þ 1

r2
þ 2

μr

�
: ð48Þ

One can verify that, expanding in both the Gauss-Bonnet
coupling α and the rotation parameter a, all of the field
equations are solved at the right order, namely,

Eμν ¼ Oðαa2; α2Þ: ð49Þ

The angular momentum can be computed by using the
Wald formalism, which yields a form

J ¼ −
Z
S2∞

Q½∂φ�; ð50Þ

with Q½∂φ� representing the Hodge dual of the Noether
prepotential for the Killing vector ∂φ. The angular momen-
tum of the spacetime is given by

J ¼ aμ
2G

�
1 −

αĈ
μ

�
: ð51Þ

The solution (44)–(47) gives a string theory modification to
Kerr geometry. In particular, we see order OðaαÞ modifi-
cations to the off-diagonal term in the Boyer-Lindquist
coordinates. This will result in deviations from the GR
prediction of the Lense-Thirring precession. It will also
induce modifications to the spheroidal shape of the shadow
of a rotating black hole; see Ref. [74] and references thereof.

VI. ACCELERATING BLACK HOLES

Let us consider the following ansatz for the metric and
the dilaton:

ds2 ¼ Ωðx;yÞ
A2ðxþ yÞ2

�
−FðyÞdt2þ dy2

FðyÞþ
dx2

GðxÞþGðxÞdφ2

�
;

ð52Þ

ϕ ¼ ϕðx; yÞ: ð53Þ

assuming the expansion ϕ¼ϕ0ðx;yÞþαϕ1ðx;yÞþOðα2Þ,
F ¼ F0ðyÞ þ αF1ðyÞ þOðα2Þ, G ¼ G0ðxÞ þ αG1ðxÞ þ
Oðα2Þ, and Ωðx; yÞ ¼ 1þ αωðx; yÞ þOðα2Þ. In GR, the
ansatz (52) leads to the C metric which accommodates
accelerating black holes (see Ref. [75] for a modern
interpretation as well as a historical review), even in the
presence of minimally coupled, self-interacting scalar
fields [76]. Here A, stands for the acceleration and
Ωðx; yÞ ¼ 1 in GR in vacuum.
To the lowest order in the string tension α, the Einstein

equations lead to

FðyÞ ¼ F0ðyÞ ¼ f3y3 þ f2y2 þ f1yþ f0 and

GðxÞ ¼ G0ðxÞ ¼ f3x3 − f2x2 þ f1x − f0; ð54Þ

fulfilling GðξÞ ¼ −Fð−ξÞ. Here, fi with i ¼ f0;…; 3g are
integration constants. The quadratic, linear, or f0 term in
the polynomials (54) can be removed by a simultaneous,
constant shift of the independent variables ðx; yÞ, main-
taining the form of the metric (52). For future purposes, it is
better to keep all of the fi as nonvanishing at the moment.
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The field equations of the α0-corrected theory (4) at linear order in α are solved by

F1ðyÞ ¼ d3y3 þ d2y2 þ d1yþ d0; ð55Þ

G1ðxÞ¼f3h1x3þ3f3h2x2þ
ð3d3f1−3f1f3h1−6f2f3h2þ3d1f3−2d2f2Þ

3f3
x ð56Þ

−
ð−6f0f3h1−3f1f3h2þ3d0f3−d2f1þ6d3f0Þ

3f3
; ð57Þ

ωðx; yÞ ¼ 2ϕ1ðx; yÞ þ
3f3j1xþ 3ð2f3h1 þ f3j1 − 2d3Þy − 6f3h2 − 2d2

3ðxþ yÞf3
; ð58Þ

leading to the following inhomogeneous partial differential equation for ϕ1ðx; yÞ:

0 ¼ ðxþ yÞ
�
G0ðxÞ

∂
2ϕ1

∂x2
þ F0ðyÞ

∂
2ϕ1

∂y2

�
þ ðf3x3 þ 3f3x2y − 2f2xy − f1xþ f1yþ 2f0Þ

∂ϕ1

∂x
ð59Þ

þ ðf3y3 þ 3f3xy2 þ 2f2xyþ f1x − f1y − 2f0Þ
∂ϕ1

∂y
− 6A2f23ðxþ yÞ5: ð60Þ

Here the constants ðdi; fj; hk; jlÞ are new integration con-
stants that emerge from the integration of the field equations
at linear order in α. Even though Eq. (60) seems not to admit
an analytic solution, it can be solved as a power series in the
acceleration A, around A ¼ 0. In order to be able to take the
limit A ¼ 0 in Eq. (52), it is useful to perform the change of
coordinates (see Chapter 14 of Ref. [75])

x ¼ − cos θ; y ¼ 1

Ar
; t ¼ Aτ; ð61Þ

and choosing

f2 ¼ −f0 ¼ 1 and f3 ¼ −f1 ¼ −2mA ð62Þ

leads to the following parametrization for the C metric
in GR:

ds20 ¼
1

ð1 − Ar cos θÞ2
�
−Q0ðrÞdτ2 þ

dr2

Q0ðrÞ
þ r2dθ2

P0ðθÞ

þ P0ðθÞr2sin2θdφ2

�
; ð63Þ

with

Q0ðrÞ ¼
�
1 −

2m
r

�
ð1 − A2r2Þ; ð64Þ

P0ðθÞ ¼ 1 − 2mA cos θ: ð65Þ

In terms of ðr; θÞ, and choosing the constants f0 as in
Eq. (62), Eq. (60) is integrated order by order in the

acceleration A. For such a purpose, it is convenient
to choose

ϕ1ðr; θÞ ¼ ð1 − Ar cos θÞHðr; θÞ; ð66Þ

with

Hðr; θÞ ¼
X
i¼0

Hiðr; θÞAi;

which leads to the following functions at the lowest orders:

H0ðr; θÞ ¼ −
4m
3r3

−
1

r2
−

1

mr
; ð67Þ

H1ðr; θÞ ¼
�
26m
3r2

−
1

r

�
cos θ; ð68Þ

H2ðr; θÞ ¼
2mð2 sin2 θ − 23Þ

3r
: ð69Þ

Other solutions are possible, but they lead to logarithmic or
divergent behavior for the dilaton as r → ∞.
In order to clarify the meaning of the plethora of

integration constants that remain arbitrary in the metric
functions, it is useful to reconstruct the full, corrected
spacetime (52) in ðr; θÞ coordinates. The change of coor-
dinates (61) induces the presence of A−1 terms in the metric
coming from the terms (55)–(58) written in terms of ðr; θÞ,
which are removed by setting d3 ¼ 0. Imposing the absence
of divergences at θ ¼ 0 and θ ¼ π on the metric functions
suffices to fix all of the remaining integration constants
except for j1, leading to d2 ¼ d1 ¼ d0 ¼ h1 ¼ h2 ¼ 0,
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which in consequence leads to vanishing corrections of the
functions F and G, namely,

F1ðr; θÞ ¼ 0; G1ðr; θÞ ¼ 0; ð70Þ
and to a conformal factor ωðr; θÞ given by

ωðr; θÞ ¼ 2ϕ1ðr; θÞ; ð71Þ
where we have also set j1 ¼ 0 since a nonvanishing value
of j1 can be absorbed into the dilaton’s additive, arbitrary
constant ϕ0.
Putting all of these ingredients together leads to the

corrected metric, which is given by

ds2 ¼ 1þ 2αϕ1ðr; θÞ
ð1 − Ar cos θÞ2

�
−Q0ðrÞdτ2 þ

dr2

Q0ðrÞ
þ r2dθ2

P0ðθÞ

þ P0ðθÞr2 sin2 θdφ2

�
: ð72Þ

Here ϕ1ðr; θÞ is given by Eq. (66) and Q0ðrÞ and P0ðθÞ are
given by Eqs. (64) and (65), respectively. One can check
that the metric (72), with ϕ1ðr; θÞ in Eq. (66), solves the
field equations of the theory (4), disregarding terms of
the forms Oðα2Þ and OðαA3Þ, i.e., when evaluated on the
corrected C metric, the field equations vanish up to

Eμν ¼ Oðα2Þ þOðαA3Þ: ð73Þ
It is very interesting to notice that the regularity conditions
lead us to move the whole effect of the α correction to the

conformal factor. The solution can be found to higher
orders in the acceleration, by performing the integration of
the partial differential equation (60), at the desired order in
A, after moving to ðτ; r; θÞ coordinates via Eq. (61), in such
a manner that the limit of vanishing acceleration is regular.

VII. MAPPING TO THE EINSTEIN FRAME

Recently, in Ref. [66] the authors constructed the dimen-
sional reduction of the heterotic string on a flat torus, to
dimension four, and constructed rotating solutions, pertur-
batively in the rotation parameter, including the first α0
correction, in the Einstein frame. It is interesting to
compare the setup we consider here, defined by the action
(4), with that of Ref. [66], where disregarding the con-
tribution of the Bμν field leads to an action of the form

I½g0μν;ϕ̃�¼
Z

d4x
ffiffiffiffiffiffiffi
−g0

p �
R0−

1

4
∇μϕ̃∇νϕ̃g0μν

þαe−ϕ̃ðR0μν
ρσR0ρσ

μν−4R0ν
σR0σ

νþR02Þ
�
: ð74Þ

Considering a Weyl transformation of the form

gμν ↦ g0μν ¼ eΦgμν; ð75Þ

where Φ is some scalar function on the spacetime, the
transformations of the quadratic scalars constructed with
the Riemann tensor are given by

R0μν
ρσR0ρσ

μν ¼ e−2Φ
�
Rμν

ρσRρσ
μν − 4Rν

σ∇νΦσ þ 2Rν
ρΦρΦν − RΦλΦλ þD2∇σΦν∇νΦσ þ ð□ΦÞ2

−D2∇σΦνΦσΦν þD2□ΦΦλΦλþ
1

8
D2D1ðΦλΦλÞ2

�
;

R0ν
σR0σ

ν ¼ e−2Φ
�
Rν

σRσ
ν −D2Rνσ∇νΦσ − R□Φþ 1

2
D2RνσΦνΦσ −

1

2
D2RΦλΦλ þ

1

4
D2

2∇σΦν∇νΦσ

þ 1

4
ð3D − 4Þð□ΦÞ2 þ 1

16
D2

2D1ðΦλΦλÞ2 −
1

4
D2

2∇σΦνΦσΦν þ 1

4
D2ð2D − 3Þ□ΦΦλΦλ

�
;

R02 ¼ e−2Φ
�
R2 − 2D1R□Φ −

1

2
D1D2Rð∂ΦÞ2 þD2

1ð□ΦÞ2 þ 1

2
D2

1D2□Φð∂ΦÞ2 þ 1

16
D2

1D
2
2ð∂ΦÞ4

�
;

whereΦλ ¼ ∇λΦ andDp ≔ ðD − pÞ. These expressions lead to the following transformation of the Gauss-Bonnet density,
which we had actually worked out in arbitrary dimension D:

R0μν
ρσR0ρσ

μν − 4R0ν
σR0σ

ν þ R02

¼ e−2Φ
�
Rμν

ρσRρσ
μν − 4Rν

σRσ
ν þ R2 þ 4D3Gνσ∇νΦσ − 2D3RνσΦνΦσ −

1

2
D4D3Rð∂ΦÞ2 −D3D2∇σΦν∇νΦσ

þD3D2∇σΦνΦσΦν þD3D2ð□ΦÞ2 þ 1

2
D2

3D2□Φð∂ΦÞ2 þ 1

16
D4D3D2D1ð∂ΦÞ4

�
;

¼ e−2ΦðGþ PÞ; ð76Þ
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where

G ¼ Rμν
ρσRρσ

μν − 4Rν
σRσ

ν þ R2 ð77Þ

and P stands for the remaining terms. Replacing these
expressions in Eq. (74), choosing the scalar Φ as

Φ ¼ −
4

D − 2
ϕ; ð78Þ

identifying the scalar field in Eq. (74) ϕ̃ as

ϕ̃ ¼ 4

D − 2
ϕ; ð79Þ

and setting D ¼ 4 leads to

I½g0μν ¼ e−2ϕgμν; ϕ̃ ¼ 2ϕ�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
e−2ϕ½Rþ 4ð∂ϕÞ2 þ αðG − 32ð∂ϕÞ4

− 16Gμν∇μϕ∇νϕþ 24□ϕð∂ϕÞ2Þ�; ð80Þ

where we have disregarded boundary terms. Notice that
this action belongs to the family of the most general
α0-corrected string theory actions, which after field rede-
finitions lead to second-order field equations, since each of
the derivative terms for the scalar sector belongs to the
Horndeski family [77]. Indeed, upon comparison with
Eq. (2.6) of Ref. [70] one can read from the action (80)
that the coefficients ðλ; μ; νÞ of Ref. [70] are given by
λ ¼ −32, μ ¼ −16, and ν ¼ 24, and they indeed fulfill the

consistency constraint λþ 2ðμþ νÞ þ 16 ¼ 0. The relation
among the relative coefficients of the higher-derivative
operators of the scalar attests about the UV finiteness of the
action. In consequence, using the results of Ref. [70], one
can see that the action (74) of Ref. [66] in the Einstein
frame and our action (4) in the string frame are related by a
field redefinition, composed with a change of frame.
Therefore, our static and rotating solutions of Secs. II

and IV correspond to a change of frame of the solutions
found in Refs. [19,66], respectively, composed with a field
redefinition. On the other hand, the solution corresponding
to accelerating black holes we presented in Sec. VI is
completely new.

VIII. d-DIMENSIONAL SOLUTION

The analytic solution that we constructed in d ¼ 4 can be
generalized to arbitrary dimension d in a similar manner,
although, as we will see, the form of the general case is a bit
more involved.
Consider the ansatz

ds2 ¼ −ð1þ αN1ðrÞÞ2
�
1 −

�
μ

r

�
d−3

þ αf1ðrÞ
�
dt2

þ dr2

1 − ðμrÞd−3 þ αf1ðrÞ
þ r2dΩ2

d−2;

where now dΩ2
d−2 is the constant-curvature metric on the

unit (d − 2)-sphere. By plugging this ansatz into the field
equations for generic d, we find the following general
solution:

N1ðrÞ ¼ −
C3

μ2f0ðrÞ
�
μ

r

�
d−3

þ ðd − 3Þðd − 2Þ
ðd − 1Þμ2

�
μ

r

�
d−1

�
FðrÞ þ 1

f0ðrÞ
��

μ

r

�
d−3

d − 1

��
þ C3

ðd − 3Þμ2 log f0ðrÞ þ
C2

μ2
;

f1ðrÞ ¼ −
ðd − 3Þ
ðd − 1Þμ2

�
μ

r

�
2d−4

½ðd − 3Þðd − 2ÞFðrÞ þ 2ð2d − 3Þ� þ C1

μ2

�
μ

r

�
d−3

−
C3

μ2

�
μ

r

�
d−3

log f0ðrÞ;

and

ϕ1ðrÞ ¼
ðd − 3Þðd − 2Þ2
2ðd − 1Þr2

�
μ

r

�
d−3

ðFðrÞ − 1Þ

þ ðd − 2ÞC3

2ðd − 3Þμ2 log f0ðrÞ þ
C4

μ2
;

where f0ðrÞ ¼ 1 − ðμrÞd−3 and FðrÞ is given in terms of the
hypergeometric function,

FðrÞ ¼ 2F1

�
1;
d − 1

d − 3
; 2

d − 2

d − 3
;

�
μ

r

�
d−3

�
:

C1, C2, C3, and C4 are integration constants, analogous to
the constants A, B,C, andD of the d ¼ 4 case; for example,

one can identify C3 ¼ μ2Bþ 2, C4 ¼ μ2ϕ̄0, and so on.
Some of these constants can be fixed as in the four-
dimensional case, i.e., by rescaling the time coordinate t,
shifting the zero mode of ϕ, neglecting Oðα2Þ remnants,
imposing a globally flat asymptotic behavior as r → ∞,
and requiring regularity at the event horizon. One can easily
check that the four-dimensional solution studied in the
previous sections is recovered when d ¼ 4. To see this, it is
convenient to consider the relation

2F1ð1; 3; 4; zÞ ¼ −
3

2z3
½zðzþ 2Þ þ 2 logð1 − zÞ�; ð81Þ

with z ¼ 1 − f0ðrÞ. The presence of logarithmic terms
log f0ðrÞ ¼ logð1 − zÞ in the functions N1ðrÞ, f1ðrÞ, and
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ϕ1ðrÞ is related to the fact that the third argument of the
hypergeometric function, c ¼ 2

ðd−2Þ
ðd−3Þ, turns out to be an

integer for some dimensions (d ¼ 4; 5). The logarithm,
which in any case tends to zero at large r, disappears if one
chooses C3 appropriately.

IX. CONCLUSIONS

In summary, the solutions we presented in this paper
describe static, spherically symmetric configurations in the
graviton-dilaton sector of the d-dimensional low-energy
stringy effective action (4). This includes square-curvature
terms and a nonvanishing dilaton coupling. We used the
freedom of field redefinitions to recast the action in a form
that leads to second-order field equations, while still
working in the string frame. The set of solutions includes
asymptotically flat black holes with regular event horizons,
which behave as thermodynamic objects, just like expected.
As a working example, we first focused on the four-
dimensional case, which is given by Eqs. (28)–(30). We
derived the corrections to the thermodynamic variables
introduced by the higher-curvature effects; we computed
the Bekenstein-Hawking entropy (27), the Hawking tem-
perature (32), and the mass formula (42) including the
OðαÞ effects. The computation of the Noether charges was
shown to be in exact agreement with the first law of black
hole mechanics as derived from the Wald entropy formula;
the Euclidean action formalism also reproduces these
results. We also obtained the correction to the C metric,
which contains accelerating black holes. We have shown
that regularity conditions imply that the whole modification
is contained within the conformal factor of the spacetime.
We also integrated the equations of motion for the sta-
tionary, nonstatic solution in the slowly rotating approxi-
mation. This yields stringy corrections to the Kerr geometry
in four dimensions. Although, in contrast to the four-
dimensional case, the field equations in arbitrary dimension
d are more involved, we showed that in the static case they
can still be solved explicitly in terms of hypergeometric

functions. Static and rotating black holes in these theories
have already been considered in the literature, when the
theory is expressed in a different fashion, which is
possible due to the freedom of field redefinition.
Considering such freedom, we found the precise relation
between our setup and the frames previously considered in
the literature. In particular, we mapped our theory to the
Einstein frame, including the higher-curvature correc-
tions, and we showed the equivalence of our setup and
that of Ref. [66], where rotating solutions were already
presented. These solutions may serve as working exam-
ples to investigate higher-curvature stringy effects in a
concrete setup.
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