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Near-Kerr black hole initial datasets are constructed by applying either the parabolic-hyperbolic or the
algebraic-hyperbolic form of the constraints. In both cases, strongly and weakly asymptotically flat initial
datasets with desirable falloff rates are produced by controlling only the monopole part of one of the freely
specifiable variables. The viability of the applied method is verified by numerically integrating the
evolutionary forms of the constraint equations in the case of various near-Kerr configurations.
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I. INTRODUCTION

For more than seven decades, the conformal or elliptic
method, introduced by Lichnerowicz and York [1–4], was
almost the only1 means to solve the constraints of general
relativity. Recently, in a series of papers [7–9], two
alternative evolutionary formulations of the Einstein con-
straint equations were also introduced. It is well known that
by specifying a suitable boundary value problem within the
elliptic method, it is straightforward to arrange a setup
capable of investigating the existence of asymptotically flat
solutions to the constraint equations. By contrast, it is not
evident if there is a way to guarantee the existence of
asymptotically flat solutions to the constraint equations
when either of the novel parabolic-hyperbolic or algebraic-
hyperbolic forms of the constraints is used. The main issue
is whether controlling merely the freely specifiable part of
the data, along with the “initial data” relevant for the
constraint variables—which are given only on one of the
level sets foliating the conventional initial data surface—is
sufficient to guarantee appropriate falloff behavior of all the
geometric fields involved in the constraints.
By their inherent nature, the constraints involve more

variables than equations; thereby, they always form an
underdetermined system. For instance, there are only four
constrained variables, regardless of the method applied,
concerning the geometrical content of a three-dimensional
initial dataset in general relativity. These are the ones
restricted by the Hamiltonian and momentum constraints
[10,11]. In contrast, the remaining eight variables are freely

specifiable. Whenever one is looking for asymptotically flat
solutions located in a small neighborhood of a known one,
it is very tempting to choose all the freely specifiable
variables to coincide with the corresponding variables of
the known asymptotically flat solution. This strategy was
applied by Beyer et al. [12,13] in their pioneering studies
of the asymptotic behavior of solutions to the evolutionary
form of vacuum constraints. More concretely, they used
data on a time slice of the Kerr-Schild form of a single or
superposed binary Schwarzschild black holes, and they
altered only the “initial data”—these were also read off on
one of the foliating level surfaces—for some of the con-
strained variables [12,13]. Their investigations demon-
strated that for this choice of the freely specifiable
data—we referred to these in [14] as “strictly near
Schwarzschild” configurations—the solutions to the evolu-
tionary form of the constraints, apart from the seed
solution, cannot be asymptotically flat. More concretely,
in the strictly near-Schwarzschild setup, neither the alge-
braic-hyperbolic formulation in the single Schwarzschild
case [12] nor the parabolic-hyperbolic formulation in the
single and binary Schwarzschild black hole case [13] allow
suitable falloff for one of the constrained variables, K, that
is nothing but the trace of the tensorial projection of the
extrinsic curvature [for its definition see Eq. (6) below].2

These findings were confirmed in [14]. Note also that our
mode-by-mode (numerical) analysis also allowed us to
conclude that only the monopole part of K violates the
desired decay rate [14]. Accordingly, this monopole part
is the only mode that gets in the way of obtaining
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1There have been attempts to find other means of solving the

constraints (see e.g. [5,6]), but none of them has proved to be a
viable alternative to the conformal method.

2Strictly speaking, K is not the only variable that violates the
desired decay rate, but given the spherically symmetric constraint
equations, it can be argued that the slow decay rate of the other
problematic variables can always be traced back to the behavior
of K.
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asymptotically flat solutions to the evolutionary form of the
constraints in the strictly near-Schwarzschild case [14].
It is important to emphasize that in the above-discussed

investigations, the enormous freedom we have in choosing
the freely specifiable part of the data was ignored entirely.
Based on this observation and to ensure a suitable falloff
rate for the constrained variable, K, Beyer et al. [15]
invented a method that applies to the parabolic-hyperbolic
form of the constraints, by setting κ—which is one of the
freely specifiable variables, and which is the scalar part of
the extrinsic curvature [see Eq. (5) below]—to be propor-
tional to K. Note that by assuming κ ¼ RK, the principal
part of the constraints’ parabolic-hyperbolic form is also
affected as these equations contain tangential derivatives of
κ. Nevertheless, provided that R > − 1

2
holds, the obtained

modified parabolic-hyperbolic system is guaranteed to be
well posed, and, more importantly, the initial data that was
yielded by this method was also found to be strongly
asymptotically flat. The viability of this proposal of Beyer
et al. [15] was confirmed in our follow-up paper [14],
where we also proposed altering part of the freely speci-
fiable data in case of the algebraic-hyperbolic system. It is
fair to admit, however, that the success of the latter proposal
was limited.
Several questions remained open for further study even

after this significant progress reported in [15]. For example,
are there other suitable modifications of the free part of the
data? Are there modifications that do not affect the
principal parts of the evolutionary forms of the constraints?
Could the more general nonstrictly Kerr initial data
configurations be asymptotically flat? Is it possible to
control the rate of decay of the initial data to produce
weakly or strongly asymptotically flat solutions?
The results reported in this paper were inspired by

curiosity about the above questions. Our motivation also
benefited from a recent work by Beyer and Ritchie [16]
demonstrating that the original parabolic-hyperbolic sys-
tem—without applying any alteration—is suitable to yield
asymptotically hyperboloidal initial datasets. Analogous
support was provided by the success of constructing initial
data—even though these are relevant only for the strong
field regime—using the parabolic-hyperbolic formulation
of the constraints, for single or binary rotating Kerr black
hole configurations in [17,18].
The objectives set out in the present paper are many and

varied. For the first time, we investigate the asymptotic
behavior of the space of initial datasets in a small
neighborhood of the initial data obtained on a Kerr-
Schild time slice of a rotating Kerr black hole. We do this
by modifying only the monopole part of some freely
specifiable variables. This, on the one hand, guarantees
that no alteration of the principal parts of the evolutionary
forms of the constraints will occur. Hence the well posed-
ness of the relevant partial differential equation (PDE)
systems is expected to hold, based on the results covered in

[9]. On the other hand, while the method proposed in [15]
applies only to the parabolic-hyperbolic system, our pro-
posal can also be used in solving the algebraic-hyperbolic
system by controlling the monopole part of the freely
specifiable secondary lapse, N̂. In addition, we also
introduce a straightforward method, applicable to both of
the evolutionary forms of the constraints, that allows us to
control the falloff rate of the monopole part of the con-
strained variable K, thereby generating weakly and
strongly asymptotically flat initial data with any desired
falloff rate. The viability of the introduced new methods is
verified by integrating the evolutionary forms of the
constraint equations numerically in the case of various
near-Kerr initial data configurations.
The structure of the paper is as follows: In Sec. II, we

recall the notions and notations utilized in this paper.
Section II B focuses on defining the most relevant spin-
weighted variables, while Secs. II C and II D recall the
exact form of the equations and some of their properties
concerning the parabolic-hyperbolic and algebraic-hyper-
bolic form of the constraints, respectively. In Sec. II E we
select a suitable (Kerr-Schild) time slice foliation to the
Kerr black hole background. As a closing to Sec. II, in
Sec. II F, we recall the notion of strong and weak asymp-
totic flatness. Our main results are presented in Sec. III.
Since in all the former studies, exclusively the asymptotics
of near-Schwarzschild initial data was investigated, in
Sec. III B, we start by examining the asymptotics of strictly
near-Kerr black hole initial data configurations. Although
this does not yield the desired falloff behavior, we still find
it beneficial to provide this for comparison and to verify
that even in this more complicated case, it is indeed only
the monopole part of K that requires suitable control.
Sections III C and III D present our proposal applied to the
parabolic-hyperbolic and the algebraic-hyperbolic formu-
lations, respectively. These sections start with motivating
our novel approach by inspecting the analytic solutions in
spherical symmetry and then presenting the corresponding
numerical results in the case of near-Kerr initial data
configurations. We close this paper with our final remarks
in Sec. IV.3

II. PRELIMINARIES

The geometric content of an initial dataset is represented
by a pair of symmetric tensor fields ðhab; KabÞ, where hab is
a Riemannian metric on a three-dimensional manifold Σ.
Once Σ is embedded into a four-dimensional spacetime
ðM; gabÞ the fields hab and Kab get to be the induced metric
and extrinsic curvature of Σ in ðM; gabÞ. The fields
ðhab; KabÞ are subject to the constraints which, in the
vacuum case, read as

3Unless indicated otherwise, our conventions and notations are
the same as in [11]. In particular, we use geometric units.
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ð3ÞR − KabKab þ K2 ¼ 0; ð1Þ

DbKb
a −DaK ¼ 0; ð2Þ

whereDa and ð3ÞR are the covariant derivative operator and
Ricci scalar associated with hab, respectively, and K
denotes the trace of the extrinsic curvature.

A. Foliation based decompositions

The geometric construction underlying the evolutionary
interpretation of the constraints lies on the assumption that
the three-dimensional initial data surface, Σ, can be foliated
by a one-parameter family of 2-surfaces, Sϱ, which are the
ϱ ¼ const level surfaces of a function ϱ∶Σ → R [7–9].
The unit normal to the Sϱ surfaces is n̂a ¼ N̂Daϱ, such

that n̂an̂a ¼ 1. Then the induced metric on Sϱ reads as

γ̂ab ¼ hab − n̂an̂b; ð3Þ

whereas the operator projecting fields defined on Σ onto Sϱ

is γ̂ab ¼ haeγeb. The covariant derivative operator associ-
ated with γ̂ab is denoted by D̂a, whereas the corresponding
Ricci scalar and the extrinsic curvature of the 2-surfaces by
R̂ and K̂ab, respectively. To uncover implicit involvements

of the lapse, K̂ab will be replaced by the product N̂−1K
⋆
ab,

where K
⋆
ab ¼ 1

2
L ½ρ−N̂�γ̂ab.

A radial flow vector field, ρa, is also chosen such that its
integral curves intersect each Sϱ level surface precisely

once, and it is normalized such that ρaDaϱ ¼ 1. Then the
lapse and shift associated with ρa are N̂ ¼ ρan̂a and
N̂a ¼ γ̂abρ

b, respectively. Using these variables the geo-
metric content of the metric, hab, can be uniquely repre-
sented by the triplet ðN̂; N̂a; γ̂abÞ [14].
The extrinsic curvature, Kab, can also be decomposed as

Kab ¼ κn̂an̂b þ kan̂b þ kbn̂a þKab; ð4Þ

where

κ ¼ Kabn̂an̂b; ka ¼ Kbcγ̂
b
an̂c; Kab ¼ Kcdγ̂

c
aγ̂

d
b:

ð5Þ

The tensorial projection of the extrinsic curvature can
further be split into its trace and trace-free parts, which
are given as

K ¼ Kabγ̂
ab and K

∘
ab ¼ Kab −

1

2
Kγ̂ab: ð6Þ

Note finally that the septet ðN̂; N̂a; γ̂ab; κ;ka;K;K
∘
abÞ is

algebraically equivalent to the geometric content repre-
sented by the pair ðhab; KabÞ on Σ.

B. Spin-weighted variables

As argued in [19–21], it is rewarding to use spin-
weighted variables. In doing so, one first introduces a
complex null dyad, fqa; q̄ag, where bar denotes complex

TABLE I. The variables applied in providing the evolutionary form of the constraints.

Notation Definition Spin weight

a 1
2
qiq̄jγ̂ij 0

b 1
2
qiqjγ̂ij 2

d a2 − bb̄ 0

A qaqbCe
abq̄e ¼ d−1fa½2ða − ð̄b� − b̄ðbg 1

B q̄aqbCe
abqe ¼ d−1fað̄b − bðb̄g 1

C qaqbCe
abqe ¼ d−1faðb − b½2ða − ð̄b�g 3

R̂ 1
2
a−1ð2R − fðB̄ − ð̄A − 1

2
½CC̄ − BB̄�gÞ 0

N qiN̂
i 1

k qiki 1

K γ̂klKkl 0

K
∘
qq qkqlK

∘
kl

2

K
∘
qq̄ qkq̄lK

∘
kl ¼ ð2aÞ−1½bK

∘
qq þ b̄K

∘
qq�

0

K
⋆

K
⋆ ¼ γ̂ijK

⋆
ij

0

K
⋆
qq qiqjK

⋆
ij ¼ 1

2
f2∂ρb − 2ðNþ CN̄þANg 2

K
⋆
qq̄ qkq̄lK

⋆
kl ¼ a−1fd · K

⋆ g þ 1
2
½b ¯
K
⋆
qq þ b̄K

⋆
qq�g

0
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conjugate, on one of the Sϱ level surfaces, say on Sϱ0 such
that qab ¼ qaq̄b is required to be the unit sphere metric on
Sϱ0 . Then the dyad fqa; q̄ag is automatically normalized as
qabqaq̄b ¼ 2, whereas the indices of the dyad are raised and
lowered by qab and qab, respectively. To get a complex null
dyad, fqa; q̄ag on each of the ϱ ¼ const level surfaces the
dyad fixed on Sϱ0 is Lie-dragged with respect to ρ

a onto Σ.
Note that then the action of the tangential derivative D̂a can
be rephrased using the Newman-Penrose ð and ð̄ operators
[21]. The basic variables we use in the succeeding sub-
sections, including the spin-weighted ones, are listed in
Table I.

Note that, in virtue of K
∘
abγ̂

ab ¼ 0, for the contraction

K
∘
qq̄ ¼ K

∘
abqaq̄b, as indicated in Table I,

K
∘
qq̄ ¼ ð2aÞ−1

�
bK

∘
qq þ b̄K

∘
qq

�
ð7Þ

holds. Note also that γ̂ab can be given, in terms of the dyad
fqa; q̄ag, and the variables a and b, as

γ̂ab ¼ aqab þ
1

2
½bq̄aq̄b þ b̄qaqb�: ð8Þ

Note, finally, that the geometric content of ðhab; KabÞ
can also be represented by the octet ðN̂;N; a;b; κ;k;

K;K
∘
qqÞ. As shown in [9,19,20] by choosing N̂, k, and

K as constrained variables, we arrive at the parabolic-
hyperbolic formulation while selecting κ, k, and K as
constrained variables we arrive at the algebraic-hyperbolic
formulation of the constraints.

C. The parabolic-hyperbolic equations

Selecting N̂, k, K as constrained variables, the
Hamiltonian and momentum constraints read as [21]

K
⋆ �

∂rN̂ −
1

2
Nð̄ N̂ −

1

2
N̄ðN̂

�

−
1

2
d−1N̂2

�
afðð̄ N̂ −Bð̄ N̂g

− bfð̄2N̂ −
1

2
Ā ð̄ N̂ −

1

2
C̄ðN̂g þ cc:

�

−AN̂ − BN̂3 ¼ 0; ð9Þ

∂rk −
1

2
Nð̄k −

1

2
N̄ðk −

1

2
N̂ðKþ fPH ¼ 0; ð10Þ

∂rK −
1

2
Nð̄K −

1

2
N̄ðK

−
1

2
N̂d−1faððk̄þ ð̄kÞ − bð̄ k̄−b̄ðkg þ FPH ¼ 0;

ð11Þ

where the coefficientsA, B, and the source terms fPH, FPH
in (9)–(11), are given as

A ¼ ∂rK
⋆
−
1

2
Nð̄K

⋆
−
1

2
N̄ðK

⋆ þ 1

2

�
K
⋆ 2 þ K

⋆
klK

⋆ kl
�
; ð12Þ

B ¼ −
1

2

�
R̂þ 2κKþ 1

2
K2 − d−1½2akk̄ − bk̄2 − b̄k2�

−K
∘
klK

∘ kl
�
; ð13Þ

fPH ¼ −
1

2
½kðN̄þ k̄ðN� −

�
κ −

1

2
K

�
ðN̂

þ K
⋆
k − N̂½ðκþ qi _̂nlK

∘
li − qiD̂lK

∘
li�; ð14Þ

FPH ¼ 1

4
N̂d−1f2aBk̄ − bðC̄kþ Ā k̄Þ þ cc:g

− d−1½ðak̄ − b̄kÞðN̂ þ cc:�

þ
�
K
∘
ijK

⋆ ij
−
�
κ −

1

2
K

�
K
⋆ � ð15Þ

with cc. denoting the complex conjugate of the preceding

terms, while the explicit form of the terms, such as K
⋆
ijK

⋆ ij
,

K
∘
ijK

⋆ ij
, K

∘
ijK

∘ ij
, qi _̂nlK

∘
li, qiD̂

lK
∘
li, can be found in [21].

As shown in [9], (9) is a Bernoulli-type parabolic
equation, while (10) and (11) form a first-order symmetric
hyperbolic system. This coupled parabolic-hyperbolic sys-
tem always gets to be well posed in those subregions of Σ

where the positivity of K
⋆

can be guaranteed. As K
⋆

is
determined by the freely specifiable variables a, b, and N,
the coupled parabolic-hyperbolic system can always be
guaranteed to be well posed at least on a one-sided
neighborhood of the initial data surface4 Sϱ0 in Σ. Note
also that besides the freely specifiable eight real functions,

represented by the variables ðN; a;b; κ;K∘ qqÞ, on Σ, we also
have the freedom to choose initial data ðN̂jϱ0 ;kjϱ0 ;Kjϱ0Þ to
the parabolic-hyperbolic equations (9)–(11) on Sϱ0 .

D. The algebraic-hyperbolic equations

Choosing K, k, and κ as basic variables the constraints
read as [21]

∂rK −
1

2
Nð̄K −

1

2
N̄ðK −

1

2
N̂d−1faððk̄þ ð̄kÞ

− bð̄ k̄−b̄ðkg þ FAH ¼ 0; ð16Þ

4The initial data for the evolutionary form of the constraints,
specified on one of the ϱ ¼ const level sets in Σ should not be
confused with an initial dataset ðΣ; hab; KabÞ relevant for the
time-evolution part of Einstein’s equations.
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∂rk −
1

2
Nð̄k −

1

2
N̄ðkþ N̂K−1fκðK − d−1½ðak − bk̄Þðk̄

þ ðak̄ − b̄kÞðk�g þ fAH ¼ 0; ð17Þ

κ ¼ 1

2
K−1

�
d−1ð2akk̄ − bk̄2 − b̄k2Þ − 1

2
K2 − κ0

�
; ð18Þ

with

κ0 ¼ ð3ÞR −K
∘
klK

∘ kl
; ð19Þ

where the pertinent source terms FAH, fAH are given as

FAH ¼ 1

4
N̂d−1f2aBk̄ − bðC̄kþ Ā k̄Þ þ cc:g

− d−1½ðak̄ − b̄kÞðN̂ þ cc:�

þ
�
K
∘
ijK

⋆ ij
−
�
κ −

1

2
K

�
K
⋆ �

; ð20Þ

fAH ¼ −
1

2
½kðN̄þ k̄ðN�

þ 1

2
N̂ðd ·KÞ−1½ðak − bk̄ÞðB̄kþ Bk̄Þ

þ ðak̄ − b̄kÞðCk̄þAkÞ� −
�
κ −

1

2
K

�
ðN̂

þ N̂

�
1

2
K−1ðκ0 þ N̂−1K

⋆
k − qi _̂nlK

∘
li þ qiD̂lK

∘
li

�
:

ð21Þ

As shown in [9], (16) and (17) form a first-order
Friedrichs symmetrizable hyperbolic system for the
vector valued variable ðK;kÞ provided that the inequal-
ity κ ·K < 0 holds. Notice that as this latter condition
refers to the dependent variables, its validity has to be
checked during the integration of the underlying system.

Note also that in doing so the fields ðN̂;N; a;b;K
∘
qqÞ

can be specified at will throughout Σ, along with the
Cauchy data for the system (16)–(17) constituted by the
pair ðKjϱ0 ;kjϱ0Þ given on the ϱ ¼ ϱ0 initial data
level set.

E. Foliations of Kerr-Schild time slices

As indicated in the Introduction, one of our principal
aims is to explore the asymptotic behavior of at least a
small neighborhood of the initial datasets deduced from
a rotating Kerr black hole on a Kerr-Schild time slice.
Accordingly, such as in all the former investigations
[12–16,19], we start by deducing a distinguished initial

dataset, represented by ðN̂;N; a;b; κ;k;K;K
∘
qqÞ, rel-

evant for a Kerr spacetime, with mass and rotation
parameters M and a, respectively, on a tKS ¼ const

Kerr-Schild time slice. These time slices are preferable
as they connect the black hole interior with spacelike
infinity.
The Kerr-Schild form

gab ¼ ηab þ 2Hlalb; ð22Þ

with

H ¼ Mr3

r4 þ a2z̃2
; la ¼

�
1;
rx̃þ aỹ
r2 þ a2

;
rỹ − ax̃
r2 þ a2

;
z̃
r

�
;

ð23Þ

is probably one of the simplest and most widely used
representation of the Kerr black hole spacetime, with spin
pointing to the positive z̃ direction. In (22) ηab stands for the
metric of an auxiliary Minkowski spacetime with inertial
coordinates ðt̃; x̃; ỹ; z̃Þ. The spatial part of these coordinates
ðx̃; ỹ; z̃Þ and the Boyer-Lindquist radial coordinate, r, are
related via the implicit relation

x̃2 þ ỹ2

r2 þ a2
þ z̃2

r2
¼ 1: ð24Þ

The tKS ¼ const Kerr-Schild time slices of a Kerr spacetime
are nothing but t̃ ¼ const time-level surfaces of the aux-
iliary Minkowski spacetime. As ðx̃; ỹ; z̃Þ are Cartesian
coordinates on the t̃ ¼ const time-level surfaces, it is
tempting to foliate the Kerr-Schild time slices by the x̃2 þ
ỹ2 þ z̃2 ¼ const level sets. Nevertheless, however contro-
versial it may sound, the coordinates ðx̃; ỹ; z̃Þ do not form a
suitable admissible asymptotic system for the Kerr solution,
which (as we shall see in the following subsection) plays
a central role in setting up the precise formulation of
asymptotic flatness of the data specified on tKS ¼ const
Kerr-Schild time slices.
For this purpose the spherical Kerr-Schild coordinates,

introduced by Chen et al. [22], turned out to be more
appropriate. The spherical Kerr-Schild coordinates,
ðx; y; zÞ, are related to ðx̃; ỹ; z̃Þ via the relations

x ¼ rx̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ; y ¼ rỹffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ; z ¼ z̃: ð25Þ

As noted in [22], while in the original Kerr-Schild
coordinates ðx̃; ỹ; z̃Þ, and with respect to the Euclidean
metric, δab, the Boyer-Lindquist r ¼ const level sets are, in
virtue of (24), oblate spheroids, the same level sets, at least
in an affine sense, are the x2 þ y2 þ z2 ¼ r2 spheres with
respect to the spherical Kerr-Schild coordinates. Note that
the x̃2 þ ỹ2 þ z̃2 ¼ const and x2 þ y2 þ z2 ¼ const level
sets do coincide in the a → 0 Schwarzschild limit.
The payback of using the spherical Kerr-Schild coor-

dinates ðx; y; zÞ is that they form admissible coordinates on
the tKS ¼ const Kerr-Schild time slices. This gets more
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transparent when one is applying the spherical coordinates
ðr; ϑ;φÞ defined via the (standard) implicit relations5

x ¼ r cosφ sin ϑ; y ¼ r sinφ sinϑ; z ¼ r cos ϑ:

ð27Þ

Utilizing these spherical coordinates ðr;ϑ;φÞ the data

ðN̂;N; a;b; κ;k;K;K
∘
qqÞ, relevant for the considered

Kerr spacetime on Σ, i.e., on the t ¼ 0 Kerr-Schild time
slice, foliated by the r ¼ const level sets and with respect to
the flow ρa ¼ ð∂rÞa, can be given as

N̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2HÞϒ

Ξ

r
; N ¼ i

2aMr sinϑ
ða2 þ r2ÞΞ ; ð28Þ

a ¼ a2 þ r2 −
1

2
a2ð1 − 2HÞ sin2 ϑ;

b ¼ −
1

2
a2ð1þ 2HÞ sin2 ϑ; ð29Þ

κ ¼ 2a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p
sin2ϑ∂rH

ϒ
−
2ð1þHÞΞ∂rH
ϒð1þ 2HÞ3=2

−
2a2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p
sin2ϑðrþ a2sin2ϑ∂rHÞ
ϒΞ

; ð30Þ

k ¼ −
a2sin2ϑ∂ϑHffiffiffiffiffiffiffi

ϒΞ
p þ

ffiffiffiffi
Ξ
ϒ

r
∂ϑH

1þ 2H

− i

�
a sinϑ

ffiffiffiffi
Ξ
ϒ

r
∂rH −

2aH sinϑðrþ a2sin2ϑ∂rHÞffiffiffiffiffiffiffi
ϒΞ

p
�
;

ð31Þ

K ¼ −
H − r∂rH

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p −
2Hðrþ a2sin2ϑ∂rHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2H
p

Ξ
; ð32Þ

K
∘
qq ¼

ϒþ Ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p
�
Hðrþ a2 sin2 ϑ∂rHÞ

Ξ
−
H − r∂rH

2r

�

þ i
2a sinϑ∂ϑHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2H
p ; ð33Þ

where ϒ ¼ r2 þ a2 cos2 ϑ, H ¼ Mr=ϒ and Ξ ¼ r2þ
a2 þ 2a2H sin2 ϑ.
Note that due to the symmetries of the Kerr spacetime, N

is purely imaginary, and b is real, although, in general, they
are complex-valued functions. Note also that in the a → 0

Schwarzschild limit N, b, k, and K
∘
qq all vanish, and that

the variables ðN̂;N; a;b; κ;k;K;K
∘
qqÞ reduce to the for-

mulas applied in [14].
To avoid potential numerical inaccuracies in evaluating

some of the more complex geometric quantities, for
instance, ð3ÞR, it turned out to be rewarding to inspect if
subterms of the same magnitude with opposite signs are
involved. In practice, it was profitable to simplify the
corresponding expressions using symbolic computer alge-
bra and evaluate the yielded formulas numerically, in
accordance with similar experiences reported in [12].

F. Asymptotic flatness

An initial dataset ðΣ; hab; KabÞ is considered to be
strongly asymptotically flat if the complement of a compact
set in Σ can be mapped by an admissible coordinate system
ðx; y; zÞ diffeomorphically onto the complement of a closed
ball in R3 such that in these coordinates

hab ¼
�
1þ C

r

�
δab þOðr−2Þ; ð34Þ

Kab ∼Oðr−2Þ ð35Þ

hold as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ y2

p
goes to infinity [23], where δab

denotes the components of the flat three-metric in the
admissible Cartesian coordinates ðx; y; zÞ. These conditions
guarantee that the ADM mass, momentum, and angular
momentum of the initial dataset are well defined.
Aweaker notion of asymptotic flatness is also frequently

used. An initial dataset ðΣ; hab; KabÞ will be referred to as
weakly asymptotically flat if the milder falloff conditions

hab ¼
�
1þ C

r

�
δab þOðr−3=2−ϵÞ; ð36Þ

Kab ∼Oðr−3=2−ϵÞ ð37Þ

hold, for some small positive number ϵ. Note that these
weaker conditions guarantee that the ADM mass and linear
momentum are well defined [24].
It was shown in [14] that by transforming an admissible

coordinate system ðx; z; yÞ to spherical coordinates
ðr; ϑ;φÞ, by applying the relation in (27), one can refor-
mulate the falloff conditions (34) and (36) to those
introduced in Sec. II A. The corresponding falloff con-
ditions for the metric components in the case of strong
asymptotic flatness are [14]

5It is important to emphasize that the ðx̃; ỹ; z̃Þ oblate spheroidal
coordinates can be given in terms of the Boyer-Lindquist
coordinates ðr; θ;ϕÞ as

x̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
cosϕ sin θ; ỹ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sinϕ sin θ;

z̃ ¼ r cos θ: ð26Þ

Note that the Boyer-Lindquist angular coordinates ðθ;ϕÞ and
those in (27) are related as θ ¼ ϑ and ϕ ¼ φ − arctanða=rÞ. It is
indeed the very last relation that explains why the ðx; y; zÞ
spherical Kerr-Schild coordinates could be suitable, and, in
contrast, the ðx̃; ỹ; z̃Þ oblate spheroidal coordinates cannot form
asymptotically admissible coordinates on Kerr-Schild time slices.
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N̂ − 1 ∼Oðr−1Þ; N̂a ∼Oðr−3Þ; γ̂ab ∼ r2qab þOðr0Þ:
ð38Þ

Since the dyadic components are independent of r, the
spin-weighted variables inherit the falloff conditions
of the tensor quantities from which they are derived.
Thus we have N ∼Oðr−3Þ, a ∼Oðr2Þ, and b ∼Oðr2Þ.
Looking at (8), however, we can derive a stronger condition
on b by realizing that the part of γ̂ab proportional to qab is
entirely represented by a, so b must satisfy b ∼Oðr0Þ.
Similarly, in the case of strong asymptotic flatness, the
components of the extrinsic curvature must satisfy the
falloff conditions [14],

K
∘
ab ∼Oðr0Þ; K∼Oðr−2Þ; ka ∼Oðr−1Þ; κ∼Oðr−2Þ;

ð39Þ

which results in K
∘
qq ∼Oðr0Þ and k ∼Oðr−1Þ.

The background variables (28)–(33) have the asymptotic
behavior

N̂ ∼ 1þM
r
þOðr−2Þ; N ∼

2iaM sin ϑ
r3

þOðr−4Þ;
ð40Þ

a ∼ r2 þOðr0Þ; b ∼ −
1

2
a2 sin2 ϑþOðr−1Þ; ð41Þ

κ ∼
2M
r2

þOðr−3Þ; k ∼
3iaM sin ϑ

r2
þOðr−3Þ; ð42Þ

K ∼ −
4M
r2

þOðr−3Þ; K
∘
qq ∼ −

2a2M sin2 ϑ
r2

þOðr−3Þ
ð43Þ

which correspond to the derived falloff conditions.
Since this work is concerned by their asymptotic

behavior, we recall that the falloff properties of the con-
strained spin-weighted variables read as

N̂ − 1 ∼Oðr−1Þ; κ ∼Oðr−2Þ;
k ∼Oðr−1Þ; K ∼Oðr−2Þ ð44Þ

for strongly asymptotically flat initial data, while as

N̂ − 1 ∼Oðr−1Þ; κ ∼Oðr−3=2−ϵÞ;
k ∼Oðr−1=2−ϵÞ; K ∼Oðr−3=2−ϵÞ ð45Þ

for weakly asymptotically flat data.

III. THE MAIN RESULTS: APPLYING
THE NEW METHOD

This section introduces the new method that allows us to
control the falloff properties of the solutions to the evolu-
tionary forms of the constraint equations. In doing so, all
the variables are expanded using spin-weighted spherical
harmonics, as done in [14]. The replacement of a spin-
weight s variable ðsÞV by the expansion

ðsÞVðr;ϑ;φÞ ¼
Xlmax

l¼jsj

Xl
m¼−l

Vl
mðrÞ ·s Yl

mðϑ;φÞ; ð46Þ

where sYl
m denotes the spin-weight s spherical harmonics,

allows us to evaluate its angular derivatives analytically as
they can always be related to the ð and ð̄ operators.

A. The outline of the applied numerical scheme

In this study, we utilize the same numerical solver as
applied in [14], which is based on spin-weighted spherical
harmonics expansion in the angular sector and a fourth-
order accurate adaptive Runge-Kutta-Fehlberg (RKF)
method in solving the resulting ordinary differential equa-
tions for the expansion coefficients.6 To ensure higher
accuracy for our numerical solver, in each case, instead of
solving (9), (10) and (16)–(18), we solve the equations
which can be deduced from them for the nonlinear
perturbations ðΔÞN̂ ¼ N̂ − ð0ÞN̂, ðΔÞK ¼ K − ð0ÞK, and
ðΔÞk ¼ k − ð0Þk, in the parabolic-hyperbolic case, and
for ðΔÞK and ðΔÞk, in the algebraic-hyperbolic case. Here
ð0ÞN̂, ð0Þk, and ð0ÞK signify the background quantities given
by Eqs. (28), (31), and (32), respectively. The main
payback of using the formulation based on deviations is
that the corresponding dominant background fields do not
hide the asymptotic behavior of the higher modes of the
constraint fields. Note that the derivation of the equations
governing the evolution of the nonlinear perturbations is
straightforward. As they are slightly altered versions of the
equations provided in Appendix A of [14], they will be
omitted here.
The input parameters in our numerical simulations are as

follows: The integration of the deviation equations starts at
r ¼ 1, that is, inside the black hole region. The non-
negligible initial data there is

ðΔÞKjr¼1 ¼ −Y2
0; ð47Þ

which is the same order of magnitude as the dominant
monopole part ð0ÞK0

0jr¼1 ¼ −5.7581 of the background
ð0ÞK at r ¼ 1. As both the initial data in (47) and the
background fields are axially symmetric, only the m ¼ 0

6Although the code itself is not yet open source, its docu-
mentation is available to the public [25].
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axisymmetric modes of the constrained fields get excited.
Furthermore due to the parity symmetry of Kerr and the
functional form of the dyad components, (47) excites only
even l modes of ðΔÞK, ðΔÞN̂, κ, Re½ðΔÞk�, and only odd l
modes of Im½ðΔÞk�.
The integration of the deviation equations goes out until

reaching r ¼ 109, with a single exception (see Fig. 4
below), where it goes out to r ¼ 1012. The mass and
rotation parameters of the Kerr background take the values
M ¼ 1 and a ¼ 1=2. Starting from the strong field region
necessitates angular resolution with minimal cutoff
lmax ¼ 10. This resolution allows us to compute the square
roots with desired relative accuracy of 5 × 10−18, which is
the same accuracy as we demand in performing division by
using Neumann series expansion. The error tolerance of
RKF for each mode of a variable f is set to ðflm þ ∂rflmÞϵ
with ϵ ¼ 10−5.
Note also that the use of the WIGXJPF library of

Johansson and Forssén [26] yielded notable improve-
ments in the performance of our code. All the analytic
calculations were derived or verified using Mathematica
12.3. In particular, the notebook we used to determine the
background variables (28)–(33) (which serve as the main
input to our code) is available as Supplemental
Material [27].

B. Asymptotics of strictly near-Kerr initial datasets

As was mentioned in the Introduction, in the strictly
near-Schwarzschild setup, neither the algebraic-hyperbolic
formulation in the single Schwarzschild case [12] nor the
parabolic-hyperbolic formulation in the single and binary
Schwarzschild black hole case [13] allow suitable falloff
for K.
For instance, using the parabolic-hyperbolic formulation,

Beyer et al. [13] reported that besides that the lapse, N̂,
does not tend to the desired asymptotic value 1, in general,
the falloff rate ofK isOðr−1Þ that is also far too slow. In our
follow-up mode-by-mode investigations, both of these
observations were confirmed. Nevertheless, we also found
that apart from the limiting value of N̂ and the l ¼ 0,
m ¼ 0 monopole mode of K, all the other modes of the
involved variables fall off with a rate compatible with
conditions in strong asymptotic flatness [14].
Analogously, in the algebraic-hyperbolic case, Beyer

et al. [12] found that the falloff rate forK isOðr−3=2Þwhich
is now strictly at the borderline not to allow weak
asymptotic flatness. Surprisingly, the mode-by-mode inves-
tigations of similar strictly near-Schwarzschild initial data-
sets demonstrated that all the other modes of the involved
variables fall off with a rate compatible with conditions in
strong asymptotic flatness [14].
Though in light of the results summarized above, one

does not expect better asymptotic behavior of the constraint
variables in case of strictly near-Kerr initial datasets, we

devote this section to a short inspection of these configu-
rations that still appears to be beneficial.
It is rewarding to first glance at the asymptotic behavior

of the background fields ð0ÞN̂, ð0ÞK, and ð0Þk. Compatible
with the strong asymptotic flatness of the Kerr solution,
ð0ÞN̂0

0 tends to the value 1 with the rateOðr−1Þwhile all the
higher l modes fall off as Oðr−l−1Þ. Analogously, all
the ð0Þkl

0 modes fall off with the rate Oðr−l−1Þ, whereas
the ð0ÞKl

0 modes as Oðr−l−2Þ.
In proceeding, note first that on all of the figures

included in this paper, to be able to use log-log scales
and thereby demonstrate the claimed falloff rates, we plot
the absolute values of the nonlinear perturbations, along
with some auxiliary lines helping the comparison with the
expected rates. Specifically, in Fig. 1, various modes of the
constrained fields, obtained by integrating the parabolic-
hyperbolic equations, in the strictly near-Kerr case are
plotted. While the monopole part ðΔÞK0

0 of ðΔÞK decays as
Oðr−1Þ, all the higher l-modes fall off as Oðr−2Þ. The
modes comprising the real part of ðΔÞk fall off as Oðr−1Þ,
whereas the modes in the imaginary part of ðΔÞk decay with
the rate Oðr−2Þ. In Fig. 1(d) it is transparent that instead of
its proper limit value 0, the monopole part ðΔÞN̂0

0 tends to
3.4114 × 10−6. By contrast, all the other modes of ðΔÞN̂ fall
off asOðr−1Þ. These observations underline that likewise, it
occurred in the strictly near-Schwarzschild case, the
asymptotic behavior of either ðΔÞK0

0 or ðΔÞN̂0
0, respec-

tively, prevents even the weak asymptotic flatness of the
corresponding strictly near-Kerr initial dataset.
Analogously, in Fig. 2, various modes of the constrained

variables, obtained by integrating the algebraic-hyperbolic
system, in the strictly near-Kerr case are shown. It is
transparent that ðΔÞK0

0 decays with the rate Oðr−3=2Þ.
Notably, all the Kl

0 higher l modes fall off somewhat
faster than Oðr−2Þ, with a rate close to Oðr−2.2Þ. Similarly,
all the modes comprising the real part of ðΔÞk also decay
faster than Oðr−1Þ, with a rate close to Oðr−1.2Þ, whereas
the modes in the imaginary part of ðΔÞk fall off with the rate
Oðr−2Þ. As a consequence of the slow decay rate of ðΔÞK,
the solution to the algebraic Hamiltonian constraint, κ, also
has the slow Oðr−3=2Þ decay rate for the monopole, κ00,
with l > 0 modes decaying slightly faster than Oðr−2Þ.
Accordingly, likewise in the strictly near-Schwarzschild
case, the only modes violating both strong and weak
asymptotic flatness are ðΔÞK0

0 and κ00.
Our investigation reported in the panels of Figs. 1 and 2

confirm that, in the case of the strictly near-Kerr initial
datasets, apart from the monopole parts of ðΔÞK and ðΔÞN̂,
in case of the parabolic-hyperbolic equations, and apart
from the monopole parts of ðΔÞK and κ in case of the
algebraic-hyperbolic equations, respectively, all the other
modes decay with a rate that would allow even strong
asymptotic flatness.
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C. Applying the new method
to the parabolic-hyperbolic system

As was mentioned in the Introduction, Beyer et al. [15]
invented a method that applies to the constraints’ parabolic-
hyperbolic formulation, allowing them to produce strongly
asymptotically flat near-Schwarzschild initial datasets. This
was done by setting the freely specifiable variable κ to be
proportional to K. Though using the relation κ ¼ RK
allows one to produce strongly asymptotically flat near-
Schwarzschild initial datasets, it also affects the principal
part of the parabolic-hyperbolic system as it also contains
tangential derivatives of κ. The inequality R > − 1

2
had to

be imposed on the proportionality factor to ensure the well
posedness of the system proposed in [15].
It was also mentioned earlier that one of our aims is to

introduce a method that can be applied on equal footing to
the parabolic-hyperbolic and the algebraic-hyperbolic sys-
tems such that no change in the principal parts occurs. This
idea was motivated by our observations in [14] concerning
strictly near-Schwarzschild initial datasets and by the
results covered in the previous section relevant to strictly

near-Kerr initial datasets. Both of these mode-by-mode
investigations pointed to the fact that they are indeed
the monopole parts of ðΔÞK and ðΔÞN̂ in the case of the
parabolic-hyperbolic equations, and it is the monopole
part of ðΔÞK in the case of the algebraic-hyperbolic
equations that are needed to be adjusted. This immediately
raises the question if it is possible to get the desired falloff
rates by restricting only the monopole parts of some
of the freely specifiable variables such that for both
the parabolic-hyperbolic and the algebraic-hyperbolic
systems, we can get asymptotically flat near-Kerr initial
data configurations.
It turned out that essentially by demanding the simple

variant of the choice of Beyer et al. [15] given below helps
not only in getting strongly asymptotically flat solutions to
both of the alternative evolutionary forms of the constraints
but also we can have a more flexible control on the falloff
rates, and, in particular, we can produce weakly asymp-
totically flat initial data with any desired decay rate.
In the parabolic hyperbolic case we restrict only the

monopole part of the freely specifiable field κ by setting

(a) (b)

(c) (d)

FIG. 1. The falloff rates of the only nontrivial modes of the constrained variables obtained by integrating the parabolic-hyperbolic
system for strictly near-Kerr initial data are depicted. It is transparent that the falloff rate of ðΔÞK0

0 or that of ðΔÞN̂0
0, individually, are

capable of excluding the conditions of even the weak asymptotic flatness to hold.
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κ00 ¼ α½RK�00; with R ¼ ð0Þκ=ð0ÞK; ð48Þ

where α is a positive real number. As we shall see below,
the role of the parameter α is to fine-tune the falloff rate of
the monopole part of K. Note also that the choice R ¼
ð0Þκ=ð0ÞK guarantees recovering the Kerr-Schild data on Σ
with choosing α ¼ 1 and trivial initial data for the nonlinear
perturbations of the constrained variables.
In the parabolic-hyperbolic case, we also assume that,

apart from the monopole part of κ, all the other modes
remain intact, i.e.,

κl0jl>0 ¼ ð0Þκl0: ð49Þ

One of our primary motivations for controlling only the
monopole part of the freely specifiable variable κ by using
(48) was that for the tangential derivatives of κ the relation
ðκ ¼ ðð0Þκ holds. Accordingly, the principal part of the
parabolic-hyperbolic equations, (9)–(11), remains intact, so
it is reasonable to argue that the local well posedness of the
system follows from results covered in [9].

1. Outline in the spherically symmetric setup

In spherical symmetry,7 using the Schwarzschild back-
ground, the parabolic-hyperbolic equations (9) and (11)
simplify to the system

2

r
dN̂
dr

¼ 1

r2
N̂ −

1

2
N̂3

�
2

r2
þ 2κKþ 1

2
K2

�
; ð50Þ

dK
dr

¼ 2

r

�
κ −

1

2
K

�
: ð51Þ

Substituting (48) with R ¼ −ðrþMÞ=ð2ðrþ 2MÞÞ (rel-
evant for the Schwarzschild background) immediately
gives the solution to (51) as

K ¼ C1

r1þαð1þ 2M=rÞα=2 ; ð52Þ

possessing the asymptotic expansion

(a) (b)

(c) (d)

FIG. 2. The falloff rates of the only nontrivial modes of the constrained variables yielded by the algebraic-hyperbolic equations for
strictly near-Kerr initial data are shown. It is visible that apart from the monopole part ðΔÞK0

0 of ðΔÞK and κ00 of κ, each of the other
modes falls off at a rate that is even faster than required by conditions of strong asymptotic flatness.

7As in the spherically symmetric case, the variables have only
monopole parts; the l; m indices are suppressed.
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K ∼
C1

r1þα −
C1Mα

r2þα þOðr−ð3þαÞÞ; ð53Þ

where C1 is a constant of integration. By virtue of (53) the
parameter α, applied in (48), allows a straightforward fine-
tuning of the asymptotic falloff rate of K. To guarantee K
to fit the requirements in weak asymptotic flatness,
α > 1=2 should hold. If α ¼ 1, the falloff rate in (53) is
compatible with the requirements in strong asymptotic
flatness. In the spherically symmetric case, we could also
choose faster falloff rates by setting α > 1. Note, however,
that such a rapid decay does not occur in the nonspherically
symmetric case because there are intimate couplings of
ðΔÞK0

0 and many of the background fields with falloff rate
Oðr−2Þ. Thereby, in the generic case, one should not expect
faster than Oðr−2Þ falloff rate for ðΔÞK0

0.
Substituting (52) into (50) we get

N̂ ¼
�
1þ C2

r
þ C1

2

4
r−2α

�
1þ 2M

r

��−1=2
ð54Þ

with the desired asymptotic value 1, where C2 is another
constant of integration. It is transparent that if αwas smaller

than 1=2, then the term − C1
2

8r2α could dominate, and whence

N̂ would fail to fall off with the rate Oðr−1Þ that is required
by the weak and strong forms of asymptotic flatness in (45)
and (44), respectively. While the choice of the borderline
value α ¼ 1=2 would fit N̂, it is only the interval α > 1=2
that ensures the decay rates are, simultaneously for K and
N̂, compatible with the weak and strong forms of asymp-
totic flatness in (45) and (44), respectively.

2. Strongly asymptotically flat numerical solution

In Fig. 3 the falloff rates of the constraint fields
ðΔÞK; ðΔÞk, and ðΔÞN̂, yielded by integrating the para-
bolic-hyperbolic equations (9)–(11) for near-Kerr initial
data, and applying (48) with α ¼ 1, are depicted. In this
case each of the ðΔÞKl

0 modes falls off as Oðr−2Þ,
Re½ðΔÞkl

0� as Oðr−1Þ with Im½ðΔÞkl
0� going as Oðr−2Þ.

Finally, as it is desired, ðΔÞN̂0
0 tends to 0 with the rate

(a) (b)

(c) (d)

FIG. 3. The falloff rates of the only nontrivial modes of the constrained variables yielded by the parabolic-hyperbolic equations for
near-Kerr initial data, and applying (48) with α ¼ 1, are plotted. Note that each mode falls off in accordance with the conditions in strong
asymptotic flatness.
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Oðr−1Þ, whereas all the higher l modes decay as Oðr−2Þ.
Note that all of these falloff rates, apart from that of ðΔÞk,
are the same as reported in [14], relevant for near-
Schwarzschild initial data using the method proposed in
[15]. In that case ðΔÞk was purely real and each mode
decayed at the rate Oðr−2Þ. In contrast, in the present case
only the imaginary part retains this fast decay rate, whereas
the decay of the real part is slower in consequence of using
(48) instead of the proposal in [15]. Note however that each
of the falloff rates indicated in Fig. 3 are compatible with
the conditions of strong asymptotic flatness in (44) as we
desired to show.

3. Weakly asymptotically flat numerical solution

In order to demonstrate that weakly asymptotically
flat initial data can also be produced by integrating the
parabolic-hyperbolic equations in the near-Kerr case, we
determined the falloff rates of various modes of the con-
strained variables using (48) with α ¼ 0.7. These are

depicted in Fig. 4. The monopole mode ðΔÞK0
0 falls off,

as expected, with the rate Oðr−1.7Þ, whereas all the other
ðΔÞKl

0jl>0 modes decay with the rate Oðr−2Þ. The falloff
behavior of the ðΔÞkl

0 modes follows the rule observed in
the α ¼ 1 case. As ðΔÞN̂0

0 changed its sign close to r ¼ 105

to determine the falloff rate’s precise value, we integrated
the parabolic-hyperbolic equations on a longer interval.
The observed falloff rate of ðΔÞN̂0

0 is, as expected, Oðr−1Þ.
Note that changing the sign of ðΔÞN̂0

0 does not affect the
sign of the ADM mass since ð0ÞN̂0

0 − 1, also plotted in
Fig. 4(d) (see top curve), is always larger, so the sign of
N̂0

0 − 1 does not change. Note also that all the higher l
modes of ðΔÞN̂l

0 fall off with the rate Oðr−1.7Þ. It is
important to emphasize that all the reported falloff rates
are compatible with conditions of weak asymptotic flatness
in (45).
As the plots in Figs. 3 and 4 demonstrate, the choice we

made for the monopole part of κ imposing (48) allowed us

(a) (b)

(c) (d)

FIG. 4. The falloff rates of the only nontrivial modes of the constrained variables yielded by the parabolic-hyperbolic equations for
near-Kerr initial data, and applying (48) with α ¼ 0.7, are plotted. As ðΔÞN̂0

0 changed its sign close to r ¼ 105 to determine the precise
value of the falloff rate, we integrated the parabolic-hyperbolic equations of a longer interval. Note that changing the sign of ðΔÞN̂0

0 does
not affect the sign of the ADM mass since ð0ÞN̂0

0 − 1, also plotted in (d), is always larger, so the sign of N̂0
0 − 1 does not change. Note

that each mode falls off according to the conditions in weak asymptotic flatness.

KÁROLY CSUKÁS and ISTVÁN RÁCZ PHYS. REV. D 107, 084013 (2023)

084013-12



to tproduce both weakly and strongly asymptotically flat
near-Kerr initial data configurations. Another preferable
consequence of this choice was that it left intact the
principal part of the parabolic-hyperbolic equations.
Although the implicit averaging used to determine the
monopole part of κ may raise doubts about the nature of
the system, the results in [9] on the principal symbol of the
equations, together with the observed convergence proper-
ties, support our belief in the well posedness of the
corresponding initial value problem.

D. Applying the new method
to the algebraic-hyperbolic system

In this section, using the algebraic-hyperbolic form of
the constraint equations, we impose a condition only on the
monopole part of the lapse N̂. In contrast, all the higher l
modes N̂ retain their background form. In particular, N̂0

0 is
subject to the ODE derived from (9), which is as follows:

dN̂0
0

dr
¼ ½ð∂rN̂Þ þ K

⋆ −1fB̃ − BgN̂3�00: ð55Þ

Here ð∂rN̂Þ denotes the right-hand side of the equation
obtained by solving (9) for ∂rN̂, whereas

N̂ ¼ N̂0
0 þ

h
ð0ÞN̂ − ð0ÞN̂0

0
i
; ð56Þ

i.e., N̂ differs from ð0ÞN̂ only in its monopole part, implying
ðN̂ ¼ ðð0ÞN̂. Note also that the monopole part of the right-
hand side (55) is taken, B̃ is obtained from B, as given in
(13), by replacing8 κ with

α½RK�00 þ ½ð0Þκ −ð0Þ κ00�; with R ¼ ð0Þκ=ð0ÞK: ð57Þ

Note that this choice of κ only affects the monopole part of
N̂ via (55). Note also that the true physical value of κ is
determined (as it should be) by the algebraic form of the
Hamiltonian constraint (18). As we will see below, the use
of the positive parameter α in (55) allows fine-tuning of the
decay rate of the monopole part ofK. Note also that (55) is

(a) (b)

(c) (d)

FIG. 5. The falloff rates of the only nontrivial modes of the constrained variables yielded by the algebraic-hyperbolic equations for
near-Kerr initial data, and applying (55) with α ¼ 1, are plotted. Note that each mode falls off in accordance with the conditions in strong
asymptotic flatness.

8Note that this step is exactly the same procedure as in Sec. III C.
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able to reproduce the Kerr limit by choosing α ¼ 1 and
trivial excitations for the fields K, k at r ¼ 1. It is also
straightforward to derive the spherical limit by applying the
relations N̂ ¼ ð0ÞN̂ ¼ N̂0

0.

1. Outline in the spherically symmetric setup

Note that there is not much earned by restricting
considerations to the spherically symmetric case as the
algebraic-hyperbolic system is essentially the same as it
was in the parabolic-hyperbolic case. More concretely, the
algebraic form of the Hamiltonian constraint is nothing but
solving (50) for κ or 2κK, whereas Eq. (51) for K remains
intact. Accordingly, the corresponding spherical symmetric
system with Schwarzschild background reads as

2κK ¼ −
2

r2
−
1

2
K2 þ 2

r2N̂2
−

4

rN̂3

dN̂
dr

; ð58Þ

dK
dr

¼ 2

r

�
κ −

1

2
K

�
: ð59Þ

Note that by eliminating the r derivative of N̂ from (58) by
applying the spherical symmetric form of (55) one recovers
(48). In light of this observation, the analytic solutions to
(59) must possess the form (52) with asymptotic behavior
as given in (53). Accordingly, the parameter α, applied in
(55), allows a straightforward fine-tuning of the asymptotic
falloff rate of K. As previously, in the spherically sym-
metric parabolic-hyperbolic case, to guarantee K to fit the
requirements in weak asymptotic flatness, the inequality
α > 1=2must hold. In the α ¼ 1 case, the falloff rate in (53)
allows the spherically symmetric solution to be strongly
asymptotically flat.

2. Strongly asymptotically flat numerical solution

In Fig. 5 the falloff rates of the constraint fields ðΔÞK,
ðΔÞk, and κ, yielded by the integration of the algebraic-
hyperbolic equations, (16) and (17), for near-Kerr initial
data, and applying (55) with α ¼ 1, are depicted. In this
case each of the ðΔÞKl

0 modes falls off as Oðr−2Þ,
Re½ðΔÞkl

0� as Oðr−1Þ with Im½ðΔÞkl
0� going as Oðr−2Þ.

(a) (b)

(c) (d)

FIG. 6. The falloff rates of the only nontrivial modes of the constrained variables yielded by integrating the algebraic-hyperbolic
equations for near-Kerr initial data, and applying (55) with α ¼ 0.7, are plotted. Note that each mode falls off according to the conditions
in weak asymptotic flatness.
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Note that using the algebraic-hyperbolic equations,wehad to
perform several divisions by K, which, because of the
uniform decay rate of all the ðΔÞKl

0 modes, l ¼ 0, 2, 4,
6, 8, 10, required a careful application of the division scheme
based on theNeumann series expansion. Note also the falloff
of the modes of ðΔÞk follow the same pattern observed in
Sec. III C. Since all modes of κ also fall off with the rate
Oðr−2Þ, the initial data obtained is asymptotically flat in the
strong sense. Note that although N̂0

0 also deviates from its
background form, it falls at the rateOðr−1Þ to 1 as expected,
so we do not include its graph here.

3. Weakly asymptotically flat numerical solution

In order to demonstrate that weakly asymptotically flat
initial data can also be produced by integrating the algebraic-
hyperbolic equations in the near-Kerr case, we determined
the falloff rates of various modes of the constrained variables
using (55) with α ¼ 0.7. These are depicted in Fig. 6. The
monopole mode ðΔÞK0

0 falls off, as expected, with the rate
Oðr−1.7Þ, whereas all the other ðΔÞKl

0jl>0 modes decay—
likewise it happened in the strictly near-Kerr case in
Sec. III B—somewhat slower than Oðr−2.2Þ but noticeably
faster than Oðr−2Þ. As for the asymptotic behavior of the
modes Re½ðΔÞkl

0� also somewhat slower than Oðr−1.2Þ but
noticeably faster than Oðr−1Þ falloff rate is observed. The
falloff rate for the Im½ðΔÞkl

0� modes is as usual Oðr−2Þ.
Similar to ðΔÞK, κ00 decays asOðr−1.7Þ, while slightly faster
thanOðr−2Þ decay rates are observed forl > 0modes of κ. It
is important to emphasize that all the observed falloff rates
are compatible with conditions of weak asymptotic flatness
in (45), i.e., the resulted initial data is asymptotically flat in
the weaker sense.
The plots in Figs. 5 and 6 demonstrate that the choice we

made for the monopole part of N̂ imposing (55) allowed us
to produce both weakly and strongly asymptotically flat
near-Kerr initial data configurations by integrating the
algebraic-hyperbolic system. As it was emphasized several
times, restricting the monopole part of N̂ using (55) has the
preferable consequence that it does not affect the principal
part of the algebraic-hyperbolic equations. Note also that
the parameter α in (55) could be used to control the falloff
rate of ðΔÞK0

0 in the desired way.
As expected, the solutions to the evolutionary form of the

constraints significantly depend on whether (48) or (55) is
applied. To demonstrate this, it is rewarding to compare the

falloff behavior of the corresponding variables yielded by
using the same initial excitation as specified in (47). The
falloff rates of the l > 0, m ¼ 0 modes of the variables
K;Re½k�;Im½k�; N̂; κ are collected in Table II relevant for
the weakly asymptotically flat solutions to the parabolic-
hyperbolic and algebraic-hyperbolic systems correspond-
ing to the choice α ¼ 0.7.

IV. SUMMARY

As mentioned earlier, one of the preferable aspects of
using the elliptic (or conformal) method is that one may set
up a boundary value problem by implementing suitable
falloff requirements at infinity. This cannot be done while
solving the evolutionary form of the constraints.
Nevertheless, in the latter case, a delicate compensation
arises. While one has to fix once and for all throughout Σ
each of the freely specifiable variables in advance of
solving the elliptic problem, one has the freedom of
specifying in the interim of the “time integration” process
the freely specifiable fields while solving either of the
evolutionary forms of the constraints. The only limitation is
that this in-flight setting of the freely specifiable fields
should preserve the well posedness of the system. Our
novel proposal to relate only the monopole part of a freely
specifiable variable and a constrained field leaves the
principal symbol of the system intact. Due to the non-
locality, introduced by the averaging in the proposed
treatment of the monopole part, the well posedness of
the system is not self-evident. Nevertheless, since the
principal parts of the evolutionary systems remain intact,
the observed convergence rates suggest that the proposed
method leads to well-posed problems in both evolutionary
formulations of the constraints. Note, however, that a
rigorous verification of this conjecture is beyond the scope
of the present paper.
Concerning the question raised by the title and some

others raised in the Introduction, the results reported in this
paper allow us to answer them in the following way. Yes, it
is possible to construct asymptotically flat initial data by
applying either of the evolutionary forms of the constraints.
Above this, we could introduce a novel method that allows
us to explore the asymptotic behavior of initial datasets
located in a neighborhood of the data that can be deduced
on a Kerr-Schild time slice of a rotating Kerr black hole
spacetime. In applying our new method, we modify only
the monopole part of the freely specifiable variables κ or N̂

TABLE II. The falloff rates of the l > 0, m ¼ 0 modes of K, Re½k�, Im½k�, N̂, κ for the weakly asymptotically
flat solutions to the parabolic-hyperbolic and algebraic-hyperbolic systems with α ¼ 0.7, and for some small ϵ > 0.

α ¼ 0.7; l > 0, m ¼ 0 Kl
0 Re½kl

0� Im½kl
0� N̂l

0 κl0

Parabolic-hyperbolic Oðr−2Þ Oðr−1Þ Oðr−2Þ Oðr−1.7Þ Oðr−l−2Þ
Algebraic-hyperbolic Oðr−2.2þϵÞ Oðr−1.2þϵÞ Oðr−2Þ Oðr−l−1Þ Oðr−2.2þϵÞ
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in the parabolic-hyperbolic or algebraic-hyperbolic form of
the constraint, respectively. On the one hand, this left the
principal parts of the evolutionary forms of the constraints
intact. Thus, the well posedness of evolutionary systems
seems to be plausible in line with the results in [9].
On the other hand, our proposal can be applied to the

alternative evolutionary systems on an equal footing. In
contrast, the method proposed in [15] applies only to the
parabolic-hyperbolic system with the additional cost of
modifying the principal part of the pertinent PDEs. Another
favorable aspect of the novel method proposed in this
paper, which applies to both of the evolutionary forms of
the constraints, is that we have direct control of the falloff
rate of the monopole part of the constrained variable K.
This allows us to generate weakly and strongly asymptoti-
cally flat initial data configurations with any desired falloff
rate. The viability of the proposed methods was demon-
strated by integrating both of the alternative evolutionary
forms of the constraint equations numerically. As the
applied initial data deformations at r ¼ 1 were significant,
the time evolution of the yielded near-Kerr initial data
configurations could be suitable to study the gravitational
wave output of highly excited Kerr black holes.
To indicate the notable differences between applying

(48) and the choice made in [15], it is rewarding to com-
pare the solutions to the relevant evolutionary forms of
the constraint equations with setting α ¼ 1.5. As for
R ¼ α ·R ¼ α · ð0Þκ00=ð0ÞK0

0 the inequality R > −1=2
fails to hold, and, thereby, the hyperbolicity condition
relevant for “modified parabolic-hyperbolic equations” in
[15] is violated, the corresponding solution blows up. In
contrast, integrating the parabolic-hyperbolic equations by
applying our proposal (48) with setting α ¼ 1.5, yields—
due to the fact that the principal part was retained, and
also to the intimate coupling of various modes of the
involved variables—a completely regular strongly asymp-
totically flat initial data such that ðΔÞK0

0 decays with the
rate Oðr−2Þ.
Note also that there is a significant conceptual differ-

ence between using the constraints’ parabolic-hyperbolic
and algebraic-hyperbolic forms. Whereas the parabolic-
hyperbolic system can only be solved in general only on

that side of the ϱ ¼ ϱ0 initial data surface where K
⋆

is
guaranteed to be positive, the algebraic-hyperbolic form of
the constraints can always be solved on both sides of the
initial data surface, provided that κK < 0. From this point
of view, it is notable that (55) is deduced from the parabolic
form of the Hamiltonian constraint (9). Despite its para-
bolic origin, (55) is an ordinary differential equation for
N̂0

0. Thereby, it can be integrated on both sides of the
ϱ ¼ ϱ0 initial data surface if it was aimed to solve the

algebraic-hyperbolic system on both sides ofS ϱ0 . Since, in
this paper, the integration starts at r ¼ 1, and it always
happens towards infinity, the above-mentioned favorable
aspects of the use of (55) remain to economize in future
investigations.
The results covered by the present paper provide

significant credit to the investigations in [28]. It was argued
there that in advance of solving the constraints, one could
determine each of the ADM charges, the mass, center of
mass, and the linear and angular momentum of initial
datasets relevant for binary black hole systems. This could
be done as the values of the ADM charges are not affected
by the particular functional form of the constrained
variables. However, we made two critical assumptions in
[28]. First, even though the explicit form of the constrained
variables was irrelevant, their falloff behavior—making
them compatible with the strong asymptotic flatness of the
yielded complete data ðhab; KabÞ—was assumed in deriv-
ing the ADM charges. Second, it was also presumed that
the original form of the parabolic-hyperbolic form of the
constraints holds. Given these points, it is transparent that
the results covered by the present paper provide a signifi-
cant verification of the assumptions made in [28], thus, also
to the determination of the ADM charges of initial datasets
of binary black hole systems.
At this point, we remind the reader that although the

main concern of the present paper is the near-Kerr initial
data of a single black hole, there are parallel studies that
verify that the evolutionary formulation of the constraints is
capable of producing binary black hole initial data
[13,15,17,18]. We believe that the methods presented in
this paper are very useful for generating initial data for
binary black holes with appropriate asymptotics. However,
the verification of the latter claim is left to future studies.
Finally, it would be good to know that the novel method

introduced in this paper will find its way to be adopted in
analytic investigations. It may provide stimulating muni-
tion to prove the global existence of solutions to the
evolutionary forms of the constraints or derive exact decay
rates for various asymptotically flat near-Kerr initial data-
sets. Applying our new proposal to other more challenging
asymptotically flat configurations would also deserve
further investigation.
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Poincaré, Nouv. Sér., Sect. A 21, 319 (1974).

[5] R. A. d’Inverno and J. Stachel, Conformal two-structure as
the gravitational degrees of freedom in general relativity,
J. Math. Phys. (N.Y.) 19, 2447 (1978).

[6] N. T. Bishop, F. Beyer, and M. Koppitz, Black hole initial
data from a nonconformal decomposition, Phys. Rev. D 69,
064010 (2004).

[7] I. Rácz, Cauchy problem as a two-surface based “geo-
metrodynamics”, Classical Quantum Gravity 32, 015006
(2015).

[8] I. Rácz, Dynamical determination of the gravitational
degrees of freedom, arXiv:1412.0667.

[9] I. Rácz, Constraints as evolutionary systems, Classical
Quantum Gravity 33, 015014 (2016).

[10] Y. Choquet-Bruhat, Introduction to General Relativity,
Black Holes, and Cosmology (Oxford University Press,
Oxford, 2014).

[11] R. M. Wald, General Relativity (Chicago University Press,
Chicago, 1984).

[12] F. Beyer, L. Escobar, and J. Frauendiener, Asymptotics
of solutions of a hyperbolic formulation of the con-
straint equations, Classical Quantum Gravity 34, 205014
(2017).

[13] F. Beyer, L. Escobar, J. Frauendiener, and J. Ritchie,
Numerical construction of initial datasets of binary black
hole type using a parabolic-hyperbolic formulation of the
vacuum constraint equations, Classical Quantum Gravity
36, 175005 (2019).

[14] K. Csukás and I. Rácz, Numerical investigations of
the asymptotics of solutions to the evolutionary form of
the constraints, Classical Quantum Gravity 37, 155006
(2020).

[15] F. Beyer, J. Frauendiener, and J. Ritchie, asymptotically
flat vacuum initial data sets from a modified parabolic-
hyperbolic formulation of the Einstein vacuum constraint
equations, Phys. Rev. D 101, 084013 (2020).

[16] F. Beyer and J. Ritchie, Asymptotically hyperboloidal initial
datasets from a parabolic-hyperbolic formulation of the
Einstein vacuum constraints, Classical Quantum Gravity 39,
145012 (2022).

[17] A. Nakonieczna, L. Nakonieczny, and I. Rácz, Black
hole initial data by numerical integration of the parabolic-
hyperbolic form of the constraints, Int. J. Mod. Phys. D 30,
2150111 (2021).

[18] G. Doulis, Construction of high precision numerical single
and binary black hole initial data, Phys. Rev. D 100, 024064
(2019).

[19] I. Rácz and J. Winicour, Black hole initial data without
elliptic equations, Phys. Rev. D 91, 124013 (2015).

[20] I. Rácz and J. Winicour, On solving the constraints by inte-
grating a strongly hyperbolic system, arXiv:1601.05386.

[21] I. Rácz and J. Winicour, Toward computing gravitational
initial data without elliptic solvers, Classical Quantum
Gravity 35, 135002 (2018).

[22] Y. Chen, N. Deppe, L. E. Kidder, and S. A. Teukolsky,
Efficient simulations of high-spin black holes with a new
gauge, Phys. Rev. D 104, 084046 (2021).

[23] S. Dain and H. Friedrich, asymptotically flat initial data with
prescribed regularity at infinity, Commun. Math. Phys. 222,
569 (2001).

[24] P. T. Chrusciel, Boundary conditions at spatial infinity:
From a Hamiltonian point of view, NATO Sci. Ser. B
138, 49 (1986).

[25] K. Csukás, GridRipper webpage, http://www.rmki.kfki.hu/
∼gridripper/ (2023).

[26] H. T. Johansson and C. Forssén, Fast and accurate evalu-
ation of Wigner 3j, 6j, and 9j symbols using prime
factorisation and multi-word integer arithmetic, SIAM J.
Sci. Stat. Comput. 38, A376 (2016).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevD.107.084013 for derivation of the spin-
weighted variables using a Kerr-Schild time slice of Kerr.

[28] I. Rácz, Can we prescribe the physical parameters of
multiple black holes?, Mathematics 9, 3170 (2021).

IS IT POSSIBLE TO CONSTRUCT ASYMPTOTICALLY FLAT … PHYS. REV. D 107, 084013 (2023)

084013-17

https://doi.org/10.24033/bsmf.1433
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1063/1.523650
https://doi.org/10.1103/PhysRevD.69.064010
https://doi.org/10.1103/PhysRevD.69.064010
https://doi.org/10.1088/0264-9381/32/1/015006
https://doi.org/10.1088/0264-9381/32/1/015006
https://arXiv.org/abs/1412.0667
https://doi.org/10.1088/0264-9381/33/1/015014
https://doi.org/10.1088/0264-9381/33/1/015014
https://doi.org/10.1088/1361-6382/aa8be6
https://doi.org/10.1088/1361-6382/aa8be6
https://doi.org/10.1088/1361-6382/ab3482
https://doi.org/10.1088/1361-6382/ab3482
https://doi.org/10.1088/1361-6382/ab8fce
https://doi.org/10.1088/1361-6382/ab8fce
https://doi.org/10.1103/PhysRevD.101.084013
https://doi.org/10.1088/1361-6382/ac79f1
https://doi.org/10.1088/1361-6382/ac79f1
https://doi.org/10.1142/S021827182150111X
https://doi.org/10.1142/S021827182150111X
https://doi.org/10.1103/PhysRevD.100.024064
https://doi.org/10.1103/PhysRevD.100.024064
https://doi.org/10.1103/PhysRevD.91.124013
https://arXiv.org/abs/1601.05386
https://doi.org/10.1088/1361-6382/aac5c5
https://doi.org/10.1088/1361-6382/aac5c5
https://doi.org/10.1103/PhysRevD.104.084046
https://doi.org/10.1007/s002200100524
https://doi.org/10.1007/s002200100524
http://www.rmki.kfki.hu/%7Egridripper/
http://www.rmki.kfki.hu/%7Egridripper/
http://www.rmki.kfki.hu/%7Egridripper/
http://www.rmki.kfki.hu/%7Egridripper/
http://www.rmki.kfki.hu/%7Egridripper/
https://doi.org/10.1137/15M1021908
https://doi.org/10.1137/15M1021908
http://link.aps.org/supplemental/10.1103/PhysRevD.107.084013
http://link.aps.org/supplemental/10.1103/PhysRevD.107.084013
http://link.aps.org/supplemental/10.1103/PhysRevD.107.084013
http://link.aps.org/supplemental/10.1103/PhysRevD.107.084013
http://link.aps.org/supplemental/10.1103/PhysRevD.107.084013
http://link.aps.org/supplemental/10.1103/PhysRevD.107.084013
http://link.aps.org/supplemental/10.1103/PhysRevD.107.084013
https://doi.org/10.3390/math9243170

