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We report on numerical simulations of critical phenomena near the threshold of black-hole formation
in the collapse of axisymmetric gravitational waves in vacuum. We discuss several new features of our
numerical treatment, and then compare results obtained from families of quadrupolar and hexadecapolar
initial data. Specifically, we construct (nonlinear) initial data from quadrupolar and hexadecapolar, time-
symmetric wavelike solutions to the linearized Einstein equations (often referred to as Teukolsky waves),
and evolve these using a shock-avoiding slicing condition. While our degree of fine-tuning to the onset of
black-hole formation is rather modest, we identify several features of the threshold solutions formed for the
two families. Both threshold solutions appear to display an at least approximate discrete self-similarity with
an accumulation event at the center, and the characteristics of the threshold solution for the quadrupolar
data are consistent with those found previously by other authors. The hexadecapolar threshold solution
appears to be distinct from the quadrupolar one, providing further support to the notion that there is no

universal critical solution for the collapse of vacuum gravitational waves.
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I. INTRODUCTION

Critical phenomena in gravitational collapse, first
reported by Choptuik in his seminal paper [1], refer
to properties of solutions to Einstein’s equations close to
the onset of black-hole formation. Choptuik performed
numerical evolution calculations for a massless scalar field,
minimally coupled to Einstein’s equations, in spherical
symmetry. Considering different families of initial data
parametrized by p, say, he noted the existence of a critical
parameter p, that separates supercritical data, which lead to
the formation of a black hole, from subcritical data, which
leave behind flat space after the wave disperses. Critical
phenomena, with intriguing resemblance to similar phe-
nomena in other fields of physics, then emerge in the
vicinity of p,.

Specifically, Choptuik observed that, for initial data fine-
tuned to p,, the solution approaches a critical solution
that contracts self-similarly. Moreover, for supercritical
data close to p,, the mass M of black holes displays
power-law scaling

M= (p—p.). (1)
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where the critical exponent y is universal in the sense that it
does not depend on the family of initial data.

Triggered by Choptuik’s discovery, a number of differ-
ent groups and researchers have studied critical collapse
for different matter models, symmetries, number of
dimensions, and asymptotics (see, e.g., [2] for a review
and references). At least in spherical symmetry, the
phenomena observed by Choptuik can be understood
in terms of a self-similar critical solution that is universal
for all families of initial data within a given matter model,
and that possesses exactly one unstable mode whose
growth rate is described by a Lyapunov exponent 4. Any
quantity with dimension of mass (or length) resulting
from the dynamical evolution is then described by a
scaling law (1) with the critical exponent given by the
inverse of the Lyapunov exponent, y =1/1 [3.4].
Accordingly, y is unique for a given matter model, and
scaling relations similar to (1) apply to both supercritical
(e.g. the black-hole mass) and subcritical data (e.g.
quantities formed from the maximum attained spacetime
curvature; see [5]). The critical solution can either be
continuously self-similar, describing a continuous con-
traction (for example for perfect fluids, see [6]), or it can
be discretely self-similar (from now on, DSS), describing
an oscillation that is superimposed on the contraction
(for example for scalar fields). For a DSS critical
solution, scaling laws like (1) feature a periodic “wiggle”

© 2023 American Physical Society


https://orcid.org/0000-0002-6316-602X
https://orcid.org/0000-0001-9585-5375
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.084012&domain=pdf&date_stamp=2023-04-06
https://doi.org/10.1103/PhysRevD.107.084012
https://doi.org/10.1103/PhysRevD.107.084012
https://doi.org/10.1103/PhysRevD.107.084012
https://doi.org/10.1103/PhysRevD.107.084012

BAUMGARTE, GUNDLACH, and HILDITCH

PHYS. REV. D 107, 084012 (2023)

superimposed on the power-law scaling, whose periodic-
ity is related to that of the self-similar solution (see [7,8]).

Shortly after Choptuik’s announcement, Abrahams
and Evans reported very similar critical phenomena in
the collapse of axisymmetric vacuum gravitational waves
([9,10], hereafter A&E). Even though the case for an exact
DSS in their remarkable simulations was less convincing
than in Choptuik’s calculations, the authors attributed this
to numerical error, which, given the absence of spherical
symmetry, was necessarily larger. Regardless of these
issues, the findings of A&E seemed to suggest that the
characteristics of critical collapse in spherical symmetry—
self-similarity, scaling, and universality—should similarly
apply in the absence of spherical symmetry.

While a number of authors have performed numerical
simulations of nonlinear gravitational waves (e.g. [11-15]) it
has proven difficult to reproduce the results of A&E. In the
meantime, several authors studied critical collapse for non-
vacuum spacetimes in the absence of spherical symmetry
and observed qualitatively new features. In the critical
collapse of scalar fields in axisymmetry with an additional
reflection symmetry through the equatorial plane, for exam-
ple, it was found that, for sufficiently large departure from
spherical symmetry and exquisite fine-tuning, a “bifurca-
tion” occurs, leading to the formation of two separate centers
of collapse away from the center of symmetry (see [16,17]).
Studying the gravitational collapse of dipolar electromag-
netic waves, we found that the critical solution is approx-
imately, but not exactly DSS (see [18]). Moreover, the
authors of [19] found that the critical solution found in the
collapse of quadrupolar electromagnetic waves is different
from that for dipolar waves, suggesting that the critical
solution is not universal. To emphasize this, we will refer to
these solutions as threshold solutions, and will reserve the
term critical solution for cases in which it is universal, i.e.
independent of the family of initial data. Similar results were
found by [20] for critical collapse in an analytical model
problem. All the above suggests that, in the absence of
spherical symmetry, critical phenomena are not character-
ized by a universal, exactly self-similar critical solution.

Significant progress in numerical simulations of the
collapse of gravitational waves has recently been reported
by ([21-23]). The authors of [22], in particular, considered
different families of initial data, and found that they lead to
different critical exponents, suggesting that the correspond-
ing threshold solutions are also distinct. The authors of all
three papers also found that, while the maximum curvature
attained in subcritical evolutions satisfies approximate
power-law scaling, wiggles superimposed on these power
laws are not strictly periodic, indicating that the underlying
threshold solutions are not exactly DSS. All of these
observations are in accordance with the findings discussed
above, and raise the question whether the characteristics of
critical phenomena observed in spherical symmetry also
apply in the absence of spherical symmetry.

The purpose of this paper is to complement the results
of [21-23] with independent simulations of vacuum critical
collapse that differ from the above in several ways.
Specifically, we adopt families of initial data that are
based on time-symmetric Teukolsky waves, both quad-
rupolar [24] and hexadecapolar [25], supplementing the
families considered by [21-23] (see Sec. Il A below). We
also describe significant improvements that resulted from
replacing the much more common 1 + log slicing condition
[26] (used, for example, in [18,19]) with a shock-avoiding
slicing condition (see [27,28]; Sec. II B). Finally, we use
both scalar invariants of the Weyl tensor, rather than just the
Kretschmann tensor, as a diagnostic tool (Sec. 11 C).

While the degree of fine-tuning to the threshold param-
eter that we achieve is more modest than in the calculations
of [9,10,21-23], our results discussed in Sec. III provide
independent support for our emerging understanding of
critical collapse of gravitational waves (see also [29]).
In particular, we provide further evidence for the absence of
a universal critical solution, while suggesting there exist
families of gravitational-wave initial data for which the
threshold solution is at least approximately DSS with a
single accumulation point.

II. NUMERICAL METHODS

All numerical results presented in this paper were
obtained with a code that solves the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation [30-32] of
Einstein’s equations in spherical polar coordinates. In
particular, our implementation adopts a reference-metric
formulation (e.g. [33-37]) together with a proper rescaling
of all tensor components to handle the coordinate singu-
larities at the origin and on the coordinate axis. General
features of this code are discussed in [38]; more recent
improvements include the replacement of the partially
implicit Runge-Kutta method with a fourth-order Runge-
Kutta method of lines for the time evolution (see [18]), the
implementation of an asymptotically logarithmic radial grid
(following the prescription of [39]), and the ability to regrid
the radial grid in order to achieve higher resolution close to
the origin later in the evolution (see [40]). Our current
implementation also uses eighth-order finite-difference
stencils to evaluate all spatial derivatives.

Since most features of our code have been discussed
elsewhere already, we focus here on aspects and improve-
ments that are relevant for simulations of critical phenom-
ena in the collapse of gravitational waves.

A. Initial data

Two different approaches are commonly adopted to
construct initial data describing vacuum gravitational
waves.

In one approach, leading to Brill waves (see [41]), the
spacetime is assumed to be axisymmetric and to admit a
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moment of time symmetry. Departures from flatness can
then be described in terms of a seed function in such a way
that the Hamiltonian constraint reduces to a linear elliptic
equation whose solution provides nonlinear initial data at
the moment of time symmetry. Brill data have been adopted
in numerous simulations of gravitational waves, including
in some recent studies of critical phenomena in their
collapse (see [21-23]).

In this paper we adopt an alternative approach that is
based on analytical wave solutions to the linearized
Einstein equations in transverse-traceless (TT) gauge, often
referred to as Teukolsky waves. Quadrupolar solutions are
presented in [24], while generalizations for higher multi-
pole moments are provided in [25]. In this paper we will
consider both quadrupolar (Z = 2) and hexadecapolar
(¢ = 4) waves.

Recall that the general spherically symmetric solution
of the scalar wave equation in flat spacetimes is given by
[F_(u) + F,_(v)]/r, where F_ and F are arbitrary seed
functions of the dimensionless null coordinates

u=(r—1)/4, v=(r+1/A (2)
Choosing the two functions to be equal, F', = F_, yields a
superposition of in- and outgoing waves that features a
moment of time symmetry at t = 0. If the functions are
regular and odd, the solution remains regular at » = 0 at all
times. The construction of scalar waves with spherical
harmonic angular dependence of order 7 involves 7
derivatives of the seed functions F.. Teukolsky waves
are constructed very similarly. For even-parity modes, one
computes from the seed functions F,. and their derivatives
the functions A,(z,r), B4(t,r), and C,(t,r) [see Egs. (A2)
and (A4) in Appendix], whose products with angular
functions [see Eqgs. (A3) and (AS5)] then describe the
components of the spatial metric y;; [see (A1)] in TT gauge.

For our numerical experiments we choose the seed
functions

and F, = F_, where A is the dimensionless amplitude and
A parametrizes the wavelength. We have also defined the
shifted dimensionless null coordinates
ur=(r—t=+ry)/4, vy=(r+ttrg)/4, (4)
where r, parametrizes the location of the resulting wave
package at the moment of time symmetry f=0.
Throughout this paper we adopt 4 as our “code unit,” so
that all dimensional results are given in units of A. For all
simulations presented in this paper we adopt ry = 2.
In order to obtain nonlinear solutions to Einstein’s
constraint equations we follow the above prescription to

construct a linear combination of ingoing and outgoing
waves of a given multipole moment £ so that the instant
t =0 corresponds to a moment of time symmetry.
Accordingly, the extrinsic curvature K;; vanishes at this
moment and the data satisfy the momentum constraints
identically. We then identify the conformally related metric
yij with the linear wave metric as constructed above and
solve the Hamiltonian constraint for the conformal factor y
iteratively in order to reduce its violation by several orders
of magnitude. Given vy, the physical metric y;; = 1114;7,»]»
together with K;; = 0 then provide nonlinear solutions to
the constraint equations describing gravitational-wave ini-
tial data. Because of nonlinear coupling, these solutions no
longer represent a single multipole moment, but we will
refer to them by the multipole moment of the underlying
linear solution regardless.

One important improvement in our code over our
previous implementations is related to the computation
of the functions A,(z,r), Bs(t,r), and Cy(t,r) from the
seed function F. Specifically, these functions [see
Egs. (A3) and (A4) for £ = 2 and ¢ = 4] involve multiple
terms that are divided by high powers of r. For small values
of r, the individual terms in these functions can evidently
become very large. If the functions were implemented as
written, a round-off error would lead to imperfect cancel-
lation between the individual terms, and result in large
numerical error in the functions A,(z,r), B,(t,r), and
C,(t,r) in the vicinity of the origin. In order to avoid this
error, it is important to take advantage of these cancella-
tions analytically. In our implementation here we use a
Taylor expansion up to order r® (for £ =2) or r® (for
¢ = 4) about the origin » = 0 and match this expansion to a
direct implementation at a suitable cutoff radius.’

We also comment on the initialization of the conformal
connection functions in the BSSN formalism, often
denoted I'" = 7/*T, = —0,7" in the context of Cartesian
coordinates, or Al = ik AFj-k in the context of a reference-

metric formalism. To reduce numerical error, the conformal
connection functions are initialized using analytical expres-
sions involving the above functions A,(t, r), B4(t,r), and
C,(t,r) [see Egs. (A2) and (A4)], the angular functions
(A3) and (A5), as well as their derivatives. Inside the cutoff
radius for the Taylor expansion we evaluate the radial
derivatives of A,(t,r), B,(t,r), and C,(t,r) analytically
from the power-law expansion, and outside we compute
them numerically but with a stencil that is much finer than
that used in the evolution code, resulting in smaller errors.
The angular derivatives of the angular functions (A3)
and (AS) are easy to compute analytically everywhere.

For ro =0 and =0 the functions A,(t,r), B.(t,r), and
C,(t,r) can also be simplified analytically, resulting in expres-
sions that no longer include divisions by r; see Egs. (A3) of [42]
for an example.
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FIG. 1.

The curvature invariants Z (top row) and J [bottom row; see Egs. (11) below] at the initial moment of time symmetry t = 0

for near-critical axisymmetric Teukolsky waves. In the left column we show quadrupolar (7 = 2) initial data with an amplitude
A = 0.00495634, and in the right column hexadecapolar (# = 4) data with an amplitude of A = 0.00004251. We construct the
Cartesian coordinates x = rsin@ and z = r cos € from the spherical polar coordinates adopted in our code in the usual way; in particular,
the z-axis is the axis of symmetry, while the x-axis lies in the equatorial plane.

In this paper we focus on axisymmetric data (i.e. m = 0)
and even-order multipoles, for which the solutions are also
symmetric across the equator. The origin r = 0 therefore
represents the geodesic worldline of a preferred observer in
our simulations, and we may restrict our numerical grid to
one hemisphere. We present results for quadrupolar data
with Z = 2 in Sec. IIl A and for hexadecapolar data with
¢ =4 in Sec. Il B. As an illustration of these initial data
we show in Fig. 1 the curvature invariants 7 and 7 (see
Sec. II C) for both quadrupolar and hexadecapolar, near-
critical Teukolsky waves at the initial moment of time
symmetry.

B. Slicing condition

During the dynamical evolution of our initial data we
impose a Bona-Masso slicing condition

anaaaa = (at _ﬂiai)a = _azf(a)K’ (5)
where «a is the lapse function, ' the shift vector, n¢ =

a '(1,B") the spacetime normal on spatial slices (of
constant coordinate time 7), K is the mean curvature,

and the Bona-Mass6 function f(a) is a yet-to-be-
determined function of the lapse (see [26]). A very common
choice for f(a) is

fla)=>. (©

In the absence of a shift and up to a constant of
integration, Eq. (5) can then be integrated to yield
a = 1 + log(det(y;;)), which lends this condition its name
1 + log slicing. 1 + log slicing has been used in numerous
simulations, including in the first successful BSSN simu-
lations of binary black holes (see [43,44]) as well as many
follow-up simulations.

However, 1+ log slicing is also known to develop
coordinate shocks in some situations, even in flat space-
times (see [27,28,45]). When this happens, the lapse
typically develops increasingly steep gradients, and the
mean curvature K increasingly large spikes, ultimately
leading to the code crashing (see also Fig. 1 of [46] for a
recent numerical example). Similar behavior was reported
by [15] for simulations of the collapse of gravitational
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waves with 1 + log slicing, where it prevented a study of
critical phenomena close to the black-hole threshold.

As an alternative to 1 4 log slicing, Alcubierre therefore
suggested a shock-avoiding slicing condition with

fla) =1+, (7)

where x > 0 is a constant (see [27,28]). Even though this
condition has the unusual property that it allows the lapse
to become negative during dynamical simulations (which
may explain why it has not been adopted widely), it has
recently been shown to perform similarly to 1 + log slicing
in terms of accuracy and stability for a number of test cases
(see [46]). Analytical results on static black-hole trumpet
slices of the Schwarzschild spacetime satisfying the shock-
avoiding slicing condition have been presented in [47], and
dynamical perturbations of such slices have been explored
in [48]. Shock-avoiding slicing has also been used in the
critical collapse simulations of [49].

Replacing the 1 + log slicing condition has been crucial
for our simulations here. As a demonstration, in Fig. 2 we
compare results from the evolution of identical initial data
with 1 4 log and shock-avoiding slices. Specifically, we
evolve a near- but subcritical Z = 2 wave with amplitude
A = 0.004955. In the top panel we show the lapse « at the
origin r = 0 as a function of coordinate time ¢. At early
times both conditions lead to quite similar behavior, but,
while the shock-avoiding slicing allows the lapse to
perform multiple oscillations (taking negative values some
of the time) before asymptoting to unity as the wave
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0.0 2.5 100 125 150 175 20.0
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FIG. 2. Comparison of the evolution of a near-critical £ = 2
Teukolsky wave (with amplitude A = 0.004955) with 1 + log
versus shock-avoiding slicing. In the top panel we show the lapse
a at the origin as a function of coordinate time ¢; in the bottom
panel we show the mean curvature K along the symmetry axis
at coordinate time ¢~ 7.83, shortly before the evolution with
1 + log slicing crashes. We note that the shock-avoiding slicing
condition results in the lapse becoming negative during short
intervals of time.

disperses to infinity, the 1 + log slicing leads to the code
crashing at around 7~ 8.2. In the bottom panel we show
profiles of the mean curvature along the symmetry axis at
time ¢~ 7.83, shortly before the evolution with 1+ log
slicing crashes. For 1+ log slicing, the mean curvature
shows a spike developing at around z ~ 0.1, which keeps
growing and ultimately causes the calculation to fail. For
shock-avoiding slicing, on the other hand, the mean curvature
does not develop such a spike, and instead remains smooth.
While using shock-avoiding slicing rather than 1 + log
slicing has led to a dramatic improvement in our simulations
here, this is not the only option, of course. Maximal slicing
(which was adopted by [9,10]) or an approximate maximal
slicing condition (see [22,50]) have also been used success-
fully in simulations of the collapse of gravitational waves, as
have been other gauge conditions imposed via gauge source
functions in the context of the generalized harmonic system
(see [21,23]). As an attractive feature of shock-avoiding
slicing we point out that it is very easy to implement,
especially in codes that use 1 + log slicing already.

C. Diagnostics

We diagnose the geometry in our dynamical simulations
by evaluating scalar curvature invariants Z and J of the
Weyl tensor C,;.;, Which, for the vacuum spacetimes
considered here, is equal to the spacetime Riemann
tensor R ;.4

We compute the invariants from the electric and mag-
netic parts of the Weyl tensor (see, e.g., [51], as well as [52]
for examples). The electric part £;; can be computed from

&ij = Rij + KK;; — Ky K*;, (8)
where R;; is the spatial Ricci tensor, K;; the extrinsic
curvature, and its trace K = y;;K"/ the mean curvature. The
magnetic part B;; is

_ ki
Bij = 6(,'\ka\/)17 (9)
where ¢;; is the spatial Levi-Civita tensor, and where the
parentheses denote symmetrization of the indices i and j.
Both &;; and B;; are symmetric and trace-free. We then
form the complex tensor

and compute
| R
IEECJCJI (11a)
and
R
ngCjCjkC (11b)
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The four invariants of the Weyl tensor are then given by the
real and imaginary parts of Z and 7. We note that 7 has
units of 17*, while 7 has units of 17°. For algebraically
special spacetimes the invariants are related by

I3 =2717> (12)
(see [51]). We also note that the Kretschmann scalar
K= (4)Rab(?d(4)Rabcd (13)

is related to the real part of Z by K = 16Re(Z).

For our axisymmetric and twist-free spacetimes, the only
nonzero components of 3;; are the (r¢) and (6¢) compo-
nents, while, for &;;, these components vanish identically.
As aresult, both 7 and 7 are real. We furthermore observe
that the relation (12) holds for our spacetimes on the
symmetry axis, but not, in general, elsewhere. As an
example we show the two curvature scalars for our initial
data in Fig. 1.

In addition to evaluating the curvature scalars locally in
space and time, it is also useful to consider measures of the
curvature that depend on time only. One option is the values
of 7 and J at the center, which, as we discussed above,
represents a preferred observer. However, the innermost
grid points (i.e. those for the smallest value of the radius) in
our code using spherical polar coordinates are the ones that
are most strongly affected by numerical error, which leads
to noticeable artifacts in Z and 7 at late times. We therefore
consider two different alternatives that, as an added benefit,
provide global information about the curvature invariants.
Specifically, we compute the local-in-time maximum mag-
nitudes of the invariants, i.e.

T pnlt) = max/Z (1, 0)|. (14

and similar for 7. Here the maximum is taken over the
current spatial slice X of constant coordinate time ¢, except
that we disregard the grid points for the smallest values of
the radius 7 in order to reduce the effects of numerical error
near the origin. At late times, however, when numerical
error affects more than just the innermost grid points, this
measure becomes unreliable as well. As an alternative we
also consider the spatial proper integrals over all space

To(t) = / Z|av. (15)

and similar for 7. Unlike for the maxima in (14), we
do include the innermost grid points in the integrals (15).
We also note that Z,,, has units of 17!, while [J,, has
units of A73.

III. RESULTS

A. Quadrupolar waves: £ =2

We start our discussion with quadrupolar (£ = 2) waves
constructed from the expressions in Appendix A 1, and
adopt a number of different wave amplitudes A in the seed
function (3). All simulations shown in this section were
performed with N, = 384 (nonuniform) radial grid points
that, initially, extend to the outer boundary at 7! = 64. We
allow regridding during these evolutions with a maximum
tenfold increase of resolution, in which case rind = 6.4,
We also use Ny =96 uniform, azimuthal angular grid
points, covering one hemisphere.

1. Fine-tuning to the threshold solution

For sufficiently small amplitudes, the wave is subcritical,
meaning that it disperses and leaves behind flat space,
while, for sufficiently large amplitudes, it is supercritical,
meaning that it collapses to form a black hole.? For the
former, the maximum values of the curvature invariants 7
and J decay after attaining some extremum over the course
of the evolution, while, for the latter, they diverge and
approach infinity. We also observe that, at late times, the
minimum value of the lapse function a approaches unity for
subcritical waves, but drops to small values and then
performs oscillations around zero for supercritical waves
(see [48] for a discussion of the origins of the oscillations).
A similar “collapse of the lapse” has been observed for a
number of other slicing conditions (see, e.g., [53] for an
analytical study of maximal slicing), but a priori it is not
clear that the shock-avoiding slicing condition employed
here would display a similar behavior.

As an example we show in Fig. 3 the maxima (14) and
integrals (15) of the curvature scalar Z as a function of
proper time 7 for selected subcritical values of the ampli-
tude 4. Note that an increasing number of peaks emerges at
late time as .A is fine-tuned to its critical value. Fine-tuning
the amplitude A to the onset of black-hole formation
we bracket the critical amplitude A, to approximately
0.00495634 < A, < 0.00495637. While our computa-
tional methods and resources limit us to a more modest
fine-tuning than some other recent studies of critical
collapse of gravitational waves (see [22,23]), it did allow
us to observe several properties of critical Teukolsky
waves, as we will discuss in the following.

2. The threshold solution: Maxima

We start by observing that, after about 7 ~ 2.5, the graphs
in Fig. 3 show patterns that repeat with increasing

*While we refer to the limiting solution as the threshold
solution, rather than the critical solution, in order to emphasize
that it is not universal, we continue to use the terms supercritical,
subcritical, and near critical to describe whether or not a black
hole is formed.
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frequency and increasing amplitude, as is expected for a
DSS solution. We can follow these repeated patterns for
about two or three periods, after which neither our fine-
tuning nor our grid resolution is sufficient to reliably model
the threshold solution.

In order to analyze the properties of the threshold
solution quantitatively we introduce two new similarity
coordinates adapted to self-similarity, namely a new time
coordinate

= —In(z, — 1), (16)

which we will refer to as “slow time,” and a dimensionless
rescaled radial coordinate

55 R/(T* - T>’ (17)

where R is the proper distance from the center measured
along the time slice of constant ¢. In both (16) and (17) z,
denotes the proper time of the accumulation event as
measured by the observer at the center. Note also that
(17) assumes that the accumulation event is located at the
center. A dimensionless quantity describing a continuously
self-similar contracting solution is a function of ¢ only; this
means that a spatial feature will appear at distance R from
the origin that is proportional to 7, — 7. Similarly, a quantity
with dimension A" will scale with R” ~ (7, — 7)". For some
matter models the self-similarity is discrete rather than
continuous. An exact DSS has been observed, for example,
in the spherically symmetric collapse of scalar fields [1,7],
while an approximate DSS has been reported for the
gravitational collapse of electromagnetic wave [18,19].
Here we argue that such an approximate DSS exists for
the collapse of gravitational waves as well. The periodicity
of a DSS solution is described by the echoing period A in
the slow time 7.

The accumulation time z, and the period A can be
determined in a number of different ways that, for an
exact DSS, for perfect fine-tuning, and in the absence of
numerical error would all result in identical values. First
note that the period A can be written as

T — Titl Tx — 7T

A=-In =-In , (18)

Ty — T Te —Ti1

where 7,,,, 7;, and 7;_; are the proper times of three
subsequent maxima. These two equations can be solved for

Ti-1Tiy1 — le (19)

Ty =,
T — 27+ 74

and

T, —Ti—1
A =lnp—+—"—
Tiy1 — T

(20)

in terms of the three observed maxima.

Alternatively, we can consider a quantity, say O, with
dimension A”. Since such a quantity should be proportional
to (z, —7)", the ratio of its values at two subsequent
maxima should satisfy

Qi1 _ (T* - Ti+1>" _ e (21)

Q; Te — T
where we have used (20) in the last step, or

A=—1In(Q/Q). (22)

We see that (22) provides an estimate of A that is based
on the values of the maxima alone. Inserting this value
of A back into the first equality in (18), together with the
corresponding times 7; and 7, , then yields

_ Qmﬁ - Q}/nfm
T = 1/n 1/n (23)
Qi—H - Qi

as another estimate for 7.

Adopting the values marked by the dots in the top panel
of Fig. 3, i.e. for the curvature scalar Z ,,, we find 7, ~ 4.8
and A ~ 0.42 from the times 7; of the maxima, using (19)
and (20). Using (22) for the values of the maxima, on the
other hand, we find A ~0.68 and 0.74 for the first and
second pair, corresponding to 7, ~ 4.3 and 4.0 from (23).
We obtain similar values for the maxima of 7., as well
as Jin. There are several possible reasons for the two
approaches yielding somewhat different values, including
our modest fine-tuning. More importantly, however, we
would expect to obtain the exact same values only for an
exact DSS, which we do not believe is the case here.

Using the maxima of Z;,, (marked by the dots in the
lower panel of Fig. 3), the differences in the values of A and
7, obtained from the two approaches differ even more.
Using (18) we find 7, = 5.8 and A = 0.21, while from (22)
we obtain A ~ 1.06 and 1.05 for the two pairs, correspond-
ing to 7, ~ 3.9 and 4.4. We take these inconsistencies as an
indication that, at least in the regime considered here, Z;,,, is
less a reliable measure than the maximum values of the
curvature. One possible reason for this is that Z;, is not,
or not yet, dominated by the threshold solution inside the
past light cone of the accumulation event. Furthermore, for
¢ = 2 the maxima of Z,,,, occur at the center, so that its
values and times have a gauge-independent meaning, while
the values of Z;,, depend on the slicing.

As a compromise we now adopt 7, =4.6 in the
following analysis. In particular, we show in Fig. 4 the
maxima (14) and integrals (15) of the curvature invariants 7
and 7 as a function of slow time 7. We take an appropriate
root of each measure to obtain a quantity with units of 27!,
and then multiply with 7, — 7 so that, for exact self-
similarity, the resulting curve would be exactly periodic.

084012-7



BAUMGARTE, GUNDLACH, and HILDITCH

PHYS. REV. D 107, 084012 (2023)

— A=0.00495634
---- A=0.004956
A=0.00495

101-

|Imax|1/4

100 4

— A=0.00495634

10°+ . 4=0.0049562
——= A4=0.004952
A=0.00482
= 102_
101<
0 1 2 3 4
T
FIG. 3. The maxima (14) (top panel) and integrals (15)

(bottom panel) of Z as a function of proper time 7 (as measured
at the center) for £ =2 waves with different amplitudes .A.
In addition to our highest-amplitude subcritical data (for
A = 0.00495634) we selected amplitudes A for which a newly
emerging peak in the curvature is approximately as high as the
previous peak. The dots and squares mark the times and values
of the first three curvature peaks.

As in the previous figures the plot is dominated by the
initial data at early times, and by a decrease in the curvature
at late times, when the (subcritical) wave disperses. At
intermediate times, however, all our curvature measures
display an approximate periodicity with a period of about
A ~ 0.5, as expected from our discussion above, consistent
with an approximate self-similarity of the threshold sol-
ution. Interestingly, this value of A is consistent with
those reported by A&E (see Table I in [10]), who also
considered Teukolsky-wave initial data, albeit not time-
symmetric ones.

3. The threshold solution: Spacetime diagrams

It is also useful to study the behavior of the threshold
solution in the entire spacetime, rather than only its maxima

101 4

1004~ (T =0 (J1dV)/10
— = (t+ =7 ([7dV)¥3
— (T+ =T I3
....... (T« —1) J%gx

10711 : , : : ;
-1.5 -1.0 -0.5 0.0 0.5 1.0
T

FIG. 4. Curvature measures as a function of slow time
T = —log(z, — 7) for the near-critical # = 2 wave with ampli-
tude A = 0.00495634 and assuming 7, = 4.6.

or integrals. We therefore show in Figs. 5 and 6 the
curvature invariants for A = 0.00495634, i.e. for our
highest-amplitude subcritical wave.

In Fig. 5 we plot Z on the symmetry axis, i.e. in the
direction of the z-axis as shown in Fig. 1. We only show Z
in this figure, because our data satisfy (12) on the axis, so
that Z and 7 are not independent there. We display the data
in two different ways, however. In the top panel we show
(the logarithm of) Z'/# (with units of A~!) as a function of
proper radius R from the origin (along a slice of constant
coordinate time), and of proper time z as measured at the
center. As expected from our previous discussion we
observe, after r ~ 2.5, features that appear to repeat with
increasing frequency and on shorter length scales, again
suggesting an approximate DSS with an accumulation
event at the center. We include the red crosses in the
figures to help the reader identify these features; we will
discuss the choice of the location of these crosses in more
detail at the end of this subsection (they are placed at values
of T,un spaced by A = 0.53 and constant values of 1).

In the bottom panel of Fig. 5 we show (the logarithm of)
the dimensionless combination (z, —7)Z'/# as a function
of the similarity coordinates £ and 7. We observe that the
solution indeed features similar patterns that repeat in slow
time with a periodicity A ~0.53.

We also note an artifact in the figures that appears to
suggest that the curvature invariants change discontinu-
ously at certain specific times, for example around 7 = 2.7.
This effect is a consequence of the lapse function dipping
below zero at the center at certain times (see Fig. 2), so that
the proper time advances backward at the center, while, at
sufficient distance away from the center where the lapse is
still positive, proper time still advances forward. Displaying
the data as a function of proper time as measured by an
observer at the center therefore leads to discontinuities
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In(|Z]*4)

In((t+ — 7)|7|¥%)

FIG. 5. The Weyl curvature scalar Z for a near-critical £ = 2
wave with amplitude 4 = 0.00495634 on the symmetry axis
(corresponding to the z-axis in Fig. 1). The top panel shows Z'/4
as a function of proper distance R from the origin and of proper
time 7 as measured by an observer at the origin. In the bottom
panel we show (7, —7)Z'/* as a function of the similarity
coordinates ¢ and 7" assuming 7z, = 4.6 [see Eqs. (16) and (17)].
We include the red crosses as guidance in identifying corre-
sponding features in the two plots. The red line in the top
panel marks the outer boundary at £ =4 in the lower panel.
(The left, lower, and upper boundaries of the two plots corre-
spond to each other.).

away from the center. Another artifact appears in the
bottom panel of Fig. 5 and similar figures below for large
values of 7" and small values of &; these artifacts result from
insufficient resolution for the increasingly fine structures
that form at late times for near-critical solutions.

As it turns out, for quadrupolar waves the curvature
invariants show significantly more structure in the equa-
torial plane than along the axis, as shown in Fig. 6. Since,
away from the axis, Z and J do not generally satisfy (12),
we now show Z in the left column and J in the right
column. As in Fig. 5 we also show the scalars in terms of R

and 7z in the top row, and in terms of the similarity
coordinates £ and T in the bottom row.

At early times 7 < 2, and when plotted in terms of R
and 7, the curvature scalar Z displays a diagonal chess-
board pattern, which is a consequence of the initial data
representing a superposition of ingoing and outgoing
waves. At later times, 72 2.5, we again observe the
emergence of repeated patterns that occur with increasing
frequency and on smaller length scales, before the wave
disperses at late times. The scalar J shows a similar but
slightly more complicated behavior, which is perhaps not
surprising given that even for the initial data, as shown in
Fig. 1, it appears somewhat more complicated.

Plotting Z and 7 in terms of the similarity coordinates &
and 7, as shown in the bottom row of Fig. 6, reveals that
that repeating patterns at late times are again nearly
periodic in 7 with a period of about A ~ (.53, suggesting
the existence of an at least approximate discrete self-
similarity with an accumulation event at the center.

In twist-free axisymmetry with an additional equatorial
symmetry, within any time slice compatible with that
symmetry, the world sheets of the x and z axes are already
geometrically unique. However, there still is a gauge
dependence of the plots shown in Figs. 5 and 6 through
the time slicing: The value of 7 assigned to an event is the
value on the slice through it, and its proper distance R is
integrated along the slice. The fact that these figures display
any periodic behavior away from the center at all suggests
that the shock-avoiding slicing condition leads to coordi-
nates that reflect the self-similarity to some degree.

As an alternative, we can also construct null coordinates
on the x- and z-axis world sheets that have a completely
gauge-invariant meaning. Specifically, we consider fami-
lies of null geodesics emitted from the center at selected
times ¢, both in the axial and the equatorial direction. We
label the null geodesics by the slow time 7',,;; at which they
are emitted from the center, and an affine parameter 4 along
the geodesics, normalized by 4 =0 and (di/dr); =
dT/dr = (z, —7)™! at the center (so that, initially, 1
advances at the same rate as 7). At selected coordinate
times we then record, for each geodesic, values of the
curvature invariants at their current locations. In Figs. 7
and 8 we show plots of these invariants on the axis and on
the equator as a function of 4 and T',;. Again, these plots
show approximately periodic features at intermediate times,
i.e. after the initial data have evolved toward a threshold
solution, and before the latter disperses to infinity.

In order to highlight this self-similarity we again include
red crosses in these figures. Specifically, we pick 4 = 0.35
for the plots on the axis and 4 = 0.15 for those on the
equator, and choose values of T,; = —0.67, —0.14, and
0.39, which differ by multiples of A = 0.53 and correspond
to similar phases in the oscillations. The crosses in Figs. 5
and 6 correspond to the same spacetime events as those in
Figs. 7 and 8. For an exact DSS, for the exact values of 7,

084012-9



BAUMGARTE, GUNDLACH, and HILDITCH

PHYS. REV. D 107, 084012 (2023)

o

|n(|zlll4)

In((Ts = 7 [7]¥4)

In(]71/6)

In((t+ = 1) |7Y9))

“0.0 0.5 1.0 15 2.0
3

FIG. 6. The Weyl curvature scalars Z (left column) and J (right column) for a near-critical # =2 wave with amplitude
A =0.00495634 in the equatorial plane (corresponding to the x-axis in Fig. 1). As in Fig. 5 we show the data as functions
of R and 7 in the top row, and as functions of the similarity coordinates ¢ and 7 in the bottom row, we include red crosses to
identify similar patterns, and the red lines in the top panels mark the outer boundaries of the bottom panels (see text for details and

discussion).
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FIG. 7. The curvature scalar Z for a near-critical £ = 2 wave
along the symmetry axis, as in Fig. 5, but with Z as observed
along outgoing null geodesics (see text for details).

Thull

In((t« = 7)|Z|¥%)

and A, log(z, — 7)Z"/* would be exactly periodic in 7', at
constant A, and similar for 7.

If our time slicing were also compatible with an exact DSS,
the same would be true for our earlier similarity coordinates T
and ¢. In particular, the crosses would appear at the same
values of & in the lower panels of Figs. 5 and 6. The fact that
they do indeed appear at similar locations suggests that all
three of the above conditions are met approximately.

4. Scaling with distance from the black-hole threshold

We now change focus, from our most fine-tuned sub-
critical solution (as an approximation to the threshold
solution) to the scaling of the curvature measures for
subcritical solutions as a function of distance A, — A from
the black-hole threshold. Specifically, we now compute the
(global) maxima of the curvature measures (14) and (15)
over time, e.g.

IMAX = mflx Imax (t) ’ (24)
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FIG. 8. The curvature scalars Z (top panel) and J (bottom
panel) for a near-critical £ = 2 wave in the equatorial plane, as in
Fig. 6, but with 7 and J as observed along outgoing null
geodesics.

and similar for 7 as well as their integrals (15). We use
capital letters in the subscript in order to distinguish the
global maxima from the local-in-time maxima denoted with
lowercase subscripts. In Fig. 9 we show these global
curvature maxima, properly rescaled so that all have units
of 271, as a function of the wave amplitude A, assuming
A, = 0.00495635. Because of our limited numerical res-
olution we found that several of our curvature measures
become quite noisy at late times when A is too close to its
critical value, and we therefore shaded the corresponding
data in Fig. 9. We also marked the simulations for the
amplitudes shown in Fig. 3 as filled symbols. Since, for
these amplitudes, a newly emerging curvature peak starts to
dominate over previous peaks, these amplitudes correspond
to the “kinks” in the scaling plot of Fig. 9.

For a unique critical solution with continuous self-
similarity and a single unstable mode one would expect
a curvature measure with units of 17!, say C, to scale with

Cx|A, — A7, (25)

10% *'\f;:;ff;\,\'_ e O
\&%.\‘ °
e 0
—% 5?5'5%-;%&
104 ©  (JZdV)uax/10 °we,§§!§§g
< ([7av)ifi %\E%%’\
o I 2.
/6 -
0] T Sa
—— (As —A)"025
X

1078 1077 106 10-3 1074 103
Ax — A

FIG. 9. Global measures of the maximum curvature attained for
quadrupolar £ = 2 waves as a function of amplitude .4, assuming
A, = 0.00495635. The filled symbols correspond to the ampli-
tudes shown in Fig. 3 for which a new peak in the curvature
emerges and starts dominating over a previous peak; these
amplitudes therefore correspond to a “kink™ in the scaling plot
shown here. Results for near-critical amplitudes, for which we
believe that numerical error close to the origin leads to an
overestimate in our values of the curvature maxima, are included
as shaded symbols only.

where y is the inverse of the mode’s Lyapunov exponent
(see, e.g., [3-5]). For a DSS critical solution one expects a
periodic wiggle with period of

A, — A, A
P=|l *‘)‘: 26
‘n<"4*_-’4i 14 ( )

in In|A, —A| to be superimposed on the power-law
scaling (25) (see [7,8]).

If we were to estimate y as the slope of the straight
line connecting two neighboring kinks (the full blue dots or
full green squares) in Fig. 9 and substitute this value into
Eq. (26), we would by obtain a value of A very similar to
(22)—the only difference being that, in Fig. 3, we identified
the maxima from the threshold solution, while, in Fig. 9,
the kinks are the maxima of subcritical solutions. However,
if we estimate y independently as a best fit line through the
observed wiggly scaling laws, Eq. (26) provides other
estimates of A.

In the absence of an exact DSS, and given our modest
fine-tuning, it is difficult to determine the critical exponent
y precisely. Focusing on the curvature maxima, which we
have previously identified as being a more reliable diag-
nostics than the integral of Z, we see that the data are
reasonably well fitted by y = 0.25. This value is slightly
smaller than those found by [22], who estimate y = 0.33
for their (positive-amplitude) Teukolsky data, and A&E,
who report y ~0.36, but the initial data of both [22]
and A&E are also different from ours in that they are
not time symmetric.

084012-11



BAUMGARTE, GUNDLACH, and HILDITCH

PHYS. REV. D 107, 084012 (2023)

Measuring the distance between the kinks in the data for
Tmax in Fig. 9 we estimate P ~ 3. Using y ~ 0.25, we then
obtain A ~0.75 from (26), which is consistent with our
earlier estimate from the maximum values of 7 in (22).

B. Hexadecapolar waves: € =4

We now turn to hexadecapolar waves (¢ = 4), which we
construct from the expressions in Appendix A 2. Given
the more complicated angular structure of these data in
comparison to the quadrupolar data (see Fig. 1) we use
Ny = 128 angular grid points for these simulations, but
reduce the number of radial grid points to N, = 256 in
order to shorten the run-time of the simulations. As we will
discuss in more detail below, we also find that regridding is
less helpful in these simulations than in those for quad-
rupolar data, and therefore keep the radial grid fixed during
these evolutions.

1. Fine-tuning to the threshold solution, and its maxima

As for the quadrupolar waves of Sec. III A, we perform
simulations for different amplitudes A in the seed function
(3), and bracket the threshold amplitude to approximately
4251 x 107* < A, < 4.252 x 107*. Corresponding to our
(relatively) poorer resolution of the hexadecapolar waves,
our fine-tuning is also worse than for the quadrupolar data.
We nevertheless include some results here in order to
highlight some of the qualitative differences between the
threshold solutions for quadrupolar and hexadecapolar
waves.

Figure 10 is the same as Fig. 4, except for hexadecapolar
waves. We again show curvature measures as a function of
slow time T for a near-critical solution. Because our fine-
tuning is even more modest than for the quadrupolar waves,
it is even harder to determine the accumulation time z,. Here
and in the following we will adopt 7, = 14 as a crude

1024

1014 T - (t+=1) (JZdV)/10
—— (T« =7) ([7dV)¥3
— (T =TI,
....... (T+ — T) TS,

100+

—26 -25 —2.4 —2.3 —22 -21 -2.0 -1.9 -1.8
T

FIG. 10. Curvature measures as a function of slow time
T = —log(z, — ) for the near-critical £ = 4 wave with ampli-
tude A = 4.251 x 10~ and assuming 7, = 14.

estimate. Using this value of 7, we see that, at intermediate
times, the curvature measures show an approximate periodic
behavior with a period of approximately A ~ 0.1, which is
significantly shorter than that found for quadrupolar waves.
This behavior is similar to that of electromagnetic waves, for
which [19] reported that the quadrupolar threshold solution
has a shorter period than the dipolar threshold solution.

2. The threshold solution

In Figs. 11 and 12, which mirror Figs. 5 and 6 for
quadrupolar waves, we show the curvature scalars Z and J
on the axis and in the equatorial plane. As an initial

log(|Z|}#)

0.0 2.5 5.0 7.5 10.0 125 15.0

log ((T+ — T) |Z|¥4)

[
N

FIG. 11. The Weyl curvature scalar Z for a near-critical
hexadecapolar # =4 wave with amplitude A = 4.251 x 107*
on the symmetry axis (compare with Fig. 5 for quadrupolar
waves). The top panel shows Z'/* as a function of proper distance
R from the origin and of proper time 7 as measured by an observer
at the origin. In the bottom panel we show (z, —7)Z'/* as a
function of the similarity coordinates & and 7 assuming 7, = 14
[see Egs. (16) and (17)]. As in Figs. 5 and 6 we include the red
crosses as guidance in identifying corresponding features in the
two plots, and the red line in the top panel marks the outer
boundary at £ = 1 in the lower panel.
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qualitative observation we note that, unlike the quadrupolar
waves, which showed significantly more structure in the
equatorial plane than on the axis, the hexadecapolar waves
display rather complicated structure on the axis as well.
Also, while for quadrupolar waves the maximum values of
the curvature scalars are typically found at the center, for
the hexadecapolar waves they are typically away from the
center, but on the symmetry axis.

It is again intriguing to compare with results for the
gravitational collapse of electromagnetic waves. While [18]
found that the threshold solution for dipolar initial data
features maximum density at the center, [19] reported that,
for quadrupolar initial data, the threshold solution develops
maximum densities on the symmetry axis, away from the
center (see, e.g., Fig. 6 in [19]). This qualitative difference
between the threshold solutions for data with different
multipoles is very similar to our findings for gravitational-
wave data here.

Unfortunately, the increasingly sharp spikes away from
the center make it increasingly difficult to resolve them
with the spherical polar coordinates used in our code.
While the regridding option in our code helps to zoom into
center, it is less effective for resolving features away from

0
&
2%
=3
o
-4
-6
0
0.0 25 5.0 7.5 10.0 125 15.0
R
3
2

,_.
log ((T+ = T)|7|¥4)

00 02 04 06 08 1.0
3

the center, as we discussed above. We therefore do not
attempt to examine the hexadecapolar waves more carefully
here, and instead focus on qualitative differences from
quadrupolar waves.

In order to analyze whether the threshold solution for
hexadecapolar waves features an approximate DSS (with
an accumulation event at the center) we display the data as
functions of the similarity coordinates (16) and (17) (see the
bottom panels in Figs. 11 and 12), again with 7, ~ 14.
While any DSS is certainly not exact, Figs. 11 and 12 do
suggest that there is an approximate DSS. As before we
include red crosses constructed from the corresponding
crosses in Figs. 13 and 14 below, in order to help identify
similar and repeated patterns. Note that, despite the spikes
forming away from the center, they appear to be features of
an approximately DSS threshold solution with a single
accumulation event at the center, rather than two separate
centers of collapse—similar to the threshold solution for
quadrupolar electromagnetic waves discussed in [19]. We
again observe that the periodicity for these hexadecapolar
waves is significantly shorter than that for the quadrupolar
waves. In fact, we were able to observe one more echo for
the hexadocapolar waves than for the quadrupolar waves,

b
|Og(|m1/5)

._.
log ((T+ = T)|71¥®))

00 02 04 06 08 1.0
3

FIG. 12. The Weyl curvature scalars Z (left column) and J (right column) for a near-critical £ = 4 wave with amplitude A =
4.251 x 10~* in the equatorial plane (compare with Fig. 6 for quadrupolar waves). As in Fig. 11 we show the data as functions of R and ¢
in the top row, and as functions of the similarity coordinates & and T in the bottom row (see text for details and discussion).
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FIG. 13. The curvature scalar Z for a near-critical hexadeca-
polar # = 4 wave along the symmetry axis, as in Fig. 11, but with
7 as observed along outgoing null geodesics (compare with Fig. 7
for quadrupolar data).
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FIG. 14. The curvature scalars Z (top panel) and J (bottom
panel) for a near-critical hexadecapolar £ =4 wave in the
equatorial plane, as in Fig. 12, but with Z and J as observed
along outgoing null geodesics (compare with Fig. 8 for quad-
rupolar data).

despite the less accurate fine-tuning, precisely because the
echoing period is shorter. From Figs. 11 and 12 see see that
A ~ 0.1, as previously identified from Fig. 10, but we again
caution that this value is affected by the estimate for 7z, and
hence a crude estimate only. Note that periodicity in r,
rather than 7', formally corresponds to the limit z, — oo and
A — 0. We can therefore estimate a small value of A less
accurately than a large one. Here, we cannot distinguish
A ~0.1 from a periodicity in 7z with certainty. We are
confident, however, that A ~ 0.5 is not a good fit to the
| = 4 threshold solution.

As for the quadrupolar waves, we also display the
curvature scalars in terms of the gauge-invariant coordi-
nates T, and A constructed from outgoing null geodesics.
Specifically, we show the data along the symmetry axis in
Fig. 13, and in the equatorial plane in Fig. 14. While any
DSS is certainly not exact, it is again easy to identify
repeated patterns that suggest an approximate DSS.

Because of our poor fine-tuning for hexadecapolar
waves, and because we have not sampled the subcritical
regime with enough simulations to resolve kinks as in
Fig. 9, we do not explore the scaling with distance from the
black-hole threshold in more detail, and do not attempt to
estimate the critical exponent y for these data.

IV. SUMMARY AND DISCUSSION

The purpose of this paper is twofold: We discuss some
new numerical features that we successfully adopt in our
study of critical collapse of gravitational waves, and we
report on new results that complement the independent
findings of A&E and [21-23] and that support our emerging
understanding of these critical phenomena (see also [29]).

In terms of numerical features, we emphasize the impor-
tance of avoiding numerical error in the evaluation of the
coefficients A,, By, and C, (and their derivatives) that
appear in the construction of Teukolsky-wave initial data
(see Sec. I A). We also discuss using both scalar invariants 7
and J of the Weyl curvature tensor as diagnostics of the
spacetime geometry (Sec. I C). Most importantly, however,
we demonstrate the dramatic improvements that result from
using a shock-avoiding slicing condition (see [27]) rather
than the much more common 1+ log slicing condition
(Sec. I B; see also [49]).

While our fine-tuning to the onset of black-hole for-
mation is more modest than in the simulations of A&E and
[21-23], we identify, at least qualitatively, several features
of the threshold solutions for both quadrupolar (Z = 2) and
hexadecapolar (£ = 4) initial data. For quadrupolar data we
crudely estimate the critical exponent to be about y ~ 0.25,
which is somewhat smaller than that reported by [22] for
their (positive amplitude) Teukolsky waves, as well as that
reported by A&E (even though neither [22] nor A&E adopt
time-symmetric initial data).

For both quadrupolar and hexadecapolar waves we
find that the threshold solutions are consistent with

084012-14



CRITICAL PHENOMENA IN THE COLLAPSE OF QUADRUPOLAR ...

PHYS. REV. D 107, 084012 (2023)

featuring an approximate DSS with an accumulation
event at the center. For the quadrupolar data the period
of this DSS is approximately A ~ 0.5, which is consis-
tent with the value reported by [10], while for hexade-
capolar data the period is significantly shorter, A ~0.1.
This difference in periodicity for different multipoles is
consistent with that reported by [19] for the critical
gravitational collapse of dipolar and quadrupolar electro-
magnetic waves, and demonstrates the absence of a
universal critical solution: Different multipoles lead to
different threshold solutions.

A further qualitative difference of the threshold solution
for the hexadecapolar gravitational-wave data from that for
quadrupolar data is that the periodic curvature peaks appear
as pairs on the symmetry axis, on opposite sides from the
center, similar to the observations of [21-23]. At least for
the time-symmetric Teukolsky waves considered here, we
believe that these peaks are features of a single self-similar
solution with an accumulation event at the center, remi-
niscent of similar observations for quadrupolar electromag-
netic waves [19]. It remains to be investigated what would
happen for families of initial data that do not have a
reflection symmetry, and so contain both even and odd /
spherical harmonics.

Contrary to our long-standing expectation, our results
together with those of [21-23] suggest that there does not
exist a universal critical solution for the collapse of vacuum
gravitational waves. However, it appears that specific
families of initial data may lead to threshold solutions that
feature an at least approximately DSS region with an
accumulation point at the center. Determining just how
accurate this DSS is, and whether it holds up under
better fine-tuning, will require future simulations with
higher numerical accuracy. In the meantime, we will
discuss the implications of our findings, combined with
those of [21-23], on our understanding of critical phenom-
ena in the collapse of vacuum gravitational waves in a
forthcoming joint article (see [29]).
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APPENDIX: LINEAR GRAVITATIONAL WAVES

In this appendix we list, as a reference, all expressions
necessary to construct the linear gravitational waves in TT

gauge that we use as a starting point for our initial data.
We adopt the convention and notation of Rinne [25], who
generalized Teukolsky’s analysis for quadrupolar waves
(see [24]) to higher multipole moments.

We consider even-parity waves, for which the spacetime
line element can be written as

ds? = —df* + (1 + A, Y™)dr* + 2B, V" rdrdo
+ ZBKIA/Z’”rsin Odrdg
+ (1 =AX™)2 + C, V5 2 de?
+2C, Yy r? sin 0d0dy

+ (1= A Y™ )2 + C, Y501 sin® Odg? (A1)
(see Eq. 4 in [25]). In (A1) the functions A,, B,, and C,
[see Eqs. (A2) and (A4) below] depend on time ¢ and
radius r in the combinations x = r £ ¢ corresponding to
ingoing and outgoing waves, and are computed from a seed
function F = F(x) [e.g. (3)] and its derivatives, while the
functions Y7, Y5, ¥, Y45, and ¥ [see (A3) and (A5)
below] depend on the angles @ and ¢. We specialize to
axisymmetric solutions with m = 0, for which the func-
tions f/f;O and ?53 vanish identically. The specific expres-
sions for # =2 and ¢ =4, which we list below for
convenience, are taken from Appendix A of [25).°

1. Quadrupolar waves: £ =2

For quadrupolar waves with £ = 2 the functions A,, B,,
and C, are given by

F@ 3fr() 3F
F®  3r® 6rl) 6F
B=4l-—+—-—+—, A2b
2 ( 2 + e A + P ) ( )

F@ 2FCG) 3p@ 30 3F
C,=2 <— — - + -—=
r r r r

7 3 7 5 > . (A2¢)

where F(")(x) = d"F(x)/dx" denotes the nth derivative of
the seed function F with respect to its argument. The
nonvanishing angular functions are

720 =2 — 3sin?6, (A3a)
Y20 = —6 cos 6 sin 6, (A3b)
729 = 3sin 6. (A3c)

‘We note a small typo in Appendix A of [25], where the last
entry for Ygy for # =3 should be 15cos6 sin’0 rather than
15 cos @sin 6.
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2. Hexadecapolar waves: ¥ =4

For hexadecapolar waves with £ = 4, the functions A4, B,, and C, are given by

F® 10F®) 452 105F()  105F
Ay = 360<—r—3+ . i ) (Ada)
FO 10F®  55F0) 195F@  420F()  420F
B4:18<—7+ - Tt ) (Adb)
FO 9F®) 45F® 150FC) 360F?  630F(")  630F
C4:2<_T+ 2P s + o >’ (Ade)
while the nonvanishing angular functions are
740 = 355in* 6 — 40sin> 9 + 8, (A5a)
742 =20 cos 0 sin 0 (7sin? 6 — 4), (A5b)
729 = 30sin? 0 (6 — 7 sin” ). (ASc)
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