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The dynamics of a binary system moving in the background of a black hole is affected by tidal forces. In
this work, for the Kerr black hole, we derive the electric and magnetic tidal moments at quadrupole order,
where the latter are computed for the first time in full generality. We make use of these moments in the
scenario of a hierarchical triple system made of a Kerr black hole and an extreme-mass ratio binary system
consisting of a Schwarzschild black hole and a test particle. We study how the secular dynamics of the test
particle in the binary system is distorted by the presence of tidal forces from a much larger Kerr black hole.
Our treatment includes strong gravitational effects beyond the post-Newtonian approximation both for the
binary system and for the tidal forces since the binary system is allowed to be close to the event horizon of
the Kerr black hole. We compute the shifts in the physical quantities for the secular dynamics of the test
particle and show that they are gauge invariant. In particular, we apply our formalism to the innermost
stable circular orbit for the test particle and to the case of the photon sphere. Our results are relevant for the
astrophysical situation in which the binary system is in the vicinity of a supermassive black hole.
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I. INTRODUCTION

The detection of gravitational waves from coalescing
binary systems by the LIGO-Virgo-Kagra collaboration
[1–3] has unsealed a new powerful and fascinating way
of exploring our Universe in a regime of strong gravitational
field. This has made it increasingly relevant to investigate
new types of strong gravitational phenomena analytically to
prepare for future experimental results.
Indeed, with the next generation detectors such as

the ground-based Einstein Telescope [4] and Cosmic
Explorer [5], as well as the space-based LISA [6] and
TianQin [7], the sensitivity and frequency band will be
greatly expanded. This will make it possible to use black
hole binary systems also as probes of their surrounding
environment (see Ref. [8] for a comprehensive review).
Examples of the effect of the environment include the
presence of various types of energy and matter, such
as an accretion disc [9–11] or dark matter [12–21].

Another example, relevant for this paper, is the presence
of a third body, such as a nearby supermassive black
hole [22–31] bound to the binary system.
Moreover, the expansion in sensitivity and frequency

band will make it possible to detect signals from new types
of sources, such as for example extreme-mass-ratio (EMR)
inspiraling systems.1 Among these systems, the ones that
will typically be detectable in the LISA band [32,33] are
made of a stellar mass compact object of mass m and a
black hole with a much larger mass M ≫ m, with mass
ratios m=M ranging from 10−4 to 10−6.
In this paper we are interested in the dynamical effects of

having a binary black hole system immersed in a curved
background spacetime. To access a scenario that is at the
same time realistic, includes strong gravitational effects,
and can be treated analytically, we consider the case of an
EMR binary system, i.e. a black hole and a test particle, in
the background of a third, larger black hole, affecting the
binary system through tidal forces.
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1We adopt hereafter the abbreviation EMR instead of the more
conventional EMRI to stress that, in this work, we do not focus on
inspiral phases and we neglect any radiation-reaction effects in
comparison to tidal effects.
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We take the curved background spacetime to be the
general case of a Kerr black hole of mass M�. Instead the
EMR binary system will consist of a Schwarzschild black
hole of mass M with a test particle of mass m, enabling
us to use the tidally deformed Schwarzschild metric of
Refs. [34,35] to describe the EMR binary system. For the
test particle we consider it to move on a geodesic,
neglecting higher order effects in m=M such as the self-
force. As the size of the binary system will be set by the
scale M, we need M ≪ R where R is the curvature length
scale set by the background Kerr black hole. This ensures
that the effects of the background can be described through
tidal forces, with the conditionM ≪ R known as the small-
tide approximation [35].
We will consider the quadrupole approximation to the

tidal forces, being the leading order in M=R. This means
we can consider the EMR binary as moving on a geodesic
of the Kerr black hole geometry. A particularly interesting
regime is whenM� ≫ M thus corresponds to a hierarchical
three body system. In this case, the binary system can be
close to the event horizon of the Kerr black hole, even while
the small-tide approximation is respected.
Our setup is inspired by that of Ref. [28], while at the

same time being a significant extension. Their setup was
restricted to a Schwarzschild black hole as the third body,
and the EMR binary system was assumed to be at a large
distance. Instead, we are able to consider the strong
gravitational effects on the binary system when it moves
in close vicinity to a Kerr black hole. This also means that
we need to consider more carefully the relative orientation
of the EMR binary system relative to the Kerr black hole.
This is accomplished by introducing two independent
rotation angles. Moreover, it is important to note that in
our setup we are able to capture strong gravitational effects
arising from curved spacetime, in contrast with most of the
extensive literature on three body systems [36–40], as those
works employ the approximation that all three bodies are
small relative to their mutual distances.
A significant part of our paper concerns the careful

computation of the general quadrupole tidal forces due to
the Kerr black hole, as these constitute the forces that can
affect the binary system in our setup. These forces are
described by the tidal tensors Cij and Cijk. The rank-2 tidal
tensors Cij were previously computed for a generic value
of the Kerr angle θ̂ in a seminal paper by Marck [41],
where he constructed the orthonormal tetrad that is
parallel-transported along an arbitrary timelike geodesic
in the Kerr spacetime. From the rank-2 tidal tensorsCij one
can then compute the “electric” quadrupole moments Eij,
which can be considered as “mass moments” produced by
gravitational forces external to a certain region.
A primary result of this paper, is the derivation of the

general form of the rank-3 tidal tensors Cijk for all values of
the angle θ̂ in the Kerr spacetime. This generalizes the
results of Ref. [42] (later confirmed in Ref. [43]), where the

tidal tensors Cijk were obtained only for the specific value
θ̂ ¼ π=2, namely in the equatorial plane of the Kerr
spacetime. From the rank-3 tidal tensors Cijk we moreover
derive the “magnetic” quadrupole moments Bij, which can
be considered as external “current moments” and generate
velocity-dependent tidal forces on test bodies. This is
another original result of this paper.
We apply these tidal electric and magnetic quadrupole

moments to the case described above, with an EMR binary
system following a geodesic in the Kerr background. The
effects induced by the tidal fields can be studied by
computing the Hamiltonian of a test particle (the object
of massm) in the tidally deformed Schwarzschild spacetime.
Specifically, starting from a circular orbit in the unperturbed
Schwarzschild spacetime, we find that the geodesics in the
tidally deformed spacetime acquire a small eccentricity
proportional to the deformation parameter. The quasicircular
dynamics in the perturbed spacetime is governed by a
secular Hamiltonian, which keeps into account the effects
of the tidal deformation on circular orbits. It can bewritten as
a sum of the unperturbed Hamiltonian in the Schwarzschild
spacetime and an interaction term of order ∼M=M�, which
allows us, for example, to compute perturbatively the effects
of tides on the location and properties of the innermost stable
circular orbit (ISCO) and of the photon sphere.
Using the tidal moments we computed, we derive the

effects of tides on the frequency, radius, energy and angular
momentum of the ISCO of the binary system by computing
the shifts induced by the small tides on these physical
quantities.2 The case of tides generated by a Schwarzschild
black hole was studied in Refs. [28,45]. Here we derive the
shifts in the case of tides induced by the Kerr geometry and
we derive the expression of the parameter η entering these
shifts. We find that η depends on the spin of the Kerr black
hole, the Carter constant K, the Kerr angle θ̂ and the Boyer-
Lindquist radius r̂ at which the black hole of mass M is
located in the Kerr spacetime geometry. More generally,
our result does not rely on the specific nature of the third
body responsible for the tides. Indeed, the tidal parameter η
in the secular Hamiltonian is shown to be proportional to
the secular average of the scalar part of the electric tidal
moment. This result holds in the quadrupole and in the
secular approximation. We provide an expression for η in
terms of arbitrary tides and specialize it to the case of a Kerr
black hole.
The paper is organized as follows. In Sec. II, we compute

the tidal moments induced by a Kerr black hole. Following
Ref. [41], we first recover the already known expression for
the electric tidal moments and then we derive the most
general expressions for the magnetic components of the tidal
moments, generalizing the computation done in Ref. [42].
In Sec. III, we introduce the hierarchical triple system that

2See Ref. [44] for similar treatments in the context of the self-
force approximation.
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we analyze in this paper. We write down the metric for a
tidally deformed Schwarzschild black hole up to the
quadrupole order. We moreover write down the explicit
expression for the quadrupole electric and magnetic
moments and we introduce the Euler angles which allow
us to study any possible orientation of the binary system.
In Sec. IV, we focus on the secular dynamics of the
binary system in order to understand how the parameters
which specify the orbits of the test particle around the
Schwarzschild black hole, such as energy and angular
momentum, are shifted by the tidal fields. In Sec. V, we
apply the results of the previous sections to the case in
which the test particle is moving along the ISCO of the
Schwarzschild black hole. In addition, we extend our
computation also to the case of a massless particle studying
how the photon sphere is deformed by the tidal fields. We
furthermore discuss the gauge invariance of our results.
Finally, Sec. VI contains our concluding remarks.
Throughout this paper greek indices run from 0 to 3, latin

lowercase indices (i; j; k;…) run from 1 to 3 and latin
uppercase indices (A;B;C;…) label spherical coordinates.
Indices in round brackets [ðaÞ; ðbÞ; ðcÞ;…] label tensor
components in the Carter’s tetrad. Symmetric and trace-
free (STF) tensors are denoted by angular brackets over
their indices, e.g., Thiji ¼ TðijÞ − 1

3
δijTklδ

kl. Hatted coordi-

nates ðt̂; r̂; θ̂; ϕ̂Þ are employed for the Kerr spacetime.
Schwarzschild coordinates, used for the binary system,
are instead denoted as ðt; r; θ;ϕÞ. We use geometrized units
with G ¼ c ¼ 1 and the Minkowski metric signature
is η ¼ diagð−1; 1; 1; 1Þ.

II. TIDAL MOMENTS INDUCED
BY A KERR BLACK HOLE

In this section we derive the general quadrupole tidal
moments for geodesic motion around a Kerr black hole
which we will use in Secs. III–V. In Sec. II A we define the
Carter’s tetrad, in terms of which the curvature tensor
simplifies. In Sec. II B we present an alternative inertial
frame [41], parallel-transported along a generic geodesic in
the Kerr spacetime, here called the Marck’s tetrad. This is
the most suitable reference frame in which it is possible to
extract analytic information concerning the tidal effects
induced by the Kerr geometry on a system moving along
its geodesics. The tidal effects are encoded in the rank-2 and
rank-3 tidal tensors and in the set of electric and magnetic
tidal moments, explicitly given in Secs. II C and II D at the
quadrupole order. The expressions of the rank-3 tidal tensor
and of the magnetic quadrupole moments outside the Kerr
equatorial plane are derived here for the first time.

A. Carter’s tetrad

The Kerr metric for a rotating black hole of massM� and
spin J�, in Boyer-Lindquist coordinates x̂μ ¼ ðt̂; r̂; θ̂; ϕ̂Þ
takes the form

dŝ2 ¼ −
�
1 −

2M�r̂
Σ

�
dt̂2 −

4M�r̂
Σ

a sin2 θ̂dt̂dϕ̂

þA
Σ
sin2 θ̂dϕ̂2 þ Σ

Δ
dr̂2 þ Σdθ̂2; ð2:1Þ

where a ¼ J�=M� is the specific angular momentum and

Σ ¼ r̂2 þ a2 cos2 θ̂; Δ ¼ r̂2 − 2M�r̂þ a2;

A ¼ ðr̂2 þ a2Þ2 − a2Δ sin2 θ̂: ð2:2Þ

We are interested in considering timelike geodesics
around a Kerr black hole, specified by three constants of
motion: the energy per unit mass Ê, the angular momentum
per unit mass L̂ and the Carter constant K. More specifi-
cally, the first integrals of the equations of motion read [46]

_̂t ¼ AÊ − 2M�r̂aL̂
ΔΣ

;

_̂r2 ¼
�
Êðr̂2 þ a2Þ − aL̂

Σ

�
2

−
Δ
Σ2

ðr̂2 þ KÞ;

_̂θ
2 ¼ 1

Σ2

�
K − a2 cos θ̂ −

�
aÊ sin θ̂ −

L̂

sin θ̂

�
2
�
;

_̂ϕ ¼ 1

Δ

�
2M�r̂aÊ

Σ
þ
�
1 −

2M�r̂
Σ

�
L̂

sin2θ̂

�
; ð2:3Þ

where the dot denotes differentiation with respect to the
proper time τ.
A convenient tetrad for the Kerr geometry (2.1), such

that dŝ2 ¼ ηðaÞðbÞωðaÞωðbÞ was introduced in Ref. [47]
and reads

ωð0Þ ¼
ffiffiffiffi
Δ
Σ

r
ðdt̂ − a sin2 θ̂dϕ̂Þ;

ωð1Þ ¼
ffiffiffiffi
Σ
Δ

r
dr̂;

ωð2Þ ¼
ffiffiffi
Σ

p
dθ̂;

ωð3Þ ¼ sin θ̂ffiffiffi
Σ

p ðadt̂ − ðr̂2 þ a2Þdϕ̂Þ: ð2:4Þ

We dub this tetrad, the Carter’s tetrad. The curvature
2-form

ΩðaÞðbÞ ¼
1

2
CðaÞðbÞðcÞðdÞωðcÞ ∧ ωðdÞ; ð2:5Þ

with CðaÞðbÞðcÞðdÞ being the components of the Weyl tensor
[Cμνρσ ¼ Rμνρσ for the Kerr geometry (2.1)], projected
along the Carter’s tetrad with the inverses of Eq. (2.4),
ωμ
ðaÞ, CðaÞðbÞðcÞðdÞ ¼ Cμνρσω

μ
ðaÞω

ν
ðbÞω

ρ
ðcÞω

σ
ðdÞ, reads [41,48]
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Ωð0Þð1Þ ¼ 2I1ωð0Þ ∧ ωð1Þ þ 2I2ωð2Þ ∧ ωð3Þ;

Ωð0Þð2Þ ¼ −I1ωð0Þ ∧ ωð2Þ þ I2ωð1Þ ∧ ωð3Þ;

Ωð0Þð3Þ ¼ −I1ωð0Þ ∧ ωð3Þ − I2ωð1Þ ∧ ωð2Þ;

Ωð1Þð2Þ ¼ −I1ωð1Þ ∧ ωð2Þ þ I2ωð0Þ ∧ ωð3Þ;

Ωð1Þð3Þ ¼ −I1ωð1Þ ∧ ωð3Þ − I2ωð0Þ ∧ ωð2Þ;

Ωð2Þð3Þ ¼ 2I1ωð2Þ ∧ ωð3Þ − 2I2ωð0Þ ∧ ωð1Þ; ð2:6Þ

where

I1 ¼
M�r̂
Σ3

ðr̂2 − 3a2 cos2 θ̂Þ;

I2 ¼
aM� cos θ̂

Σ3
ð3r̂2 − a2 cos2 θ̂Þ: ð2:7Þ

B. Marck’s tetrad

The orthonormal tetrad λðaÞ ¼ ðλðaÞ0 ; λðaÞ1 ; λðaÞ2 ; λðaÞ3 Þ that is
parallel transported along an arbitrary timelike geodesic was

constructed in Ref. [41]. The tetrad component λðaÞ0 is a

timelike unit vector tangent to the geodesics and λðaÞi are
spacelike unit vectors. They satisfy the following conditions

ηðaÞðbÞλ
ðaÞ
α λðbÞβ ¼ ηαβ; λμ0∇μλ

ν
α ¼ 0; ð2:8Þ

where λμα ¼ ωμ
ðaÞλ

ðaÞ
α and α; β ¼ f0; 1; 2; 3g are the labels of

the components of the tetrad. The first relation in Eq. (2.8) is
the orthonormal condition, the second one is the parallel-
transported requirement that implies the tetrad frame is
inertial. Their explicit expressions in terms of the metric
functions and the constants of motion are [41]3

λðaÞ0 ¼
�
Êðr̂2 þ a2Þ − aL̂ffiffiffiffiffiffiffi

ΔΣ
p ;

ffiffiffiffi
Σ
Δ

r
_̂r;

ffiffiffi
Σ

p _̂θ;
aÊ sin2 θ̂ − L̂

sin θ̂
ffiffiffi
Σ

p
�
;

λðaÞ1 ¼ λ̃ðaÞ1 cosΨ − λ̃ðaÞ2 sinΨ;

λðaÞ2 ¼ λ̃ðaÞ1 sinΨþ λ̃ðaÞ2 cosΨ;

λðaÞ3 ¼ 1ffiffiffiffi
K

p ða cos θ̂λð1Þ0 ; a cos θ̂λð0Þ0 ;−r̂λð3Þ0 ; r̂λð2Þ0 Þ; ð2:9Þ

where

λ̃ðaÞ1 ¼
ffiffiffiffiffiffiffi
T
KS

r �
r̂λð1Þ0 ; r̂λð0Þ0 ;

S
T
a cos θ̂λð3Þ0 ;−

S
T
a cos θ̂λð2Þ0

�
;

λ̃ðaÞ2 ¼
ffiffiffiffi
T
S

r �
λð0Þ0 ; λð1Þ0 ;

S
T
λð2Þ0 ;

S
T
λð3Þ0

�
; ð2:10Þ

and

S ¼ r̂2 þ K; T ¼ K − a2cos2θ̂: ð2:11Þ

Notice the identity Σ ¼ S − T.
In the second and third tetrad component of Eq. (2.9),

we rotated the vectors λ̃ðaÞ1 and λ̃ðaÞ2 of an angle Ψ. This is
necessary in order to ensure that the tetrad λðaÞ ¼
ðλðaÞ0 ; λðaÞ1 ; λðaÞ2 ; λðaÞ3 Þ is parallel transported along the
geodesic motion [41]. In particular Ψ is an angle
depending on the proper time along the Kerr geodesic.
The equation satisfied by Ψ was derived in Ref. [41] and
reads

_Ψ ¼
ffiffiffiffi
K

p

Σ

�
Êðr̂2 þ a2Þ − aL̂

S
þ a

L̂ − aÊ sin2 θ̂
T

�
: ð2:12Þ

A solution for this first order differential equation was
provided in Ref. [41] and, more explicitly in terms of the
Mino time, in Ref. [49].

C. Tidal tensors

Tidal effects on test particles moving in the neighbor-
hood of a geodesic in Kerr spacetime are best computed by
evaluating the Weyl tensor on the parallel-transported
tetrad λðaÞ [see Eq. (2.9)] with λðaÞ0 being the four-velocity.
The explicit expressions for the tidal tensors are obtained
once the Weyl tensor Cμνρσ is evaluated on the Kerr
geodesic. In order to compute the electric and magnetic
quadrupole moments, we first need the following compo-
nents of the rank-2 and rank-3 tidal tensors in the basis of
the tetrad λðaÞ [35,41]

Cij ≡ CðaÞðbÞðcÞðdÞλ
ðaÞ
0 λðbÞi λðcÞ0 λðdÞj ;

Cijk ≡ CðaÞðbÞðcÞðdÞλ
ðaÞ
0 λðbÞi λðcÞj λðdÞk ; ð2:13Þ

where we recall that CðaÞðbÞðcÞðdÞ ¼ Cμνρσω
μðaÞωνðbÞωρðcÞ

ωσðdÞ. Note that, as a consequence of the symmetries of
the Weyl tensor, Cij is an STF tensor, whereas Cijk is trace-
free and antisymmetric in ðj; kÞ by definition. Moreover, it
obeys the condition Cijk þ Cjki þ Ckij ¼ 0, implying that
Cijk − Cjik ¼ −Ckij and Cijk − Ckji ¼ −Cjki.
We compute now the explicit expression for the

components of the Weyl tensor that are relevant for
the calculations of the electric and magnetic quadrupole
moments. Our expressions are valid for arbitrary time-
like geodesics in the Kerr black hole spacetime. The Cij
read

3We rename λðaÞ2 and λ̃ðaÞ3 in Ref. [41] with our λðaÞ3 and λ̃ðaÞ2 ,
respectively. It is also important to stress that all the components
of the spacelike vectors λðaÞi can be written in terms of λðaÞ0 .

FILIPPO CAMILLONI et al. PHYS. REV. D 107, 084011 (2023)

084011-4



C11 ¼
�
1 −

3ST
KΣ2

ðr̂2 − a2cos2θ̂Þcos2Ψ
�
I1 þ

6ST
KΣ2

ar̂ cos θ̂cos2ΨI2;

C12 ¼ −
3ST
KΣ2

½ðr̂2 − a2cos2θ̂ÞI1 − 2ar̂ cos θ̂I2� sinΨ cosΨ;

C13 ¼ −
3

ffiffiffiffiffiffi
ST

p

KΣ2
½ar̂ cos θ̂ðSþ TÞI1 þ ðr̂2T − a2Scos2θ̂ÞI2� cosΨ;

C22 ¼
�
1 −

3ST
KΣ2

ðr̂2 − a2cos2θÞsin2Ψ
�
I1 þ

6ST
KΣ2

ar̂ cos θ̂sin2ΨI2;

C23 ¼ −
3

ffiffiffiffiffiffi
ST

p

KΣ2
½ar̂ cos θ̂ðSþ TÞI1 þ ðr̂2T − a2Scos2θ̂ÞI2� sinΨ;

C33 ¼
�
1þ 3

KΣ2
ðr̂2T2 − a2S2cos2θ̂Þ

�
I1 −

6ST
KΣ2

ar̂ cos θ̂I2: ð2:14Þ

Note that Cij was already computed in Ref. [41] (with the label 2 renamed with 3 in this paper).
As a new result, we provide also the general expression for the nonvanishing components of the rank-3 tidal tensor Cijk

that enter the calculation of the magnetic moments which will be done in the next subsection. The nonvanishing
components are given by

C112 ¼
3

ffiffiffiffiffiffi
ST

p

KΣ2
½ðr̂2T − a2Scos2θ̂ÞI1 − ar̂ cos θ̂ðSþ TÞI2� cosΨ;

C113 ¼
3ST
KΣ2

½2ar̂ cos θ̂I1 þ ðr̂2 − a2cos2θ̂ÞI2� sinΨ cosΨ;

C123 ¼ −
6ST
KΣ2

ar̂ cos θ̂cos2ΨI1 þ
1

KΣ2
½ðr̂2T þ a2Scos2θ̂ÞðS − TÞ − 3STðr̂2 − a2cos2θ̂Þcos2Ψ�I2;

C212 ¼
3

ffiffiffiffiffiffi
ST

p

KΣ2
½ðr̂2T − a2Scos2θ̂ÞI1 − ar̂ cos θ̂ðSþ TÞI2� sinΨ;

C213 ¼
6ST
KΣ2

ar̂ cos θ̂sin2ΨI1 þ
1

KΣ2
½r̂2Tð2Sþ TÞ − a2cos2θ̂SðSþ 2TÞ − 3STðr̂2 − a2cos2θ̂Þcos2Ψ�I2;

C312 ¼
6ST
KΣ2

ar̂ cos θ̂I1 þ
1

KΣ2
½r̂2TðSþ 2TÞ − a2cos2θ̂Sð2Sþ TÞ�I2: ð2:15Þ

In addition, we observe that C223 ¼ −C113, C312 ¼ C213 − C123, C313 ¼ −C212, C323 ¼ C112.
If we specialize to equatorial (θ̂ ¼ π=2) geodesics in Kerr, the explicit expressions for the tidal tensors simplify

considerably. We get, in agreement with Refs. [41,42,50],

C11 ¼
�
1 − 3

�
1þ K

r̂2

�
cos2Ψ

�
M�
r̂3

;

C22 ¼
�
1 − 3

�
1þ K

r̂2

�
sin2Ψ

�
M�
r̂3

;

C12 ¼ −3
�
1þ K

r̂2

�
M�
r̂3

cosΨ sinΨ;

C33 ¼
�
1þ 3

K
r̂2

�
M�
r̂3

; ð2:16Þ

and, for the rank-3 tidal tensor (in agreement with Refs. [42,43]),
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C121 ¼ −
3M�

ffiffiffiffi
K

p

r̂4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

r̂2

r
cosΨ;

C221 ¼ −
3M�

ffiffiffiffi
K

p

r̂4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

r̂2

r
sinΨ; ð2:17Þ

with C121 ¼ −C112 ¼ C332 ¼ −C323 and C221 ¼ −C212 ¼
C313 ¼ −C331.
We also recall that for circular geodesics in the equatorial

plane of the Kerr spacetime, the following expressions
hold [51]

Ê ¼ r̂3=2 − 2M�r̂1=2 þ σaM1=2
�

r̂3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂3=2 − 3M�r̂1=2 þ 2σaM1=2

�
q ;

L̂ ¼ σM1=2
� ðr̂2 þ a2 − 2σaM1=2

� r̂1=2Þ
r̂3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂3=2 − 3M�r̂1=2 þ 2σaM1=2

�
q ;

K ¼ ðaÊ − L̂Þ2;

_Ψ ¼
ffiffiffiffi
K

p

r̂2 þ K

�
Ê −

a

aÊ − L̂

�
¼ σ

ffiffiffiffiffiffiffi
M�
r̂3

r
: ð2:18Þ

Abovewe introduced the parameter σ ¼ �1 that allows one
to distinguish between prograde (þ) and retrograde (−)
orbits. A thorough analysis of the dynamics in the equa-
torial plane will be given in Sec. IV B.

D. Electric and magnetic quadrupole moments

The electric and magnetic quadrupole moments in
Cartesian coordinates are defined as [35]

Eij ≡ Cij; Bij ≡ −
1

2
ϵklhiCjikl; ð2:19Þ

with ϵijk the three-dimensional Levi-Civita symbol with
ϵ123 ¼ þ1. We raise and lower Cartesian indices (i; j; k;…)
with the Kronecker delta δij. Being STF tensors, both the
electric Eij and the magnetic Bij tensors have each five
independent components thus, together, they account for
the ten independent components of the Weyl tensor. In
particular, the magnetic quadrupole moments in terms of
the components of the rank-3 tidal tensor, read

B11 ¼ −C123; B12 ¼ C113; B13 ¼ −C112;

B22 ¼ C213; B23 ¼ −C212; B33 ¼ C123 − C213;

where we used that C223 ¼ −C113, C312 ¼ C213 − C123,
C313 ¼ −C212 and C323 ¼ C112.
It is far more useful to decompose the rank-2 and rank-3

tensors by means of their irreducible representations of
SO(3). Following Ref. [35], we introduce the radial unit

vector Ωi ≡ xi=r, with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δijxixj

q
being the Euclidean

radius representing the distance from the geodesic. The

projector to the space orthogonal to Ωi is given by
γij ¼ δij −ΩiΩj. The electric quadrupole moment Eij

decomposes as follows

Eij ¼ Eq

�
ΩiΩj −

1

2
γij

�
þ 2Eq

ðiΩjÞ þ
1

2
Eq
hiji; ð2:20Þ

where the scalar Eq, the transverse vector Eq
i (i.e.ΩiEq

i ¼ 0)
and the transverse STF tensor Eq

hiji are given by

Eq ≡ΩiEijΩj ¼ −γijEij;

Eq
i ≡ γjiEjkΩk;

Eq
hiji ≡ 2γki γ

l
jEkl − Eklγ

klγij ¼ 2γki γ
l
jEkl þ Eqγij: ð2:21Þ

Similarly, for the magnetic quadrupole moment Bij,
one has4

Bij ¼ ϵlkði

�
Bq
l ðΩjÞΩk − γjÞkÞ þ

1

4
ðBq

hjÞliΩk − Bq
hjÞkiΩlÞ

�
;

ð2:24Þ

with symmetrization with respect to the indices ði; jÞ and
STF with respect to the indices hjli and hjki. The trans-
verse vector Bq

i and the transverse STF tensor Bq
hiji are

Bq
i ≡ ϵijkΩjBk

lΩl;

Bq
hiji ≡ 2ϵklðiγmjÞΩ

kBl
m: ð2:25Þ

III. HIERARCHICAL TRIPLE SYSTEM

In this section we apply the formalism introduced in
Sec. II to an EMR binary system moving in the background
of a Kerr black hole. The EMR binary system consists of a
Schwarzschild black hole of mass M along with a test
particle of mass m ≪ M. We assume that the black hole
with mass M� moves slowly relatively to the EMR binary
system ðM;mÞ and that one can describe the effect on the
binary system to a good approximation by taking into
account only the quadrupole tidal moments induced byM�.
This is valid provided

4We used the decomposition of the rank-3 tidal tensor

Cijk ¼ Bq
kðΩiΩj − γijÞ−Bq

jðΩiΩk − γikÞ þ
1

2
ðBq

hikiΩj −Bq
hijiΩkÞ;
ð2:22Þ

with the inverse relations given by

Bq
i ¼ CjkiΩjΩk; Bq

hiji ¼ 2ΩkClkðiγljÞ: ð2:23Þ
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M2 ≪
r̂3

M þM�
; ð3:1Þ

where r̂ is the Boyer-Lindquist radius at whichM is located
in the Kerr spacetime geometry induced by M� [35]. This
arises from having two widely separated scales: one scale is
the length scale of the Schwarzschild black hole M, the
other is the curvature length scale R induced by the Kerr
black hole M� at the location of M. We then require
M ≪ R. This is called small-tide approximation [35] and it
makes it possible to describe the motion of the binary
system ðM;mÞ in the external Kerr geometry, ensuring that
the tidal deformation is weak. We can therefore describe the
influence of M� on the binary system ðM;mÞ using, to a
first approximation, the quadrupole tidal moments induced
by the Kerr black hole itself. Since R ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂3=ðM þM�Þ

p
this, combined with the condition M ≪ R, gives the
condition (3.1).
One natural way to achieve the condition (3.1) is that M

is much smaller than M�, here called the hierarchical
regime

M ≪ M�: ð3:2Þ
This implies (3.1) since r̂≳M�. In this case we have a
hierarchical triple system of black holes m ≪ M ≪ M�
(note that one could imagine both M and M� being a
supermassive black hole but with a mass hierarchy). The
hierarchical triple system is the case that we shall primarily
consider in this paper, since the dynamics of the triple
system in general will depend on the full expressions of the
quadrupole tidal moments of the Kerr black hole M�.
Another way to achieve the condition (3.1) is the case

whereM andM� are widely separated, here called the weak
field regime

M� ≪ r̂; ð3:3Þ
assuming as well that M ≲M�. This means one can
consider two black holes M and M� of similar magnitude.
In this case the expression of the tidal moments induced by
the Kerr black hole simplifies considerably [28] due to the
fact that frame-dragging effects induced by the Kerr black
hole can be neglected [see discussion around and below
Eq. (4.6) for further detail].
It is also important to consider the timescales involved in

our approximation. For simplicity, we consider the binary
system having an orbit ofm around the Schwarzschild black
hole of mass M such that r ¼ OðMÞ. Then the time scale
of the binary system is simply τbinary ¼ OðMÞ. Assuming
r̂ ¼ OðM�Þ the timescale associated with the orbit around
the Kerr black hole of mass M� is τkerr ¼ OðM�Þ. Indeed,
one can see explicitly from Eq. (2.12) that we have
_Ψ ¼ Oð1=M�Þ, which sets the rate of change of the angle
Ψ. Thus, in the hierarchical regime (3.2), we have
τkerr ≫ τbinary, which means that we can assume that the

quadrupole moments and Ψ do not vary with time.
Moreover, in the weak field regime (3.3), the timescale
for the orbit around the Kerr black hole is even larger τkerr ≫
M� as the velocity will be nonrelativistic. Thus, even ifM is
of same order asM�, we find that τkerr ≫ τbinary, and we can
again neglect the time dependence of Ψ and of the quadru-
pole moments.5

A. Tidally deformed Schwarzschild spacetime

We can describe the black hole with mass M in the
binary system using the tidally deformed Schwarzschild
metric [35]. Concretely, we add to the background metric
ḡμν a tidal perturbation hμν

ds2 ¼ ḡμνdxμdxν þ hμνdxμdxν; ð3:4Þ

where the tidal perturbation hμν is computed up to the first
order in the small-tide approximation. The background
geometry (in spherical coordinates) is

ḡμνdxμdxν ¼ −fdt2 þ dr2

f
þ r2ΩABdθAdθB; ð3:5Þ

with f ¼ 1 − 2M=r andM being the black hole mass, θA ¼
ðθ;ϕÞ and ΩABdθAdθB ¼ dθ2 þ sin2 θdϕ2 being the metric
of the unit sphere. By only retaining the quadrupole order
terms in the tidal deformation hμν, one gets

hμνdxμdxν ¼ −r2Eqðfdtþ drÞ2

−
4

3
r3ðEq

A − Bq
AÞðfdtþ drÞdθA

−
1

3
r4
��

1 −
2M2

r2

�
Eq
AB

−
�
1 −

6M2

r2

�
Bq
AB

�
dθAdθB: ð3:6Þ

The quadrupole moments are decomposed into the scalar
Eq, vector Eq

A, Bq
A and tensor Eq

AB, Bq
AB components,

following the decomposition in Eqs. (2.20)–(2.24), and
are written in spherical coordinates.6 For an accurate

5A more general analysis can also take into account the regime
M ≪ r ≪ R for which τbinary ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffi
r3=M

p
Þ.

6For the sake of completeness, we write the change of
coordinates from Cartesian to spherical coordinates:

Eq
i dx

i ¼ ∂xi

∂xA
Eq
i dx

A ¼ Eq
θðrdθÞ þ Eq

ϕðrdϕÞ;

Eq
hijidx

idxj ¼ ∂xi

∂xA
∂xj

∂xB
Eq
hijidx

AdxB

¼ Eq
θθðrdθÞ2 þ 2Eq

θϕr
2dθdϕþ Eq

ϕϕðrdϕÞ2:

Similar considerations apply to the magnetic multipole moments
Bq
i and Bq

hiji.
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description of our triple system, it is useful to identify the
relative orientation between the orbital plane of the Kerr
black hole—responsible for the tidal deformation—and the
orbital plane where the dynamics of the EMR binary
system ðM;mÞ takes place; see Fig. 1 illustrating four
possible configurations in the special case when M� is a
Schwarzschild black hole and the binary system is moving
on a circular geodesic. To describe an arbitrary configu-
ration, one first introduces the unit directional vector

Ωi ¼ ðcosϕ sin θ; sinϕ sin θ; cos θÞ; ð3:7Þ

centered in the Schwarzschild black hole of mass M, and
attached to the reference frame of the EMR system ðM;mÞ.
One then sets, without loss of generality, the polar angle in
the Schwarzschild reference system θ ¼ π=2: this is
because the orbital motion takes place on an orbital plane
and we set it to be the equatorial plane. Any arbitrary
orientation is therefore given by performing a rotation on
the unit vector in Eq. (3.7), namely,

Ω⃗0 ¼ RχRβRα · Ω⃗; ð3:8Þ

with the Euler rotational matrices

Rα ¼

0
B@

cosα sinα 0

−sinα cosα 0

0 0 1

1
CA; Rβ ¼

0
B@
1 0 0

0 cosβ sinβ

0 − sinβ cosβ

1
CA;

Rχ ¼

0
B@

cosχ sinχ 0

−sinχ cosχ 0

0 0 1

1
CA: ð3:9Þ

Note that Eq. (3.8) is only one among the 12 possible
permutations of Euler matrices. Furthermore, since we aim
at describing a circular equatorial orbit in the binary
system, it turns out that one of the Euler angle—α in
our convention—can always be reabsorbed by a redefini-
tion of the Schwarzschild azimuthal angle ϕ → ϕþ α. As a
consequence, any orientation of a Schwarzschild orbit with
respect to the Kerr perturber is specified only by the two
angles β and χ.

B. Tidal moments in spherical coordinates

The tidal moments also depend on the relative configu-
ration between the binary system ðM;mÞ and the Kerr
perturber. Here, we compute the explicit expression of the
tidal quadrupole moments associated to an arbitrary con-
figuration. We recall that we set θ ¼ π=2 because we start
with an equatorial orbit around the Schwarzschild black
hole. In Fig. 1 we have illustrated this and other configu-
rations obtained by Euler rotations in the special case for
which M� is a Schwarzschild black hole and the binary
system moves on a circular geodesic. In spherical coor-
dinates, the decomposition of the electric quadrupole
moment in its scalar, transverse vector and STF tensor
components is given by Eq. (2.21), where the unit direc-
tional vector Ωi is now replaced by the more general Ω0i
defined in Eq. (3.8).
The electric quadrupole moments read as

Eq ¼ −
1

8
ðC33 þ T þ

2 þ T þ
4 − 4T þ

3 sin 2ϕÞ

−
1

8
½3ðC33 þ T þ

2 Þ − T þ
4 � cos 2ϕ;

Eq
θ ¼

1

4
½2T −

3 cosϕ − T −
4 sinϕ�;

Eq
ϕ ¼ 1

8
½4T þ

3 cos 2ϕþ ð3ðC33 þ T þ
2 Þ − T þ

4 Þ sin 2ϕ�;

Eq
θθ ¼ −Eq

ϕϕ ¼ Eq þ 1

2
ðC33 þ T þ

2 þ T þ
4 Þ;

Eq
θϕ ¼ −

1

2
ð2T −

3 sinϕþ T −
4 cosϕÞ; ð3:10Þ

where we defined the following rotations around χ of the
components of Cij

FIG. 1. For illustrative purposes, we show four possible
configurations for a hierarchical three-body system M� ≫ M ≫
m in the special case for which the perturber M� is a
Schwarzschild black hole and the EMR binary system
ðM;mÞ is parallel transported around a circular geodesic
around M�, whose orbital plane is depicted in gray and
terminates at the ISCO. These configurations are altered
significantly in more general cases with a Kerr perturber or
noncircular geodesics. The names of the configurations refer to
the orientation of the orbital angular momentum L of the
binary system with respect to the gray orbital plane. The grey
curve represents the orbit around M�. The blue orbit marks a
conventional “initial” orthogonal configuration for the binary
system reference frame, with the Cartesian axis oriented
according to the parallel transported tetrad (panel I). The red
orbits in panels II, III and IV are obtained by Euler rotations
with angles written in the bottom left of each panel.
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T þ
1 ¼ C23 cos χ þ C13 sin χ;

T −
1 ¼ C23 sin χ − C13 cos χ;

T þ
2 ¼ 2C12 sin 2χ þ ð2C22 þ C33Þ cos 2χ;

T −
2 ¼ 2C12 cos 2χ − ð2C22 þ C33Þ sin 2χ ð3:11Þ

and the rotations around β of T �
1;2

T þ
3 ¼ 2T −

1 sin β þ T −
2 cos β;

T −
3 ¼ 2T −

1 cos β − T −
2 sin β;

T þ
4 ¼ 4T þ

1 sin 2β þ ð3C33 − T þ
2 Þ cos 2β;

T −
4 ¼ 4T þ

1 cos 2β − ð3C33 − T þ
2 Þ sin 2β: ð3:12Þ

Similarly for the magnetic quadrupole moments, whose
decomposition is given in Eq. (2.25), we find that

Bq
θ ¼

1

8
½4Sþ

3 cos 2ϕþ ð3ðC312 − Sþ
2 Þ − Sþ

4 Þ sin 2ϕ�;

Bq
ϕ ¼ −

1

4
ð2S−

3 cosϕ − S−
4 sinϕÞ;

Bq
θθ ¼ −Bq

ϕϕ ¼ −
1

2
ð2S−

3 sinϕþ S−
4 cosϕÞ;

Bq
θϕ ¼ −

3

8

�
C312 − Sþ

2 þ Sþ
4 þ 4

3
Sþ
3 sin 2ϕ

�

þ 1

8
½3ðC312 − Sþ

2 Þ − Sþ
4 � cos 2ϕ; ð3:13Þ

where we defined the rotations around χ of the components
of Cijk

Sþ
1 ¼ C212 cos χ þ C112 sin χ;

S−
1 ¼ C212 sin χ − C112 cos χ;

Sþ
2 ¼ 2C113 sin 2χ þ ðC123 þ C213Þ cos 2χ;

S−
2 ¼ 2C113 cos 2χ − ðC123 þ C213Þ sin 2χ ð3:14Þ

and the rotations around β of S�
1;2

Sþ
3 ¼ 2S−

1 sin β − S−
2 cos β;

S−
3 ¼ 2S−

1 cos β þ S−
2 sin β;

Sþ
4 ¼ 4Sþ

1 sin 2β þ ð3C312 þ Sþ
2 Þ cos 2β;

S−
4 ¼ 4Sþ

1 cos 2β − ð3C312 þ Sþ
2 Þ sin 2β: ð3:15Þ

The structure of the tidal quadrupole moments (3.10)
and (3.13) is the following: the tidal deformations sourced
by a generic third body over the EMR binary system
ðM;mÞ are fully encoded in the tidal tensors Cij and Cijk,
while the angles β and χ, parametrizing the relative
orientation between the third body and the binary system,
affect the tidal effects over the binary system. We remark

that the above expressions of the tidal quadrupole
moments are general, and can also be employed to model
environmental effects in numerical works. In the specific
case of a Kerr black hole as a third body responsible for the
tidal deformations, the explicit expressions of the tidal
tensors Cij and Cijk are given, respectively, in Eqs. (2.14)
and (2.15).
We anticipate here another property of the tidal quadru-

pole moments. As we shall see in the next section, it is
often useful to define the secular average over the
azimuthal angle ϕ. The explicit dependence of the tidal
quadrupole moments (3.10) and (3.13) implies that only Eq

(and Eq
θθ ¼ −Eq

ϕϕ) as well as B
q
θϕ are relevant for physical

observables upon secular averaging.

IV. SECULAR DYNAMICS OF BINARY SYSTEM

In this section we focus on the secular dynamics of the
binary system ðM;mÞ, i.e. the dynamics of the binary
system after a large number of orbits of the test particle of
mass m, and analyze how it is affected by the tidal fields
induced by the Kerr perturber of mass M�, in the hierar-
chical regime m ≪ M ≪ M�. More specifically our goal is
to understand how the orbital parameters of the test particle
around the Schwarzschild black hole, such as the energy or
the angular momentum, are shifted by the presence of an
external tidal field.

A. Secular Hamiltonian of test particle in binary system

Following the setup of the previous section, we focus on
the orbital motion of the object of massm, approximated as
a test particle, taking place on the equatorial plane of the
Schwarzschild black hole. This amounts to set θ ¼ π=2.
We approximate the four-velocity as

uμ ≃ ūμ þ uμð1Þ; ð4:1Þ

where ūμ is the four-velocity of the unperturbed bound
orbit, which can be taken as circular or elliptic, and uμð1Þ is
the leading correction due to the tidal perturbation hμν. In
this work, we focus on perturbations of circular orbits ūμ ¼
ðĒ=f; 0; 0; L̄=r2Þ on the Schwarzschild background metric
ḡμν. Here Ē ¼ −ūμḡμνð∂tÞν and L̄ ¼ ūμḡμνð∂ϕÞν are the
conserved energy and angular momentum of the test
particle in the Schwarzschild geometry. Tidal deformations
to the four-velocity affect the gauge-independent photon
redshift measurements [52] (∼utð1Þ), are responsible for

radial deviations (∼urð1Þ), tilt the orbital plane (∼uθð1Þ), and

shift the orbital frequency (∼uϕð1Þ).
The Hamiltonian of a test particle moving around a

tidally deformed Schwarzschild black hole [see Eq. (3.4)] is
given by
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H ¼ 1

2
uμuνgμν ≃

1

2
ūμðūν þ 2uμð1ÞÞḡμν þ

1

2
ūμūνhμν: ð4:2Þ

In the specific case of a circular orbit ūμ in the Schwarzschild
backgroundmetric ḡμν, radial and polar deviations affects the
dynamics only at higher order [28,44]. Moreover, from
Eq. (4.2), the tidal perturbations that enter the Hamiltonian
are htt ∝ Eq, htϕ ∝ Eq

ϕ;B
q
ϕ, and hϕϕ ∝ Eq

ϕϕ;B
q
ϕϕ.

A further simplification that is very common in celestial
mechanics is the secular averaging over a timescale of order
of the orbital timescale. In general, secular averaging
consists in integrating out the short-term oscillations
(due to tidal effects) from the dynamics. Therefore, in
our case, we integrate out characteristic timescales up to the
orbital period,

ffiffiffiffiffiffiffiffiffiffiffi
r3=M

p
, of the test particle by averaging

over its orbit. From a geometrical perspective [28] the
secular average can be understood by considering that the
effective dynamics of a test particle, which follows a tidally
deformed geodesic γ0 at the first order in hμν, can be well
captured by replacing the physical trajectory γ0 with an
averaged circular trajectory γ in the perturbed spacetime.
The averaged geodesic γ can be interpreted as a secular
orbit in the tidally perturbed background. We introduce the
secular average of a quantity A as

hAi ¼ 1

2π

Z
2π

0

Ajγdϕ; ð4:3Þ

where ϕ is the azimuthal angle of the orbit and γ is the
averaged circular orbit on gμν. In particular, if γ0 is
quasicircular, then the averaged secular geodesic γ deviates

from the physical orbit γ0 only starting from second order in
hμν in the Hamiltonian (4.2).
After averaging, from Eqs. (3.10) and (3.13), we get7

hhtti ¼ −r2f2hEqi;
hhtϕi ¼ 0;

hhϕϕi ¼ −r4
�
1 − 2

M2

r2

�
hEqi; ð4:4Þ

and therefore the secular average of the Hamiltonian (4.2)
up to quadrupole order can be recast as8

hHi ≃ −
1

2

�hEi2
f

−
hLi2
r2

�

− η

�
hEi2 þ

�
1 − 2

M2

r2

� hLi2
r2

�
r2

M2
; ð4:5Þ

where η is a parameter that encodes all the effects of
the tidal deformations at the quadrupole order. E ¼
−uμgμνð∂tÞν and L ¼ −uμgμνð∂ϕÞν are, respectively, the
energy and angular momentum with respect to the per-
turbed spacetime and the symbol h·i stands for secular
average. We stress that hEi and hLi encode the kinematics
(including the secular effects on the orbits), while the
parameter η effectively depends on the secular tidal
deformations (∝ Cij) and on the orientation ðβ; χÞ of the
binary system. More explicitly, we find that the tidal
parameter η is proportional to the secular average of the
electric scalar tidal field

η ¼ −
M2

2
hEqi;

¼ M2

16
fC33ð1þ 3 cos 2βÞ þ 4ðC13 sin χ þ C23 cos χÞ sin 2β þ ½2C12 sin 2χ þ ð2C22 þ C33Þ cos 2χ�ð1 − cos 2βÞg: ð4:6Þ

Notice that this expression for η can also be used for other tidal tensors Cij than the one induced by the Kerr black hole in
this paper. In fact, it is a general result for any EMR binary system consisting of a Schwarzschild black hole of massM and a
test particle of massm, under the assumptions that (1) it is immersed in a tidal environment, (2) only the quadrupole order is
retained and (3) the secular approximation is valid.
If we specialize Eq. (4.6) to the tidal tensors of a Kerr perturber that we presented in Sec. II in Eq. (2.14), it can be shown

that the Marck’s angle Ψ appearing in the Cijs, which is a constant in this approximation, can be reabsorbed by a simple
shift of the angle χ, χ → χ −Ψ, so that η is explicitly given by

η ¼ I1M2

16KΣ2
½3STðr̂2 − a2 cos2 θ̂Þð1 − 4 sin2 β sin2 χÞ þ 6 cos 2βðr̂2T2 − a2S2 cos2 θ̂Þ

− 3a cos θ̂ðaS2 cos θ̂ þ 4r̂ sin 2β
ffiffiffiffiffiffi
ST

p
ðSþ TÞ sin χÞ þ KΣ2 þ 3r̂2T2�

þ 3I2M2
ffiffiffiffiffiffi
ST

p

4KΣ2
½ða2S cos2 θ̂ − r̂2TÞ sin 2β sin χ − 2ar̂

ffiffiffiffiffiffi
ST

p
cos θ̂ðcos2 β − sin2 β sin2 χÞ�; ð4:7Þ

7Our result differs from the one in Ref. [28] where hhtϕi ≠ 0.
8Notice that we used that huμuνgμνi ≃ huμihuνihgμνi including corrections of order hμν.
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where K is the Carter constant and I1, I2, S and T are
defined in Eqs. (2.7) and (2.11). In the weak field regime,
where M⋆ ≪ r̂, the leading order part of η is given by

η ¼ M2

4K
M⋆
r̂3

½3Tðcos2β − sin2βsin2χÞ
− Kð2 − 3sin2βÞ − 3a

ffiffiffiffi
T

p
cos θ̂ sin χ sin 2β�: ð4:8Þ

In the equatorial plane of the Kerr perturber θ̂ ¼ π=2, the
parameter η takes the simpler form

η ¼ M2

4

M⋆
r̂3

ð1 − 3 sin2 β sin2 χÞ ð4:9Þ

that depends only on the two Euler angles χ and β and not
on the spin parameter a, so one cannot distinguish the effect
of the tidal forces from the case of a Schwarzschild
perturber (a ¼ 0). This is reasonable in the sense that if
one goes at large distances on the equatorial plane, one
cannot feel the effect of the spin of the Kerr black hole. For
χ ¼ π=2, in particular, Eq. (4.9) coincides with the result of
Ref. [28], provided one identifies β as the angle between
the tidal symmetry axis, parallel to z, and the orbital

plane: η ¼ M2M⋆
4r̂3 ð1 − 3 sin2 βÞ.

B. Special case of circular equatorial geodesic
in Kerr background

We emphasize that neither the construction of the tidal
quadrupole moments in Sec. II, nor the discussion about
the secular dynamics of the Schwarzschild binary system
in the current section rely on any assumption concerning
the geodesic motion followed by the Schwarzschild
black hole of mass M around the Kerr black hole of mass
M� ≫ M.
However, in order to simplify the discussion, we now

focus on solutions of the geodesic equations (2.3) describing
circular ( _̂r ¼ 0) and equatorial geodesics (θ̂ ¼ π=2 and
_̂θ ¼ 0) in the Kerr spacetime. Under these assumptions,
the parameters that characterize the geodesic—namely the
energy, the angular momentum and the Carter’s constant—
are written explicitly in Eq. (2.18). In this case the effective
parameter η given in Eq. (4.7) reduces to the simple
expression

η ¼ M�M2

16r̂3

�
1þ 3

K
r̂2

− 3

�
K
r̂2

þ
�
1þ K

r̂2

�
sin2χ

�
sin2β

�
:

ð4:10Þ

Note that this is a general result, valid beyond the weak-field
regime (M⋆ ≪ r̂).
For a circular equatorial geodesic it is moreover easy

to express the Carter constant K in terms of the Kerr

parameters ða;M�Þ and the orbital radius r̂, by means of the
following relation

K
r̂2

¼ −
1

2

�
1 −

r̂2 − r̂M� − 2σa
ffiffiffiffiffiffiffiffiffi
r̂M�

p þ 2a2

r̂2 − 3r̂M� þ 2σa
ffiffiffiffiffiffiffiffiffi
r̂M�

p
�
: ð4:11Þ

We recall that σ ¼ �1 distinguishes whether a circular orbit
is corotating or counterrotating with respect to the Kerr
black hole angular momentum.
An intriguing observation is that, from the expression

(4.10), one can see that there exist certain configurations for
the EMR binary system ðM;mÞ on the Kerr equatorial
plane, such that η ¼ 0, namely such that the dynamical
contribution of the tidal effects vanishes in the secular
approximation. For a given angle χ, this holds when the
angle β ¼ β�ðχÞ with

sin2 β�ðχÞ ¼ 1þ 3K=r̂2

3½K=r̂2 þ ð1þ K=r̂2Þ sin2 χ� : ð4:12Þ

In the weak-field limit this relation reduces to sin2 β�ðχÞ ¼
ð3 sin2 χÞ−1, thus generalizing the result obtained in
Ref. [28], which is valid only for χ ¼ π=2. Instead, the
above result goes beyond the weak-field regime, and can be
used also for circular geodesics close to the event horizon
of Kerr.
Among all the timelike equatorial circular orbits, the

ISCO stands out for its relevance in black hole astrophys-
ics. We recall that two ISCOs exist in the equatorial plane
of a Kerr black hole, one which is corotating (σ ¼ þ1) and
the other counterrotating (σ ¼ −1). In light of migration
trap mechanisms that could lead to the formation of black
hole binary systems [30,53,54], it is interesting to analyze
the case where the circular equatorial orbit, in which the
binary system is located, is given by the Kerr ISCOs. More
specifically, in the following we set r≡ r̂σISCO, with

r̂σISCO ¼M�½3þZ2− σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3−Z1Þð3þZ1þ 2Z2Þ

p
�; ð4:13Þ

where

Z1 ¼ 1þ
�
1 −

a2

M2�

�1
3

��
1þ a

M�

�1
3 þ

�
1 −

a
M�

�1
3

�
;

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ 3

a2

M2�

s
: ð4:14Þ

It is possible to show that the following relation implicitly
defines the ISCOs in terms of the conserved Killing
energy [51]

Ê2
ISCO ¼ 1 −

2

3

M�
r̂σISCO

; ð4:15Þ

TIDAL DEFORMATIONS OF A BINARY SYSTEM INDUCED BY … PHYS. REV. D 107, 084011 (2023)

084011-11



so that, by combining the expression above with K ¼
ðaÊ − L̂Þ2 as in Eq. (2.18), one obtains that the Carter
constant at the ISCOs takes the value K ¼ 1=3ðr̂σISCOÞ2.
The expression for η in this limit considerably simplifies
and it is given by

η ¼ M2M�
2ðr̂σISCOÞ3

�
1 −

1

2
ð1þ 4sin2χÞsin2β

�
: ð4:16Þ

Notice that, even if r̂σISCO ∼OðM�Þ, the small tide approxi-
mation Eq. (3.1) is still valid since M ≪ M�. This means
that one can still legitimately consider the quadrupole
approximation for a hierarchical three-body system in
which the binary system (M,m) is orbiting on the ISCO of
the Kerr black hole of mass M⋆. It is interesting to notice
that in the expression (4.16) the dependence on the spin
parameter of the Kerr perturber is only contained in the
prefactor, whereas the part inside square brackets specifies
the configuration of the binary system. A plot of the
prefactor showing the dependence on the spin of the Kerr
black hole is shown in Fig. 2 for different values of the
ratio M=M�.
It is also interesting to observe that the expression for η at

the ISCO remains well defined even when the Kerr black
holes is rotating close to extremality, namely for a → M�.
In this case one has r̂þISCO → M�, so that the prefactor only
depends on the ratioM2=M2�. It is also evident by means of
the plot in Fig. 2 that the extreme case represents the
maximum value of η at the ISCO for a given configuration
of the binary system.
For the EMR binary system moving on the ISCO in the

Kerr black hole spacetime, we can get the angle β ¼ β�ðχÞ,
as a function of the angle χ, for which η ¼ 0, at which the

tidal effects vanish from the secular dynamics of the binary
system. Using that K=ðr̂σISCOÞ2 ¼ 1=3, one gets

sin2 β�ðχÞ ¼ 2

1þ 4 sin2 χ
: ð4:17Þ

In Fig. 3 we show the admissible values of β�ðχÞ when the
binary system is at the ISCO.

V. SECULAR SHIFTS FOR ISCO
AND PHOTON SPHERE

In this section we investigate how the tidal deformations
affect the secular motion of the characteristic orbits of a test
particle around a Schwarzschild black hole using the
Hamiltonian given in Eq. (4.5). In particular, we consider
two specific orbits in the case of general configurations of
the three-body system, namely the ISCO and the photon
sphere in the perturbed Schwarzschild spacetime. Before
computing tidal effects on the orbital motion, we address
the issue of gauge invariance of such effects.

A. Gauge invariance of secular observables

We start by recalling that the energy E can be expressed
in terms of the Killing vector ∂t, namely

E ¼ −uμgμνTν; ð5:1Þ

where in our coordinates T ¼ ∂t and gμν and uν are the
metric and four-velocity including tidal perturbations.
Given that T is a Killing vector field, dE=dτ ¼ 0 in
any coordinate system when evaluated on a geodesic.
Therefore, E is conserved and gauge invariant.

FIG. 3. The red line identifies the configurations β�ðχÞ for
which the secular effect of tidal deformations vanishes under the
assumption r̂≡ r̂σISCO. The gray areas represent exclusion zones,
namely values of the angle χ in which the relation (4.17) cannot
be satisfied. More specifically, these corresponds to values of χ
that would lead j sin2 β�j > 1.

FIG. 2. The picture represents how η, when evaluated at the
ISCO r̂≡ r̂σisco, depends on the black hole spin a. The logarithm
of the prefactor in Eq. (4.16) is considered in order to have a clear
distinction for the curves. Colors are used to represent different
magnitudes for the ratio μ ¼ M=M�. In particular μ ¼ 10−2 in
blue, μ ¼ 10−3 in purple, μ ¼ 10−4 in red and μ ¼ 10−5 in
orange. Solid lines are representative for the corotating ISCO
σ ¼ 1, whereas dashed lines for counterrotating ISCO σ ¼ −1.
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The angular momentum can be covariantly written as

L ¼ uμgμνJν; ð5:2Þ

where in our coordinates J ¼ ∂ϕ. However, as J is not a
Killing vector field for the full metric gμν, L is not conserved
along geodesics. The strategy here is to get a conserved
quantity and show that it is also gauge invariant. We assume
that the angular momentum L can be expanded as

L ≃ L̄þ ηL1; ð5:3Þ

where L̄ is the conserved angular momentum in the
Schwarzschild background, while L1 is the correction
induced by the tidal fields at the quadrupole order, which
in general is not conserved. The key observation is that the
averaged metric field hgμνi does not depend on ϕ ¼ ϕðτÞ,
implying that hLi is now a conserved quantity along the
secular geodesic. Therefore, for a quasicircular orbit we
can write

hLi ≃
Z

2π

0

ðL̄þ ηL1Þjγdϕ ¼ 2πL̄þ η

Z
2π

0

L1jγdϕ: ð5:4Þ

We now consider a class of coordinate transformations
which, up to the quadrupole order, acts on the rotation
angle according to

ϕ → ϕ̃ ≃ ϕþ ηχðr; θ;ϕÞ; ð5:5Þ

such that χ is a periodic function of ϕ with a period of 2π,
namely χðϕÞ ¼ χðϕþ 2πÞ, and the gauge variations of the
coordinates r and θ are of OðηÞ. These assumptions
guarantee that quasicircular orbits are always mapped into
quasicircular orbits and that the new angle ϕ̃ remains a
rotation angle, which defines the secular average in the new
coordinates. Under this gauge transformation, the first term
in Eq. (5.4) reads asZ

2π

0

L̄jγdϕ̃ →
Z

2π

0

L̄jγdϕþ η

Z
2π

0

L̄jγdχ ¼ 2πL̄; ð5:6Þ

where we used the periodicity of χ and the fact that L̄ does
not depend on ϕ. The second term in Eq. (5.4), under the
gauge transformation in (5.5), transforms asZ

2π

0

L1jγdϕ̃ →
Z

2π

0

L1jγdϕþ η

Z
2π

0

L1jγdχ: ð5:7Þ

The second integral in the expression above does not vanish
in general, since L1 depends on ϕ. However, we can neglect
it because the second integral will be multiplied by η2

and therefore it is of higher order. Putting the pieces
together we have

hLi ≃
Z

2π

0

ðL̄þ ηL1Þjγdϕ̃ → 2πL̄þ η

Z
2π

0

L1jγdϕ; ð5:8Þ

thus hLi is gauge invariant under coordinate transforma-
tions of order OðηÞ which are 2π periodic in ϕ.
Along the same line of reasoning, one can prove the

gauge invariance of huϕi and huti. Since the orbital
frequency for a quasicircular orbit is defined by

Ω ¼ uϕ

ut
; ð5:9Þ

we conclude that hΩi is also gauge-invariant under coor-
dinate transformations of order OðηÞ which are 2π periodic
in ϕ.

B. Tidal effects around the ISCO

The ISCO for massive test particles is completely
characterized by three parameters: its radius, energy and
angular momentum. It is defined as an extreme point of the
Hamiltonian (4.5), namely

hHijr¼rISCO ¼ −
1

2
;

dhHi
dr

				
r¼rISCO

¼ 0;

d2hHi
dr2

				
r¼rISCO

¼ 0: ð5:10Þ

Using these conditions and keeping only terms proportional
to η, it is possible to compute the secular effects caused by
the tidal perturbations to the energy, angular momentum
and radius of the Schwarzschild ISCO.
We assume that observables are expanded around

their unperturbed values. Physically, this is equivalent
to assume that tidal (secular) effects are all proportional to
the tidal parameter η.9 This assumption also defines the
numerical values of the tidal corrections. Tidal corrections
to the radius,10 the averaged energy and angular momen-
tum read as11

rISCO ≃ r0 þ ηr1;

EISCO ≃ E0 þ ηE1;

LISCO ≃ L0 þ ηL1: ð5:11Þ

9We recall that we consider only up to first order contributions
in the small-tide approximation.

10Which is not a gauge-invariant quantity; see discussion at the
end of this section.

11From now on, we will drop the symbol of the secular average
h·i for the sake of presentation.
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By solving Eqs. (5.10) at leading order one can determine
the value of ðr0; E0; L0Þ, respectively, the value for the
radius, the energy and the angular momentum of the ISCO
for an unperturbed Schwarzschild black hole. They are

r0 ¼ 6M; E0 ¼
2

ffiffiffi
2

p

3
; L0 ¼ 2

ffiffiffi
3

p
M: ð5:12Þ

At the first order in η, the first corrections to the ISCO
quantities are given by

r1 ¼ 3072M; E1 ¼ −
152

ffiffiffi
2

p

3
; L1 ¼ −348

ffiffiffi
3

p
M:

ð5:13Þ

Note that we fixed our conventions for η in order to
precisely reproduce the same numerical values of
ðr1; E1; L1Þ previously obtained in Ref. [28]. However,
while the results of Ref. [28] are only valid in the weak-
field approximation where r̂ ≫ M⋆ and on the equatorial
plane θ̂ ¼ π=2, our results are more general and hold for
any value of r̂ and θ̂, as we discussed earlier in Sec. IV.
It is also possible to compute the shift in the ISCO

frequency. In general, for quasicircular orbits, the orbital
frequency can be determined by means of the ratio [28,52]

Ω2 ¼
�
uϕ

ut

�
2

¼ M
r3

−
ðr − 3MÞ

2r2
uμuν∂rhhμνi; ð5:14Þ

where uμ are the components of the four-velocity (4.1). To
first order in η, we obtain

ΩISCO ≃Ω0 þ ηΩ1; ð5:15Þ

where12

MΩ0 ¼
1

6
ffiffiffi
6

p ; MΩ1 ¼ −
ffiffiffi
2

3

r
491

6
: ð5:16Þ

This gives the shift induced by the tidal fields in the orbital
frequency of the ISCO.
Following Ref. [52], the angular frequency Ω can be

used to compute a gauge-independent measure of the radial
separation between the Schwarzschild black hole and the
test particle. One defines

RΩ ¼
�
M
Ω2

�
1=3

; ð5:17Þ

so that according to Eqs. (5.15) and (5.16)

RΩ ≃
22=3M

Ω2=3
0

�
1 −

2

3
η
Ω1

Ω0

�
¼ 6M þ 3928ηM: ð5:18Þ

We notice that this gives a different radial shift than in
Eq. (5.13). However, this is not surprising as the radial shift
of Eq. (5.13), unlike the above, is not gauge invariant.

C. Tidal effects around the photon sphere

The photon sphere around a Schwarzschild black hole is
composed by the last stable circular orbits for massless test
particles. Differently from the case of the ISCO, this orbit is
only specified by two parameters: the photon sphere radius
and the impact parameter b ¼ L=E. A previous analysis of
the photon sphere properties in a tidal environment can be
found in Ref. [45], under more limited assumptions than the
ones considered in this paper.
From the secular Hamiltonian (4.5), one enforces the

conditions

hHijr¼rPS ¼ 0;

dhHi
dr

				
r¼rPS

¼ 0: ð5:19Þ

By expanding the kinematic quantities in the tidal param-
eter η to retain only the leading contribution of the tidal
secular effects in the small-tide approximation, one obtains

rPS ≃ r0 þ ηr1;

bPS ≃ b0 þ ηb1; ð5:20Þ

where the unperturbed values for the Schwarzschild black
hole are obtained by solving (5.19) at the leading order

r0 ¼ 3M; b0 ¼ 3
ffiffiffi
3

p
M: ð5:21Þ

Similarly, the tidal corrections are given by

r1 ¼ −30M; b1 ¼ 30
ffiffiffi
3

p
M: ð5:22Þ

This results generalize the one obtained in Ref. [45] for the
special configuration of polar companions (equivalent to
our radial configuration), after a rescaling of η.
Again, the orbital frequency at the photon sphere at

first order in the tidal corrections can be computed in
general from

Ω ¼ uϕ

ut
¼ 1

b
; ð5:23Þ

which at first order in η yields to

12Notice that this result agrees with Ref. [45] (but not with
Ref. [28]), after a rescaling of −1=2 of the η parameter. For the
ease of comparison, our radial configuration (see Fig. 1) is called
polar companion configuration in Ref. [45]: this can be obtained
in the weak-field limit r̂ ≫ M� and for β ¼ π=2 and χ ¼ −π=2.
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ΩPS ≃ Ω0 þ ηΩ1: ð5:24Þ

By means of Eqs. (5.21) and (5.22), one directly obtains the
shift in the frequency of the photon sphere, given by

MΩ0 ¼
1

3
ffiffiffi
3

p ; MΩ1 ¼ −
10

3
ffiffiffi
3

p : ð5:25Þ

VI. CONCLUSIONS AND OUTLOOK

We conclude by summarizing our new results and
discussing further developments.
In Sec. II, we retraced the computation performed in

Ref. [41] for the construction of the Marck’s tetrad, defining
a local inertial frame which is parallel transported around a
timelike geodesic in Kerr spacetime. Tidal effects induced
by a Kerr black hole are obtained by projecting the Weyl
tensor on certain components of the Marck’s tetrad. While
the components of the rank-2 tensor Cij were computed in
Marck’s paper [41], the components of the rank-3 tensor
Cijk were previously known only on the equatorial plane of
a Kerr black hole [42,43]. This paper therefore fills the gap
in the literature: the explicit expressions forCijk are given in
Eq. (2.15). Our result is valid for generic angles θ̂ and for
arbitrary timelike geodesics in the Kerr spacetime.
In Sec. III, we found a natural application of the tidal

tensors computed in the previous section in the modeling of
a hierarchical three-body system in general relativity. We
considered a three-body system describing a supermassive
rotating black hole of massM� and an EMR binary system,
made of a nonrotating black hole of mass M ≪ M� and a
smaller companion of mass m ≪ M, which gravitates
around the supermassive black hole. In order to go beyond
the post-Newtonian approximation, in which the three
bodies are sufficiently distant from each other to be treated
as pointlike masses, and capture strong general relativistic
effects, one can model the region around the nonrotating
black hole in terms of a tidally deformed Schwarzschild
spacetime. To this aim, it is convenient to decompose the
tidal tensor in terms of irreducible representations of the
rotation group, so as to construct “electric” E and “mag-
netic” B quadrupole tidal moments that encode the leading-
order deformations to the Schwzarschild metric immersed in
a generic tidal environment [35]. By approximating the
motion of the smallest body as that of a test mass, it is
possible to take into account all the possible configurations
of the binary system by introducing two Euler’s angles.
Another new result obtained in this work is the explicit
expressions for the electric and magnetic quadrupole tidal
moments given in Eqs. (3.10)–(3.13) that take into account
arbitrary orientations of the binary system with respect to
the source of the tidal deformations. We remark that these
expressions are valid for arbitrary sources of tidal effects.
This can be of interest for numerical simulations and
analytical study of binary systems immersed in a tidal

environment. For the case of a supermassive Kerr black
hole, the tidal moments (3.10) and (3.13) together with our
result in Sec. II allow us to analytically compute tidal effects
induced by a Kerr black hole in full generality.
The hierarchy of masses makes it natural to study the

dynamics of the binary system in the secular approximation.
As first pointed out in Ref. [28], the tidal effects perturb the
secular Hamiltonian for the binary system. Remarkably, at
the quadrupole approximation, the tidal perturbation can be
recast into an effective perturbative parameter η. The main
result of Sec. IV is a general expression for η given in
Eq. (4.6). It holds at the quadrupole order in the small-tide
regime and in the secular approximation, and it models the
deformed secular dynamics of a binary system. Our η
generalizes results obtained in Refs. [28,45] to arbitrary
orientations of the binary system and tidal effects induced
by a rotating black hole, including the strong gravity regime.
Tidal deformations induce changes in certain gauge-

invariant quantities characterizing the EMR binary systems,
such as the orbital frequency. Such tidal deformations
induced by the environment are completely encoded in
the effective perturbative parameter η. We devoted Sec. V to
the study of such shifts in the case of marginally stable
orbits for massive (ISCO shifts) and massless (photon
sphere shifts) test particles. We also addressed the issue
of the gauge invariance of the shifts in the secular
approximation. While we focus on the case of a Kerr black
hole as the perturber, one can also use our expressions with
general tidal moments. For a Kerr perturber, the expression
for η [see Eq. (4.7)] shows the rich phenomenology of the
triple system: it combines the parameters of the background
Kerr metric (M� and a), the location of the geodesic where
the binary system is located (r̂; θ̂; K), and the Euler angles
that capture the geometric orientation of the binary system
with respect to the Kerr perturber (β and χ). Our parameter η
includes strong general relativistic effects of an EMR binary
system which is affected by the presence of a large Kerr
black hole, and considerably generalizes the setup consid-
ered in Refs. [28,45] beyond the weak-field regime and for
arbitrary configurations. As an example of a regime which
was previously overlooked in the literature about tidally
deformed binaries, in Sec. IV B, we focused on the case in
which the EMR system is placed on the ISCO of the Kerr
background. We also derived configurations of the EMR
system for which the tidal effects vanish in the secular
approximation, generalizing the findings of Ref. [28].
There is a number of directions in which this work can be

further extended, and for which the results obtained here
can be of interest. In this paper, we analyze triple systems
whose dynamics is stationary in time and restricted to
circular orbits. This implies that we do not have gravita-
tional waves in our setup. We also work in the leading
quadrupole approximation for the tidal effects. The setup in
this paper, though simplified, is useful to get analytic
results and it should be considered as a first step towards a
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more realistic scenario that can be relevant for astrophysical
interest.
An extension of this work would include higher-order

effects beyond the quadrupole approximation [55] and the
stationary regime. It would be interesting to further develop
waveforms from triple hierarchical systems [56,57] and
approaches to effective description thereof [58,59].
Another natural development would be extending this

study to the case in which the primary companion of the
EMR is a Kerr black hole. The metric for a rotating black
hole deformed by tidal effects has been derived in full
generality in Ref. [60] by solving the Teukolsky equation
and using metric reconstruction techniques. Due to the very
complicated structure of that metric, a simplified version
obtained in the small-spin regime has been obtained in
Ref. [61], explicitly written in terms of tidal quadrupole
moments. This is sufficient to capture all the main important
features of spacetimes with nonvanishing angular momen-
tum, and can lead to an even richer phenomenology—
including couplings between the spins of the two black
holes—possibly already at the level of the secular dynamics.
A third interesting direction concerns the analysis of

eccentric binary systems subject to tidal deformations. For
this specific case it is probably more convenient to use the

action-angle variables formalism [62–65]. This would
allow us not only to extend our computation to the case
of elliptic orbits for the test particle in the binary system but
also to study the precession of the orbits around the
Schwarzschild black hole and the presence of possible
resonances in the binary system [66,67].
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