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There have been debates in the literature about the existence of the first overtone in the ringdown of
GW150914. We develop a novel Bayesian framework to reanalyze the data of this event, by incorporating a
new technique, the “rational filter” that can clean particular modes from the ringdown signal. We examine
the existence of the first overtone in GW150914 from multiple novel perspectives. First, we confirm that
the estimates of the remnant black hole mass and spin are more consistent with those obtained from the full
inspiral-merger-ringdown signal when including the first overtone at an early stage of the ringdown (right
after the inferred signal peak); such improvement fades away at later times. Second, we formulate a new
way to compare the ringdown models with and without the first overtone by calculating the Bayes factor at
different times during the ringdown. We obtain a Bayes factor of 600 at the time when the signal amplitude
reaches its peak. The Bayes factor decreases sharply when moving away from the peak time and eventually
oscillates around a small value when the overtone signal is expected to have decayed. Third, we clean the
fundamental mode from the ringdown of GW150914 and estimate the amplitudes of the modes using the
filtered data with Markov chain Monte Carlo (MCMC). The inferred amplitude of the fundamental mode
is ∼0 whereas the amplitude of the first overtone remains almost unchanged, implying that the filtered
data is consistent with a first-overtone-only template. Similarly, if we remove the first overtone from the
GW150914 data, the filtered data are consistent with a fundamental-mode-only template. Finally, after
removing the fundamental mode, we use MCMC to infer the remnant black hole mass and spin from the
first overtone alone. We find the posteriors are still informative and consistent with those inferred from the
fundamental mode. The conclusions are also verified through simulations in Gaussian noise using a
GW150914-like numerical relativity waveform.

DOI: 10.1103/PhysRevD.107.084010

I. INTRODUCTION

The ringdown stage of a gravitational wave (GW)
emitted by a binary black hole (BBH) corresponds to
the oscillation of the remnant BH, which encodes rich
information about the system. At the linear order, a ring-
down waveform is given by a superposition of a set of
complex-valued quasinormal modes (QNMs) [1–4],
labeled by two angular numbers ðl; mÞ and one overtone
index n. Within the general theory of relativity, they are
fully determined by the mass and spin of the corresponding
BH due to the no-hair theorem [5–8]. Thus, measuring the
frequency and decay rate of a QNM from a ringdown signal
can lead to the estimates of the mass and spin of the
remnant BH [9]. Alternatively, if multiple modes are
detected at the same time, we can use them to test the
no-hair theorem [10–12]. This method is known as BH
spectroscopy [13–39].

An important topic of BH spectroscopy is to understand
which QNMs are present in the ringdown of a numerical
relativity (NR) waveform [40–57] and when they
start [58–60]. To address these questions, a common
method is to fit the waveform after the merger using a
ringdown template that consists of a group of QNMs, and
explore when the mismatch between the two can be
minimized by varying the QNMs and the fitting start
time. In particular, Giesler et al. [46] demonstrated that the
ringdown of a GW150914-like NR waveform [61] starts
as early as when the strain amplitude reaches its peak, if
seven overtones are included. Motivated by this result, Isi
et al. [37] (and also [33]) extended the initial ringdown
analyses [36,62] of GW150914 [63] and explored earlier
start times for fitting. A significance of 3.6σ was found for
the existence of the first overtone. However, the con-
clusion was later challenged by Cotesta et al. [35], who
argued that the early (ringdown) signal could be noise
dominated, and thus the existence of the first overtone
might not be reliable. The claim by Cotesta et al. [35] was*sma@caltech.edu
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then disputed by a subsequent response by Isi et al. [33]
who found the impact of noise was not reproducible;
Finch and Moore [34] also showed that the noise
fluctuations might be overestimated. On the other hand,
Bustillo et al. [29] and Finch et al. [34] tackled the
problem via different approaches; tentative evidence
was found.
The lack of a definitive conclusion over the ringdown

modes of GW150914 leaves unresolved issues for BH
spectroscopy, posting questions for the ringdown analysis
in the upcoming LIGO-Virgo-KAGRA fourth observing
run (O4). Here we propose a new framework for BH
spectroscopy and revisit the issues from a different per-
spective. Recently, we proposed a new methodology, the
so-called “QNM filters” [64]. The method includes the use
of two filter classes: a rational filter and a full filter. The
rational filter is constructed via a QNM frequency, whereas
the full filter is constructed from the BH transmissivity,
based on the hybrid approach [65–67]. They were origi-
nally designed to remove QNM(s) from the ringdown when
studying NR waveforms. After filtering out some dominant
modes, we were able to show the existence of subdominant
effects confidently, such as the mixing of modes, retrograde
modes, and also the second-order QNMs [55–57]. In our
companion paper [68], a novel framework for BH spec-
troscopy is outlined: by incorporating the rational filter into
Bayesian inference, a new scheme is developed to analyze
the ringdown of real GW events, independent of the usual
Markov chain Monte Carlo (MCMC) method. In this paper,
we extend the discussions therein and provide full details to
demonstrate the efficacy and efficiency of this framework.
In particular, we demonstrate the existence of the first
overtone in the ringdown of GW150914 with detailed
evidence.
This paper is organized as follows. In Sec. II, we

introduce the properties of the rational filter. In Sec. III,
we use the filter to construct a two-dimensional (2D)
ringdown likelihood function in the time domain that
depends only on the mass and spin of the remnant BH
(independent of mode amplitudes and phases). Based on
the likelihood function, we define a new method to
compute model evidence and Bayes factor for QNM(s).
Detailed case studies of a simulated signal using a NR
waveform and the real event GW150914 are given in
Secs. III B and III C, respectively. Next, in Sec. IV, we carry
out a mixed BH spectroscopy analysis by combining our
new approach with the usual MCMC treatment. Again, the
NR simulation (Sec. IVA) and GW150914 (Sec. IV B) are
discussed as detailed examples. Finally, we summarize the
results in Sec. V.
Throughout this paper, we use geometric units with

G ¼ c ¼ 1. We always use the notation ωlmn ¼ 2πflmn −
i=τlmn to refer to the ðl; m; nÞ QNM, with 2πflmn and
−1=τlmn being its real and imaginary parts. All of our
analyses are in the detector frame.

II. THE RATIONAL FILTER

To start with, let us consider two complex GW harmon-
ics hl;�mðtÞ. Below, we always assume m > 0; thus hl;m
(hl;−m) represents the harmonic component that is emitted
toward the north (south) with respect to the system. Within
the ringdown regime, their time evolution reads

hlmðtÞ ¼
X
n

Almne−iωlmnðt−t0Þþiϕlmn ; ð1aÞ

hl;−mðtÞ ¼
X
n

A0
lmne

iω�
lmnðt−t0Þþiϕ0

lmn ; ð1bÞ

where n stands for the overtone index, andAlmn’s andϕlmn’s
are the amplitudes and phases of the QNMs, respectively.
Note that ωlmn on the right-hand side of Eq. (1) refers to
prograde modes, and we always neglect the contribution of
retrograde modes in the rest of this paper.
As discussed in Ref. [64], to clean a mode ωlmn from

hlmðtÞ, we can apply a rational filter:

ω − ωlmn

ω − ω�
lmn

:

Similarly, we need to apply another filter:

ωþ ω�
lmn

ωþ ωlmn
;

to eliminate the same mode ωlmn from hl;−mðtÞ. For an
actual GW event, its time-domain real strain ht consists of
both the complex harmonics hl;�mðtÞ. In consequence, the
final form of the filterF lmn that is associated with the QNM
ωlmn is given by

F lmnðf;Mf; χfÞ ¼
ω − ωlmn

ω − ω�
lmn

ωþ ω�
lmn

ωþ ωlmn

¼
f − flmn þ i

2πτlmn

f − flmn − i
2πτlmn

×
f þ flmn þ i

2πτlmn

f þ flmn − i
2πτlmn

;

ð2Þ
where ω ¼ 2πf; flmn and τlmn corresponds to the real and
imaginary parts of ωlmn:

ωlmn ¼ 2πflmn −
i

τlmn
: ð3Þ

According to the no-hair theorem [5–8], flmn and τlmn are
fully determined by the massMf and spin χf of the remnant
BH. We obtain flmn and τlmn using the Python package
QNM [69]. To apply the filter F lmn to real GW data, we first
transform the time-domain data dt to the frequency domain
via fast Fourier transform (FFT)1

1More technical details are provided in Sec. III B.
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d̃f ¼
Z

dte2πiftdt: ð4Þ

Note that the length of dt needs to be at least comparable to
the entire inspiral-merger-ringdown (IMR) signal to avoid
spectral leakage. Then the filtered data read

dFt ¼
Z

dfd̃fF lmnðfÞe−i2πft: ð5Þ

In practice, multiple filters could be applied simultaneously
via a total filter

F tot ¼
Y
lmn

F lmn: ð6Þ

Since each filter F lmnðfÞ satisfies

F lmnð−fÞ ¼ ½F lmnðfÞ��; ð7Þ

the filtered data dFt is still real-valued.
Because we apply the filter to the entire IMR signal,

different portions of the signal have distinct responses. As
discussed in Ref. [64], the early low-frequency inspiral
signal is shifted backward in time by the filter, which does
not impact the ringdown analysis. Here we continue the
discussion therein and investigate the impact of the filter on
two other aspects. In Sec. II A, we study the effect of F lmn
on a different QNM ωl0m0n0 , namely ðl ≠ l0 or m ≠ m0 or
n ≠ n0). Then in Sec. II B, the impact of the filter on
detector noise is discussed.

A. Impact on a different QNM

To investigate the impact of F lmn on ωl0m0n0 , let us
consider a toy model for the excitation of ωl0m0n0

ht ¼ e−ðt−t0Þ=τl0m0n0 cos ½2πfl0m0n0 ðt − t0Þ þ ϕl0m0n0 �Θðt − t0Þ;
ð8Þ

where Θðt − t0Þ is the Heaviside step function, meaning
that the QNM is excited at t0. The Fourier transformation of
ht reads

h̃f ¼ i
2
eiωt0

�
eiϕl0m0n0

2πf − 2πfl0m0n0 þ i=τl0m0n0

þ e−iϕl0m0n0

2πf þ 2πfl0m0n0 þ i=τl0m0n0

�
: ð9Þ

The two poles f ¼ �fl0m0n0 − i=ð2πτl0m0n0 Þ of h̃f are plotted
in Fig. 1. Both of them lie in the lower half of the complex
plane, indicating the fact that there is no ωl0m0n0 signal
before t ¼ t0. After applying the filter F lmn, two new poles
f ¼ �flmn þ i=ð2πτlmnÞ appear in the upper half of the
plane. This implies that the ωlmn component of the filtered

waveform exists before t0. On the other hand, the two
original poles in the lower plane remain unchanged, and the
start time of the ωl0m0n0 component remains at t0. This is
different from the situation where the early inspiral signal is
shifted to an earlier time [64]. However, the amplitude and
phase of the ωl0m0n0 component in the filtered waveform are
changed. We can calculate the changes quantitatively by
computing the following integral

hFt ¼
Z

dfh̃fF lmnðfÞe−i2πft; ð10Þ

and obtain

hFt ¼ Bl0m0n0
lmn e−ðt−t0Þ=τl0m0n0 cos

�
2πfl0m0n0 ðt − t0Þ

þ ϕl0m0n0 þ φl0m0n0
lmn

�
; t > t0; ð11Þ

where

FIG. 1. Poles of the filtered waveform [Eq. (10)] on the
complex plane. Two poles are in the lower half-plane (blue
crosses), contributed by the original waveform in Eq. (9). The
other two (yellow stars) are in the upper half-plane, coming from
the filter F lmn. The red dashed curve corresponds to the time
regime of t > t0. Before t0, the time-domain signal is contributed
by the two ring-up modes f ¼ �flmn þ i=ð2πτlmnÞ outside the
closed region. After t0, the two ringdown modes f ¼ �fl0m0n0 −
i=ð2πτl0m0n0 Þ contribute.
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Bl0m0n0
lmn eiφ

l0m0n0
lmn ≡ F lmnðωl0m0n0 Þ: ð12Þ

It is straightforward to show that

Bl0m0n0
lmn ¼ Blmn

l0m0n0 : ð13Þ

Equation (11) shows that the amplitude of the ωl0m0n0 mode
is reduced by a factor of Bl0m0n0

lmn . As for a Kerr BH
with χf ¼ 0.692, we have B221

220 ¼ 0.487, meaning that
the amplitude of the first overtone (fundamental mode)
is reduced by a factor of two after applying the filter
that cleans the fundamental mode (first overtone). For
completeness, we also provide the expression of hFt when
t < t0,

hFt ¼ 1

πflmnτlmn
eðt−t0Þ=τlmnΦl0m0n0

lmn ðtÞ; t < t0; ð14Þ

with

Φl0m0n0
lmn ðtÞ¼−Ime2πiflmnðt−t0Þ

×

�
eiϕl0m0n0

1þωl0m0n0=ωlmn
þ e−iϕl0m0n0

1−ω�
l0m0n0=ωlmn

�
: ð15Þ

The term eðt−t0Þ=τlmn in Eq. (14) shows that hFt is a “ring-up”
component at t < t0.
To verify the analytical filtered waveform described by

Eq. (11), we consider a remnant BH of a GW150914-like
system, with a final spin of 0.692. Then we construct a two-
QNM waveform that consists of the fundamental mode
ω220 and the first overtone ω221, given by

ht ¼
X1
n0¼0

An0e−jtj=τ22n0 cos ½2πf22n0 jtj þ ϕ22n0 �; ð16Þ

where A0 ¼ 0.96; A1 ¼ 4.15;φ220 ¼ 1.43;φ221 ¼ −0.71
are chosen to be consistent with those of the
GW150914-like NR simulation [46,61]. Both modes are
assumed to start at t ¼ 0. In Fig. 2, ht is shown as the black
curve. Comparing the two-QNM ht to the fundamental-
mode-only (ω220) evolution (yellow dashed curve), we can
see that the two curves agree with each other at late times
because the first overtone (ω221) has decayed. After
applying the filter F 220 to clean the fundamental mode,
the filtered waveform, indicated by the red curve, is
consistent with the analytic result from Eq. (11) (blue
dash-dotted curve). Here we verify Eq. (11) using this two-
QNM simplified waveform. In Sec. IV B, we show that
Eq. (11) also applies to real GW data (e.g., GW150914).

B. Impact on detector noise

For a noise series nt, its covariance matrix is given by

Ct;tþτ ¼ E½ntntþτ� − E½nt�E½ntþτ�; ð17Þ

where E denotes expectation. By assuming stationarity and
E½nt� ¼ 0, Ct;tþτ takes a simple form

Ct;tþτ ¼ ρðτÞ; ð18Þ

where ρðτÞ is the autocovariance function (ACF). In the
frequency domain, Eq. (18) becomes (known as the
Wiener-Khinchin theorem)

E½ñfñ�f0 � ¼
1

2
δðf − f0ÞSðfÞ; ð19Þ

with SðfÞ being the one-sided noise power spectral density
(PSD)

SðfÞ ¼ 2

Z
e2πifτρðτÞdτ: ð20Þ

Then we apply the rational filter F lmn to ñf. Since the
modulus of F lmn is unity, we can write

F lmnðfÞ ¼ eiδlmnðfÞ; ð21Þ

and the filtered noise writes

ñFf ¼ eiδlmnðfÞñf; ð22Þ

FIG. 2. Validation of the filtered waveform in Eq. (11). We
construct a ringdown waveform, consisting of two QNMs (black
curve). The amplitudes and phases of these two modes are
consistent with a GW150914-like NR waveform (with a remnant
BH spin of 0.692). After applying the filter F 220 to remove the
fundamental mode (yellow dashed curve), the filtered waveform
(red curve) agrees with the analytic formula in Eq. (11) (blue
curve).
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which still remains stationary. In addition, after plugging
Eq. (22) into Eq. (19), we find that the one-sided PSD is not
impacted by the filter.
To support our conclusion, we generate two noise

series with a sampling rate of 8192 Hz and a total length
of 4 s. One is band-limited white noise ∼N ð0; 1Þ and the
other is simulated Hanford noise, generated by the Bilby
library [70,71]. Next we use the Python package
RINGDOWN [31,72] to estimate their one-sided PSDs with
the Welch method [73]. On the other hand, we apply a
rational filter F 220 to both noise series and obtain the time-
domain filtered data. Then we repeat the Welch method and
obtain the PSDs of the filtered data. The results are plotted
in Figs. 3(a) and 3(b) for comparison. We find the filtered
PSDs are always identical to the unfiltered PSDs (the black
curves completely overlap the red ones), no matter what the
values of Mf and χf are used to generate F 220.
We then move on to two more realistic cases:

LIGO Hanford and Livingston data [74–77] around
GW150914 [78–80]. We estimate the corresponding

PSDs of 32-s raw time-series data with a sampling rate
of 16384 Hz. Again, we apply the rational filter F 220 to the
frequency-domain data, convert them back to time series,
and compute the filtered PSDs. The PSDs of the filtered
and unfiltered data are shown as black and red curves in
Figs. 3(c) and 3(d), which fully agree with each other.
Furthermore, we condition both the Hanford and
Livingston raw data by (a) removing frequency compo-
nents that are below 20 Hz using a high-pass filter and
(b) downsampling the data to 2048 Hz. The filtered and
unfiltered PSDs of the conditioned data are plotted as
dashed orange and blue curves, respectively, in Figs. 3(c)
and 3(d). We see that they are also in perfect agreement.

III. INCORPORATING THE FILTER INTO
BAYESIAN INFERENCE AND SEARCHING FOR

THE FIRST OVERTONE

After discussing the properties of the rational filter in
Sec. II, we now outline our novel Bayesian framework

FIG. 3. Comparison of the one-sided PSDs of the filtered and unfiltered noise. The top panels show results in (a) band-limited white
noise ∼N ð0; 1Þ and (b) simulated Hanford noise. The filtered and unfiltered PSDs of the raw data are shown in black and red,
respectively. The bottom panels show results in (c) LIGO Hanford and (d) LIGO Livingston data around the event time of GW150914.
The filtered (black) and unfiltered (red) PSDs are in perfect agreement. After conditioning the raw data, the filtered (dashed orange) and
unfiltered (dashed blue) PSDs also overlap.
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based on the rational filter. The core step is to construct a
new likelihood function that depends only on the detector-
frame remnant mass Mf and spin χf; and this leads to an
alternative approach to computing model evidence and the
Bayes factor. Below, we elaborate on the details of the
framework in Sec. III A. Then we use two examples to
demonstrate the application of our method. In Sec. III B,
we first consider a case where a GW150914-like NR
waveform [61] is injected into Gaussian noise. Next in
Sec. III C, we apply the method to the real GW150914
event.

A. A new likelihood function

Suppose we have a BBH GW signal in observational
time-series data dt. After applying rational filters with
enough QNMs to dt

2 to remove all the QNMs, we expect
that the filtered data dFt should be consistent with pure
noise in the ringdown regime, with a likelihood function
given by

lnPðdtjMf; χf; t0;F totÞ ¼ −
1

2

X
i;j>I0

dFi C
−1
ij d

F
j ; ð23Þ

where dFi ≡ dFti are the samples of the filtered data after the
ringdown starts ðti > t0Þ, I0 is the index associated with t0,
andCij is the covariance matrix. Note that here we compute
the likelihood in the time domain, closely following [31].
Let us then recall what the formula of lnP looks like in
Ref. [31]:

lnPðdtjAlmn;ϕlmn;Mf; χf; t0Þ

¼ −
1

2

X
i;j>I0

ðdi − hiÞC−1
ij ðdj − hjÞ; ð24Þ

where ht is a multiple-QNM ringdown waveform template

ht ¼
X
lmn

Almne−ðt−t0Þ=τlmn cos ½2πflmnðt − t0Þ þ ϕlmn�; ð25Þ

with Almn’s and ϕlmn’s being the amplitudes and phases of
the QNMs, respectively. We can see that Eq. (23) is similar
to Eq. (24) in the aspect of computing the likelihood of the
data being pure noise after removing the GW signals.
However, the underlying approaches of the two are quite
different. In the usual unfiltered approach, one needs to
build a ringdown template in terms of a set of QNMs, based
on the amplitude Almn and phase ϕlmn of each mode, and
then subtract the template ht from the data dt. On the
contrary, our approach does not need Almn’s and ϕlmn’s—
the rational filters can completely remove the relevant
complex-frequency component corresponding to each
QNM from the ringdown no matter what the amplitude

and phase are. A direct analogy is that a constant can be
eliminated by a derivative no matter what its value is. In
the Supplemental Material of our companion paper [68],
we explicitly show that the rational filter eliminates the
dependency on mode amplitudes and phases through a
new maximum likelihood estimator and relates to the usual
time-domain approach [31] via an approximate marginali-
zation. As a result, the new likelihood function implicitly
depends on Mf and χf only, given that the rational filter is
built using a given set of Mf and χf [see Eq. (2)].
In this paper, we treatMf and χf as the parameters of the

filtered data, whereas the ringdown start time t0 and the
choice of the set of QNMs included in the filter F tot as
hyperparameters. Therefore, we can convert the likelihood
to the joint posterior of Mf and χf via

lnPðMf; χfjdt; t0;F totÞ ¼ lnPðdtjMf; χf; t0;F totÞ
þ lnΠðMf; χfÞ þ constant;

ð26Þ

where lnΠðMf; χfÞ is the prior. In our following discus-
sions for the injection study and GW150914, we always
place uniform priors on the final mass and spin in the
ranges of Mf ∈ ½35M⊙; 140M⊙� and χf ∈ ½0; 0.99�. In
addition, PðMf; χfjdt; t0;F totÞ can be marginalized by
integrating over one dimension (1D) to obtain the distri-
bution of the other dimension:

Pðχfjdt; t0;F totÞ ¼
Z

PðMf; χfjdt; t0;F totÞdMf; ð27aÞ

PðMfjdt; t0;F totÞ ¼
Z

PðMf; χfjdt; t0;F totÞdχf: ð27bÞ

Since this new lnP is simply a two-dimensional function,
it is computationally cheap enough to directly compute the
distribution of Mf and χf without using techniques like
MCMC.

B. NR waveform injection

We first take the GW150914-like NR waveform [61]
from the SXS catalog [81,82] and build a complex strain h
from the ðl; mÞ harmonics hlm in the NR waveform,
given by

h ¼ hþ − ih× ¼
X
lm

−2Ylmðι; βÞhlm; ð28Þ

where −2Ylmðι; βÞ denotes the spin-weighted spherical
harmonics, and angles ðι; βÞ stand for the angular coor-
dinates of an observer within the source frame. Here we
choose ðι ¼ π; β ¼ 0Þ to simulate the orientation of
GW150914 (face-off) [37]. For simplicity, we include only
the two most dominant modes h2;�2 in Eq. (28) and inject2Again, dt needs to be long enough to avoid spectral leakage.
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the “þ” polarization state to band-limited white noise. To
mimic GW150914, we set the total initial mass of the
system (detector frame) to 72M⊙ so that the mass of the
remnant BH Mf ¼ 68.5M⊙ agrees with that inferred from
the full IMR waveform [37]. The length of the full NR
waveform is 1.38 s. We pad zeros on both ends of the
waveform to prolong the length to 4 s.3 The data di ≡ dti
(including white noise and simulated signal) are sampled at
16384 Hz. We also adjust the relative amplitude of the NR
waveform so that the ringdown matched filter SNR is ∼15,
as measured after the peak of the strain. We then condition
di to remove contents that are below 20 Hz and down-
sample the data to 4096 Hz.
To calculate lnP in Eq. (23), we need to estimate the

covariance matrix Cij first, which has an exact expression
for the given band-limited white noise. We further verify
this by estimating the PSD SðfÞ from 4 s of the off-source
white noise theWelch method, as described in Sec. II B. We
then inverse Eq. (20) to obtain the value of ACF ρðτÞ

ρk ≡ ρðtkÞ ¼
1

2T

XN−1

j¼0

Sje2πijk=N; ð29Þ

where Sj ≡ SðfjÞ is the PSD value at f ¼ fj, N is the total
number of frequency bins in SðfÞ, and T ¼ 4 s is the total
length of the noise. Finally, we get the covariance matrix
Cij via

Cij ¼ ρðji − jjÞ: ð30Þ

On the other hand, to apply the rational filter to the data
di, we transform the full length of di into the frequency
domain via FFT

d̃j ¼ Δt
XN−1

k¼0

dke−2πijk=N; ð31Þ

with Δt ¼ tkþ1 − tk. Then the filtered data read [see Eq. (6)
for F tot]

d̃Fj ¼ F totðfjÞd̃j; ð32Þ

and the corresponding time-domain data are given by

dFk ¼ 1

T

XN−1

j¼0

d̃Fj e
−2πijk=N: ð33Þ

Next, we select the filtered time-series data dFk that lie
within the time interval of ½t0; t0 þ w�, which we refer to as
a ringdown window with window width w. Here we fix

w ¼ 0.08 s while letting t0 be a free parameter. We discuss
the impact of t0 later in this section. Finally, we substitute
the value of Cij [Eq. (30)] and dFk [Eq. (33)] within the
ringdown window into Eq. (23) to compute the likelihood.
For a given start time t0, we build F tot by choosing a set

of remnant black hole parameters,Mf and χf [Eq. (2)], and
a set of QNMs [Eq. (6)]. We can calculate the posterior
distribution of Mf and χf using Eq. (26) for a given set of
QNMs and infer which QNMs are more likely to be present
in the signal. On the other hand, for a fixed filter F tot (built
with a given choice ofMf, χf and QNMs), we can slide the
ringdown window ½t0; t0 þ w� by varying t0. The t0 value
corresponding to the maximum posterior probability indi-
cates the start time of the QNM(s) included in F tot. In this
example, it is found that the l ¼ m ¼ 2 harmonic can be
modeled with multiple overtones ω22n’s right after the time
when the strain reaches its peak amplitude [46], denoted by
tpeak. Therefore, we set the form of the total filter to

F tot ¼
YX
n¼0

F 22n; ð34Þ

where X is the highest overtone included, and focus on the
regime of Δt0 ¼ t0 − tpeak ≳ 0.
Figures 4–6 show the joint posterior of Mf and χf

evaluated at different start times (parameterized byΔt0), for
the injected signal. Here we display a 2D grid of Mf ∈
½35M⊙; 100M⊙� and χf ∈ ½0; 0.95� for better readability.
Other regions of the parameter space do not provide extra
features. The left and right columns correspond to having
X ¼ 0 (“one QNM,” 220) and X ¼ 1 (“two QNMs,” 220
and 221), respectively, inF tot. Adding more overtones does
not further improve the likelihoods, given the ringdown
SNR level at the current stage. The true values of the
remnant mass Mf ¼ 68.5M⊙ and spin χf ¼ 0.692085 are
marked by white plus signs. We compute the 90% credible
region by integrating the joint posterior evaluated with our
filter [Eq. (26)] over the Mf − χf parameter space. The
results are shown as red-dashed contours. In the meantime,
the marginalized posterior distributions of Mf and χf are
plotted as 1D histograms (red curves) in the side panels,
calculated by Eq. (27). For comparison purposes, we also
use the Python package RINGDOWN [31,72] to perform a
conventional time-domain full-ringdown Bayesian analysis
via MCMC (hereafter “full-RD MCMC”), in which the
likelihoods are evaluated by Eq. (24). To build the
ringdown template ht in Eq. (25), we include the same
QNM(s) as the one(s) used in the filter F tot. The 90%
credible interval joint posteriors evaluated by MCMC are
shown as the regions enclosed by white dashed contours.
Similarly, we plot the 1D histograms for Mf and χf,
obtained via MCMC, as gray-shaded regions. For refer-
ence, we compute the matched-filter SNRs (SNRMF) from
the posterior samples via

3Since we can control the simulated noise in this case, a
relatively short signal is chosen for efficiency.

USING RATIONAL FILTERS TO UNCOVER THE FIRST … PHYS. REV. D 107, 084010 (2023)

084010-7



SNRMF ¼
hhtjdtiffiffiffiffiffiffiffiffiffiffiffihhtjht
p i ; ð35Þ

with

hhtjdti ¼
X
i;j>I0

hiC−1
ij dj: ð36Þ

Now let us look at the first row of Fig. 4, with
Δt0 ¼ 0 ms. In both the left and right panels, the contours
obtained from our filters largely agree with the full-RD
MCMC results. The true remnant properties lie within
the 90% credible region when we include both the
fundamental mode and the first overtone in the filter.
On the contrary, there is a strong bias when the first

FIG. 4. Joint posterior distributions of Mf and χf evaluated with Eq. (26). The GW150914-like NR waveform is injected into band-
limited white noise. The top and bottom panels represent Δt0 ¼ 0 and 0.77 ms, respectively. The left and right panels show results from
applying the filter for the fundamental mode only, F 220, and the filter F 221F 220, respectively. The red-dashed contours display the 90%
credible region by integrating our new joint posterior in Eq. (26); and the joint distribution is projected to the individual 1D space of χf
and Mf (red curves in side panels) using Eq. (27). The white plus signs stand for the true value of Mf and χf obtained from NR. The
white dashed contours show the 90% credible region from the full-RDMCMC approach. The MCMC results are marginalized to the 1D
distributions ofMf and χf, shown as the gray-shaded regions in side panels. The value of the matched filter (MF) SNR is also provided.
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overtone is excluded. Next, in the second row of Fig. 5,
namely Δt0 ¼ 4.1 ms ¼ 12.2Mtrue

f , the true remnant mass
and spin can be recovered with the fundamental mode
alone, whereas the constraints of Mf and χf get worse
after adding the filter of the first overtone F 221. The
reason is as follows: since the first overtone has decayed
to a small value at Δt0 ¼ 4.1 ms, the major impact of the
rational filter F 221 on the signal is to reduce the amplitude
of the fundamental mode by a factor of B221

220 ¼ 2.053
[Eq. (11)], making it harder to infer the remnant properties
from the filtered data.
After qualitatively discussing the posteriors obtained

using Eq. (23), we propose some more quantitative
quantities to evaluate the significance of the first overtone.
First, given the hyperparameter Δt0 and the filter model

F tot, we can compute model evidence (marginal like-
lihood) via

PðdtjΔt0;F totÞ ¼
ZZ

PðdtjMf; χf;Δt0;F totÞ

× ΠðMf; χfÞdMfdχf: ð37Þ

where ΠðMf; χfÞ is the prior distribution of Mf

and χf. Here we simply assume a flat prior in Mf ∈
½35M⊙; 140M⊙� and χf ∈ ½0; 0.99�. By comparing the
evidence across different choices of F tot, one could figure
out which QNMs are more likely to be present in the
signal. In the top panel of Fig. 7, we plot PðdtjF 220;Δt0Þ
and PðdtjF 22f0;1g;Δt0Þ as functions of Δt0, for the

FIG. 5. Joint posterior distributions of Mf and χf . Fig. 4 continued; more values of Δt0 are tested.
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same simulation dataset with the injected signal. As a
comparison, we also show the results obtained from the
off-source noise (green and black curves). The boundary
between the yellow and cyan regions stands for the time
when the strain reaches its peak, i.e., Δt0 ¼ 0. We can see
both the red and blue curves surge rapidly within the
regime of ½−5; 0� ms, implying the onset of the ringdown
stage. The evidence of the QNMs starts to grow even
before the peak time Δt0 ¼ 0 because the width of our
window w ¼ 0.08 s ¼ 237Mtrue

f is longer than the ring-
down duration—the full ringdown signal already falls in
the window when Δt0 ∈ ½−5; 0� ms. Consequently, the
QNM model evidence continues to increase as the
inspiral-merger part of the signal slides out of the window.
Additionally, the evidence of the “two-QNM” model

ðF 22f0;1gÞ is greater than the “one-QNM” one ðF 220Þ
near the peak time ðΔt0 ∼ 0Þ, indicating that the “two-
QNM” filter is preferred in the early stage of ringdown. To
provide a more quantitative evaluation, we compute the
Bayes factor by taking the ratio between the marginal
likelihoods of a QNM model with and without the first
overtone:

K221ðΔt0Þ ¼
PðdtjF 22f0;1g;Δt0Þ
PðdtjF 220;Δt0Þ

: ð38Þ

The middle panel of Fig. 7 shows K221 as a function of
Δt0. We also show the off-source results (green dash-dot
curve). As expected, K221 drops sharply near the peak
time Δt0 ∼ 0 and gradually converges to the off-source

FIG. 6. Joint posterior distributions of Mf and χf. Figure 4 continued; more values of Δt0 are tested.
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result at later times. In the absence of the GW signal, the
Bayes factor simply oscillates around unity across the
entire time tested, which is also expected.
On the other hand, to characterize how well we can

recover the remnant properties by applying our filters, we
look for the maximum a posteriori (MAP) estimates of

ðMf; χfÞ. Following Ref. [46], we define a dimensionless
quantity ϵ to describe the distance of the MAP values
ðMMAP

f ; χMAP
f Þ to the true values ðMtrue

f ; χtruef Þ, given by

ϵðΔt0Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χMAP
f ðΔt0Þ−χtruef

�
2

þ
�
MMAP

f ðΔt0Þ−Mtrue
f

Mtrue
f

�2
s

:

ð39Þ

The bottom panel of Fig. 7 shows the resulting ϵðΔt0Þ. For
both QNMmodels, ϵ starts to decrease before the peak time
Δt0 ¼ 0, for the same reason that the analysis window we
use iswider than the span of the ringdown signal.AtΔt0 ¼ 0
and right after, ϵ obtained by using the filter F 22;f1;2g is
smaller than that using F 220, indicating the existence
of the first overtone. After ∼5 ms, ϵ from the filter
F 22;f1;2g starts to increase as the first overtone decays away.
By contrast, the fundamental mode still shows significance
atΔt0 ∼ 5.5 ms ¼ 16.3Mtrue

f , which leads to amuch smaller
ϵ. Beyond Δt0 ¼ 7 ms ¼ 20.8Mtrue

f , no precise parameter
information can be extracted from the fundamental mode
anymore. Therefore we plot a boundary between the cyan
and gray regions in the figure atΔt0 ¼ 7 ms ¼ 20.8Mtrue

f to
indicate the time around which the whole ringdown signal
fades away.

C. GW150914

After studying the injected signal in Sec. III B, we now
apply our method to analyzing GW150914 using the data
collected in the first observing run of the two Advanced
LIGO detectors (Hanford and Livingston) [78–80]. We
adopt the same procedure described in Sec. II B to con-
dition the data, and the PSDs are evaluated with 32 s of the
conditioned data [see Figs. 3(e) and 3(d)]. Then, the PSDs
are converted to the covariance matrix Cij via Eqs. (29)
and (30). Following [31,37,72], we take the inferred GPS
time when the signal strain reaches its peak at geocenter,
tstart ¼ 1126259462.4083, and parameterize the analysis
start time via Δt0 ¼ t0 − tstart. The information on antenna
patterns, polarization, and inclination angles are not needed
within our framework, but we do need to time-shift the data
to align the signals at the two detectors, based on the sky
location of the event, right ascension α ¼ 1.95 rad and
declination δ ¼ −1.27 rad [37]. To compute the joint
posteriors of ðMf; χfÞ in Eq. (26), we fix the width of
the ringdown window to w ¼ 0.2 s, and we consider two
types of the rational filter: F 221F 220 and F 220 (same as the
injection study in Sec. III B).
The posterior distributions ofMf and χf at variousΔt0 are

shown in Figs. 8–10. The parameter estimation results
obtained from the whole IMR signal, MIMR

f ¼ 68.5M⊙

and χIMR
f ¼ 0.69 [37], are marked by the white plus signs.

Again, the red-dashed contours show the 90% credible

FIG. 7. Model comparison at different Δt0 for a GW150914-
like NR waveform injected in band-limited white noise. Top:
model evidence as a function of Δt0, evaluated by Eq. (37). The
blue and red curves indicate the results after applying F 220 (clean
the fundamental mode only) and F 22f0;1g (clean the fundamental
mode and the first overtone), respectively. The corresponding
results computed with off-source noise are shown in green and
black (almost indistinguishable). Middle: Bayes factor (K221) of
the existence of the first overtone over fundamental mode only
(red curve), calculated by Eq. (38). As a comparison, the green
curve shows the Bayes factor evaluated with the off-source noise.
We take K221 ¼ 1 as a benchmark, indicated by the horizontal
dashed line. Bottom: distance (ϵ) of the MAP values ofMf and χf
to the true values, calculated by Eq. (39).
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region evaluated by integrating Eq. (26), and the margin-
alized posterior distributions ofMf and χf are shown as 1D
histograms (red curves in side panels). The results are
qualitatively similar to the injection study in Sec. III B.
At the early stage of ringdown, the “two-QNM” results are
more consistent with those from the whole IMR analysis,
demonstrating the existence of the first overtone. At
Δt0 ¼ 0.77 ms, the constraints obtained with X ¼ 1
[Eq. (34)] start to degrade because of the first overtone

decays.Meanwhile, there still exists a bias in the estimates of
ðMf; χfÞ in the case of X ¼ 0. This discrepancy between
X ¼ 1 and X ¼ 0 becomes less significant as we move to
Δt0 ¼ 2.5 ms, indicating that the contribution from the first
overtone becomes negligible. From this time onward, the
constraints of ðMf; χfÞ are worse when we apply F 221 in
addition to F 220, since there is nearly none first overtone
contribution and the extra filter of F 221 reduces the
amplitude of the fundamental mode, as discussed in

FIG. 8. (Similar to Fig. 4) Joint posterior distributions of Mf and χf for GW150914 (data collected by the two Advanced LIGO
detectors are used). The top and bottom panels represent Δt0 ¼ 0 and 0.77 ms, respectively. The left and right panels show results from
applying the filter for the fundamental mode only, F 220, and the filter F 221F 220, respectively. The red-dashed contours display the 90%
credible region by integrating our new joint posterior in Eq. (26); and the joint distribution is projected to the individual 1D space of χf
and Mf (red curves in side panels), using Eq. (27). The white plus signs stand for the parameters estimated from the whole IMR
waveform. The white dashed contours show the 90% credible region from the full-RD MCMC approach. The MCMC results are
marginalized to the 1D distributions of Mf and χf , shown as the gray-shaded regions in side panels.
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Sec. III B. We can see the constraints keep degrading as the
ringdown signal decays away.
On the other hand, we also use MCMC to repeat the

Bayesian analyses presented in [37], in which we assume
the system is face-off [37], namely ι ¼ π. The 90% credible
interval joint posterior distributions are enclosed by the
white dashed contours. The corresponding 1D histograms
for Mf and χf are represented by the gray-shaded regions.
Similar to the injection study in Sec. III B, the MCMC
results are consistent with what we obtain from the rational
filter.
For more quantitative conclusions, we use Eq. (37) to

compute the model evidence PðdtjF 220;Δt0Þ and
PðdtjF 22f0;1g;Δt0Þ as functions of Δt0 and show results
in the top panel of Fig. 11. Similar to the injection study, the

two evidence curves surge quickly before the time when the
signal strain reaches the peak,Δt0 ¼ 0, indicating the onset
of the ringdown. The ratio K221 [Eq. (38)], shown in the
middle panel of Fig. 11, reveals the relative importance of
the first overtone. At the peak time Δt0 ¼ 0, the Bayes
factor K221 is as high as 600. Then its value drops steeply
within the first 2 ms. In the case of analyzing this real event,
we take the window of Δt0 ∈ ½15; 100� ms, a duration
when the whole ringdown signal should have decayed, for
background estimation. The mean value (∼4.5) and the
mean plus one standard deviation (∼13.8) of K221 com-
puted in the noise-only window are plotted as dashed and
dash-dotted horizontal green lines, respectively, in the
middle panel of Fig. 11. The curve of K221 intersects with
the “mean þ1σ” and “mean” lines at Δt0 ¼ 1.9 ms and

FIG. 9. Joint posterior distributions of Mf and χf for GW150914. Fig. 8 continued; more values of Δt0 are tested.

USING RATIONAL FILTERS TO UNCOVER THE FIRST … PHYS. REV. D 107, 084010 (2023)

084010-13



2.3 ms, respectively. Therefore we can conclude that the
first overtone has become negligible around Δt0 ∼ 2 ms.
Indeed, in the first row of Fig. 9, we see the remnant
properties inferred from the fundamental mode alone are
consistent with the IMR results at Δt0 ¼ 2.5 ms, a time
when the first overtone is deemed vanishing.
Finally, we use Eq. (39) to evaluate the MAP estimations

of ðMf; χfÞ and the distance to the IMR results
ðMIMR

f ¼ 68.5; χIMR
f ¼ 0.69Þ. As shown in the bottom

panel of Fig. 11, the results from the “two-QNM” filter
are better than those from the fundamental-mode-only filter
by one order of magnitude right after the peak timeΔt0 ∼ 0.
Beyond the time when the first overtone mostly decays
(Δt0 ∼ 2 ms), the accuracy of parameter estimation using
the F 22f0;1g filter significantly degrades. Regarding the

results from using the “one-QNM” filter F 220, ϵ surges
after Δt0 ∼ 6 ms, indicating the time when the fundamental
mode also disappears.

IV. A MIXED APPROACH TO BLACK-HOLE
SPECTROSCOPY

We have demonstrated that the rational filter provides a
powerful tool for black-hole spectroscopy by cleaning any
given QNMs from the data and evaluating a simple and
efficient likelihood function for remnant mass and spin
[Eq. (23)]. One limitation of this new method is that we do
not obtain information of mode amplitudes and phases in
the analysis. By combining our filters with the conventional
MCMCmethod, we could take advantage of both and build

FIG. 10. Joint posterior distributions of Mf and χf for GW150914. Figure 8 continued; more values of Δt0 are tested.
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another mixed approach for BH spectroscopy: after remov-
ing a subset of the QNMs using the rational filters, we
analyze the filtered data with a ringdown model that
consists of the uncleaned QNMs, using the MCMC
approach. The advantage of this hybrid approach is as
follows. The conventional full-RD MCMC analysis (with-
out filter) for subdominant QNMs is likely to be biased
when the strongest mode is present, especially at low-SNR

regime. The mixed approach allows us to clean the most
dominant mode and thus eliminate potential impacts from it
when carrying out parameter estimations using the MCMC
method. In addition, we can carry out a consistency check
by comparing the mode amplitudes and remnant properties
inferred from the subdominant QNMs (after the strongest
mode is cleaned by the filter) to those obtained from the
unfiltered data (when the strongest mode is present). When
we observe events with high ringdown SNRs, we can even
clean a set of stronger modes and study the remaining weak
ones. In this way, we are able to test the no-hair theorem
from a new perspective.
Below, we detail the analysis procedure and results using

this mixed approach. In Sec. IVA, we study the NR signal
injected into Gaussian noise (same as the one in Sec. III B).
In Sec. IV B, we analyze GW150914.

A. NR waveform injection

We first analyze the injection of the NR waveform. We
describe the estimates of mode amplitudes in Sec. IVA 1
and the remnant properties in Sec. IVA 2. Further dis-
cussion about the features seen in the mixed approach is
provided in Sec. IVA 3.

1. Estimate mode amplitudes

With the NR signal injected into Gaussian noise, we first
choose a start time for the analysis,Δt0 ¼ 1.5 ms ¼ 4.2Mf,
and use the conventional full-RD MCMC method to fit the
unfiltered simulation data with a two-QNM (ω220 and ω221)
ringdown template. The analysis is performed with the
Python package RINGDOWN [31,72]. The posterior distri-
butions of the amplitudes of the fundamental mode, A0, and
the first overtone, A1, are plotted as the blue shaded regions
in Figs. 12(a) and 12(b). Meanwhile, we compute what the
values of A0 and A1 should be in the injected signal by
decomposing the NR waveform (the l ¼ m ¼ 2 harmonic)
into a superposition of the fundamental mode and the first
overtone with a least-square fit. Here we include up to the
first overtone for the least-square fit, to be consistentwith the
templates used in the MCMC analysis, even though Giesler
et al. [46] points out more overtones are needed to model
ringdown at such an early stage (Δt0 ¼ 1.5 ms ¼ 4.2Mf).
The lack of higher overtones in the least-square fit leads to a
bias in the estimates of themode amplitudes.Nevertheless, it
is a fair comparison between the MCMC results and the
“should-be” values [vertical dash-dotted lines in Figs. 12(a)
and 12(b)] obtained from the least-square fit. We find the
MCMC posteriors are consistent with the values indicated
by the vertical lines, A0 ¼ 148 and A1 ¼ 143. In fact, the
same feature has been pointed out by Finch and Moore (see
Fig. 7 and discussions in Sec. III B in [34]).We providemore
detailed discussions in Sec. IVA 3.
We then use the mixed approach. There are four options

from the combinations of the two choices of the filters and
two choices of the fitting templates (see Table I). We can

FIG. 11. (Similar to Fig. 7) Model comparison at different Δt0
for GW150914. Top: model evidence as a function of Δt0. The
blue and red curves indicate the results for applying F 220 (clean
the fundamental mode only) and F 22f0;1g (clean the fundamental
mode and the first overtone), respectively. Middle: Bayes factor
(K221) of the existence of the first overtone over fundamental
mode only (red curve). The horizontal dashed and dash-dotted
green lines indicate the mean value and the standard deviation
within the regime of Δt0 ∈ ½15; 100� ms, respectively. The red
Bayes factor curve intersects the “1σ þmean” line at a time of
Δt0 ¼ 1.9 ms, indicating the time when the first overtone
becomes negligible (vertical dashed line). Bottom: distance (ϵ)
of the MAP values ofMf and χf to the values estimated from the
whole IMR signal.
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choose to clean the fundamental mode (the first overtone)
by applying the filter F 220 (F 221). After the filtering, we
also have two choices of the ringdown template to fit
the data and run MCMC: we can (a) continue to use the
two-QNM model, assuming both modes exist in the data

and we have no knowledge of the mode cleaning (b) use a
single-mode template for the remaining QNM. We first
apply the filter F 220, built from the true remnant mass and
spin, to remove the fundamental mode. Then we use the
two-QNM template to run MCMC against the filtered data.

FIG. 12. Estimates of the mode amplitudes and BH properties for the injected signal using the mixed approach. The top panels display
the posterior distributions of (a) the fundamental mode amplitude A0, and (b) the first overtone amplitude A1, evaluated at Δt0 ¼ 1.5 ms
under various filtering conditions. The blue-shaded distributions are obtained via the full-RD MCMC method (without applying the
filter). The green dashed curves correspond to removing the ω220 mode using F 220 first and fitting the data with a two-QNM (ω220 and
ω221) signal template. The same F 220-filtered data are also fitted with the one-QNM (ω221) signal template, resulting in the A1

distribution shown in yellow in (b). Similarly, the black dashed curves correspond to removing the ω221 mode using F 221 first and fitting
the data with a two-QNM (ω220 and ω221) signal template. The F 221 filtered data are then fitted with the one-QNM (ω220) signal
template, resulting in the A0 distribution shown in red in (a). The two vertical lines indicate the true values of A0 ¼ 148 and A1 ¼ 143,
computed from the NR waveform. The bottom panels show the posterior distributions ofMf and χf estimated at (c) Δt0 ¼ 1.5 ms, and
(d) Δt0 ¼ 1.0 ms. The yellow curves indicate the results obtained by fitting the ω220-cleaned data with a ω221-only template. The red
curves are the results obtained by fitting the ω221-cleaned data with a ω220-only template. The blue dashed curves are the results from the
full-RD MCMC analysis without applying any filter. The two contours in each color correspond to the 90% and 10% credible intervals.
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The posteriors of A0 and A1 are plotted as the green dashed
curves in Figs. 12(a) and 12(b), respectively. After applying
F 220, it is expected that there is no ω220 component left in
the filtered data. Indeed, we see the distribution of A0 is
pushed close to 0, demonstrating that the fundamental
mode no longer exists in the data. By contrast, the posterior
distribution of A1 is only slightly impacted by the filtering
[compare the green dashed curve to the blue-shaded region
in Fig. 12(b)]. We emphasize that, as discussed in Sec. II A,
the amplitude of the first overtone is reduced by the filter
F 220 by a factor of B221

220 ¼ 2.053 [Eq. (11)]. In Fig. 12(b),
the green dashed curve is obtained by multiplying the
original A1 distribution from MCMC by a factor of
B220
221 ¼ 2.053, so that we can make a fair comparison to

the blue distribution. On the other hand, we also fit the
filtered data (ω220 component is cleaned) with the single-
QNM model, composed of the first overtone alone, which
gives the distribution shown in yellow in Fig. 12(b). The
estimate is more constrained than that from the two-QNM
model, and the MAP value is closer to the “injected,”
although biased, mode amplitude (the vertical dash-
dotted line).
Similarly, we apply F 221 to the original simulation data

to clean the first overtone. Fitting with the two-QNM
template, the posteriors of A0 and A1 are plotted as black
dashed curves in Figs. 12(a) and 12(b). This time, A1 is
consistent with 0, as expected; whereas the MAP value of
A0 is mildly impacted [again, after multiplying the reduc-
tion factor B221

220 ¼ 2.053 to the original distribution output
by MCMC; see Eq. (11)]. If we use the one-QNM template
of the fundamental mode, the estimated A0 [the red shaded
region in Fig. 12(a)] is more constrained, and the MAP
value is closer to the injected mode amplitude (the vertical
dash-dotted line).

2. Estimate remnant properties

We now estimate the remnant properties (Mf and χf)
after a certain mode is cleaned. Here we use the one-QNM
template to fit the filtered data and show the parameter
estimation results obtained from MCMC in Fig. 12(c) [at
Δt0 ¼ 1.5 ms ¼ 4.2Mf, to be consistent with Figs. 12(a)
and 12(b)], i.e., we fit for the first overtone after applying

F 220 (yellow) and fit for the fundamental mode after
applying F 221 (red). The two contours for each case
correspond to the 90% and 10% credible intervals.
For comparison, the estimates obtained by the full-RD
MCMC method without applying the filters are plotted as
blue dashed contours. The green plus sign stands
for the true values. The posterior distributions obtained
solely from the first overtone (yellow) are still informative,
consistent with the results from the fundamental mode (red)
and the full-RD MCMC approach (blue), albeit less
constrained.
As we show in Sec. IVA 1, there is inevitably a bias in

the estimates of the mode amplitudes at an early time of
ringdown ðΔt0 ¼ 1.5 ms ¼ 4.2MfÞ due to the lack of
higher overtones in the model. In Fig. 12(c), however,
we see the remnant mass and spin inferred from the
fundamental mode (red), the first overtone (yellow), and
both modes (blue) are all consistent with the true NR
values, indicating that the constraints ofMf and χf are less
impacted by the residuals contributed by higher overtones
and even the merger signal (if there is any). More details are
discussed in Sec. IVA 3. On the other hand, as shown in
Fig. 12(d), we do see the remnant properties are less
consistent with the ture value at an earlier time
Δt0 ¼ 1.0 ms ¼ 2.8Mf. In particular, the constraints from
the first overtone (yellow) deviate more significantly from
the true value than the other two estimates.
Finally, we note that in terms of estimating the remnant

properties (Mf and χf) using the filtered waveform when
certain modes are cleaned, e.g., Figs. 12c and 12d, the
results can also be obtained by purely using the filters,
instead of running the MCMC analysis. We provide the
details in Appendices A and B.

3. Further discussions

In Secs. IVA 1 and IVA 2, we demonstrate the statistical
significance of the first overtone in the injected ringdown
signal. Given that our two-QNM fitting is carried out at an
early time (Δt0 ¼ 1.5 ms ¼ 4.2Mf), criticisms might be
raised since we do not include higher overtones at such an
early time close to the signal strain peak [46]. How do we
know the results are not biased by other residual effects?
We discuss this from two aspects: (a) estimates of the
remnant properties, and (b) estimates of the mode
amplitudes.
First, the measurement of a mode frequency (or equiv-

alently, the estimates of Mf and χf) needs sufficient mode
cycles (duration) to accumulate a high-enough SNR. A
missing mode does not bias the measurement when its
cumulative SNR is small. To quantify the impact of the
residual, we carry out a least-square fit to the l ¼ m ¼ 2
harmonic of the GW150914-like NR waveform using a
two-QNM model (ω220 þ ω221). At an early starting time,
the fitting residual comes from the modes that are not
included in the template (higher overtones). We compute

TABLE I. Combinations of filters and fitting templates for the
mixed approach. We have two choices of the filter: F 220 and
F 221, and two choices of the fitting template: two-QNM ðω220 &
ω221Þ template, ignorant of mode cleaning, and one-QNM
template for the remaining mode.

Template

Filter two-QNM one-QNM

F 220 ω220 & ω221 ω221

F 221 ω220 & ω221 ω220
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the cumulative SNRs of the constructed first overtone and
the fitting residual via

SNRðΔt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

90Mf

Δt0
jhðtÞj2dt

s
: ð40Þ

The ratio between the SNR of the first overtone and that of
the residual as a function ofΔt0 is shown in Fig. 13. We see
the cumulative SNR of the first overtone is ∼5 times larger
than that of the residual even starting from the peak of the
waveform ðΔt0 ¼ 0Þ. The ratio continues to grow when
Δt0 < 17Mf, because the residual modes decay faster and
the waveform becomes more consistent with the two-QNM
model. After 17Mf, the residual hits the error floor of the
NR simulation and remains at that level. Thus, starting from
17Mf, the ratio decreases exponentially as the first over-
tone decays away. Note that the maximum at Δt0 ¼ 17Mf

is close to the starting time of the two-QNM regime at
Δt0 ¼ 19Mf estimated by Giesler et al. (see the second row
of Table I in [46]). Here we convert the mass unit from the
total binary mass Mtot in [46] to the remnant mass Mf

using Mf ¼ 0.95Mtot.
In Bayesian analysis, the fact that the cumulative SNR of

the first overtone is a few factors stronger than the residual
modes allows us to perform a two-QNM MCMC analysis
and infer the remnant properties from the first overtone
right after the signal peak, when the full ringdown

waveform has a low SNR and the systematic error caused
by the residual modes is smaller than the uncertainties of
the inferred parameters. In such a low-SNR regime, we
might want to push our analysis as early as possible to
increase the cumulative SNR of the first overtone, as long
as the SNR contribution from the residual modes stays low,
e.g., Fig. 12(c) (Δt0 ¼ 1.5 ms ¼ 4.2Mf). However, as
Fig. 13 suggests, the residual modes play a stronger role
at earlier times, and thus we should be careful and avoid
conducting the analysis too close to the signal peak,
otherwise the residual modes can lead to systematic bias,
such as the results shown in Fig. 12(d). On the other hand,
if we detect a high-SNR ringdown signal, the contribution
of the residual modes becomes more significant, and leads
to a bias non-negligible compared to the parameter uncer-
tainty range. In that case, following Fig. 13, the analysis
should be moved to later times (although still earlier than
what the pure NR waveform suggests) to reduce the
systematic bias caused by the residual modes. In an extreme
case, when the ringdown signal becomes strong enough,
the analysis reduces to the least-square fitting of the NR
waveform. Then we can choose the maximum point in
Fig. 13 as the starting time to perform the two-QNM fit, just
as what Giesler et al. [46] did. In summary, the starting time
of the analysis using a two-QNM model should be chosen
based on the signal SNR; the higher the SNR, the later the
starting time (in the range from Δt0 ¼ 0 to the maximum
point in Fig. 13).
That said, in Figs. 12(a) and 12(b), the mode amplitudes

inferred from the Bayesian analysis are still biased, as
mentioned by Finch and Moore [34]. This is because the
measurement of a mode amplitude depends more heavily
on the first mode cycle than the whole cumulative SNR.
Therefore, the estimate of the mode amplitude is more
sensitive to the existence of the residual modes at an
early stage. Nevertheless, the consistency among the
“F 220 þ one-QNM” test, the conventional full-RD analy-
sis, and the NR least-square fit [Figs. 12(b)] implies that
after cleaning the fundamental mode, the remaining
signal is stably consistent with the first overtone.4 In other
words, at a relatively early time, e.g., Δt0 ¼ 1.5 ms ¼
4.2Mf in Fig. 12(b), the data-driven analysis leads to a
measurement of an effective first overtone, with a correct
mode frequency and decay rate albeit a biased mode
amplitude [34].

B. GW150914

We now apply the mixed approach to GW150914.
Similar to the NR simulation, the full-RD MCMC fitting
and the four filtering scenarios listed in Table I are tested;
the results are shown in Fig. 14. For mode cleaning, we use
the BH properties estimated from the IMR signal [37],

FIG. 13. Ratio between the cumulative SNRs of the first
overtone and the fitting residual as a function of Δt0. The l ¼
m ¼ 2 harmonic of the GW150914-like NR waveform is fitted
with a two-QNM model ðω220 þ ω221Þ at different starting times.
The residual is the difference between the l ¼ m ¼ 2 harmonic
in the NR waveform and the fitted two-QNM model template.
At early times, the residual corresponds to the systematic bias
due to the missing higher overtones in the model template. The
cumulative SNRs are computed via Eq. (40).

4This is not to be confused with the noise fluctuations raised by
Cotesta et al. [35].
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MIMR
f ¼ 68.5; χIMR

f ¼ 0.69, to build the filter. The MCMC
fitting is conducted at a start time ofΔt0 ¼ 0.77 ms and the
window length of w ¼ 0.2 s. In Figs. 14(a) and 14(b), the
estimates of A0 and A1 under all scenarios qualitatively
agree with the injection study in Sec. IVA (Fig. 12). These
results demonstrate: (1) the fundamental mode or the first
overtone can be successfully cleaned from the ringdown of
GW150914 by the filters, and (2) the Mf and χf values
obtained from the IMR signal are consistent with the
evolution of the QNMs in ringdown (so that the modes
can be correctly cleaned).

In Fig. 14c, we show the estimates of Mf and χf at the
start time Δt0 ¼ 0.77 ms under the three scenarios, similar
to the injection case shown in Fig. 12(c). The constraints
obtained from the unfiltered and the filtered data generally
agree, and are consistent with the estimates obtained from
the IMR signal. In particular, we note that for the chosen
start time, one needs to include both modes ω220 and ω221

to perform the usual full-RD MCMC analysis (blue-dashed
contours), fitting with only the fundamental mode ω220

leads to a strong bias in the inferred Mf and χf. The gray
contours in Fig. 15 display the corresponding joint

FIG. 14. (Similar to Fig. 12) Estimates of the mode amplitudes and BH properties for GW150914 using the mixed approach. See
Fig. 12 caption for detailed descriptions. Note that different start times are used here: Δt0 ¼ 0.77 ms in Fig. 14(a), 14(b), and 14(c), and
Δt0 ¼ 0.1 ms in Fig. 14(d).

USING RATIONAL FILTERS TO UNCOVER THE FIRST … PHYS. REV. D 107, 084010 (2023)

084010-19



posterior of Mf and χf when the first overtone is omitted
from the MCMC analysis (also see Fig. 3 of Ref. [37]). But
the discrepancy with the IMR results is reduced if we first
apply the filter F 221 to clean the first overtone ω221 (red
contours in Fig. 15).
On the other hand, the yellow contours in Fig. 14(c)

represent the posterior inferred from the first overtone
alone. We see the estimates are still informative, although
less constrained than the “F 221 + one-QNM” case. If we
start the analysis at an earlier time, e.g., Δt0 ¼ 0.1 ms
[Fig. 14(d)], the constraints obtained from the first overtone
alone deviate more from the IMR results, despite the fact
that the contour of the 90% credible intervals is still
consistent with the IMR result. Presumably, the shift is
caused by the existence of other signal features in addition
to the first overtone [e.g., higher overtones, similar to
Fig. 12(d)], although no evidence for the existence of
higher overtones is found in the ringdown of GW150914.
For more choices of Δt0, we focus on the marginalized
posteriors of Mf and χf obtained from the “F 220 þ one-
QNM” scenario. As shown in Fig. 16, the posterior
distribution of Mf gradually shifts toward smaller values
and moves closer to the IMR result (the vertical dashed
line) when Δt0 ∈ ½0; 1� ms. For later times ðΔt0 ≳ 1 msÞ,

the distribution widens and becomes less informative. On
the other hand, the posterior distribution of χf flattens
quickly as Δt0 increases and becomes consistent with
the prior.

V. CONCLUSION

In this paper, we incorporate the novel rational filter [64]
into a Bayesian framework (outlined in our companion
paper [68]), and obtain several pieces of evidence for the
existence of the first overtone in the ringdown of
GW150914. We first demonstrate that the rational filter
has no impact on the statistical properties of the noise
(Gaussianity, stationarity, and PSDs). We then construct a
2D likelihood function that depends only on the mass
and spin of the remnant BH and implement an efficient

FIG. 15. Posterior distributions of Mf and χf for GW150914
estimated at Δt0 ¼ 0.77 ms. The gray contours are obtained from
the conventional full-RD MCMC analysis, where the unfiltered
data (without mode cleaning) are fitted with the fundamental-
mode-only template. The red contours are the same as the ones in
Fig. 14(c), where we first apply the filter F 221 to remove the first
overtone, and then fit the filtered data with the template of the
fundamental mode.

FIG. 16. Posterior distributions of Mf (top) and χf (bottom)
solely inferred from the first overtone in the ringdown of
GW150914, at different Δt0 times. We first apply the filter
F 220 to remove the fundamental mode, and then fit the filtered
data with the template of the first overtone. We set uniform priors
in the ranges of Mf ∈ ½35M⊙; 140M⊙� and χf ∈ ½0; 0.99� (as
shown in the horizontal axes in the plot). The vertical dashed lines
indicate the estimates obtained from the full IMR signal.
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algorithm to obtain the posteriors of mass and spin without
running MCMC. We use an NR injection and the
GW150914 event to demonstrate that the posteriors
obtained using our method are consistent with those from
the full-RD MCMC approach. By applying our method to
the data of GW150914 near the peak of the strain, we
confirm the conclusion of Ref. [37]: The inferred remnant
BH properties are more consistent with the IMR results
when the first overtone is included; the contribution from
the first overtone gradually fades away at later times.
Next, we compute the model evidence for filters built

with different sets of QNM(s) by integrating the new
likelihood function over the 2D parameter space. The
evidence depends on the fitting start time, showing a sharp
rise around the onset of a ringdown signal, which in turn
agnostically reflects the starting time of the corresponding
QNM(s). The ratio between two evidence values from two
filters with different sets of QNM(s) indicates the Bayes
factor for a QNM model. For GW150914, we find a
Bayes factor of 600 for the model with the first overtone
over the fundamental-mode-only model at the inferred
strain peak. This Bayes factor decreases and levels off at
later times.
Finally, we combine the mode-cleaning procedure using

the rational filter with the usual MCMC method to build a
mixed approach for BH spectroscopy. After cleaning
the fundamental mode in the GW150914 data and fitting
the filtered data using MCMC, we find the posterior of the
fundamental mode amplitude gets close to zero, confirming
the successful subtraction of the fundamental mode. On the
other hand, the amplitude of the first overtone is barely
impacted. We also use the mixed approach to infer the
remnant BH mass and spin from only the fundamental
mode and only the first overtone. The results from the first
overtone alone are still informative, showing consistent
constraints on Mf with the full-IMR and fundamental-
mode-only analyses. The recovery of the remnant BH
properties (mass and mode amplitudes) from the first
overtone alone serves as a more direct piece of evidence
supporting the existence of the first overtone, in addition to
other indicators (e.g., the Bayes factor).
This novel framework is not only powerful at revealing

subdominant QNMs; it also has superior computational
efficiency compared to the existing MCMC approach. In
the GW150914 analysis, it takes ∼8 seconds on a general
laptop to produce a low-resolution 2D Mf–χf posterior
distribution for the remnant BH that is good enough to
reveal the key features (the evaluation of the likelihood
function in Eq. (23) for each pair of Mf and χf takes
milliseconds). For a production run with a high resolution,
e.g., a panel in Fig. 8, it takes ∼3 minutes on a cluster (a
single node with 24 cores). The performance can be further
improved by fully parallelizing the calculation, since the

likelihood evaluation for each pair of mass and spin is
completely independent. In addition, the code’s efficiency
is not impacted by including more QNMs, given that
multiple filters can be applied simultaneously [Eq. (6)].
On the contrary, including more QNMs significantly
increases the computing cost of the full-RD MCMC
calculation, because the dimension of the parameter space
is largely increased.
With this framework, the ringdown analysis can be easily

extended to investigate more subdominant modes in addi-
tion to overtones. Future work is being planned to inves-
tigate another controversial event, GW190521 [38,39], and
new detections in the upcoming O4 run. In addition,
here we combine and align the data at two LIGO detectors
based on the constraint of the event sky location. It is
worth studying whether we could analyze the data from
each detector individually and use the common features in
the results, e.g., the time when the evidence rises
sharply (see Fig. 11), to help constrain the sky position
of an event.
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APPENDIX A: REPRODUCING POSTERIORS
OF Mf AND χ f IN SEC. IV VIA

A VARYING FILTER

In Sec. IV, we discussed a mixed approach for BH
spectroscopy, namely fitting the filtered data with MCMC.
We have demonstrated that this hybrid method yields more
information than either the full-RD MCMC or the pure
filter method: Compared to the full-RD MCMC approach,
the filter allows us to study subdominant QNMs by
excluding the impact from dominant modes; compared
to the pure filter method, we can still obtain the information
about mode amplitudes.
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With this mixed approach, we can infer the remnant
properties (Mf and χf) exclusively from every single
mode, e.g., Figs. 12(c), 12(d), 14(c), and 14(d). According
to our discussions in Sec. III and the Supplemental
Material of our companion paper [68], the posteriors of
Mf and χf obtained via MCMC can be reproduced by

purely using the rational filter. To demonstrate the
equivalence between MCMC and pure filtering, here
we use a fixed filter (built with the true values of Mf

and χf) to remove one mode while varying ðMf; χfÞ
in the other filter to find the best fit for the remaining
mode—this is different from the study in Sec. III,

FIG. 17. Reproduce the estimates of Mf and χf in Figs. 12(c) and 12(d), using the filters. The top and bottom panels are for
Δt0 ¼ 1.5 ms [cf. Fig. 12(c)] and 1.0 ms [cf. Fig. 12(d)], respectively. The left and right columns correspond to analyzing the
fundamental mode only (cf. red contours in Fig. 12) and analyzing the first overtone only (cf. yellow contours in Fig. 12), respectively.
The filters used to clean either the first overtone in the left panels or the fundamental mode in the right panels are built with the true
values ofMf and χf for the injected system. The red and yellow contours in Figs. 12(c) and 12(d) are shown as white dashed contours in
this figure.
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where all the filters are built from the same set of ðMf; χfÞ.
For example, in Figs. 17(a) and 17(c) we reproduce
the “F 221 þ one-QNM” results in Figs. 12(c) and 12(d)
(red contours), where we vary F 220 while fixing
F 221 to the injected true value. We can see the colored
contours obtained by varying the filter are in agree-
ment with the MCMC one (white dashed contours).
Similarly, we vary F 221 but fix F 220 to reproduce
the “F 220 þ one-QNM” results [yellow contours in
Figs. 12(c) and 12(d)] in Figs. 17(b) and 17(d).

The comparisons for GW150914 are similar and the
results can be found in Fig. 18.

APPENDIX B: DEVIATION FROM THE KERR
ASSUMPTION

The “F 220 þ one-QNM” study in Appendix A
[Figs. 18(b) and 18(d)] is closely related to the beyond-
Kerr fit discussed in Refs. [34,37], where the frequency and
decay rate of the first overtone are allowed to differ from

FIG. 18. (Similar to Fig. 17) Reproduce the estimates of Mf and χf in Figs. 14(c) and 14(d), using the filters, for GW150914. See
Fig. 17 caption for detailed descriptions. The top and bottom panels are for Δt0 ¼ 0.77 ms and 0.1 ms, respectively. The filters used to
remove either the first overtone in the left panels or the fundamental mode in the right panels are built with the estimatedMf and χf from
the IMR signal.
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the no-hair values. Here we could do a similar thing by
replacing the parameters, Mf and χf, with fractional
deviations, Δf221=f221 and Δτ221=τ221, while varying
F 221. We still build a fixed filter F 220 using the IMR-
estimated Mf and χf, and use these IMR results as the
fiducial values. The resulting posterior distributions are
shown in Fig. 19, evaluated at different Δt0 times. The
measurements of Δf221=f221 and Δτ221=τ221 are summa-
rized in Table II, with 68% credibility.

FIG. 19. Contours of likelihoods as a function of fractional deviations in the frequency (Δf221=f221) and decay rate (Δτ221=τ221) of the
first overtone after the fundamental mode is removed from GW150914 [different Δt0 times from (a) to (d)]. The F 220 filter used to clean
the fundamental mode is built using the IMR-estimated Mf and χf . The fiducial values to evaluate the fractional deviations are set to
the IMR results. The red-dashed contours enclose the 2D 90% credible region. The cyan-shaded regions on the side stand for the 1D
90%-credible ranges of Δf221=f221 and Δτ221=τ221.

TABLE II. The measurements of Δf221=f221 and Δτ221=τ221
(68% credible intervals) with different choices of Δt0, based on
the “F 220 þ one-QNM” scheme and the results in Fig. 19. The
fiducial values are set to the IMR results.

Δt0 (ms) 0.0 0.1 0.4 0.77

Δf221=f221 −0.17þ0.17
−0.13 −0.18þ0.18

−0.17 −0.17þ0.22
−0.17 −0.18þ0.25

−0.22
Δτ221=τ221 0.38þ0.48

−0.39 0.20þ0.52
−0.42 0.40þ0.64

−0.53 0.33þ0.76
−0.64
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