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We discuss, in the context of alternative theories of gravity with nonminimal coupling between matter
and curvature, if inflationary solutions driven by a single scalar field can be reconciled with the swampland
conjectures about the emergence of de Sitter solutions in string theory. We find that the slow-roll conditions
are incompatible with the swampland conjectures for a fairly generic inflationary solution in such
alternative theories of gravity.
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I. INTRODUCTION

Swampland conjectures have been proposed in order to
distinguish consistent-looking low-energy effective field
theories that do not admit a suitable ultraviolet completion
in string theory—and, therefore, are said to be in the
swampland—from those that lie in the string theory land-
scape. This is particularly relevant as it is notoriously
difficult to obtain inflation from the fundamental fields that
naturally arise in string theory.
This difficulty is somewhat surprising as in N ¼ 1

supergravity—which, under certain conditions, can be
thought to be a low-energy limit of string theory—inflation
can be rather easily setup (see, for instance, Ref. [1]). In
fact, alternative routes to obtain inflation in string theory
have been discussed, but they tend to be more involved
(see, for instance, Ref. [2]). It is relevant to point out that
some phenomenologically viable string models, the ones
with an intermediate grand unified theory energy scale, ask
for a period of inflation for its full implementation [3].

The above-mentioned swampland conjectures are con-
cretely a broad range of assumptions about the conditions
required to admit local gauge symmetries and at least one
Planck mass particle so to account for the weakness of
gravity. One must also require that high-order terms in the
effective action do not admit superluminal propagation (see
Ref. [4] for a review). To our knowledge, there is no
assumption, among this set of requirements, concerning the
strong equivalence principle and implying that the gravity
theory is necessarily general relativity.
Thus, it is natural to ask if the swampland conjectures

hold for alternative theories of gravity in the context of
which single-field inflation can take place. This is the case
of gravity theories with nonminimal coupling between
matter and curvature [5], where inflationary solutions
can be found [6].
In order to be more specific about the conditions to be

met, let us review the swampland conjectures relevant for
our discussion. These conjectures impose some constraints
on scalar fields emerging at low energy, generically
denoted by ϕ [7,8], namely,

Δϕ
MP

< c1; ð1Þ
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MP
j∂ϕVj
V

> c2; ð2Þ

where Δϕ is the range of variation of the field, MP ≡
MPl=

ffiffiffiffiffiffi
8π

p
is the reduced Planck’s mass, VðϕÞ is the scalar

field potential, c1 and c2 are constants of order 1, and
we have used the notation ∂ϕV ≡ ∂V=∂ϕ. It has been
further argued that one should consider the more refined
condition [9–11]

M2
P

∂
2
ϕϕV

V
< −c3; ð3Þ

where c3 is also a constant of order 1 and ∂2ϕϕV ≡ ∂
2V=∂ϕ2.

Conditions given by Eqs. (2) and (3) can, in principle, be
compared with the onset conditions of single-field infla-
tion, which require that the parameters for the inflaton
field [12],

ϵ ¼ M2
P

2

�
∂ϕV

V

�
2

; ð4Þ

and

η ¼ M2
P

∂
2
ϕϕV

V
; ð5Þ

satisfy the slow-roll requirements ϵ ≪ 1 and jηj ≪ 1 at the
onset of inflation, so that at the end of inflation ϵ ∼ jηj ∼ 1.
These last requirements are consistent with constraints

arising from the Cosmic Microwave Background (CMB)
data [12] (see Ref. [13] for a detailed discussion),

ϵ < 0.0044; ð6Þ
and

η ¼ −0.015� 0.006; ð7Þ

whose values, clearly, do not match the requirements on c2
and c3.
Actually, it can be shown that the incompatibility

remains for whatever number of scalar fields drives
inflation, provided their kinetic energy terms are canonical
[13]. However, it is possible to reconcile the swampland
conjectures with observations in the context of warm
inflationary models [14,15] in the regime of strong dis-
sipation for one [16,17] or more scalar fields [13].
In what follows we shall consider the situation in the

context of a nonminimally coupled matter-curvature gravity
theory in a single-field inflationary setup to be specified
below. Thus, in the next section, we shall detail the
alternative gravity theory in consideration and the associated
inflationary model. We shall see that despite the similarities
between the slow-roll parameters in the nonminimal coupled
model and warm inflation, it is not possible, in the context of

the former, to satisfy the swampland conjectures. Finally, in
Sec. III, we present our conclusions.

II. THEORIES OF GRAVITY WITH NONMINIMAL
MATTER-CURVATURE COUPLING

String theory itself does give origin to more complex
gravitational theories than general relativity. Effective
models of string theory exhibit corrections to general
relativity that include, for instance, high-order curvature
terms and curvature terms coupled with derivatives of the
dilaton field (see, for instance, Refs. [18–22]).
However, independently from string and quantum gravity

considerations, alternative theories of gravity are motivated
as possible routes for addressing cosmological and astro-
physical phenomena, such as the accelerated expansion of
the Universe and the flattening of the rotation curves of
galaxies, instead of resorting to dark energy and dark matter.
Well studied models include fðRÞ gravity [23,24], where the
scalar curvature R in the Einstein–Hilbert action is replaced
by a more general function, fðRÞ. A further possibility to
generalize general relativity is to nonminimally couple
matter and curvature, substituting the Einstein–Hilbert action
by amore general form involving two functions of curvature,
f1ðRÞ and f2ðRÞ [5]. The function f1ðRÞ has a role
analogous to fðRÞ gravity theory, and the function f2ðRÞ
multiplies the matter Lagrangian density giving rise to a
nonminimal coupling between matter and geometry. This
possibility has been extensively studied in the context of dark
matter [25], dark energy [26], inflation [6], energy density
fluctuations [27], gravitational waves [28], and the cosmic
virial theorem [29]. This model has also been examined with
the Newton–Schrödinger approach [30,31].
Analytic extensions at R ¼ 0 of functions f1ðRÞ, f2ðRÞ

were also considered and constraints to the resulting
nonminimally coupled gravity model have been computed
through perturbations to the perihelion precession of
Mercury’s orbit [32].
It turns out that nonminimally coupled gravity modifies

the gravitational attraction by introducing both a fifth force
of the Yukawa type and an extra force which depends on the
spatial gradient of the Ricci scalar R. While the Yukawa
force is typical also of fðRÞ gravity, the existence of the
extra force is specific to nonminimally coupled gravity
[5,33], and it is an effect of the nonminimal coupling that
induces a nonvanishing covariant derivative of the energy-
momentum tensor. The arising Yukawa contribution can
give origin to static solutions even though in the absence of
pressure [31]. The Yukawa contribution was also examined
in the context of experiments in deep ocean [34] and
through the Cassini radiometric experiment [35].

A. Action, field equations and main features

In the present work we consider theories of gravity with
an action functional of the form [5]
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
f1ðRÞ þ f2ðRÞL

�
; ð8Þ

where fiðRÞ (with i ¼ 1, 2) are functions of the Ricci scalar
curvature R, L is the Lagrangian density of matter, and g is
the metric determinant. The Einstein–Hilbert action of
general relativity is recovered by taking f1ðRÞ ¼ R and
f2ðRÞ ¼ 1.
The variation of the action functional with respect to the

metric gμν yields the field equations

�
F1þ

2F2L
M2

P

�
Gμν ¼

f2
M2

P
TμνþΔμν

�
F1þ

2F2L
M2

P

�

þ1

2
gμν

�
f1−F1R−

2F2L
M2

P
R

�
; ð9Þ

where Gμν is the Einstein tensor, Fi ¼ ∂fi=∂R (i ¼ 1; 2),
and Δμν ≡∇μ∇μ − gμν∇α∇α.
A relevant feature of nonminimally coupled gravity is

that the energy-momentum tensor of matter is not cova-
riantly conserved. Indeed, applying the Bianchi identities to
Eq. (9), one obtains that

∇μTμν ¼
F2

f2
ðLgμν − TμνÞ∇μR; ð10Þ

meaning that the nonminimal coupling cannot be “gauged
away” by a convenient conformal transformation, being
thus a distinctive feature of the nonminimal model dis-
cussed here.

B. Inflation in the nonminimally coupled theory

As widely discussed, within general relativity the
swampland conjectures and the slow-roll conditions cannot
be matched for single-field cold inflation if adiabatic
scalar fluctuations are due to inflaton fluctuations (see,
for instance, Refs. [36,37]). In fact, as pointed out in
Ref. [37], there are scenarios where adiabatic cosmological
perturbations are due to additional degrees of freedom,
hence the consistency relation, which relates the scalar-
tensor ratio with the slow-roll parameter ϵ, is no longer
valid and, consequently, the second swampland condition,
given by Eq. (2), does not hold. Some of these scenarios
include the curvaton mechanism [38–41], the modulated
decay scenario [42,43], or the cases when, at the end of
inflation, the inflaton field acquires some critical value that
depends on an additional scalar field [44,45]. However,
throughout this work we shall assume that adiabatic
curvature perturbations are due only to the inflaton.
Given that the incompatibility of the swampland con-

jectures with the observations has been an object of critique
from the authors of Ref. [46] and that multifield infla-
tionary models show no contradiction with the CMB
features [47], it was logical to ask whether the swampland

conjectures would hold for many fields. In fact, multifield
cosmological models open interesting perspectives, for
instance, for unification of dark matter and dark energy
[48–51]. Two-field inflationary models were first considered
in the context of N ¼ 1 supergravity [52], and their
dynamics were scrutinized in Refs. [53,54] for a broader
class of models. In a broad context and in string theory, two-
field inflationary with different mass scales and an inter-
action term were considered in Refs. [55–57]. In the context
of the swampland conjectures, two-field inflationary models
were examined in Refs. [58,59], where in Ref. [58] nonca-
nonical kinetic energy terms have been considered. More
recently, it has been shown that multifield inflation cannot be
made compatible with the swampland conjectures without a
significant amount of dissipation [13].
In this paper, we will consider single-field cold inflation

within the nonminimally coupled theory of gravity defined
by the action functional (8).
Assuming the Friedmann–Lemaître–Robertson–Walker

metric,

ds2 ¼ −dt2 þ a2ðtÞdx2; ð11Þ

from Eqs. (9) and (10) we obtain

H2 ¼ 1

6F

�
2f2ρ
M2

P
− 6H _F − f1 þ FR

�
; ð12Þ

−2ð2 _H þ 3H2ÞF ¼ 2f2p
M2

P
þ 2F̈ þ 6H _F þ f1 − FR; ð13Þ

_ρþ 3Hðρþ pÞ ¼ −
F2

f2
ðρþ pÞ _R; ð14Þ

where aðtÞ is the scale factor, H ¼ _a=a is the Hubble
parameter, an overdot denotes a derivative with respect
to time t, and we have introduced the notation F≡
F1 þ 2F2p=M2

P. In the above equations, we have also
assumed that matter is represented by an homogeneous
scalar field ϕ with a Lagrangian density L ¼ p, for which
pressure and energy density are given by p ¼ _ϕ2=2 − VðϕÞ
and ρ ¼ _ϕ2=2þ VðϕÞ, respectively.
In what follows, we consider theories for which the pure

gravitational sector of the action has the Einstein–Hilbert
form; more specifically, we choose f1ðRÞ ¼ R, implying
F1 ¼ 1.
With this assumption, Eqs. (12) and (13) become

H2 ¼ 1

3ðM4
P − 4G2Þ ½ρf2ðM

2
P −GÞ − 3pf2G

− 6HðM2
P þ 2GÞ _G − 6GG̈�; ð15Þ

and
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_H ¼ −
f2ðρþ pÞ þ 2G̈
2ðM2

P þ 2GÞ ; ð16Þ

where the notation G≡ pF2 was introduced.
Let us now choose

f2ðRÞ ¼ 1þ α

�
R

6M2
P

�
3

; ð17Þ

where α is a positive dimensionless parameter that sets the
scale of the nonminimal coupling, which is not necessarily
the Planck scale. The cubic choice is the simplest power-
law type function which renders nontrivial solutions for
the Friedmann equation. In fact, for a linear monomial no
real solutions for that equation are found, and for the
quadratic scenario the standard solution in general rela-
tivity is surprisingly retrieved; as for cubic and higher
monomials, the behavior is similar among each choice, up
to small numerical factors [6]. Furthermore, we assume
that inflation is quasiexponential, i.e., V ≫ _ϕ2, imply-
ing ρ ≃ −p ≃ V.
Under these assumptions, and taking into account that

R ¼ 6ð _H þ 2H2Þ; ð18Þ

we obtain

f2 ¼ 1þ α

M6
P

ð8H6 þ 12H4 _H þ 6H2 _H2 þ _H3Þ; ð19Þ

G ¼ α

M6
P

�
2H4pþ 2H2 _Hpþ

_H2

2
p

�
; ð20Þ

_G ¼ α

M6
P

�
8H3 _Hpþ 4H _H2pþ 2H4 _pþ 2H2 _H _p

þ
_H2

2
_pþ 2H2Ḧpþ _H Ḧ p

�
; ð21Þ

G̈ ¼ α

M6
P

ð24H2 _H2pþ 4 _H3pþ 16H3 _H _pþ8H _H2 _p

þ 8H3Ḧpþ 12H _H Ḧ pþ 4H2Ḧ _pþ2 _H Ḧ _pþḦ2p

þ 2H4p̈þ 2H2 _H p̈þ
_H2

2
p̈þ 2H2Hð3Þpþ _HHð3ÞpÞ;

ð22Þ

whereHð3Þ denotes the third derivative ofH with respect to
time t.

Equation (15) can now be written as

3

�
M2

P−
4αH4

M6
P

p

��
M2

Pþ
4αH4

M6
P

p

�

≃ρ

�
1þ8αH6

M6
P

��
M2

P−
2αH4

M6
P

p

�
−3p2

�
1þ8αH6

M6
P

�
2αH4

M6
P

;

ð23Þ

or for M8
P − 4αH4V ≠ 0,

4αVH6 þ 3M8
PH

2 −M6
PV ≃ 0; ð24Þ

where we have taken only the first two terms of f2 and the
first term of G in Eqs. (19) and (20), respectively; all the
other terms in these equations, as well as the terms of _G and
G̈ in Eqs. (21) and (22), were neglected since they contain
time derivatives of H and p.
For the sake of simplicity, let us now introduce the

dimensionless variable

V̄ ¼ V
M4

P
: ð25Þ

Then, Eq. (24) becomes

4αV̄H6 þ 3M4
PH

2 −M6
PV̄ ≃ 0; ð26Þ

yielding the solution

H2 ≃
−1þ

� ffiffiffiffiffiffiffiffi
αV̄3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αV̄3

p �
2=3

2
ffiffiffiffiffiffi
αV̄

p � ffiffiffiffiffiffiffiffi
αV̄3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αV̄3

p �
1=3M

2
P: ð27Þ

Taking into account that the energy scale of inflation,
defined as Einf ¼ V1=4, is much smaller than the reduced
Planck mass, the right-hand side of Eq. (27) can be
expanded in power series of V̄ ≪ 1, yielding

H2 ≃
M2

P

3
V̄

�
1 −

4

27
αV̄3

�
; ð28Þ

where the first term on the right-hand side is the general
relativity term, and the second one is a correction due the
presence of a nonminimal coupling between matter and
curvature.
Let us now turn to Eq. (16). It can be written as

2

�
M2

P þ
4αH4

M6
P

p

�
_H ≃ −

�
1þ 8αH6

M6
P

�
ðρþ pÞ; ð29Þ
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or, equivalently,

_H ≃ −
ðM6

P þ 8αH6Þ _ϕ2

2ðM8
P − 4αM4

PH
4V̄Þ ; ð30Þ

where we have used ρþ p ¼ _ϕ2 and taken only the first
two terms of f2 and the first term ofG in Eqs. (19) and (20),
respectively; all the other terms in these equations, as well
as the terms of G̈ in Eq. (22), were neglected since they
contain time derivatives of H and p.
Using H2 given by Eq. (28) and expanding in power

series of V̄, Eq. (30) yields

_H ≃ −
_ϕ2

2M2
P

�
1þ 20

27
αV̄3

�
; ð31Þ

where, again, the first term on the right-hand side is the
general relativity term, and the second is a correction due to
the direct matter-curvature coupling.
Note that, if in Eq. (29) we had also taken for f2 the term

proportional to _H and for G̈ the term proportional to _H _p,
then we would have obtained in the right-hand side of
Eq. (31) an extra term proportional to _ϕ4V̄2; however, since
_ϕ2=M4

P ≪ V̄, this extra term can be neglected in compari-
son with the term proportional to _ϕ2V̄3.
Now, taking the time derivative of Eq. (28) and using

Eq. (31) to eliminate _H, we obtain

∂ϕV ≃ −3H _ϕ

�
1þ 20

27
αV̄3

��
1 −

16

27
αV̄3

�
−1
; ð32Þ

or expanding in power series of V̄,

∂ϕV ≃ −3H _ϕ

�
1þ 4

3
αV̄3

�
: ð33Þ

Taking a second time derivative, Eq. (33) becomes

∂
2
ϕϕV ≃ 3H2

�
1þ 4

3
αV̄3

��
−

_H
H2

−
ϕ̈
_ϕH

�
; ð34Þ

where we have neglected terms proportional to _ϕ2V̄2.
Using Eqs. (28), (31), (33), and (34), the quantities

_H=H2 and ϕ̈=ð _ϕHÞ can be expressed as

_H
H2

≃ ϵ

�
1 −

44

27
αV̄3

�
; ð35Þ

and

ϕ̈
_ϕH

≃ ϵ

�
1 −

44

27
αV̄3

�
− η

�
1 −

32

27
αV̄3

�
; ð36Þ

where the slow-roll parameters ϵ and η are given by
Eqs. (4) and (5).

Now, taking into account that in the slow-roll infla-
tionary regime j _Hj=H2 ≪ 1 and jϕ̈=ð _ϕHÞj ≪ 1, we con-
clude that

ϵ ≪ 1þ 44

27
αV̄3 and jηj ≪ 1þ 32

27
αV̄3: ð37Þ

Since V̄ ≡ V=M4
P ≪ 1 and assuming for naturalness that

α ¼ Oð1Þ, we conclude that in the nonminimally coupled
theory of gravity under consideration, the slow-roll param-
eters satisfy the conditions ϵ ≪ 1 and jηj ≪ 1. Because
these parameters are related to the constants c2 and c3
arising within the de Sitter swampland conjectures [see
Eqs. (1) and (2)] through the relations

c22 < 2ϵ and c3 < jηj; ð38Þ

we arrive at the conclusion that c2 ≪ 1 and c3 ≪ 1 during a
quasiexponential inflationary period.
Thus, we clearly see that the swampland conjectures

cannot be met for inflation in the context of theories of
gravity with nonminimally coupled matter and curvature.

III. DISCUSSION AND CONCLUSIONS

In this work, in the context of the nonminimally coupled
matter-curvature theory of gravity, we have considered the
compatibility of the slow-roll conditions of inflation and
the de Sitter swampland conjectures.
Despite the specificities of the nonminimally coupled

theory and the fact that it can lead to an inflationary regime,
which differs from the one in general relativity for the
choice of the f2ðRÞ-function such as in Eq. (17), we find
that under quite general conditions the requirements for the
inflaton potential are still very much controlled by the slow-
roll conditions. Even though it is conceivable that the free
parameter α introduced in Eq. (17), which sets the impact of
the nonminimal coupling, could be greater than 1, it cannot
overcome the typical scale of the inflaton potential and its
smallness in comparison with the Planck scale. Of course,
for naturalness reasons, we assume that α ¼ Oð1Þ. Thus,
we conclude that the de Sitter swampland conditions
cannot be met in the context of gravity theories with
nonminimal coupling between matter and curvature (recall
that, as mentioned above, we are assuming that adiabatic
curvature perturbations are only due to the inflaton scalar
field). We expect these conclusions to hold for any number
of inflaton fields as the nonminimal coupling function
f2ðRÞ acts on a linear matter Lagrangian, in contrast with
fðR;LÞ theories, for instance, where nonlinear matter
Lagrangian terms could appear. Furthermore, we expect
that the warm inflation scenario results [13,60] would hold
within these alternative theories of gravity, as the effect
of the nonminimal coupling, proportional to the slow-roll
parameter in the equation of motion for the inflaton [6], is
not expected to dominate over the warm inflation term.
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