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Field perturbations of a curved background spacetime generally propagate not only at the speed of light
but also at all smaller velocities. This so-called Hadamard tail contribution to wave propagation is relevant
in various settings, from classical self-force calculations to communication between quantum particle
detectors. One method for calculating this tail contribution is by integrating the homogeneous wave
equation using characteristic initial data on the light cone. However, to the best of our knowledge, this
method has never been implemented before except in the special case of conformally flat spacetimes, where
null geodesics emanating from a point do not cross. In this work, we implement this method on Plebański-
Hacyan spacetime, M2 × S2, a black hole toy model which has caustics. We obtain new results in this
spacetime by calculating the Hadamard tail of a scalar field everywhere where it is defined (namely, in the
maximal normal neighborhood of an arbitrary point) and investigate how it varies for various values of the
coupling constant. This serves as a proof-of-concept for the characteristic initial data method on spacetimes
where null geodesics emanating from a point do cross.
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I. INTRODUCTION

Field perturbations of a curved background spacetime
obey a wave equation which dictates that they propagate
“mainly” along null geodesics. However, in general, there is
also a part of the field, called the tail, which propagates
slower than light (even in the case of a massless field). In
other words, the strong Huygens principle is generally
violated in curved spacetimes [1,2]. This tail is important
for different reasons. For example, it is useful for calculating
the self-force [3] on a point particle via the method of
matched expansions [4], where the retarded Green function
of the wave equation needs to be regularized [5,6]. Also, the
tailmaygive rise to an interesting relevant contribution to the
communication between quantum particle detectors [7,8].
Mathematically, the tail term may be defined in local

neighborhoods of spacetime points via the Hadamard
form [9] of the retarded Green function. Specifically, the
tail is the term in the Hadamard form which has support
only inside the (past) light cone of the field point. Where
the tail term is nonzero, and henceforth focusing on the case
of a scalar field for simplicity, it is equal to a bitensor
Vðx; x0Þ. This tail bitensor satisfies the homogeneous wave
equation, constrained by its value on the light cone, which

satisfies a transport equation (along null geodesics) with a
given initial condition [3].
The Hadamard tail bitensor Vðx; x0Þ has been obtained in

closed form in only a very few settings of high symmetry—
specifically, and to the best of our knowledge, only when
the background spacetime is flat [10] or conformally flat,1

such as simple (spatially flat) cosmological model space-
times [11,12], including (a patch of) de Sitter [13]. A
simplifying feature of flat and conformally flat spacetimes
is that null geodesics emanating from a point do not cross
each other. Furthermore, the maximal symmetry of, in
particular, both flat and de Sitter spacetimes means that it is
possible to rewrite the partial differential wave equations in
these spacetimes as ordinary differential equations (where
the independent variable is the geodesic distance), which
are much easier to solve. However, in other spacetimes
which are less symmetric and where null geodesics
emanating from a point do cross, such as black hole
spacetimes, no closed form expression for Vðx; x0Þ is
known and, instead, one needs to resort to numerical or
approximating analytical techniques. Focusing on black
hole spacetimes, some of these techniques have been quite
successful in calculating Vðx; x0Þ in Schwarzschild space-
time [5,6,14–16] but face much more significant difficulties
in the case of Kerr. It is thus important to develop
alternative methods for calculating the tail term.
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1In these cases, the field considered is nonconformal, so that
there exists a nontrivial tail.
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In this paper we pursue the endeavor of calculating
Vðx; x0Þ by directly (numerically) integrating the (homo-
geneous) wave equation with given characteristic initial
data (CID) on the light cone. Specifically, we apply this
method to the case of a scalar field propagating on
Plebański-Hacyan spacetime (PH), M2 × S2 [17]. From a
physical point of view, this spacetime serves as a black hole
toy-model and it captures the important feature that null
geodesics emanating from a point do cross (in fact,
similarly to Schwarzschild, there exist caustics where an
S2-envelope of null geodesics focus). In its turn, from a
technical point of view, the fact that PH is not a maximally
symmetric spacetime but is the direct product of two (two-
dimensional) maximally symmetric spacetimes (namely,
M2 and S2) means that its wave equation, while it is not an
ordinary differential equation as in flat or de Sitter space-
times, is reduced to a two-dimensional PDE; furthermore,
the value of Vðx; x0Þ on the light cone is known in closed
form [18]. Our calculation of Vðx; x0Þ in the specific case of
a massless field with a coupling constant value of ξ ¼ 1=8
and x and x0 on static paths, agrees with [18], where V is
calculated via a completely different method which
involves infinite sums and integrals. This provides a check
of our method and calculation and serves as a proof-of-
concept for this method. We also obtain new results for V in
PH: for any pair of spacetime points where it is defined for
ξ ¼ 1=8 as well as for ξ ¼ 0, 1=6, 1=4 and 1=2.
For solving the homogeneous (two-dimensional) wave

equation in PH by evolving CID we use a finite-difference
scheme. References [19,20] proposed and implemented a
CID scheme for obtaining the multipolar modes of the field
(or retarded Green function) in Schwarzschild spacetime.
We adapted this scheme to calculate the full Vðx; x0Þ in PH
spacetime. We note that some peculiarities of the PDE
satisfied by V in PH will also be present in the PDE
satisfied by V in Schwarzschild, so that our adaptation of
the scheme will probably be useful for any future inves-
tigation in the latter spacetime. Furthermore, we developed
the scheme to higher order than in [19,20]. Throughout the
paper we adopt the convention that, unless otherwise
explicitly specified, the “order” of a scheme will refer to
the local truncation error (LTE); thus, in particular, a “third
(fourth) order scheme” will refer to a numerical scheme
with LTE of order three (four).
The rest of this paper is organized as follows. In Sec. II

we introduce the Hadamard form and give the explicit
forms of the scalar wave equation and some Hadamard
quantities in PH. In Sec. III we present the characteristic
initial value problem in PH, our finite difference (third and
fourth order) schemes for solving it and the results of our
calculations. We conclude the main part of the text in
Sec. IV with a brief discussion. Finally, we have two
appendixes. In Appendix A we provide extra equations
which were needed for deriving a scheme in the main text
but not for implementing it. In Appendix B we lay out the

ground work for developing a scheme of order higher (fifth,
and even, sixth) than in the main text.
We choose units such that G ¼ c ¼ 1.

II. WAVE EQUATION, HADAMARD FORM,
AND TAIL

A. A general spacetime

A scalar field perturbation of a background spacetime
satisfies a wave equation. Specifically, its retarded Green
function satisfies:

ð□ −m2 − ξRÞGretðx; x0Þ ¼ −4πδ4ðx; x0Þ; ð1Þ

where m is the mass of the field, R is the Ricci scalar, ξ is a
coupling constant and x and x0 are, respectively, the field
and base spacetime points.
The Hadamard form provides an analytic expression for

the singularities of the retarded Green function when x is in
a local (normal2) neighborhood of x0 [3,13,21]:

Gretðx; x0Þ
¼ ½Uðx; x0Þδðσðx; x0ÞÞ þ Vðx; x0Þθð−σðx; x0ÞÞ�θþðx; x0Þ;

ð2Þ

where δ and θ are, respectively, the Dirac delta and
Heaviside distributions,

θþðx; x0Þ≡
�
1 if x lies to the future of x0;

0 otherwise;

and U and V are biscalars which are smooth in that local
neighborhood. Here, σðx; x0Þ is Synge’s world-function,
i.e., one-half of the square of the geodesic distance along
the unique geodesic connecting x0 and x. Thus, clearly, the
term with U in Eq. (2) has support only on the light cone
whereas the term with V has support inside the light cone:
this is the tail term which is the focus of this paper.
The Hadamard tail biscalar V satisfies the homogeneous

wave equation:

ð□ −m2 − ξRÞVðx; x0Þ ¼ 0; ð3Þ

constrained by its value on the light cone:

V̂;ασ
α þ 1

2
ðσαα − 2ÞV̂ ¼ 1

2
ð□ −m2 − ξRÞU

���
σ¼0

; ð4Þ

where V̂ ≡ Vjσ¼0 and σ
α
α ≡∇α∇ασ. Equation (4) is in fact

a transport equation along a light cone-generating null
geodesic. It is to be solved together with the initial

2A normal neighborhood of x0 is a region containing x0 such
that every x in that region is connected to x0 by a unique geodesic
which lies within the region.
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condition corresponding to the value of V at coincidence
(i.e., at x0 ¼ x):

Vðx; xÞ ¼ 1

12
ð1 − 6ξÞRðxÞ − 1

2
m2; ð5Þ

which follows partly from the fact that V is smooth at
coincidence. Thus, the tail biscalar Vðx; x0Þ satisfies the
initial value problem consisting of the PDE (3) together
with the CID provided by solving the transport equation (4)
together with the initial condition (5). This guarantees that
the solution Vðx; x0Þ exists and is unique.
One method for trying to calculate Vðx; x0Þ is to express

it as an asymptotic series:

Vðx; x0Þ ¼
X∞
n¼0

νnðx; x0Þσn; ð6Þ

where the coefficients νnðx; x0Þ satisfy certain recurrence
relations in the form of transport equations [16,21].
Reference [15] provided a complete procedure for calcu-
lating νn to arbitrary n by solving a system of transport
equations. Unfortunately, however, as the coefficient
order n increases, these transport equations become
increasingly hard to solve (even numerically and for low
n). Furthermore, although the series in Eq. (6) converges
uniformly in subregions of normal neighborhoods [13,21],
it is not actually guaranteed to converge in the whole
maximal normal neighborhood of a point. A more practical
method for calculating Vðx; x0Þ in spherically symmetric
spacetimes is to expand this bitensor in small coordinate
distance between x and x0 [14]. Although this method has
proven to be very useful in Schwarzschild spacetime [5,6],
it is naturally adapted to spherical symmetry and so it still
needs to be developed in Kerr spacetime.
In this paper, we shall instead return to the original initial

value problem for calculating the Hadamard tail.
Specifically, known Hadamard coefficients3 νn in the series
in Eq. (6) shall provide the CID which we shall then use in a
numerical scheme for solving the full wave Eq. (3) for
Vðx; x0Þ for any pair of points in PH spacetime.

B. PH spacetime

PH spacetime is the direct product of two-dimensional
Minkowski spacetimeM2 and the two-sphere S2 [17]. This
becomes manifest when writing its line element as4

ds2 ¼ −dt2 þ dy2 þ dΩ2; ð7Þ
where

dΩ2 ¼ dθ2 þ sin2 θdφ2;

with ðt; yÞ ∈ R2 global inertial coordinates in M2, and
θ ∈ ½0; π� and φ ∈ ð−π; π� the standard angular coordinates
in S2. The Ricci scalar of PH is R ¼ 2.
PH being the direct product M2 × S2, its world function

σ is readily given [18] as the sum of the world functions in
M2 and S2, respectively σM2

and σS2 : σðx; x0Þ ¼ σM2
þ σS2 .

In their turn, these world functions are given, in normal
neighborhoods, by

σM2
¼ −

1

2
η2 ≡ −

1

2
ðt − t0Þ2 þ 1

2
ðy − y0Þ2 ð8Þ

and

σS2 ¼ γ2

2
; ð9Þ

where

cos γ ≡ cos θ cos θ0 þ sin θ sin θ0 cosðφ − φ0Þ: ð10Þ
We thus have

σ¼−
1

2
η2þ1

2
γ2¼−

1

2
ðt− t0Þ2þ1

2
ðy−y0Þ2þ1

2
γ2: ð11Þ

Clearly, η ∈ R is the geodesic distance in the whole of M2.
In its turn, γ ∈ ½0; π� is the geodesic (or angle) separation in
S2, while it also is the geodesic distance in normal
neighborhoods of S2 (see Refs. [22,23] for this subtle
but important distinction between geodesic separation and
geodesic distance in the context of Schwarzschild space-
time). Null geodesics (for which σ ¼ 0 in normal neigh-
borhoods) focus at the first caustic points: η ¼ γ ¼ π. After
crossing the first caustic, the envelope of null geodesics
emanating from a base point x0 forms the (future) boundary
of the maximal normal neighborhood of the base point; this
boundary is given by η ¼ 2π − γ ∈ ½π; 2π� (see the left
panel of Fig. 1 in [18]). Since Vðx; x0Þ is only defined in
normal neighborhoods, this will also be part of the
boundary of the grid in our numerical scheme. The other
part is given by the null hypersurface corresponding to the
envelope of future-directed direct null geodesics, i.e., by
η ¼ γ ∈ ½0; πÞ (so that it is σ ¼ 0 with η ≥ 0). That is, the
future boundary η ¼ 2π − γ ∈ ½π; 2π� of the maximal
normal neighborhood of an arbitrary base point together
with the boundary η ¼ γ ∈ ½0; πÞ of the causal future of the
base point form the boundary of our numerical grid.
It is straightforward to obtain the d’Alembertian in PH in

the above coordinates:

□ ¼ □M2
þ□S2 ;

□M2
¼ −

∂
2

∂t2
þ ∂

2

∂y2
;

□S2 ¼ 1

sin θ
∂

∂θ
sin θ

∂

∂θ
þ 1

sin2θ
∂
2

∂φ2
: ð12Þ

3These coefficients are not independent from each other, as we
later explain.

4We make the units choice that the radius of the two-spheres is
equal to one.
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Now, given that both M2 and S2 are maximally sym-
metric manifolds, it is easy to see that the above operators
□M2

and □S2 become ordinary differential operators when
rewritten in terms of the corresponding geodesic distances.
Explicitly,

□M2
¼ −

∂
2

∂η2
−
1

η

∂

∂η
ð13Þ

and

□S2 ¼ ∂
2

∂γ2
þ cot γ

∂

∂γ
¼ 1

sin γ
∂

∂γ

�
sin γ

∂

∂γ

�
: ð14Þ

The wave equation (3) thus becomes

�
∂
2

∂γ2
þ cot γ

∂

∂γ
−

∂
2

∂η2
−
1

η

∂

∂η
− ζ

�
Vðx; x0Þ ¼ 0; ð15Þ

where ζ ≡m2 þ ξR ¼ m2 þ 2ξ. Thus, in PH, we have
reduced the wave equation, which is generally a four-
dimensional PDE, to a two-dimensional PDE.
In [18], it was found that, in PH, it is V ¼ Vðη; γÞ and

νn ¼ νnðγÞ, ∀ n ≥ 0,5 and closed form expressions for
some Hadamard quantities were obtained. Specifically, it
was found that

Uðx; x0Þ ¼ UðγÞ ¼
���� γ

sin γ

����
1=2

; ð16Þ

and, by solving Eqs. (4) and (5), that

V̂ ¼ ν0ðγÞ ¼
1

8
UðγÞ

�
1 − 4ζ þ 1

γ2
−
cot γ
γ

�
: ð17Þ

The higher orders νn, n > 0, can in principle be obtained
from νn−1 via a recurrence relation. For the specific case
ζ ¼ 1=4 it was obtained that

ν1 ¼UðγÞ2γ
2− 3csc2ðγÞ½6γ2þ 2γ sinð2γÞþ 5cosð2γÞ− 5�

256γ4
;

ð18Þ

for which regularity of ν1 at γ ¼ 0 was required.
We note that V̂ is regular for all γ ∈ ½0; πÞ but it diverges

(like ðπ − γÞ−3=2) at the antipodal points γ ¼ π. These
antipodal points, however, lie outside maximal normal
neighborhoods: As is manifest, S2-envelopes of null geo-
desics focus along γ ¼ π (a line of caustics), as in
Schwarzschild spacetime. It has been observed [18,23–28]

that, when this happens, the retardedGreen function diverges
when x0 and x are connected by a null geodesic (even beyond
normal neighborhoods) displaying the following global
fourfold (leading) singularity structure6: δðσÞ→PVð1=σÞ→
−δðσÞ→−PVð1=σÞ→δðσÞ…, where PV denotes the prin-
cipal value distribution. SinceV is equal toGret in a region of
causal separation which lies inside a normal neighborhood,
one expects V to diverge like Gret, i.e. as PVð1=σÞ, when
approaching the end of the normal neighborhood in this
direction. As we shall see in Sec. III C, the divergence of V̂ at
γ ¼ π [seeEq. (17)] propagates in thismanner throughout the
end of the maximal normal neighborhood of the base point.
The upshot is that, in PH, we have reduced the original

wave equation to a two-dimensional PDE [see Eq. (15)],
and that the Hadamard tail V̂ on the light cone is known in
closed form [see Eq. (17), as well as the higher order in
Eq. (18)]. In the next section we will use these advanta-
geous features to numerically solve the wave equation (15)
and thus to calculate V inside the light cone.

III. SOLVING THE CHARACTERISTIC INITIAL
VALUE PROBLEM FOR THE HADAMARD TAIL

In this work, we will directly solve the wave equa-
tion (15) as a characteristic initial value problem for the tail
biscalar V. More concretely, we shall develop a numerical
scheme which will evolve initial data on the light cone,
i.e., on

σ ¼ −
1

2
η2 þ 1

2
γ2 ¼ 0:

This CID is given by Eqs. (6), (17), and (18). This section
provides the details of the scheme and the results. We split
this section into three subsections: we first rewrite the wave
equation in variables suitable to the CID problem; we then
describe the numerical scheme; finally, we show our results
for V.

A. Wave equation as a characteristic
initial value problem

Let us introduce the variables

u≡ η − γ; v≡ ηþ γ; ð19Þ
which are naturally adapted to the characteristic initial
value problem, since σ ¼ −uv=2. In these variables, the
d’Alembertian in PH [see Eq. (15)] becomes

□ ¼ −4
∂
2

∂u∂v
−Q

∂

∂v
− S

∂

∂u
; ð20Þ

5Even though we wrote νn ¼ νnðx; x0Þ in Eq. (6), the obvious
change of notation in its arguments to νn ¼ νnðγÞ is justified by
the symmetries of PH.

6Here, σ refers to a well-defined extension of the world
function outside normal neighborhoods [22,23]. We also note
that this structure does not hold at caustics [23] and that the
subleading order (in Schwarzschild and outside caustics) is given
in [23].
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where

Q≡ 2

vþ u
− cot

v − u
2

;

S≡ 2

vþ u
þ cot

v − u
2

:

Therefore, Eq. (15) turns into

�
4

∂
2

∂u∂v
þQ

∂

∂v
þ S

∂

∂u
þ ζ

�
Vðx; x0Þ ¼ 0: ð21Þ

We note the appearance of first-order derivatives with
respect to u and v, arising from the first-order derivatives
with respect to η and γ in Eq. (15). We also note that, even
though u and v range over the reals to cover the whole
spacetime, the domain over which we solve Eq. (21) is
limited by the range of γ ∈ ½0; π� and the region where V is
defined. In the next subsection we detail how these
constraints are reflected on the domains for u and v.
Let us now turn to the CID. On the u-v plane (see Fig. 1),

the light cone of the origin u ¼ v ¼ 0 (i.e., η ¼ γ ¼ 0,
which corresponds to coincidence, x ¼ x0) is located along
the u ¼ 0 and v ¼ 0 lines. Thus, V̂ in terms of u and v, is
given by

Vju¼0 ¼ ν0

�
v
2

�
;

Vjv¼0 ¼ ν0

�
−
u
2

�
; ð22Þ

where ν0 ¼ ν0ðγÞ is given in Eq. (17).
The wave Eq. (21), together with the CID (22) con-

stitutes our characteristic initial value problem. We next
present the finite difference method that we shall use to
solve it.

B. Numerical scheme

There have already been some implementations of CID
schemes for solving the two-dimensional PDE [not con-
taining first order derivatives, unlike Eq. (21)] which is
obeyed by the (smooth factor7 in the) l-multipolar modes
of the retarded Green function in Schwarzschild spacetime
(see, e.g., Eq. (C2) in [8]). Let us briefly discuss these
schemes. In Ref. [19], the authors implemented a fourth
order scheme (previously proposed by Lousto and Price
[20]), that is, with LTE of order h4, where 2h is the stepsize
of the grid (see Fig. 1). In order to calculate the value of a
field mode at a point, their scheme required field mode data
on the immediately “previous” grid points—e.g., on the
points S, E and W in order to obtain the value of the field
mode at the point N in Fig. 1. In [8], together with

collaborators, we extended the scheme in [19] from fourth
to sixth order at the expense of requiring the value of the
field mode and of its first-order derivatives at the same grid
points as in the lower-order scheme of [19]. More recently,
Ref. [29] came up with another scheme which they
implemented to sixth order (although in principle can be
generalized to any higher order) at the expense of requiring
the value of the field mode at more points than in
Refs. [8,19].
In our current work in PH, the PDE (21) is also two-

dimensional but, unlike in the case of Schwarzschild just
reviewed, and as we have emphasized, it contains first order
derivatives and it is satisfied by the full field (instead of
multipolar modes). We note that first order derivatives also
appear in Schwarzschild spacetime in the PDE satisfied by
the full field as well as in the Teukolsky PDE satisfied by
multipolar field modes for fields of nonzero spin [30]. For
solving Eq. (21), we choose to essentially follow the fourth
order scheme of Ref. [8] and adapt it to our specific PDE
for the full field instead of just its modes.
Another difference between our setup and that in

Refs. [8,19,29] is that, since Eq. (21) is obeyed by the
Hadamard tail V, we only solve it inside the maximal
normal neighborhood of an arbitrary point x. Our u-v plane
may be seen as corresponding to the various x0 points given
a fixed (arbitrary) point x (the origin u ¼ v ¼ 0 corre-
sponding to coincidence x ¼ x0). Therefore, the indepen-
dent variables should only range over the finite intervals
v ∈ ½0; 2πÞ and u ∈ ½0; v� (dictated by the range γ ∈ ½0; πÞ
inside the maximal normal neighborhood). This is unlike
the problem in Refs. [8,19,29], which is for the retarded
Green function, which is well defined for any pair of points
anywhere in spacetime, and so with independent variables
which are null coordinates in principle each ranging over
the whole real line. In order to be able to better map our

FIG. 1. Grid distribution for a finite difference scheme for
solving a two-dimensional PDE where u and v denote the
independent variables and 2h is the stepsize.

7The other factor contains nonsmooth Heaviside distributions.
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problem to that in Refs. [8,19,29] and the CID problem in
Schwarzschild in general, we shall henceforth consider,
without loss of generality, that the PH spacetime points x
and x0 have θ ¼ θ0 ¼ π=2 and φ0 ¼ 0 and, further, that
γ ≡ φ ∈ ð−π;þπÞ denotes the azimuthal angle of x
(instead of the angular separation, which is in ½0; π�, as
until now). The variables u and v continue to be defined as
in (19) but now with γ ∈ ð−π;þπÞ being an azimuthal
angle. This means that the region of interest for calculating
Vðx; x0Þ, which is the part of the region of causal separation
which lies inside the maximal normal neighborhood, is
bounded by η ¼ 2π − γ together with η ¼ γ if γ ∈ ½0; π�,8
as explained in Sec. II B, and by η ¼ 2π þ γ together with
η ¼ −γ if γ ∈ ½−π; 0�8 after extending the range of γ into the
negative line. In the CID variables, this means that the
region of interest covered by the numerical grid, is given
by u; v ∈ ½0; 2πÞ.
We next describe our scheme and its implementation for

obtaining V for various values of ζ. We start by describing a
lower order version of the scheme, namely, Oðh3Þ of
accuracy. We do so in order to more clearly highlight
the key distinction in solving the PDE (21), containing first-
order derivatives, as opposed to the PDE for multipolar
modes of Refs. [8,19,29], not containing any first-order
derivatives. We then describe the method at the higher order
Oðh4Þ of accuracy. In Appendix B we describe how the
scheme can be extended to fifth, and even, sixth order.

1. CID scheme setup

In order to solve the wave Eq. (21) with the CID in
Eq. (22), we first establish a uniform grid of points on the
u-v plane, which we show in Fig. 1. The spacing between
grid points is 2h. The next step is to integrate Eq. (21) over
an arbitrary S-E-N-W square in the grid (see Fig. 1); we
seek the value of V atN assuming that its values at S, E, and
W are known. We have

4

Z
SENW

∂
2V

∂v∂u
dvduþ

Z
SENW

Q
∂V
∂v

dvdu

þ
Z

SENW

S
∂V
∂u

dvduþ ζ

Z
SENW

Vdvdu ¼ 0: ð23Þ

Henceforth, a subindex N, E, W, S, or O in a quantity
means that quantity is to be evaluated at the corresponding
point on the grid. The first integral in the left-hand side of
Eq. (23) can be readily evaluated exactly as

Z
SENW

∂
2V

∂v∂u
dvdu ¼ VN − VE − VW þ VS; ð24Þ

where, as mentioned, the subindices N, E, W, and S in V
refer to the point on the grid where V is to be evaluated. For
the remaining three integrals, we Taylor expand the
integrands about the central point O ¼ ðuO; vOÞ in the
square. A function Fðv; uÞ which is analytic at the point O
admits a Taylor series expansion about O:

Fðv; uÞ ¼
X

0≤m;n≤K
mþn≤K

1

m!n!

�
∂
mþnF

∂vm∂un

�
O
ðv − v0Þmðu − u0Þn

þOðhKþ1Þ; ð25Þ
where K determines the order in the expansion. We expand
in this manner the last three integrands in Eq. (23)
(replacing F in Eq. (25) by the appropriate functions) to
the desired order.

2. Third order CID scheme

Using (25) to order h2, the last three integrals in (23) are
given by

Z
SENW

Q
∂V
∂v

dvdu ¼ 4h2QO

�
∂V
∂v

�
O
þOðh4Þ; ð26Þ

Z
SENW

S
∂V
∂u

dvdu ¼ 4h2SO

�
∂V
∂u

�
O
þOðh4Þ; ð27Þ

Z
SENW

Vdvdu ¼ 4h2VO þOðh4Þ; ð28Þ

where, again, the subindexO indicates that the correspond-
ing quantity is evaluated at the point O. In this result we
only considered the first two leading orders in the Taylor
series to obtain the integrals to order h3. However, it can be
shown that the contribution to the integrals from the next-
to-leading order term in the Taylor series vanishes.
In order to calculate V and its derivatives at the point O,

we evaluate its Taylor expansion at the points E, W, and S
to order h. This allows us to construct a system of three
equations where the unknown variables are VO, ð∂V∂uÞO and
ð∂V
∂vÞO. We find:

VO ¼ VE þ VW

2
þOðh2Þ; ð29Þ

�
∂V
∂u

�
O
¼ VW − VS

2h
þOðhÞ; ð30Þ

�
∂V
∂v

�
O
¼ VE − VS

2h
þOðhÞ: ð31Þ

In this way, by using Eqs. (26)–(31) and Eq. (23),
we find that the sought-after value of V at the point N is
given by

8Here we allow γ to take on the value π (respectively −π) so as
to refer to the boundary of the region of interest.
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VN ¼−VS−
�
VEþVW −2VS

uOþvO

−
1

2
ðVE−VWÞcot

vO−uO
2

�
h

þ
�
1−

ζ

2
h2
�
ðVEþVWÞþOðh3Þ; for γO ≠ 0: ð32Þ

If we compare this expression for VN with its analogue for
the multipolar modes of the retarded Green function in
Schwarzschild in Refs. [8,19,29], we immediately note the
additional term linear in h in Eq. (32). This term is related
with the two first order derivatives in Eq. (21), absent in
[8,19,29]. Furthermore, the order in the right-hand side of
Eqs. (30) and (31) is connected with the LTE in Eq. (32)
being third order (it is easy to check that the coefficient of
h3 is not zero), instead of fourth order as in Refs. [8,19,29].
Another key difference between our case and the

multipolar-mode analogue appears when uO ¼ vO (i.e.,
along γ ¼ 0), as the term in Eq. (32) with the cot function is
not well-defined there. Applying the spherical symmetry of
M2 × S2, it follows that Vðη; γÞ ¼ Vðη;−γÞ and so VE ¼
VW for any square with a central point such that uO ¼ vO.
Along γ ¼ 0, the cot term can thus be calculated by taking
the limit γO ≡ vO−uO

2
→ 0 as

½ðVE − VWÞ cot γ0�γ0¼0 ¼ lim
γ0→0

VE − VW

tanðγ0Þ
¼ OðhÞ: ð33Þ

In the last equality we have applied L’Hôpital’s rule and
expressed VE and VW as small γ-expansions. With this, it
follows that for all squares with uO ¼ vO, VN is given by

VN ¼ −VS − h

�
VE − VS

vO

�
þ ð2 − ζh2ÞVE þOðh3Þ;

for γO ¼ 0; ð34Þ

where we have set VW ¼ VE due to the spherical symmetry
as mentioned above.
With Eq. (34) for VN along γ ¼ 0, we can reformulate

the CID problem in the following way. We first split the
grid in Fig. 1 into two triangles, one on each side of the
u ¼ v diagonal (i.e., γ ¼ 0). For the choice that we make of
applying the scheme to points on the diagonal and bottom
triangle, VN in any square with uO ¼ vO only depends on
VE and VS [see Eq. (34)]. This implies that, for the choice
of bottom triangle, and after having imposed the symmetry
along γ ¼ 0, we only require Vju¼0 as initial data. As
already pointed out, the values at points in the top triangle
can just be obtained using the Vðη; γÞ ¼ Vðη;−γÞ sym-
metry. Alternatively, one could choose to apply the scheme
to points on the diagonal and the top triangle, in which case
we would have the opposite situation: the only required
initial data in that case would be Vjv¼0. Regardless of the
choice of triangle, such implementation of the spherical

symmetry reduces by (almost) a half the amount of data to
calculate.
To summarize, our third order CID scheme consists of

calculating VN at the grid points below the γ ¼ 0 line by
using Eq. (32) and at grid points along γ ¼ 0 by using
Eq. (34). We start by inserting the value of ν0 into (22) in
order to obtain the CID along u ¼ 0 (corresponding to our
choice of lower triangle). We then evolve the field V for
increasing values of u by using (32) until we reach γO ¼ 0;
finally, at γO ¼ 0, we switch to using (34). In the next
subsection we develop a scheme of one higher order.

3. Fourth order CID scheme

A fourth order CID scheme of course requires the local
errors for the approximations to the integrals in Eq. (23) to be
Oðh4Þ, as is already the case in Eqs. (26)–(28). However,
expressions (30) and (31) for the derivatives needed in (26)–
(28) lowered the order of the scheme in the previous
subsection to third order. Therefore, in order to obtain a
fourth order CID scheme, we need to include the next higher
order in Eqs. (30) and (31). Including these next higher order
terms requires obtaining higher (than in the third order
scheme) Taylor coefficients in Eq. (25) (with F ¼ V). For
instance, we shall see later (see Eqs. (45) and (46) below)
that obtaining VN toOðh4Þ along γ ¼ 0 requires the second
order derivatives of V at the point O. More specifically, for
our fourth order CID scheme, we need to calculate seven
more Taylor coefficients in addition to the three given in
Eqs. (29)–(31). In order to obtain these coefficients [together
with higher order versions of Eqs. (29)–(31)] we construct a
system of 12 equations as follows.We first evaluate Eq. (25)
(with F ¼ V) up to order h3 (inclusive) and its first order
derivatives at the points N, E, W, and S. Ten of these 12
equations are then used to expressV and its first, second and
third order derivatives at the pointO in terms ofV and its first
order derivatives at the points E, W, N, and S. Out of these
ten equations, the following five yield the first and second
order derivatives at the pointO, all ofwhichwe shall directly
use in our scheme:

8h

�
∂V
∂u

�
O
¼ −5VS − VE þ 5VW þ VN − 2h

�
∂V
∂u

þ ∂V
∂v

�
S

− 2h

�
∂V
∂u

−
∂V
∂v

�
W
þOðh4Þ; ð35Þ

8h

�
∂V
∂v

�
O
¼ −5VS þ 5VE þ VW − VN − 2h

�
∂V
∂u

þ ∂V
∂v

�
S

þ 2h

�
∂V
∂u

−
∂V
∂v

�
E
þOðh4Þ; ð36Þ

4h2
�
∂
2V
∂u2

�
O
¼ VS − VE − VW þ VN þ 2h

�
∂V
∂u

�
E

− 2h

�
∂V
∂u

�
W
þOðh4Þ; ð37Þ
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4h2
�
∂
2V
∂v2

�
O
¼ VS − VE − VW þ VN − 2h

�
∂V
∂v

�
E

þ 2h

�
∂V
∂v

�
W
þOðh4Þ; ð38Þ

4h2
�
∂
2V

∂v∂u

�
O
¼ VN þ VS − VE − VW þOðh4Þ; ð39Þ

In AppendixAwe give the other five equations out of the ten
(these other five equations yield the remaining Taylor
coefficients, which we do not directly use here, as well as
a higher order version of Eq. (29); we note that these extra
five equations are explicitly needed in the higher order
scheme ofAppendixB). The remaining two equations out of
the total of twelve are used to calculate the first order
derivatives of V at the point N:

�
∂V
∂u

�
N
¼ VS − VE − VW þ VN

h
−
�
∂V
∂u

�
E
þ
�
∂V
∂u

�
W

þ
�
∂V
∂u

�
S
þOðh3Þ;

�
∂V
∂v

�
N
¼ VS − VE − VW þ VN

h
þ
�
∂V
∂v

�
E
−
�
∂V
∂v

�
W

þ
�
∂V
∂v

�
S
þOðh3Þ: ð40Þ

The values of these two derivatives at the point N together
with the value of VN will be required at the next step while
wemove rightwards on the u-v plane, since the current point
N will then become the pointW at the next step. In principle,
we nowhave all the necessary equations to construct a fourth
order CID scheme for VN. However, we note the following.
Eq. (29) forVO is to order h2 while Eqs. (35) and (36) for the
first order derivatives atO are to orderh3.Wehave found that
our numerical results are more accurate if, instead of using
Eqs. (35) and (36), we use the following expressions9 for
these derivatives to order h2:

4h

�
∂V
∂u

�
O
¼ VW − VE − VS þ VN þOðh3Þ; ð41Þ

4h

�
∂V
∂v

�
O
¼ VE − VW − VS þ VN þOðh3Þ: ð42Þ

We now have a system with all the necessary equations for
squares with uO ≠ vO (i.e., γ0 ≠ 0; we treat the case γO ¼ 0

separately below). We simply put Eqs. (29), (41), and (42),
and (26)–(28) back into Eq. (23) and isolate for VN. This
yields

VN ¼ VE þ VW − VS −
�
VE þ VW − 2VS

uO þ vO

−
1

2
ðVE − VWÞ cot

vO − uO
2

�
h

þ
�ð2 − ðuO þ vOÞ2ζÞðVE þ VWÞ − 4VS

2ðuO þ vOÞ2

−
VE − VW

2ðuO þ vOÞ
cot

vO − uO
2

�
·

�
h2 −

h3

uO þ vO

�

þOðh4Þ; γO ≠ 0: ð43Þ

Similarly to the third order scheme in the previous
subsection, there is a delicate cancellation in Eq. (43) at
uO ¼ vO (i.e., at γO ¼ 0), as can be seen by the terms with
the cot function. Unfortunately, the expression in Eq. (33)
for the limit to the line of symmetry γ ¼ 0 is no longer good
enough since its OðhÞ term cannot be ignored in a fourth
order scheme. In order to resolve this, we rewrite the sum of
the second and third integrals in Eq. (23) as

Z
SENW

�
Q
∂V
∂v

þ S
∂V
∂u

�
dudv

¼ 8h2

uO þ vO

�
∂V
∂v

þ ∂V
∂u

�
O

− 4h2 cot
vO − uO

2

�
∂V
∂v

−
∂V
∂u

�
O
þOðh4Þ

¼ 8h2

uO þ vO

�
∂V
∂v

þ ∂V
∂u

�
O
− 4h2 cot γO

�
∂V
∂γ

�
O

þOðh4Þ: ð44Þ

We have written the second term on the right-hand side of
(44) in terms of γ instead of u and v so that we can more
easily take the desired limit γO → 0. Taking the limit
γO → 0 in the first term on the right-hand side of (44) is
equivalent to setting uO ¼ vO and ð∂V

∂uÞO ¼ ð∂V
∂vÞO, as a

consequence of the symmetries of M2 × S2. For the limit
γO → 0 in the second term, we apply again L’Hôpital’s
rule.10 This yields,

lim
γO→0

Z
SENW

�
Q
∂V
∂v

þS
∂V
∂u

�
dvdu

¼8h2

vO

�
∂V
∂v

�
O
−4h2

�
∂
2V
∂γ2

�
O
þOðh4Þ; for γO¼0: ð45Þ

9For obtaining Eqs. (41) and (42) we constructed a system of 4
equations–other than the system of 12 equations mentioned
above—by using Eq. (25) evaluated at the E, W, N, and S
points. We then solved this system for VO, ð ∂

2V
∂u∂vÞO, ð∂V∂uÞO, and

ð∂V
∂vÞO, and Eqs. (41) and (42) are the expressions for the two latter
quantities.

10The Vðη; γÞ ¼ Vðη;−γÞ symmetry implies ð∂V
∂γ Þγ¼0

¼ 0,
which prompts us to use L’Hôpital’s rule.

DAVID Q. ARUQUIPA and MARC CASALS PHYS. REV. D 107, 084008 (2023)

084008-8



When using u and v (instead of η and γ) as independent
variables, the second order derivative with respect to γ
appearing above can be written as�

∂
2V
∂γ2

�
O
¼

�
∂
2V
∂u2

�
O
− 2

�
∂
2V

∂u∂v

�
O
þ
�
∂
2V
∂v2

�
O
: ð46Þ

Although in principle these second order derivatives are
only required along γ ¼ 0, in order to know their values
there, we first need to know their values away from γ ¼ 0,
so that we can then propagate them to γ ¼ 0.

We now have a system with all the necessary equations
for the uO ¼ vO (i.e., γO ¼ 0) case and proceed to solve
it and evaluate the required integrals in Eq. (23). The
first and fourth integrals in Eq. (23) are the same as in the
third order scheme, namely, Eqs. (24) and (28), respec-
tively. In their turn, the second and third integrals in
Eq. (23) are now calculated using Eqs. (45) and (46)
together with the Taylor coefficients calculated via
Eqs. (37)–(39) and (42). Isolating for VN in the resulting
Eq. (23) then yields

VN ¼ 2VE − VS þ
��

∂V
∂v

−
∂V
∂u

�
E
þ VS − VE

vO

�
h

þ 1

2vO

�
VS − ð1 − 2ζvO2ÞVE

vO
þ
�
∂V
∂v

−
∂V
∂u

�
E

�
·

�
h2 þ h3

2vO

�
þOðh4Þ; γO ¼ 0: ð47Þ

In order to write this equation in terms of data on the E and
S points only, we have used VW ¼ VE in addition to
ð∂V
∂uÞW ¼ ð∂V

∂vÞE and ð∂V
∂vÞW ¼ ð∂V

∂uÞE, all of which are valid for
γO ¼ 0 as follows from the Vðη; γÞ ¼ Vðη;−γÞ symmetry.
In this way, we are still able to evolve (almost) half the grid
points similarly to what we did in the third order CID
scheme.
Clearly, our fourth order CID scheme requires calculat-

ing data on the light cone other than the data for V̂.
Specifically, Eqs. (35)–(40) require the first order deriva-
tives of V on the light cone. This calculation is easily
achieved by differentiating Eq. (6) once with respect to u
and once with respect to v and evaluating the derivatives at
σ ¼ − 1

2
uv ¼ 0. We thus readily obtain these derivatives in

terms of the Hadamard coefficients ν0 and ν1:

∂V
∂u

����
u¼0

¼ −
1

2
ν0

0
�
v
2

�
−
v
2
ν1

�
v
2

�
; ð48Þ

∂V
∂u

����
v¼0

¼ −
1

2
ν0

0
�
−
u
2

�
; ð49Þ

∂V
∂v

����
u¼0

¼ 1

2
ν0

0
�
v
2

�
; ð50Þ

∂V
∂v

����
v¼0

¼ 1

2
ν0

0
�
−
u
2

�
−
u
2
ν1

�
−
u
2

�
; ð51Þ

where the primes indicate differentiation with respect to γ.
We note that, as it should be in a characteristic initial value
problem like this one, this data for the derivatives on the
light cone is obtainable from the value of V on the light
cone (i.e., V̂). Indeed, in the case here of PH, it is ν0 ¼ V̂
and ν1 can be uniquely obtained from ν0 together with the
condition of regularity at coincidence (see Eq. (24) in [18];

in fact, a Hadamard coefficient νn, for any n > 0, can be
similarly obtained from the previous coefficient νn−1 in a
generic spacetime—see Refs. [15,16,21]).
The fourth order CID scheme is then established as

follows: We construct the usual uniform grid (see Fig. 1)
and place the initial data (V and its first order derivatives)
along u ¼ 0 if we want to evolve points on and below the
γ ¼ 0 line.11 Then, we use Eq. (43) to calculate VN for
squares not centered along γ ¼ 0. For squares centered
along γ ¼ 0, VN is instead given by Eq. (47). Finally, we
use Eq. (40) in order to calculate the first order derivatives
(both for γ ¼ 0 and γ ≠ 0). We note that the issue with
γ ¼ 0 does not appear in [8,19,20,29] since in those cases
the PDE does not have a singular point like the γ ¼ 0 point
here for the full wave equation in M2 × S2.
After having provided complete prescriptions for the

CID scheme to two different orders (namely, third and
fourth orders), we implemented these using the computer
algebra software Mathematica. In the following subsection
we show our results for V, including comparisons against
previous results obtained using different approaches to
calculate V (see Ref. [18]) as well as the presentation of
new results for V.

C. Results for V

In this section we show our results for the Hadamard
biscalar Vðx; x0Þ. In the top plot of Fig. 2 we consider the
case of x and x0 on static paths with y ¼ y0 and γ ¼ π=2 for
ζ ¼ 1=4. In it, we compare the following: V obtained using
the fourth order CID scheme of Sec. III B 3 with the choice
of h ¼ 0.00261799 (in dashed red); the retarded Green
function Gret calculated with the multipolar l-mode sum

11For the opposite choice of evolving points on and above the
γ ¼ 0 line, the initial data is instead placed along v ¼ 0.
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(capped at the finite value l ¼ 800) expression given in
Eq. (134) of Ref. [18]12 (in blue); the crude approximation
ν0 þ ν1σ to V (in dashed gray) from Eq. (6); V calculated
using a small coordinate distance expansion (see Ref. [14])
(in green). The first divergence of Gret in the top plot of
Fig. 2 is at η ¼ π=2, corresponding to the direct null
geodesic divergence δðσÞ as per the Hadamard form
Eq. (2). This divergence signals the start of causal sepa-
ration. As explained in Sec. II B, V andGret should agree in
the region between this divergence and the next divergence
at η ¼ 3π=2, which signals the end of the maximal normal
neighborhood and corresponds to a null geodesic having
crossed a caustic at γ ¼ π. Thus, this latter divergence
should be of type PVð1=σÞ, in agreement with the plot.
The top plot of Fig. 2 also shows that the CID scheme

has good agreement with the l-mode-sum calculated Gret.
Indeed, in the bottom plot of Fig. 2 we show that the
relative error between the two CID schemes, with LTEs of

orders Oðh3Þ and Oðh4Þ, with the same step size
2h ¼ 2 × 0.00261799, is at least of order 10−4. Let us
check this value for consistency. Let e3 and e4 denote the
global truncation errors (GTEs) for the schemes with local
truncation errors Oðh3Þ and Oðh4Þ, respectively. For the
nth evolved point in the grid, these errors are given by
e3 ¼ Oðnð2hÞ3Þ and e4 ¼ Oðnð2hÞ4Þ. For the computation
of V at a fixed point close to the end of the normal
neighborhood, about n¼Oðð2hÞ−2Þ evaluations13 are car-
ried out, yielding GTEs e3 ¼ Oð2hÞ and e4 ¼ Oðð2hÞ2Þ.
Thus, for a point close to the end of the normal neighbor-
hood in the case of Fig. 2, we have e3 ¼ Oð10−3Þ and
e4 ¼ Oð10−5Þ, which can be taken as relative errors since
V ¼ Oð1Þ close the end of the normal neighborhood. The
GTE e3 ¼ Oð10−3Þ is consistent with the relative error
between the two schemes shown in the bottom plot of
Fig. 2. On its own, this relative error does not tell us much
about the improvement that we achieve by applying a
higher order scheme. Instead, we look at the GTE. Given
three approximations to V calculated with the same CID
scheme but with three different step sizes (2h, 4h, and 8h in
our case, with corresponding solutions denoted by Vð2hÞ,
Vð4hÞ, and Vð8hÞ), one can verify that (see, e.g., Ref. [31])

Vð2hÞ−Vð4hÞ
Vð4hÞ−Vð8hÞ

¼ ð2hÞk− ð4hÞk
ð4hÞk− ð8hÞkþOðhÞ¼ 1

2k
þOðhÞ; ð52Þ

where k denotes the order of the GTE of the scheme. As
justified above, we expect k ¼ 1 for a third order CID
scheme and k ¼ 2 for a fourth order one.
In Fig. 3 we plot k in Eq. (52) as a function of η for two

different fixed values of the angle: γ ¼ 1.56 in the top plot
and γ ¼ 0 in the bottom one. These two plots show the
consistency between the numerically obtained values of k
and the theoretically expected values of k (namely, k ¼ 1 and
k ¼ 2 for the third and fourth order schemes, respectively).
There is some noise near η ¼ γ in both plots, which are
nevertheless oscillations about the expected value ofk, which
is merely meant to be approximated by (52); there is also
some oscillations at the end of the lower plot (i.e., approach-
ing the end of the maximal normal neighborhood), which is
unsurprising since that plot is for γ ¼ 0 and its end is at
η ¼ 2π − γ ¼ 2π, so a caustic point (caustics are at
η ¼ γ ¼ mπ, for m ∈ Z, and it is expected that there is an
enhancement in the singularity of the retardedGreen function
at caustics, as that is the case in Schwarzschild [23]).

0 1 2 3 4 5

�2

�1

0

1

2

1.5 2.0 2.5 3.0 3.5 4.0 4.5

10�6

10�5

10�4

0.001

FIG. 2. Quantities as functions of η ¼ Δt in M2 × S2 with
ζ ¼ 1=4, Δy ¼ y − y0 ¼ 0 and γ ¼ π=2. Top plot: retarded Green
function as an l-mode sum (blue) and V using the fourth order
CID scheme (dashed red), a small coordinate-separation expan-
sion (green) and approximated by ν0 þ ν1σ (dashed gray).
Bottom plot: relative error between the third order and fourth
order schemes for calculating V with h ¼ 0.00261799.

12We note that in the last expression in Eq. (134) of Ref. [18]
there is a missing factor θð−σM2

Þ.

13More accurately, it should be n ¼ Oðð2hÞ−2=2Þ, where the
extra factor 1=2 arises due to the fact that the grid, which in
principle would be a square as per Fig. 1, really becomes a
triangle because of application of the symmetries mentioned
around Eq. (34). But n ¼ Oðð2hÞ−2Þ is fine as an order of
magnitude.
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While the value of V in Fig. 2 had already been obtained
before (namely, in [18]), in the next plots we present new
values of V in PH.
In Fig. 4 we show the plot of V (obtained with the fourth

order scheme) for ζ ¼ 1=4 for any pair of spacetime points
(as long as they lie in normal neighborhoods, so that V is
defined). The red line corresponds to the static worldlines
of Fig. 2 (namely, y ¼ y0 and γ ¼ π=2). Evolving CID has
allowed us to calculate V everywhere where it is defined.
We also calculated V with the third order scheme for

various values of ζ ≠ 1=4. In the top plot of Fig. 5 we show
these results for the same worldline as in Fig. 2. For this
particular worldline (which has γ ¼ π=2), the magnitude of
V decreases as ζ increases. In the bottom plot of Fig. 5 we
again plot V for all possible pairs of spacetime points, but
now for ζ ¼ 1. We can see in it that there is a more marked
change in the form, with respect to Fig. 4 for ζ ¼ 1=4, near
the caustic γ ¼ �π. We note that we also calculated V for
all pairs of points for the other values of ζ that we used in

1.5 2.0 2.5 3.0 3.5 4.0 4.5

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 5. Top: plot of V as a function of η for different values of ζ
and for the same scenario (and step size) as in Fig. 2. Bottom: 3D
plot of V as a function of u and v for ζ ¼ 1.
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FIG. 3. GTE order k for the third and fourth order CID schemes
for γ ¼ 1.56 (top) and γ ¼ 0 (bottom). The expected values for
the order k are close to the theoretical values (namely, k ¼ 1 for
the third order scheme and k ¼ 2 for the fourth order one, drawn
as horizontal black continuous lines).

FIG. 4. Plot of V for all pairs of points in normal neighborhoods
with ζ ¼ 1=4. The u ¼ 2π and v ¼ 2π lines correspond to the end
of the normal neighborhoodwhere the (leading) singularity ofGret,
and so ofV, is of typePVð1=σÞ (when away from caustics). The red
line is along the static worldline considered in Fig. 2.
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the top plot of Fig. 5 but we do not display the full results
since their behavior was not so different from that in Fig. 4
for ζ ¼ 1=4.

IV. DISCUSSION

In this work we have presented and implemented a new
method for calculating the Hadamard tail biscalar Vðx; x0Þ
for wave propagation on curved background spacetimes
where null geodesics cross. This method consists of
integrating the homogeneous wave equation using charac-
teristic initial data on the light cone. We have provided a
proof-of-concept for this method by applying it to PH,
M2 × S2. Furthermore, we have calculated V for new cases:
at all spacetime points where it is defined, for various
values of ζ ≡m2 þ 2ξ. The calculation of V (and of the
retarded Green function) at all pairs of points is useful, in
particular, for a potential application to the self-consistent
orbital evolution of a particle via the self-force.
The calculation in M2 × S2 is technically easier than in

black hole spacetimes: First, the characteristic initial data
Vðx; x0Þjσ¼0 is known analytically and, second, the wave
equation is reduced to a two-dimensional PDE. As for the
first point, we note that Vðx; x0Þ was numerically calculated
along null geodesics in Schwarzschild in [15] by solving
transport equations, and thus its characteristic initial
data in Schwarzschild is readily available, while [15] also
provides a prescription for its calculation in Kerr. As for
the second point, the wave equation in Schwarzschild
would acquire an extra dimension, thus becoming a
three-dimensional PDE, for which there exist numerical
techniques. Furthermore, the three-dimensional PDE in
Schwarzschild contains first-order derivatives (at least
through the angular part), which the scheme presented
here in the context of PH has provided a way of dealing
with. In Kerr, the PDE would become four-dimensional,
entailing a greater numerical challenge. We intend to
undertake the calculation of Vðx; x0Þ in these black hole
spacetimes in the future.
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APPENDIX A: REMAINING EQUATIONS
FOR TAYLOR COEFFICIENTS IN THE

FOURTH ORDER SCHEME

As pointed out in Sec. III B 3, in order to obtain all the
twelve equations needed for the fourth order scheme, it is
necessary to calculate five Taylor coefficients in Eq. (25)

additional to those given in Eqs. (35)–(40). The expressions
for the five remaining Taylor coefficients are

4VO ¼ 2VE þ 2VW þ h

�
∂V
∂u

−
∂V
∂v

�
E

− h

�
∂V
∂u

−
∂V
∂v

�
W
þOðh4Þ; ðA1Þ

2

3
h3
�
∂
3V
∂v3

�
O
¼ VS − VE þ h

�
∂V
∂v

�
S
þ h

�
∂V
∂v

�
E

þOðh4Þ; ðA2Þ

2

3
h3
�
∂
3V
∂u3

�
O
¼ VS − VW þ h

�
∂V
∂u

�
S
þ h

�
∂V
∂u

�
W

þOðh4Þ; ðA3Þ

4h3
�

∂
3V

∂v2∂u

�
O
¼ VN þ VS − VE − VW þ 2h

�
∂V
∂v

�
S

− 2h

�
∂V
∂v

�
W
þOðh4Þ; ðA4Þ

4h3
�

∂
3V

∂v∂u2

�
O
¼ VN þ VS − VE − VW þ 2h

�
∂V
∂u

�
S

− 2h

�
∂V
∂u

�
E
þOðh4Þ: ðA5Þ

The expressions above, apart from having been derived as
part of the set of equations in the fourth order scheme, will
be directly used in the higher order schemes described in
the next appendix.

APPENDIX B: GOING BEYOND A FOURTH
ORDER CID SCHEME

In this appendix we lay out the ground work for deriving
a fifth—and potentially, sixth—order scheme, by following
a similar prescription to that described in Secs. III B 2 and
III B 3. For a fifth or sixth order CID scheme, it is necessary
to include the next nontrivial order in Eqs. (26)–(28). The
corresponding equations are given by:
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where, as usual, the subscript O on a quantity in brackets indicates that it is evaluated at the point O.
When replacing the expressions in Eq. (24) and Eqs. (B1)–(B3) back into Eq. (23) and isolate for VN, we find
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The next step is to replace into Eq. (B4) the expressions for
the Taylor coefficients given in Eqs. (35)–(39) and
Eqs. (A1)–(A5) and then isolate for VN. We do not display
the resulting expression for VN since it is very long and
trivial to obtain. We note that, despite Eq. (B4) being
Oðh6Þ, the expressions for the Taylor coefficients given in
Eqs. (35)–(39) and Eqs. (A1)–(A5) reduce the order of the
resulting expression of VN by one [i.e., to Oðh5Þ]. Thus,
we end up with a fifth order CID scheme. One could of
course use Eq. (B4) for a sixth order scheme merely by
obtaining expansions for the Taylor coefficients appearing
in it to one order higher than in Eqs. (35)–(39) and
Eqs. (A1)–(A5).

Finally, and similarly to the third and fourth order CID
schemes in Secs. III B 2 and III B 3, the uO ¼ vO (i.e.,
γO ¼ 0) case should be handled separately. The coefficient
of h4 in Eq. (B4) involves derivatives of the functions Q
and S evaluated at the point O. As a consequence, terms
involving derivatives of cot v−u

2
¼ cot γ should be evaluated

appropriately as γO → 0. This would eventually require
calculating fourth order derivatives of V and, consequently,
require additional explicit data (additional with respect to
the lower schemes, e.g., second order derivatives of V) on
the light cone. In this paper we do not pursue this higher
order scheme further and leave it here with the indication of
how it could be completed.
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