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In this work we continue with our recent study, using the Feynman-Vernon worldline influence action
and the Schwinger-Keldysh closed-time-path formalism, to consider the effects of quantum noise of
gravitons on the motion of point masses. This effect can be regarded as due to a stochastic tensorial force
whose correlator is given by the graviton noise kernel associated with the Hadamard function of the
quantized gravitational field. Solving the Langevin equation governing the motion of the separation of two
masses, the fluctuations of the separation due to the graviton noise can be obtained for various states of the
quantum field. Since this force has the stretching and compressing effects like the tidal force, we can view it
as one. We therefore derive the expressions for, and estimate the magnitude of, this tidal force for the cases
of the Minkowski and the squeezed vacua. The influence of this force on the evolution of the geodesic
congruence through the Raychaudhuri equation is then studied and the effects of quantum graviton noise on
the shear and rotation tensors presented.
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I. INTRODUCTION

Demonstrating the existence of gravitons is a necessity to
affirming the quantum nature of perturbative gravity [1,2].
This is in principle doable at today’s low energy, unlike
quantum gravity proper, such as string or loop quantum
gravity, operative at the Planck scale [3–5]. Bounds on
graviton’s mass are deduced from gravitational waves
detected in LIGO [6], but a graviton in the classical context
of gravitational waves invokes the assumption of a propa-
gating particle that mediates gravitational forces not in the
full context of (perturbative) quantum gravity. Theoretically
one can ask how graviton as a quantum entity changes the
Newtonian potential, as in, e.g., [7–9]; one can compute the
graviton-induced corrections to the classical wave equa-
tions, as in, e.g., [10] for the Maxwell equation under the
one-loop and weak field approximations. The corrected
equations are reported to be analogous to the classical
equations in anisotropic and inhomogeneous media.
From the changes in the dispersion relations one can in
principle induce the existence of gravitons. However, direct
experimental detection of gravitons remains a serious
challenge [11].
Lately, there is a surge of interest in accessible albeit indi-

rect experimental detection of gravitons (see, e.g., [12,13]).

One proposal suggested by Parikh et al. [14–16] is to
measure the effects of graviton noise on masses. This line
of investigation was pursued by several groups of authors
[17–19] and will be the main focus of this work. In a recent
paper by the present authors [19], the effects of graviton noise
on free test masses inMinkowski spacetimewere considered
via the Feynman-Vernon [20] worldline influence functional
and the Schwinger-Keldysh [21,22] closed time path for-
malism [23–25] applied to the quantum Brownian motion
model [21,26,27]. The noise kernel originating from the
Hadamard function of the gravitons acts as a stochastic
tensorial force in a Langevin equation governing the motion
of the separation of two masses. The fluctuations of the
separation due to the graviton noise are then solved for
various quantum states including the Minkowski vacuum,
thermal, coherent, and squeezed states.
The purpose of this work is to study the effects of

graviton noise on the tidal forces as well as the geodesic
congruences. For this purpose we introduce a Newtonian
potential ϕðxÞ in the background. The tidal force between
two masses each following its geodesics arises from the
difference of forces exerted on the two masses, as governed
by the geodesic deviation equation. Fluctuations of a
quantum field, here the quantized linear perturbations of
a weak gravitational field, constitute graviton noise. At the
lowest consistent order we can neglect the interaction of the
Newtonian potential with the gravitons. Thus we can derive
graviton noise using a Minkowski spacetime background
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and calculate its effect on the tidal force generated by the
Newtonian potential.
Following this, we continue to investigate the effect of

graviton noise on many masses each following a geodesic,
namely, a geodesic congruence. The kinematics of a
geodesic congruence, characterized by three parameters:
an expansion scalar, a shear tensor, and a rotation tensor,
collectively called the “deformation tensor,” is governed by
the Raychaudhuri equation [28] (for useful reviews see, e.g.,
[29,30]). The Raychaudhuri equation played an important
role in the landmark proofs by Penrose, Hawking, and
Geroch of the existence of singularities in classical general
relativity [31,32]. Quantum versions have also been used
to test out different quantum gravitational theories from
“improved” (asymptotic safety) to “zero-point length” to
generalized uncertainty principles and loop quantumgravity
[33–39], to name just a few veins [40]. Our goal is to find out
how graviton noises impact on the deformation tensor
components in both the Minkowski and the squeezed
vacuum states. These are observable quantities in physical
systems at low energies that, once measured, could reveal
not only the existence, but also the nature and dynamics of
gravitons through the action of their noises.
In Sec. II, we review the Feynman-Vernon influence

functional formalism implemented in [19] to derive the
quantum noise effects of gravitons. It is shown that the
influence of this noise to the geodesic separation of two
masses is manifested as a stochastic tensor force in the
Langevin equation of motion. In Sec. III, we point out that
the stochastic force can also be viewed as a tidal effect on
neighboring masses. We then estimate the possibility of
measuring this tidal force coming from gravitons in differ-
ent quantum states of the field. It is natural to extend the
consideration of neighboring particles to that of a geodesic
congruence. This extension is carried out in Sec. IV, where
the evolution of the expansion scalar, the shear tensor as
well as the rotation tensor are investigated through the
Raychaudhuri equation with external forces. We conclude
with discussions in Sec. V [42].

II. GRAVITON NOISE

To make our presentation self-contained we briefly
describe the origin of graviton noises and summarize their
effects on free masses via the Langevin equation according
to [19]. We begin with the Einstein action

Sg ¼
1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð1Þ

where κ2 ¼ 16πG and G is the Newton’s constant.
Quantizing the linear gravitational perturbations, we obtain
the action for the graviton field hðsÞðxÞ,

Sgrav ¼ −
1

2

Z
d4x

X
s

∂αhðsÞðxÞ∂αhðsÞðxÞ; ð2Þ

which represents two minimally coupled massless scalar
fields hðsÞðxÞ for the two polarizations s of the graviton.
In the Fermi normal coordinate ðt; z⃗Þ, the action of the

test mass m can be written as

Sm ¼ −m
Z ffiffiffiffiffiffiffiffiffiffi

−ds2
p

;

¼
Z

dt

�
m
2
δij _zi _zj þ

mκ

4
ḧijzizj

�
þ � � � : ð3Þ

The first term is the kinetic term and the second one is the
interaction term with the gravitational perturbation hijðxÞ.
Using the scalar fields hðsÞ, this interaction can be
expressed asZ

dt
mκ

4
ḧijzizj ¼ α

Z
d4x

X
s

hðsÞðxÞXðsÞðxÞ; ð4Þ

where the constant α ¼ mκ=2
ffiffiffi
2

p ð2πÞ3 and

XðsÞðxÞ ¼
Z

d3keik⃗·x⃗
d2

dt2
ðϵðsÞi

�ðk⃗ÞziðtÞÞ2; ð5Þ

with ϵðsÞi being the polarization vector corresponding to the
graviton.
To examine the influence of the gravitons on the

equation of motion of the test mass, we shall follow the
in-in closed time path integral formalism. The interaction
term in Eq. (4) is linear in the graviton field. Therefore, the
graviton fields can be integrated over to produce the
influence action

SIF ¼
Z

dt dt0ΔijðtÞDijklðt; t0ÞΣklðt0Þ

þ i
2

Z
dt dt0ΔijðtÞNijklðt; t0ÞΔklðt0Þ; ð6Þ

where

ΣijðtÞ ¼ 1

2
½ziþðtÞzjþðtÞ þ zi−ðtÞzj−ðtÞ�; ð7Þ

ΔijðtÞ ¼ ziþðtÞzjþðtÞ − zi−ðtÞzj−ðtÞ; ð8Þ

ziþðtÞ and zi−ðtÞ are the forward and backward in-time fields
in the closed-time path formalism. Here,

Dijklðt; t0Þ ¼ α2
d2

dt2
d2

dt02

Z
d3k d3k0

Z
d3x d3x0 e−ik⃗·x⃗e−ik⃗

0·x⃗0

×
X
s

ϵðsÞij ðk⃗ÞϵðsÞkl ðk⃗0ÞGretðx; x0Þ ð9Þ
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is the dissipation kernel with

Gretðx; x0Þ ¼ iθðt − t0Þh½hðxÞ; hðx0Þ�i ð10Þ

being the retarded Green function.

Nijklðt; t0Þ ¼
α2

2

d2

dt2
d2

dt02

Z
d3k d3k0

Z
d3x d3x0 e−ik⃗·x⃗e−ik⃗

0·x⃗0

×
X
s

ϵðsÞij ðk⃗ÞϵðsÞkl ðk⃗0ÞGð1Þðx; x0Þ ð11Þ

is the noise kernel where

Gð1Þðx; x0Þ ¼ hfhðxÞ; hðx0Þgi ð12Þ

is the Hadamard function. Using the Feynman-Vernon
Gaussian functional identity, the noise term can be replaced
by a path integral over the stochastic tensor force ξijðtÞwith
the two-point correlation function

hξijðtÞξklðt0Þis ¼ Nijklðt; t0Þ: ð13Þ

Together with the kinetic terms of the test mass, we finally
arrive at the so-called stochastic effective action SSEA,

SSEA ¼ Sm½zþ�−Sm½z−� þSIF;

¼m
2

Z
dtδij _ziþðtÞ_zjþðtÞ−

m
2

Z
dtδij _zi−ðtÞ_zj−ðtÞ

þ
Z

dtdt0ΔijðtÞDijklðt; t0ÞΣklðt0Þ−
Z

dtξijðtÞΔijðtÞ

ð14Þ

from which one can derive the effective equation of motion.
Indeed, the Langevin equation of motion for the test

mass can be obtained by

δSSEA
δziþ

����
zþ¼z−¼z

¼ 0

⇒ m̈ziðtÞ þ 2δim
Z

dt0 Dmnklðt; t0Þ znðtÞzkðt0Þzlðt0Þ

− 2δikξklðtÞzlðtÞ ¼ 0: ð15Þ

In the following we shall concentrate on the stochastic
tensor force term coming from the effect of the graviton
noise. That is, we shall neglect the history dependent
dissipation term, which is supposed to be of higher order
effect. Then, Eq. (15) simplifies to

m̈ziðtÞ ¼ 2δikξklðtÞzlðtÞ: ð16Þ

We shall explore in the subsequent sections the effects of
the graviton noise on the tidal forces as well as the geodesic
congruences. For this purpose we introduce a Newtonian

potential ϕðxÞ in the background and at the lowest con-
sistent order we can neglect the interaction of the
Newtonian potential with the graviton. In other words,
gravitons come from the quantized linear perturbations of
flat space, not of the weakly curved space due to the
gravitational potential, while the gravitational potential
remains a classical external field which mediates the tidal
forces between two or more masses. We want to know how
gravitons influence the tidal forces between two masses and
affect the congruences of masses in their geodesic motions,
as a way to identify the presence of hitherto evasive
gravitons. Therefore, we shall keep on using various
vacuum states in the Minkowski spacetime for the evalu-
ations of the Hadamard function and the noise kernel in
Eqs. (11) and (12).
With the Newtonian potential, the equation of motion is

modified to

m̈ziðtÞ ¼ −m∂
iϕðz⃗Þ þ 2δikξklðtÞzlðtÞ: ð17Þ

This is the form of the Langevin equation of motion we
shall use in the following sections to consider quantum tidal
forces on test masses as well as the graviton noise effect to
geodesic congruences.
As we have pointed out earlier, for the geodesic con-

gruences, the graviton noise, owing to its intrinsic and
ubiquitous nature, represents a generic quantum effect in all
quantum versions of the Raychaudhuri equations. Hence,
this study may shed light, especially for null geodesics, on
the possibility of quantum resolution of the singularity
theorems in classical general relativity. From the quantum
information perspective one can use our analysis with the
world-line path integral formalism to study the effects of
graviton noise on quantum entanglement between two
nearby masses [44–46]. Since graviton, the dynamical
degree of freedom of gravitational interaction, and not just
the Newtonian force, a pure gauge [47], is involved, this
can in principle reveal the quantum nature of perturbative
gravity.

III. TIDAL FORCES

In this section, we shall examine the effect of the
graviton noise on the tidal forces experienced by test
particles. Since tidal forces measure the difference in forces
exerted to a material body at neighboring locations [48], we
take the variation of ziðtÞ at fixed time t of the modified
Langevin equation of motion as shown in Eq. (17).

d2

dt2
ðΔzÞi ¼

�
−∂i∂jϕþ

�
2

m

�
ξil

�
ðΔzÞj;

≡ Ki
jðΔzÞj; ð18Þ

where ðΔzÞi represents the geodesic deviation of a nearby
geodesic in the congruence at time t in the spatial
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directions. −∂i∂jϕ is the Newtonian tidal tensor that is
symmetric and traceless. Hence, the stochastic tensor force
2ξij=m can also be interpreted as a form of tidal force. It is
also symmetric and traceless. As a result the total tidal
tensor Kij therefore consists of a classical Newtonian part
and a stochastic part due to the gravitons.
The stochastic average of the tidal tensor

hKiji ¼ −∂i∂jϕ ð19Þ

because the distribution of ξij is assumed to be Gaussian
and hξiji ¼ 0. The correlator of the stochastic part of the
tidal tensor is just

��
2

m
ξijðtÞ

��
2

m
ξklðt0Þ

�	
¼

�
4

m2

�
Nijklðt; t0Þ; ð20Þ

given in terms of the noise kernel.
To have some estimation of the magnitudes of the

tidal forces, we look at the typical example of that of a
central mass M. The corresponding Newtonian potential
would just be ϕðrÞ ¼ −κ2M=16πr. Hence, the classical
Newtonian tidal tensor is given by

−∂i∂jϕðrÞ ¼ −
κ2M
16πr3

�
δij −

3xixj
r2

�
: ð21Þ

For radial geodesics, we take xi ¼ ð0; 0; rÞ and

−∂i∂jϕðrÞ ¼ −
κ2M
16πr3

0
B@

1 0 0

0 1 0

0 0 −2

1
CA: ð22Þ

The tidal stress in the radial direction is positive, κ2M=8πr3,
which represents stretching tension. In the transverse direc-
tions, the tidal stress is negative,−κ2M=16πr3, representing
a compression strain.
One can therefore estimate the magnitude of this tidal

tensor component by κ2M=16πr3. With κ2=16π ≈ 6.67 ×
10−11 Nm2 kg−2 being the gravitational constant andM⊙ ≈
2 × 1030 kg the mass of the Sun,

κ2M
16πr3

≈ 1.33 × 1011
�

M=M⊙

ðr=1 kmÞ3
�

Nm−1 kg−1: ð23Þ

For example, near the event horizon (rH ¼ 3 km) of a solar
mass black hole,

κ2M
16πr3

≈ 4.93 × 108 Nm−1 kg−1: ð24Þ

Therefore, for an object of mass m ¼ 100 kg and size
l ¼ 1 m, the pressure due to the tidal stress near the horizon
of a solar mass black hole is given by

κ2Mml
16πr3l2

≈ 4.93 × 104 atm: ð25Þ

In fact, a human body cannot withstand a pressure of more
than about 100 atmospheric pressures without breaking.
This corresponds to a distance of about 100 km from the
center of the solar mass black hole.
To have another order of magnitude estimation, consider

one near the surface of the Earth withM ≈M⊙=333000 and
r ≈ 6400 km,

κ2M
16πr3

≈ 1.33 × 1011
�
1=333000
ð6400Þ3

�
Nm−1 kg−1;

≈ 1.52 × 10−6 Nm−1 kg−1: ð26Þ

In this case, the result is about 14 orders of magnitude
smaller than that in Eq. (24).
Next, we would like to estimate the tidal forces due to the

graviton noise as indicated in the correlator in Eq. (20).
In [19], we have calculated the noise kernel from gravitons
in the Minkowski vacuum,

Nð0Þ
ijklðt; t0Þ ¼ −

�
32π4

15

�
α2Λ6½2δijδkl − 3ðδikδjl þ δilδjkÞ�

× F½Λðt − t0Þ�; ð27Þ

where

FðxÞ ¼ 1

x6

Z
x

0

dy y5 cos y;

¼ 1

x6
½ð5x4 − 60x2 þ 120Þ cos x

þ xðx4 − 20x2 þ 120Þ sin x − 120�; ð28Þ

and Λ is a momentum cutoff which will be related to some
scale in the problem. As there is no particular scale for the
Minkowski vacuum, the scale Λwould be related mainly to
that of the masses in the measuring device. To make the
estimation, we consider the typical component 3333 of the
noise kernel in the coincident limit,

Nð0Þ
3333ðt; tÞ ¼

�
64π4

45

�
α2Λ6; ð29Þ

which is independent of the time t because the Minkowski
vacuum is time-translation invariant.
Now, we estimate the magnitude of the stochastic part of

the tidal tensor component by taking the square root of the
fluctuation, that is, the coincident limit of the correlation
function. Remember the constant α ¼ mκ=2

ffiffiffi
2

p ð2πÞ3 so

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc

�
4

m2
Nð0Þ

3333ðt; tÞ
�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏcκ2Λ6

90π2

s
; ð30Þ
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where we have added the factor ℏc to obtain the right
dimension. If we take the momentum cutoff as the
reciprocal of the typical length in the problem, that is,
Λ ∼ 1=l ∼ 1 m−1, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc

�
4

m2
Nð0Þ

3333ðt; tÞ
�s

¼ 2.39 × 10−18 Nm−1 kg−1; ð31Þ

which is about 12 order of magnitude smaller than that near
the Earth’s surface as shown in Eq. (26).
In [19], we have also discussed the case of squeezed

vacuum state. The explicit form of the corresponding noise
kernel is

NðζÞ
ijklðt;t0Þ¼ðcosh2ζÞNð0Þ

ijklðt;t0Þ

−ðsinh2ζÞBijkl

�
16π4

15

�
α2Λ6F½Λðtþt0Þ�; ð32Þ

where ζ is the squeeze parameter and the tensor Bijkl is

Bijkl ¼ ðδijδkl þ δikδjl þ δilδjkÞ
− 5½δijðû0Þkðû0Þl þ δikðû0Þjðû0Þl
þ δilðû0Þjðû0Þk þ δjkðû0Þiðû0Þl
þ δjlðû0Þiðû0Þk þ δklðû0Þiðû0Þj�
þ 35ðû0Þiðû0Þjðû0Þkðû0Þl; ð33Þ

with û0 being an arbitrary unit vector. It is usually chosen to
be (0, 0, 1). Again, we examine the component 3333 of the
noise kernel in the coincident limit. Note that the tensor in
the squeezed state noise kernel B3333 ¼ 8. Then,

NðζÞ
3333ðt; tÞ ¼ ðcosh 2ζÞ

�
64π4

45

�
α2Λ6

− ðsinh 2ζÞ
�
128π4

15

�
α2Λ6Fð2ΛtÞ: ð34Þ

Note that here the coincident limit of the noise kernel is no
longer independent of the time t since the squeezed vacuum
state is not time-translation invariant. Suppose we take the
typical length and timescale both to be l; t ∼ 1=Λ ∼ 1 m.
The function

Fð2ΛtÞ ≈ −
1

8
½5 cosð2Þ − 14 sinð2Þ þ 15�;

≈ −0.0236: ð35Þ

Wecan see that the squeezed state noise kernel is basically
enhanced by the exponential factor e2ζ as compared to that
in the Minkowski vacuum. Hence, the magnitude of the
stochastic part of the tidal tensor component can be similarly
enhanced by eζ. In many inflationary cosmological

scenarios, the primordial gravitons produced in the early
Universe are in a squeezed state with a large squeeze
parameter up to 102 [49,50]. For example, in the case of
grand unified theory inflation, the enhancement eξ ∼ 1018

with the squeeze parameter ξ ∼ 40 [17]. Hence, this
enhancement due to squeezing might be enough to augment
the graviton quantum noise induced tidal force to a detect-
able level.

IV. GEODESIC CONGRUENCES

In the last section we have discussed the effect of
quantum noise due to gravitons on the motion of test
particles manifesting itself in the form of tidal forces. The
presence of these tidal forces would in turn influence the
evolution of the geodesic congruences. Hence, in this
section we would consider further the so-called deforma-
tion tensor Ωi

j that characterizes the shape of the
congruence.
One can define the deformation tensor Ωi

j by the
equation

dðΔzÞi
dt

¼ Ωi
jðΔzÞj: ð36Þ

Then the relationship between Ωij and the tidal tensor Kij

can be established as follows [51]. Differentiate Eq. (36)
with respect to t and we have

d2ðΔzÞi
dt2

¼
�
dΩi

j

dt
þ Ωi

kΩk
j

�
ðΔzÞj: ð37Þ

Comparing this with the tidal equation in Eq. (18), the
evolution of the deformation tensor can be expressed as

dΩi
j

dt
¼ −Ωi

kΩk
j þ Ki

j: ð38Þ

Usually, Ωij is decomposed into its trace, symmetric
traceless, and antisymmetric parts.

θ ¼ Ωi
i;

σij ¼
1

2
ðΩij þ ΩjiÞ −

1

2
Ωk

kδij;

ωij ¼
1

2
ðΩij − ΩjiÞ; ð39Þ

with θ being the expansion scalar, σij the shear tensor, and
ωij the rotation tensor [52]. That is,

Ωij ¼
1

3
θδij þ σij þ ωij: ð40Þ

The evolution equations for various parts listed above
can be obtained from Eq. (38). For the expansion scalar,
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which measures the rate of change in the volume of the
congruence,

_θ ¼ −Ωi
jΩj

i þ Ki
i;

¼ −
1

3
θ2 − σijσ

ij þ ωijω
ij þ Ki

i: ð41Þ

This is just the Raychaudhuri equation with an exter-
nal force.
For the shear tensor,

_σij ¼ −
1

2
ΩikΩk

j þ
1

2
Kij

−
1

6
δij

�
−
1

3
θ2 − σklσ

kl þ ωklω
kl þ Kk

k

�
þ ði ↔ jÞ;

¼ −
2

3
θσij − σikσ

k
j − ωikω

k
j þ

1

3
δijðσklσkl − ωklω

klÞ

þ 1

2
Kij þ

1

2
Kji −

1

3
Kk

kδij: ð42Þ

For the rotation tensor,

_ωij ¼
1

2
ð−ΩikΩk

j þ KijÞ − ði ↔ jÞ;

¼ −
2

3
θωij − σikω

k
j − ωikσ

k
j þ ðKij þ KjiÞ: ð43Þ

This set of equations shows how the evolution of the
deformation tensor is affected by the tidal forces. Suppose
that there is no Newtonian potential or that the Newtonian
gravitational force is uniform, then we have −∂i∂jϕ ¼ 0. In
this case, the tidal tensor is given solely by the stochastic
force

Kij ¼
�
2

m

�
ξij; ð44Þ

induced by the graviton noise. In the following subsections
we shall concentrate on this case to investigate what kind of
impact the graviton noise would have on the deformation
tensor components in both theMinkowski and the squeezed
vacuum states.

A. The expansion scalar and the rotation tensor

We start with the evolution equation of the expansion
scalar in Eq. (41). Suppose that the optical tensor compo-
nents are small compared to the terms given by the tidal
force. Then, one can solve this evolution equation pertur-
batively as

_θ ∼ Ki
i ⇒ θ ¼

Z
t

0

dt0Ki
iðt0Þ þ θ0; ð45Þ

where θ0 is its initial value. Therefore, the influence of the
gravitons on the expansion scalar can be expressed as

θ ¼ 2

m

Z
t

0

dt0ξiiðt0Þ þ θ0: ð46Þ

Under the stochastic average, we have

hθi ¼ θ0; ð47Þ

hθðtÞθðt0Þi ¼ θ20 þ
�
2

m

�
2
Z

t

0

dt00
Z

t0

0

dt000hξiiðt00Þξjjðt000Þi;

¼ θ20 þ
4

m2

Z
t

0

dt00
Z

t0

0

dt000Ni
i
j
jðt00; t000Þ: ð48Þ

The correlation function of the expansion scalar is thus
given by the integrations over the noise kernel.
The explicit form of the noise kernel Nð0Þ

ijkl due to
gravitons in the Minkowski vacuum is given in Eq. (27).
From the symmetry structure of this noise kernel, we can
see that it is symmetric and traceless with respect to the
pairs of indices ij and kl. This is because the noise kernel is
related to the influence of the gravitons on the test particles,
while the graviton is represented by a symmetric-traceless
tensor field. Hence, these symmetries of the noise kernel is
true not only for the vacuum state but also for any other
quantum states of the corresponding graviton. From the
traceless property, we can see that the noise kernel will not
contribute to the correlator of the expansion scalar θ.
That is,

hθðtÞθðt0Þið0Þ ¼ θ20: ð49Þ

We can also consider the squeezed state. From the
explicit expression for the squeezed state noise kernel in
Eq. (32), it is apparent that the tensor Bijkl is also symmetric
and traceless with respect to the pairs ij and kl. Therefore,
the noise kernel in the squeezed state will not contribute to
the correlators of the expansion scalar and

hθðtÞθðt0ÞiðζÞ ¼ θ20: ð50Þ

The same consideration can be applied to the rotation
tensor. From the evolution equation in Eq. (43) and
concentrating on the effect of tidal force, we have

_ωij ∼
1

2
ðKij þ KjiÞ

⇒ ωij ¼
1

2

Z
t

0

dt0ðKijðt0Þ þ Kjiðt0ÞÞ þ ðω0Þij; ð51Þ

where ðω0Þij is its initial value. Expressing the tidal force
induced by the graviton noise with the stochastic force ξij,

ωij ¼
1

m

Z
t

0

dt0ðξij − ξjiÞ þ ðω0Þij; ð52Þ

with the stochastic averages
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hωiji ¼ ðω0Þij; ð53Þ

hωijðtÞωklðt0Þi ¼ ðω0Þijðω0Þkl
þ 4

m2

Z
t

0

dt00
Z

t0

0

dt000N½ij�½kl�ðt00; t000Þ: ð54Þ

As we have discussed earlier, the noise kernels Nð0Þ
ijkl and

NðζÞ
ijkl, from graviton noise for the Minkowksi vacuum and

the squeezed vacuum, respectively, are symmetric with
respect to the pairs of indices ij and kl. Hence, it will not
contribute to the stochastic average above, and we have

hωijðtÞωklðt0Þið0Þ ¼ hωijðtÞωklðt0ÞiðζÞ ¼ ðω0Þijðω0Þkl: ð55Þ

B. The shear tensor

Finally, we come to the shear tensor which is traceless
and symmetric. Since the noise kernel due to graviton noise
is also traceless and symmetric, we would expect the
stochastic average of the shear tensor to have contributions

from this noise. From the evolution equation in Eq. (42),
we have

_σij ∼
1

2
Kij þ

1

2
Kji −

1

3
Kk

kδij

⇒ σij ¼
1

2

Z
t

0

dt0
�
Kijðt0Þ þ Kjiðt0Þ −

2

3
δijKk

kðt0Þ
�

þ ðσ0Þij; ð56Þ

where ðσ0Þij is its initial value. With the stochastic forces,

σij ¼
1

m

Z
t

0

dt0
�
ξijðt0Þ þ ξjiðt0Þ −

2

3
δijξk

kðt0Þ
�

þ ðσ0Þij; ð57Þ

and the stochastic averages are

hσiji ¼ ðσ0Þij; ð58Þ

hσijðtÞσklðt0Þi ¼ ðσ0Þijðσ0Þkl þ
4

m2

Z
t

0

dt00
Z

t0

0

dt000
�
NðijÞðklÞðt00; t000Þ −

1

3
NðijÞnnðt00; t000Þδkl −

1

3
Nm

mðklÞðt00; t000Þδij

þ 1

9
Nm

m
n
nðt00; t000Þδijδkl

�
;

¼ ðσ0Þijðσ0Þkl þ
4

m2

Z
t

0

dt00
Z

t0

0

dt000Nijklðt00; t000Þ: ð59Þ

First, we consider the correlator with gravitons in the Minkowski vacuum. Putting the expression for the noise kernel in
Eq. (27) into the shear tensor correlator in Eq. (59),

hσijðtÞσklðt0Þið0Þ ¼ ðσ0Þijðσ0Þkl −
128π4α2Λ6

15m2
½2δijδkl − 3ðδikδjl þ δilδjkÞ�

Z
t

0

dt00
Z

t0

0

dt000F½Λðt00 − t000Þ�: ð60Þ

The integrations over t00 and t000 can be done in closed form. However, if we expand the result in powers of ðt − t0Þ, then
we get

Z
t

0

dt00
Z

t0

0

dt000F½Λðt00 − t000Þ� ¼ 1

2Λ6t4
½Λ4t4 − 4Λ3t3 sinðΛtÞ − 12Λ2t2 cosðΛtÞ þ 24Λt sinðΛtÞ − 24ð1 − cosðΛtÞÞ�

þ ðt − t0Þ
Λ6t5

½Λ4t4 cosðΛtÞ − 4Λ3t3 sinðΛtÞ − 12Λ2t2 cosðΛtÞ
þ 24Λt sinðΛtÞ − 24ð1 − cosðΛtÞÞ� þ…: ð61Þ

From this we can see that the shear tensor correlator hσijðtÞσklðt0Þið0Þ in the Minkowski vacuum is finite in the coincident
limit t0 → t. Hence,

hσijðtÞσklðtÞið0Þ ¼ ðσ0Þijðσ0Þkl − ½2δijδkl − 3ðδikδjl þ δilδjkÞ�
�

κ2

120π2t4

�
× ½Λ4t4 − 4Λ3t3 sinðΛtÞ − 12Λ2t2 cosðΛtÞ þ 24Λt sinðΛtÞ − 24ð1 − cosðΛtÞÞ�; ð62Þ

where we have substituted α ¼ mκ=2
ffiffiffi
2

p ð2πÞ3 to arrive at this expression.
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First, to concentrate on the stochastic part, we shall assume that ðσ0Þij ¼ 0. Then, the 3333 component of the correlator is
given by

hσ33ðtÞσ33ðtÞið0Þ ¼
�

κ2

30π2t4

�
½Λ4t4 − 4Λ3t3 sinðΛtÞ − 12Λ2t2 cosðΛtÞ þ 24Λt sinðΛtÞ − 24ð1 − cosðΛtÞÞ�: ð63Þ

In fact, for the other components,

hσ11ðtÞσ11ðtÞið0Þ ¼ hσ22ðtÞσ22ðtÞið0Þ ¼ hσ33ðtÞσ33ðtÞið0Þ;

hσ11ðtÞσ22ðtÞið0Þ ¼ hσ22ðtÞσ33ðtÞið0Þ ¼ hσ33ðtÞσ11ðtÞið0Þ ¼ −
1

2
hσ33ðtÞσ33ðtÞið0Þ;

hσ12ðtÞσ12ðtÞið0Þ ¼ hσ23ðtÞσ23ðtÞið0Þ ¼ hσ31ðtÞσ31ðtÞið0Þ ¼
3

4
hσ33ðtÞσ33ðtÞið0Þ: ð64Þ

To estimate the magnitude of the shear, we take the momentum cutoff, as in our last section for the tidal force, to be
Λ ∼ 1=l ∼ 1 m−1. Furthermore, suppose that the time of duration of measurement t to be also of the order of l, then the
square root of the typical 3333 component

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ33ðtÞσ33ðtÞið0Þ

q
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ℏ
c

�
κ2

30π2

s
;

≈ 1.94 × 10−27 s−1; ð65Þ

where a factor of ℏ=c has been added to have the right dimension. This estimation is consistent with that of the tidal force in
Eq. (31) as the momentum cutoff there is also taken to be ∼1 m−1. Indeed, ð2.39 × 10−18 s−2Þðl=cÞ ∼ 10−27 s−1.
Lastly, we consider the shear tensor in the squeezed vacuum state. Concentrating on the stochastic part of the shear tensor

correlator, that is, taking ðσ0Þij ¼ 0,

hσijðtÞσklðt0ÞiðζÞ ¼ −ðcosh 2ζÞ
�
128π4α2Λ6

15m2

�
½2δijδkl − 3ðδikδjl þ δilδjkÞ�

Z
t

0

dt00
Z

t0

0

dt000F½Λðt00 − t000Þ�

− ðsinh 2ζÞBijkl

�
64π4α2Λ6

15m2

�Z
t

0

dt00
Z

t0

0

dt000F½Λðt00 þ t000Þ�: ð66Þ

The first integral has been evaluated in Eq. (61). Similarly, we expand the second integral in powers of t − t0,

Z
t

0

dt00
Z

t0

0

dt000F½Λðt00 þ t000Þ� ¼ −
1

8Λ6t4
½2Λ4t4 − 4Λ3t3ð4 sinðΛtÞ − sinð2ΛtÞÞ − 6Λ2t2ð8 cosðΛtÞ − cosð2ΛtÞÞ

þ 6Λtð16 sinðΛtÞ − sinð2ΛtÞÞ − ð93 − 96 cosðΛtÞ þ 3 cosð2ΛtÞÞ�

−
ðt − t0Þ
4Λ6t5

½2Λ4t4ð2 cosðΛtÞ − cosð2ΛtÞÞ − 4Λ3t3ð4 sinðΛtÞ − sinð2ΛtÞÞ
− 6Λ2t2ð8 cosðΛtÞ − cosð2ΛtÞÞ þ 6Λtð16 sinðΛtÞ − sinð2ΛtÞÞ
þ ð−93þ 96 cosðΛtÞ − 3 cosð2ΛtÞÞ� þ � � � : ð67Þ
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Therefore, in the coincident limit t0 → t,

hσijðtÞσklðtÞiðζÞ ¼ −ðcosh 2ζÞ½2δijδkl − 3ðδikδjl þ δilδjkÞ�
�

κ2

120π2t4

�
× ½Λ4t4 − 4Λ3t3 sinðΛtÞ − 12Λ2t2 cosðΛtÞ þ 24Λt sinðΛtÞ − 24ð1 − cosðΛtÞÞ�

þ ðsinh 2ζÞBijkl

�
κ2

960π2t4

�
½2Λ4t4 − 4Λ3t3ð4 sinðΛtÞ − sinð2ΛtÞÞ

− 6Λ2t2ð8 cosðΛtÞ − cosð2ΛtÞÞ þ 6Λtð16 sinðΛtÞ − sinð2ΛtÞÞ
− ð93 − 96 cosðΛtÞ þ 3 cosð2ΛtÞÞ�: ð68Þ

To estimate the magnitude of the shear tensor fluctuation, we again take the 3333 component.

hσ33ðtÞσ33ðtÞiðζÞ ¼ ðcosh 2ζÞ
�

κ2

30π2t4

�
½Λ4t4 − 4Λ3t3 sinðΛtÞ − 12Λ2t2 cosðΛtÞ þ 24Λt sinðΛtÞ − 24ð1 − cosðΛtÞÞ�

þ ðsinh 2ζÞ
�

κ2

120π2t4

�
½2Λ4t4 − 4Λ3t3ð4 sinðΛtÞ − sinð2ΛtÞÞ

− 6Λ2t2ð8 cosðΛtÞ − cosð2ΛtÞÞ þ 6Λtð16 sinðΛtÞ − sinð2ΛtÞÞ
− ð93 − 96 cosðΛtÞ þ 3 cosð2ΛtÞÞ�: ð69Þ

The first term is just the Minkowski vacuum result times cosh 2ζ. If we take the length and timescales to be l ∼ t ∼ 1 m and
Λ ∼ 1=l ∼ 1 m−1, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ33ðtÞσ33ðtÞiðζÞ

q
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2ζÞ

�
κ2

30π2t4

�
ð0.3Þ þ ðsinh 2ζÞ

�
κ2

120π2t4

�
ð−0.8Þ

s

∼ eζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ33ðtÞσ33ðtÞið0Þ

q
ð70Þ

Therefore, we obtain the enhancement factor eζ to the shear
effect of the graviton noise due to the squeezed vacuum
state as compare to that of the Minkowski vacuum state.

V. CONCLUSIONS AND DISCUSSIONS

To continue with our recent work [19], we have consid-
ered in this paper the effect of quantum noise of gravitons as
a stochastic tensorial force whose correlator is given by the
graviton noise kernel associatedwith theHadamard function
of a quantized gravitational field. From the geodesic
deviation equation between two masses, we see that this
stochastic force has the stretching and compressing effects
like the tidal force acting on neighboring particles.
Therefore, one can view this as a stochastic tidal force.
We can also extend the consideration to more masses, and
calculate its influence on the evolution of a geodesic
congruence. Since this force is fluctuating, we estimate
its magnitude by the square root of the equal time auto-
correlator, which is proportional to the noise kernel. For the
Minkowski vacuum, it is about 12 orders of magnitude

smaller than the tidal force near the Earth’s surface as shown
in Eq. (31). We have also considered the case with the
squeezed vacuum state, and it is found that there is an
enhancement of eζ, where ζ is the squeeze parameter, over
the Minkowski result. This enhancement factor may bring
this stochastic tidal force to a detectable level someday.
With this stochastic tidal force, we have further inves-

tigated its effect on geodesic congruences. The kinematics
of these congruences are characterized by the deformation
tensor, including the expansion scalar, the shear tensor, and
the rotation tensor. The evolution of the deformation tensor
is given by the Raychaudhuri equation in the presence of an
external force. The fluctuations of the deformation tensor
are then related to the graviton noise kernel. Due to the
transverse-traceless properties of this noise kernel, the
stochastic tidal force will not alter the fluctuations of
the expansion scalar and the rotation tensor. Only the shear
tensor that is symmetric and traceless will be affected by it.
Again, this effect is too small to be detectable in the
Minkowski vacuum case, but the enhancement factor of eζ

in the squeezed vacuum state may increase the possibility.
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In the present work, we have solved the Raychaudhuri
equations to the lowest order in the tidal force. In a more
complete analysis, it is possible to include higher order
effects in a perturbative manner. Although in the lowest
order, the expansion scalar and the rotation tensor are not
affected by the stochastic tidal force, we would expect them
to be influenced by higher order terms. Another natural
direction to build on our present analysis is to consider
gravitons and their corresponding noise kernels in a curved
spacetime, going beyond the Minkowski background. For
example, to examine the stochastic tidal force near a
black hole in a consistent way, it is necessary to consider
gravitons as quantized gravitational perturbations in a black
hole background. Then we need to evaluate the noise kernel
corresponding to these gravitons to study their influences
on point masses. Likewise, evaluating the noise kernel in
cosmological spacetimes is needed for the study of graviton

noise effects in the Universe. We know that any quantum
field in an expanding universe will be squeezed. To take
advantage of the large squeezing factor for the enhance-
ment of observable graviton noise effects one may need to
trace back to quantum gravitational effects in the early
Universe, such as quantum fluctuations in primordial
gravitons created and in matter structures formed.
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