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José P. S. Lemos †

Centro de Astrofísica e Gravitação-CENTRA, Departamento de Física, Instituto Superior Técnico-IST,
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We start by presenting the general set of structure equations for the 1þ 3 threading spacetime
decomposition in four spacetime dimensions, valid for any theory of gravitation based on a metric
compatible affine connection. We then apply these equations to the study of cosmological solutions of the
Einstein-Cartan theory in which the matter is modeled by a perfect fluid with intrinsic spin. It is shown that
the metric tensor can be described by a generic Friedman-Lemaître-Robertson-Walker solution. However,
due to the presence of torsion the Weyl tensors might not vanish. The coupling between the torsion and
Weyl tensors leads to the conclusion that, in this cosmological model, the universe must either be flat or
open, excluding definitely the possibility of a closed universe. In the open case, we derive a wave equation
for the traceless part of the magnetic part of the Weyl tensor and show how the intrinsic spin of matter in a
dynamic universe leads to the generation and emission of gravitational waves. Last, in this cosmological
model, it is found that the torsion tensor, which has an intrinsic spin as its source, contributes to a positive
accelerated expansion of the universe. Comparing the theoretical predictions of the model with the current
experimental data, we conclude that torsion cannot completely replace the role of a cosmological constant.
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I. INTRODUCTION

A. The torsion tensor field and the
Einstein-Cartan theory

A Riemannian spacetime geometry is uniquely described
by the metric tensor field, in that the Riemann curvature
tensor is solely given by the metric and its first and second
derivatives. Moreover, the affine connection, which is the
structure that defines parallel transport between tensors, is
metric compatible and symmetric in Riemannian geometry
and is called the Levi-Civita connection. The geodesic
equation, which determines the shortest and longest curves
between two infinitesimally close points, is in Riemannian
geometry also an equation for curves that transport tangent
vectors in an autoparallel manner. General relativity, a
spacetime theory of gravitation, has as one of its intrinsic
assumptions the fact that the underlying geometry is
Riemannian. In general relativity, the link between geom-
etry and matter is provided by the Einstein equation that

equates the Einstein tensor, which is a contraction of the
Riemann tensor, to the matter stress-energy tensor.
A possible extension of Riemannian geometry is the

Riemann-Cartan geometry in which, besides the metric
tensor, there is an extra geometrical field, the torsion tensor.
The Riemann curvature tensor depends now on both metric
and torsion. Moreover, the metric compatible affine con-
nection, between tensors, contains not only a symmetric
part as in Riemannian geometry but also an antisymmetric
part, which is precisely the torsion tensor. In a Riemann-
Cartan geometry, geodesic and autoparallel curves are
different types of curves.
A natural extension of general relativity to another

theory of gravitation is the Einstein-Cartan theory where
the underlying geometry is the Riemann-Cartan geometry.
A realization of an Einstein-Cartan gravity theory is such
that the field equations are still derived from the Einstein-
Hilbert action [1,2], representing one of the simplest
generalizations of general relativity. The link between
geometry and matter is now provided by the Einstein
equation that equates the Einstein tensor to the canonical
matter stress-energy tensor plus an equation relating a
tensor field built out of the geometrical torsion to some
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physical observables associated, for instance, with the
density of the intrinsic angular momentum of matter, or
spin. One of the interests in the Einstein-Cartan theory,
within a geometric theory of gravitation, is that at extremely
high densities of matter, even at densities still much less
than the Planck density regime where quantum gravity
rules, quantum effects on the matter may be considerable;
hence, the ability to include quantum corrections in a
macroscopic limit, through the relation between torsion and
intrinsic spin, might set the Einstein-Cartan theory to be a
better classical limit of a quantum theory of gravitation than
a theory without torsion such as general relativity.
Nonetheless, as we will show in this article, even in the
low density regime, the inclusion of torsion might lead to
marked contrast between the predictions of the two
theories, which may be used to falsify the hypothesis.
The framework of the Einstein-Cartan theory has led to

many important results, showing how the extra geometrical
structure, specifically, the torsion tensor, influences the
behavior of the matter fluids that permeate the spacetime
and, consequently, the geometry of the manifold. Several
works have worked out the properties of spacetimes with
torsion and the consequences of the Einstein-Cartan theory,
in particular in black hole physics and in cosmology. We
mention some of them. The possibility of measuring torsion
was raised in [3]. Some works showed that the inclusion of
torsion could act as a repulsive force, counteracting the
gravitational collapse and possibly preventing the forma-
tion of singularities in both black holes and cosmology
[4,5]. There were applications in cosmology [6,7] as well as
in rotating neutron stars [8]; see also Refs. [9,10]. The
generation of solutions in Einstein-Cartan theory was
provided in [11]. Some interesting spinning fluids, in
particular the Weyssenhoff fluid, were introduced as gen-
erators of torsion in [12], as providers of inflation in [13],
and as sources of rotating cosmological models in [14]. The
possibility that the Einstein-Cartan theory is a limit of a
quantum theory of the gravitational field operating at the
usual microscopic and macroscopic scales has been hinted
in [15]. The consequences and imprints on the curves
followed by finite size test bodies was discussed in [16]. A
review of Einstein-Cartan theory is in [17]. A further
discussion on compact objects was given in [18], a study
of the cosmological signatures of torsion and cosmic
acceleration appeared in [19,20], and a post-Newtonian
analysis of gravitational waves in the Einstein-Cartan
theory was implemented in [21].

B. The 1 + 3 spacetime decomposition

Because of the action of the torsion tensor in physical
frames of reference, in gravitational theories with torsion, it
is advantageous to work in a formalism that is manifestly
covariant and such that the quantities that characterize the
spacetime and the matter are directly associated with phy-
sical observables. A formalism with such characteristics is

the covariant spacetime decomposition approach that is
designed to take directly into account the symmetries and
preferred directions in amanifold, and emerges as a powerful
tool to analyze the geometry and dynamics of tensor fields on
a spacetime. A benefit one takes from the formalism comes
from the fact that it is, by construction, independent of
coordinate systems. Moreover, the natural splitting of the
manifold can greatly simplify the problem of finding
solutions when the spacetime admits the existence of
preferred directions, such as Killing vector fields.
A particular covariant spacetime decomposition is the

1þ 3 formalism that has been developed and used in many
instances in general relativity [22–26]. In this formalism, it
is assumed the existence of a congruence of smooth curves,
so that any tensor quantity on the spacetime is, at each
point, separated in its component along the direction of the
tangent vector field to the congruence and in its compo-
nents along the surfaces orthogonal to the curves of the
congruence. This property of the formalism makes it
especially useful from a physical point of view, since in
many instances one is interested in studying the evolution
of certain quantities in time. Thus, assuming the existence
of a timelike congruence, the 1þ 3 formalism naturally
decomposes the structure equations that describe the
geometry of the spacetime and tensor fields in the manifold
along time and spatial directions. In a geometric theory of
gravity, the geometry of the spacetime is related with the
matter fields that fill it. Since the evolution and constraint
equations found from the 1þ 3 formalism are completely
covariant, they provide a clearer interpretation of the
relations between the kinematics of the congruence and
the properties of the matter fields.
This formalism of 1þ 3 decomposition of the spacetime

manifold has been extensively employed to explore the
properties of solutions of theories of gravitation, namely,
gravitational waves, cosmological solutions, compact
objects, black holes, singularities, and particle and light rays
propagation. For instance, the formalism has been used in
general relativity to study cosmological perturbations
and their consequent gravitational waves generation [27],
to analyze singularities and singularity theorems [28], to
develop an effective fluid dynamics formalism [29], to
find new properties of perturbed Schwarzschild black
holes [30], to further investigate the Tolman-Oppenheimer-
Volkoff equation [31], to discuss cosmological perfect fluid
perturbations [32], and to analyze objects composed of two
fluids [33]. The formalism has also been applied in fðRÞ
modified theories of gravitation to study gravitational
lensing [34], to introduce black holes with emphasis in the
Weyl terms [35], to describe cosmological density perturba-
tions [36], and to search for gravitational wave solutions [37].
The formalism has further been applied in theories with
torsion to explore the Raychaudhuri equation [38], to treat
spacetime thermodynamics [39], to examine singularity the-
orems [40], and to establish focusing condition theorems [41].
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C. Aim of the work

Since Hubble showed the velocity-distance relation for
distant galaxies that we know the universe is expanding,
and the observations of the emission spectra of type Ia
supernovae have led to the conclusion that our universe is
expanding at an accelerated rate. Moreover, the high-
precision data from the Hubble Space Telescope,
WMAP, Planck Collaboration, Sloan Digital Sky Survey,
and JWST keep confirming that, at very large scales, the
present universe is very well described by the Friedman-
Lemaître-Robertson-Walker (FLRW) model with the mat-
ter source having as a main component an unknown dark
energy fluid. The other component, with its existence also
being inferred from the data from rotational curves of
galaxies and from the velocities of individual members of
galaxies in clusters, could be in unknown forms of dark
particles or showing that the predictions of the general
theory of relativity, even at a classical level, are incom-
patible with the observations without the inclusion of extra
fundamental fields in alternative gravity theories. On the
other hand, high-accuracy astrometric data of Gaia and the
regular detection of gravitational waves impose very strong
constraints on these possible alternative gravity theories,
notably on theories of the Einstein-Cartan type.
In this context, there has been a growing interest in

studying the effects of torsion in the dynamics of the
universe by considering types of torsion that have the
intrinsic spin of matter as its source. Here, we are interested
in studying the effects of the intrinsic spin of matter, within
the canonical Einstein-Cartan theory, in the properties and
evolution of the universe at very large scales. We will show
that there are various aspects that have been overlooked; in
particular we will show that in the Einstein-Cartan theory it
is pivotal to understand the effects of the torsion field in the
Weyl tensor, which to our knowledge have never been
considered. As it will be shown, the coupling between the
Weyl tensor and the torsion tensor field may lead to
dramatic disparities between the predictions of the general
theory of relativity and the Einstein-Cartan theory.
Moreover, although the 1þ 3 formalism was initially
devised to study solutions of general relativity, the para-
digm of covariant spacetime decomposition is applicable to
a much wider class of relativistic theories of gravitation,
including theories of the Einstein-Cartan type. We will also
present here the most general extension of the 1þ 3
formalism for spacetimes with a metric compatible affine
connection valid for any metric affine gravity theory. These
equations will then be used in the particular case of the
Einstein-Cartan theory and will be used to study the effects
of intrinsic spin in spacetimes covered by an homogeneous
and isotropic matter fluid.

D. Organization of the work

This work is organized as follows. In Sec. II, we
introduce several quantities, namely, the metric, the

spacetime connection with torsion, the curvature, the
projection formalism with the decomposition of the torsion
and Weyl tensors, and the structure equations, giving as
well the basic definitions and setting the adopted con-
ventions. In Sec. III, the stress-energy tensor and the
structure equations for the matter fields are given. In
Sec. IV, the field equations of the Einstein-Cartan theory
for a Weyssenhof-like torsion are found and compared with
the results in the literature. In Sec. V, the isotropic universe
and the geometry of the three-spaces are set as a basis for a
relativistic cosmology in the new set of equations for the
Einstein-Cartan theory for a universe filled with an iso-
tropic and homogeneous matter fluid with nonvanishing
intrinsic spin, and where two theorems and a proposition
are proved. In Sec. VI, gravitational waves in relativistic
cosmology in Einstein-Cartan theory are studied. In
Sec. VII, we analyze the tidal effects and the dynamics
of the cosmic fluid in relativistic cosmology in Einstein-
Cartan theory. In Sec. VIII, we further discuss the main
results and conclude. In the Appendix, we display the
properties of the Laplace-Beltrami harmonics that are used
in the main text. Throughout the paper we will work in the
geometrized unit system where the constant of gravitation
and the speed of light are set to one, and consider the metric
signature ð−þþþÞ.

II. GEOMETRY OF LORENTZIAN MANIFOLDS
WITH TORSION AND THE STRUCTURE

EQUATIONS FOR THE GEOMETRIC FIELDS

A. Metric, connection with torsion, curvature,
and projection formalism

1. Metric, connection with torsion, curvature

We start by introducing the basic definitions and setting
the conventions that will be used throughout this article.
Let ðM; g; SÞ be a four-dimensional Lorentzian mani-

fold endowed with a metric compatible affine connection.
The metric tensor g is assumed to be symmetric, i.e.,

gαβ ¼ gðαβÞ; ð1Þ

with gðαβÞ ≡ 1
2
ðgαβ þ gβαÞ, and the tensor S represents the

torsion tensor, defined as the antisymmetric part of the
connection in the lower indices, and is such that

Sαβγ ¼ S½αβ�γ; ð2Þ

with S½αβ�γ ≡ 1
2
ðSαβγ − SβαγÞ. In ðM; g; SÞ the covariant

derivative ∇ is defined through the affine connection Cγ
αβ,

such that on a ðk;mÞ-tensor Y with components in a local
coordinate system Yμ1���μk

ν1���νm is formally given by
∇αYμ1���μk

ν1���νm ¼∂αYμ1���μk
ν1���νm þ

P
k
i¼1C

μi
αρYμ1���ρ���μk

ν1���νm−P
m
i¼1C

ρ
ανiY

μ1���μk
ν1���ρ���νm , where ∂α represent partial deriv-

atives. For the affine connection Cγ
αβ to be metric g
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compatible, one has that ∇αgβγ ¼ ∂αgβγ − Cσ
αβgσγ − Cσ

αγgβσ
must be identically zero, i.e.,

∇αgβγ ¼ 0: ð3Þ

A metric compatible connection Cγ
αβ can always be split

into two parts, namely,

Cγ
αβ ¼ Γγ

αβ þ Kαβ
γ; ð4Þ

with

Γγ
αβ ¼

1

2
gγσð∂αgσβ þ ∂βgασ − ∂σgαβÞ ð5Þ

being the usual metric connection that appears in a
Riemannian manifold, also referred to as the Christoffel
symbols, and

Kαβ
γ ¼ Sαβγ þ Sγαβ − Sβγα; ð6Þ

being the contorsion tensor which is a combination of
torsion terms. From Eqs. (4) to (6) one finds

Γγ
αβ ¼ Γγ

ðαβÞ ¼ Cγ
ðαβÞ ð7Þ

and

Sαβγ ¼ K½αβ�γ ¼ Cγ
½αβ�: ð8Þ

As well, from the antisymmetry of the torsion tensor in the
first two indices, one can verify the following identity for
the contorsion tensor:

Kαβγ ¼ Kα½βγ�; ð9Þ

i.e., KαðβγÞ ¼ 0.
The definition of the Riemann curvature tensor associ-

ated with the connection Cγ
αβ is

Rαβγ
ρ ¼ ∂βC

ρ
αγ − ∂αC

ρ
βγ þ Cρ

βσC
σ
αγ − Cρ

ασCσ
βγ: ð10Þ

This definition leads to the following relation between the
commutator of two covariant derivatives of a tensor and the
Riemann curvature tensor, Eq. (10):

ð∇α∇β −∇β∇α þ 2Sαβγ∇γÞYμ1���μk
ν1���νm

¼
Xm
i¼1

Rαβνi
ρYμ1���μk

ν1���ρ���νm −
Xk
i¼1

Rαβρ
μiYμ1���ρ���μk

ν1���νm;

ð11Þ

where Y is an arbitrary ðk;mÞ-tensor field. The Riemann
curvature tensor, Eq. (10), possesses the following sym-
metries in its indices:

Rαβγδ ¼ R½αβ�γδ; ð12Þ

i.e., RðαβÞγδ ¼ 0, and

Rαβγδ ¼ Rαβ½γδ�; ð13Þ

i.e., RαβðγδÞ ¼ 0. The symmetries of the Riemann curvature
tensor given in Eqs. (12) and (13) are the same as in pure
Riemannian geometry. The other index symmetry in pure
Riemannian geometry, namely, R½αβγ�δ ¼ 0, is, for a geom-
etry with torsion, modified into an identity related to the
covariant derivative of the torsion,

2∇½αSβγ�δ − 4S½αβρSγ�ρδ þ R½αβγ�δ ¼ 0; ð14Þ

which can be envisaged as a Bianchi identity for the torsion
S, and is in this context called the first Bianchi identity. We
note that the antisymmetrization in the second term of
Eq. (14) only refers to nondummy indices, in this case to α,
β, γ, with the dummy index ρ not being affected by the
process, and this is a convention that we will follow. The
Riemannian Bianchi identity, namely, ∇½αRβγ�δρ ¼ 0, when
torsion is present is modified into

∇½αRβγ�δρ − 2S½αβσRγ�σδρ ¼ 0 ð15Þ

and is in this context called the second Bianchi identity.
From the index symmetry identities, Eqs. (12) and (13), and
the first Bianchi identity, Eq. (14), we find that the usual
symmetry of exchanging the first and second pairs of
indices of the Riemann tensor is modified in the presence of
torsion to

2Rγδαβ ¼ 2Rαβγδ þ 3Aαγβδ þ 3Aδαβγ þ 3Aγδαβ

þ 3Aβδγα; ð16Þ

where we have written Aαβγδ ≡ −2∇½αSβγ�δ þ 4S½αβρSγ�ρδ to
simplify the visualization of the equation. We remark that
the results presented so far are completely general, in
particular, they are valid for spacetimes of any dimension.
We will now consider the case of an orientable

Lorentzian manifold ðM; g; SÞ of dimension four. In this
case, a useful quantity to define is the Levi-Civita volume
form, also referred to as the covariant Levi-Civita tensor or
Levi-Civita four-form. Introducing the Levi-Civita symbol,
ηαβγδ, as the totally skew tensor density whose components
in any orientation preserving local coordinate system verify
η1234 ¼ þ1, the Levi-Civita volume form is defined as

εαβγδ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ηαβγδ; ð17Þ

where j det gj represents the absolute value of the determi-
nant of the metric tensor. The Levi-Civita volume form
verifies some useful relations, namely, (i) ∇ρεαβγδ ¼ 0,
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(ii) εαβγδ¼ signðdetgÞffiffiffiffiffiffiffiffi
jdetgj

p ηαβγδ, (iii) εαβγδερσμν¼−24gρ½αgσβgμγgδ�ν,

(iv) εαβγδεασμν ¼ −6gσ ½βgμγgδ�ν, (v) εαβγδεαβμν ¼ −4gμ½γgδ�ν,
and (vi) εαβγδεαβγδ ¼ −24. The first equality follows from
the assumption that the connection is metric compatible,
the second from the properties of the determinant of a
matrix, and in (iii) to (vi) only the lower indices are to be
antisymmetrized.
The Weyl tensor Cαβγδ is defined as the trace-free part of

the Riemann curvature tensor Rαβγδ. In the case of a
manifold of dimension four, the components of the Weyl
curvature tensor, Cαβγδ, can be written as

Cαβγδ ¼ Rαβγδ − Rα½γgδ�β þ Rβ½γgδ�α þ
1

3
Rgα½γgδ�β; ð18Þ

where Rαβ ≡ Rαμβ
μ is the Ricci tensor, and R≡ Rμ

μ is the
Ricci scalar. The Weyl tensor inherits, from Eq. (18), the
following symmetries in its indices:

Cαβγδ ¼ C½αβ�γδ; ð19Þ

i.e., CðαβÞγδ ¼ 0, and

Cαβγδ ¼ Cαβ½γδ�; ð20Þ

i.e., CαβðγδÞ ¼ 0. In addition, one finds

C½αβγ�δ ¼ R½αβγ�δ þ R½αβgγ�δ: ð21Þ

In the presence of torsion, the relation between the
derivative of theWeyl tensor and the Riemann tensor is [18]

∇αCγδβα ¼ 1

2
εμνλβS½μνσRλ�σηρεηργδ

þ 3

2
ðgβδS½γμσRν�σ

μν − gβγS½δμσRν�σ
μνÞ

þ∇½δRγ�β −
1

6
gβ½γ∇δ�R; ð22Þ

and the dummy index σ is not involved in the antisymmet-
rization process.

2. Projector operator, projected covariant Levi-Civita
tensor, and projected covariant derivatives

Consider a Lorentzian manifold of dimension four,
ðM; g; SÞ, admitting, in some open neighborhood, the
existence of a congruence of timelike curves with tangent
vector field u. Without loss of generality, we can foliate the
manifold in three-surfaces, V, orthogonal, at each point, to
the curves of the congruence, such that all tensor quantities
are defined by their behavior along the direction of u and
in V. This procedure is usually called 1þ 3 spacetime
decomposition. Such decomposition of the spacetime
manifold relies on the existence of a projector to the

hypersurface V. Assuming each curve of the congruence
to be affinely parametrized, so that uαuα ¼ −1, the pro-
jector onto V, at each point can be defined as

hαβ ≡ gαβ þ uαuβ; ð23Þ

verifying hαβuα ¼ 0, hαβ ¼ hβα, hαγhγβ ¼ hαβ, and
hγγ ¼ 3.
Another useful operator is the projected covariant Levi-

Civita tensor

εαβγ ¼ εαβγσuσ; ð24Þ

derived from the Levi-Civita volume form, defined in
Eq. (17), with the following properties: εαβγ ¼ ε½αβγ�,
εαβγuγ ¼ 0, εαβγε

μνσ ¼ 6hμ½αhνβhγ�σ , εαβγε
μνγ ¼ 2hμ½αhβ�ν,

and εμναε
μνβ ¼ 2hαβ. Moreover, using Eq. (23) and the

properties of the Levi-Civita volume form, we find
the useful identities hμαhνβhργhλσεαβγσ ¼ 0 and εαβγσ ¼
hαμεμβγσ þ uαεβγσ.
To keep the equations as compact as possible, we

introduce the following notation for projected covariant
derivatives. Given a tensor field Yα���βγ���σ we define

DμYα���βγ���σ ≡ hμνhαρ � � � hβδhλγ � � � hφσ∇νYρ���δλ���φ; ð25Þ

as the fully orthogonally projected covariant derivative on
V. On the other hand, a dot represents the covariant
derivative along the integral curves of u, i.e.,

_Yα���β
γ���σ ¼ uμ∇μYα���βγ���σ: ð26Þ

B. Decomposition of the torsion tensor
and Weyl tensor

We now write the 1þ 3 decomposition of the torsion
tensor S, Eq. (8), and the Weyl tensor C, Eq. (18), in terms
of their components along the direction of the tangent
vector field u and on V with the help of the projector
operator hαβ given in Eq. (23).
For the torsion tensor, Eq. (8), the decomposition is [18]

Sαβγ ¼ εαβ
μS̄μγ − u½αWβ�γ þ Sαβuγ þ u½αXβ�uγ; ð27Þ

with

S̄αβ ¼
1

2
εαμνhσβSμνσ; Wαβ ¼ 2uμhναhσβSμνσ;

Sαβ ¼ −hαμhνβuσSμνσ; Xα ¼ 2uμhναuσSμνσ: ð28Þ

For the Weyl tensor, Eq. (18), the 1þ 3 decomposition is

Cαβγδ ¼ −εαβμεγδνEνμ − 2uαEβ½γuδ� þ 2uβEα½γuδ�

− 2εαβμHμ½γuδ� − 2εμγδH̄μ½αuβ�; ð29Þ
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where

Eαβ ¼ Cαμβνuμuν; Hαβ ¼
1

2
εα

μνCμνβδuδ;

H̄αβ ¼
1

2
εα

μνCβδμνuδ ð30Þ

are defined as the electric part and the magnetic part of the
Weyl tensor, respectively. In the Riemann-Cartan geometry
there are two different tensor quantities associated with the
magnetic part of the Weyl tensor, specifically,Hαβ and H̄αβ,
such that in general the presence of torsion lifts a
degeneracy in the magnetic part of the Weyl tensor.
From the results in Eqs. (19)–(21), we see that in the
presence of torsion the tensor Eαβ has the following
properties: Eαβ ¼ hαμhβνEμν and Eα

α ¼ 0; the tensor
Hαβ has the following properties: Hαβ ¼ hαμhβνHμν and
Hαβ ¼ HðαβÞ; and the tensor H̄αβ has the following proper-
ties: H̄αβ ¼ hαμhβνH̄μν and H̄αβ ¼ H̄ðαβÞ. Therefore, Eαβ

may not be a symmetric tensor and Hαβ and H̄αβ do not
have to be trace free, as in the case of Riemannian
geometry. On the other hand, due to the properties of
the Levi-Civita volume form and the fact that the Weyl
tensor is, by definition, trace free, even in the presence of
torsion, the magnetic parts, Hαβ and H̄αβ, are symmetric
under the exchange of indices.
Many of the results introduced and to be introduced are

valid or easily extended for manifolds of dimension d ≥ 2.
However, quantities and identities that rely on the covariant
Levi-Civita tensor, Eq. (17), notably the 1þ 3 decompo-
sition of the torsion tensor, Eq. (27), and of the Weyl tensor,
Eq. (29), are dimension dependent; hence, the general set of
structure equations that we will find will depend on the
dimension of the manifold.

C. The separation vector between infinitesimally
close curves of a congruence

Having introduced the definitions and properties of the
basic geometric quantities and their decompositions, we
will now consider the notion of separation vector between
infinitesimally close curves of a congruence and relate its
evolution with the kinematical quantities that characterize
the congruence. For further details see Ref. [38].
Consider a congruence of curves in some open neigh-

borhood of ðM; g; SÞ, with tangent vector field u. Given
two points p and q in a small enough neighborhood, such
that p is crossed by a curve of the congruence and q is
crossed by a distinct curve of the congruence, the vector
field n≡ q − p gives a meaningful notion of the separation
between the curves of the congruence. Picking a curve c of
the congruence as the fiducial curve, it is possible to derive
an equation for the change of the separation vector n along
the curve c. Indeed, one finds

uβ∇βnα ¼ Bβ
αnβ; ð31Þ

where

Bβ
α ¼ ∇βuα þ 2Sγβαuγ: ð32Þ

The tensor B gives the evolution of the separation vector n
between two infinitesimally close curves along the fiducial
curve. We note that Eq. (31) is valid for the case of u being
timelike, spacelike, or null, with the fiducial curve being a
geodesic or not, although we will be interested in the case
of a timelike curve. The first term in the right-hand side of
Eq. (32) is the usual term present in pure Riemannian
geometry, while the second term in the right-hand side of
Eq. (32) represents an explicit contribution of the torsion
tensor to the evolution of a congruence of curves.
We can now study some geometrical implications of

Eqs. (31) and (32). Taking the derivative along c of the
quantity nαuα reads

uμ∇μðnαuαÞ ¼ nβaβ þ 2Sσγαuσuαnγ; ð33Þ

where the acceleration vector field a in a local coordinate
system has components given by

aα ¼ uγ∇γuα: ð34Þ

The expression given in Eq. (33) can be seen as the failure
of the separation vector n and the tangent vector u to stay
orthogonal to each other. Indeed, if at a given point, n and u
are orthogonal to each other, a nonzero acceleration a or a
nonzero, general, torsion S will destroy the preservation of
such orthogonality along the curve. Thus, this analysis of
Eq. (33) leads to the conclusion that the tensor B, describ-
ing the behavior of the separation vector might have, even
in the case of a zero acceleration a, nonzero components
tangential and orthogonal to the tangent vector field
associated with the fiducial curve cwhen torsion is present.
Without loss of generality, it is then possible to write Bαβ in
terms of two components. One component, B⊥αβ, is
completely orthogonal to u, and another component,
Bkαβ, contains the remaining terms. Given a projector
hαβ onto the surface orthogonal to the curve c at a given
point, we can then write

Bαβ ¼ B⊥αβ þ Bkαβ: ð35Þ

Now, B⊥αβ is defined as B⊥αβ ≡ hαγhβσBγσ. Furthermore
we can define the kinematical quantities of the congruence,
namely, expansion θ, shear σαβ, and vorticity ωαβ, of
neighboring curves of the congruence that only depend
on the orthogonal part B⊥ of the tensor B, so that we have

the identity B⊥αβ ¼ hαβ
hγ γ

θ þ σαβ þ ωαβ. Since we are inter-

ested in 1þ 3 dimensions, we have hγγ ¼ 3, and so
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B⊥αβ ¼
1

3
hαβθ þ σαβ þ ωαβ; ð36Þ

with

θ¼B⊥γ
γ; σαβ ¼B⊥ðαβÞ−

1

3
hαβθ; ωαβ ¼B⊥½αβ�: ð37Þ

Then, of course, given B⊥αβ, one uses Eq. (35) to determine
Bkαβ as Bkαβ ¼ Bαβ − B⊥αβ. The set of kinematical quan-
tities θ, σαβ, and ωαβ, given in Eq. (37), characterizes a
congruence in a Lorentzian manifold and represents one of
the building blocks of covariant spacetime decomposition
approaches. Note further that the procedure that defines the
projector operator strictly depends on the specific family of
curves considered, i.e., depends on the tangent vector field
u. Once the projector is assigned, as, e.g., in Eq. (23), one
has that Eq. (32) together with Eq. (36) will give an actual
expression for the derivative of the tangent vector u in terms
of the kinematical quantities, the tangent vector itself, its
acceleration a, and the torsion tensor S.
The results presented here are quite general and valid for

curves of any kind and easily extended to spacetimes of any
dimension d ≥ 2. Nonetheless, in this work we will focus
on developing the 1þ 3 formalism for timelike congruen-
ces in a four-dimensional oriented Lorentzian manifold
with torsion.

D. Structure equations for the geometric fields

The kinematical quantities of a congruence of curves
(37), the acceleration vector field (34), and the tensors
found from the decomposition of the torsion tensor,
Eqs. (27) and (28), and of the Weyl tensor, Eqs. (29)
and (30), and the Ricci tensor completely describe the
geometry of the manifold ðM; g; SÞ and the properties of a
congruence of curves that cover it. We have then to find a
complete set of differential equations that describe the
evolution of these quantities along u and on V.
Now, projecting twice Eq. (32) with the projector given in

Eq. (23), we find that the covariant derivative of the tangent
vector field u is given by ∇αuβ ¼ B⊥αβ −Wαβ − uαaβ,
where we have used Eqs. (27), (32), and (34). Then, using
Eq. (36) we find

∇αuβ ¼
1

3
hαβθ þ σαβ þ ωαβ −Wαβ − uαaβ: ð38Þ

Applying the Ricci identity, Eq. (11), to Eq. (38), we find the
propagation equations for the kinematical quantities

_θ − _Wα
α ¼ −Rαβuαuβ −

�
1

3
θ2 þ σαβσ

αβ þ ωαβω
βα

�

þDαaα þ aαaα þWβα

�
1

3
hαβθ þ σαβ þ ωαβ

�

þ Xαaα; ð39Þ

hμαhνβð _ωαβ− _W½αβ�Þ ¼
1

2
hμαhνβR½αβ�−E½μν�−

2

3
θωμν

þ2σα½μων�αþD½μaν� þX½μaν�

þ1

3
θW½μν�−Wδ½μðσν�δþων�δÞ; ð40Þ

hμαhνβð _σαβ − _WhαβiÞ ¼
1

2
Rhμνi − EðμνÞ þDhμaνi þ ahμaνi

−
2

3
σμνθ − σδhμσνiδ − ωδhμωνiδ

þ Xhμaνi þWδhμσνiδ þWδhμωνiδ

þ 1

3
Whμνiθ; ð41Þ

where for any two-tensor Yαβ we use the angular brackets to
represent the projected symmetric partwithout trace of it, i.e.,

Yhαβi ≡ ½hμðαhβÞν − hαβ
3
hμν�Yμν, and dummy indices are left

out of all the symmetrization processes. Equations (39)–(41)
follow from computing the projection hμαuβhνγRαβγδuδ and
evaluate, respectively, its trace, antisymmetric part and
symmetric part without trace. Provided the field equations
of a gravity theory to relate the projection of the Ricci tensor
with the stress-energy tensor, Eq. (39) represents the gen-
eralization of the Raychaudhuri equation for manifolds with
nonzero torsion [38,39], describing the evolution of the
expansion of a congruence of curves. From theRicci identity,
Eq. (11), we also find the constraint equations,

εαβγDαðωβγ −WβγÞ − εαβγaγωαβ

¼ Hγ
γ − 2S̄αβ

�
1

3
hβαθ þ σβα þ ωβα −Wβα

�

− εαβγaγðSαβ þWαβÞ; ð42Þ

εαβhμDαðσβνi þ ωβ
νi −Wβ

νiÞ þ εαβhμaνiωβα

¼ Hhμνi − εαβhμaνiðSαβ þWαβÞ þ 2Wδ
hμS̄νiδ

− 2

�
1

3
hδhμθ þ σδ

hμ þ ωδ
hμ
�
S̄νiδ; ð43Þ

2

3
Dμθ −Dαðσμα þωμ

α −Wμ
αÞ−DμWγ

γ − 2aγωμγ

¼ −hαμRαβuβ − 2εαβμS̄αγWγ
β

þ 2aγðSγμ þW½γμ�Þ þ 2εαβμS̄αγ
�
1

3
hγβθþ σγ

β þωγ
β

�
;

ð44Þ

where dummy indices do not participate in the symmetriza-
tion processes. Equations (42)–(44) follow from computing
the projection εαβλhργRαβγδuδ and evaluate, respectively, its
trace, symmetric part without trace, and antisymmetric part.
These equations clearly exemplify how the presence of
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torsion modifies the geometry of the manifold and, con-
sequently, the change in the evolution of a congruence of
timelike curves. When comparing to the case of vanishing
torsion [22,25], we see that, in the presence of a general
torsion tensor field, the magnetic part of the Weyl tensor,H,
is characterized by Eqs. (42) and (43); in particular, it also
depends on the divergence of the vorticity vector 1

2
εγμνωμν.

Moreover, from Eq. (42), we conclude that the presence of
torsion acts as a cause for the rotation of the congruence.
The evolution and constraint equations for the compo-

nents of the Weyl tensor are found from the identity for the
Weyl tensor given in Eq. (22), or, equivalently, from the
second Bianchi identity, Eq. (15). For the electric part of the
Weyl tensor we find the propagation equation

− hαμhβν _E
μν þ εμβ

νðDνH̄μ
α þ aνH̄μ

αÞ þ εμαδaδHμβ þ ðσαν þ ωαν −WανÞEν
β

þ Eα
μð2σμβ þ 2ωμβ −WμβÞ − Eαβðθ −Wμ

μÞ − hαβEνμ

�
σμν þ ωμν −

1

2
Wμν

�

¼ 1

4
hαβRνμðWμν −Wγ

γhμν − 2εμδγS̄γδuνÞ − εμνβXμH̄αν − 2S̄βμH̄αμ þ hαβS̄μνH̄μν −
1

2
WανhδβRνδ −

1

6
WαβRþ 1

2
WαβhνδRνδ

þ 1

2
hανRνδðWμ

μhδβ −WδβÞ −
1

12
hαβ _Rþ 1

2
hαμhβνuδ∇δRμν −

1

2
DαðuδRδ

βÞ þ uλRλσS̄βμεσμα −
1

2
RμνXαuμhνβ

þ 1

2

�
1

3
hαμθ þ σαμ þ ωαμ

�
Rμνhνβ; ð45Þ

and the constraint equation

DμEα
μ þ εμγδH̄μα

�
ωδγ −Wδγ −

1

2
Sδγ

�
þ
�
σδν þ ωδν −

1

2
Wδν

�
ενβμhαβHμ

δ

¼ 1

2
RβγS̄μβεγμα − RμγS̄μβεγβα −

1

12
RXα þ

1

2
RεμβαS̄μβ −

1

4
RγβuβðWαγ − XαuγÞ þ

1

2
hναRνβaβ þ

1

12
DαR

−
1

2
EανXν þ 1

2
DαðRμνuμuνÞ þ RνβWα

ðνuβÞ þ 2S̄νβενβμEα
μ þ 1

2
SαγuβRβ

γ − εαβνS̄μβEμν

−
1

3
θRνβuðνhβÞα − RνβuðνðσβÞα − ωβÞ

αÞ −
1

2
hαδuγ∇γðRμνhμδuνÞ þ

1

2
Rμνuμuνaα

þ 1

2
hδαRδμ

�
εμνβS̄βν −

1

2
Wγ

γuμ þ
1

2
Xμ

�
; ð46Þ

where only the upper indices enter in the symmetrization process. Equation (45) is found from the projection
hμγhνβuδ∇λCγδβλ and Eq. (46) follows from hδαuγuβ∇λCγδβλ. For the magnetic part of the Weyl tensor we find the
propagation equation

ð2aμEνðα þDμEνðαÞεβÞνμ − hμðαhβÞν _Hμν þ ðσμðα þωμðαÞHβÞμ −
�
2

3
Hαβ þ

1

3
H̄αβ

�
θ

þ
�
1

3
hαβθ− hαβWμ

μ − σαβ þWðαβÞ

�
H̄ν

ν þ 2σμðαH̄μ
βÞ − ðσμν −WμνÞhαβH̄μν þWμ

μH̄αβ − H̄μðαWβÞμ −WμðαH̄μ
βÞ

¼ 1

2
DδðεγδðαhβÞμRγμÞ þEμðαð2S̄βÞμ − εβÞμνXνÞ−

1

2
uμRγμεγνðα

�
1

3
hνβÞθþ σνβÞ þων

βÞ −Wν
βÞ

�

þ 1

2
RγμuγhμðαεβÞνδðωνδ −WνδÞ þ

1

3
RS̄ðαβÞ − S̄ðαμhγβÞRμγ þ

1

2
εμνðαW

μ
βÞRνδuδ þ S̄ðαβÞRμδuμuδ −

1

2
εμνðαhβÞγXμRνγ; ð47Þ

where dummy indices are out of the symmetrization process. This equation describes the propagation of the
H component of the Weyl tensor along the congruence. For the magnetic part of the Weyl tensor we find the constraint
equation
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− 2DμHμ
α þ

2

3
εαβδEβδθ þ 2εαβ

μEβδσδμ þ 4EβðδεαÞβμðωδ
μ −Wδ

μÞ

¼ εαγδDδðRγβuβÞ þ εαγδRγ
βWδβ −

1

3
εαγδRγδθ − εαγδRγβðσδβ þ ωδ

βÞ þ 2S̄μαRμδuδ − 2S̄αβRβδuδ − 2εμνγSμνEγα

þ εμνγSμνRγβhβα − εμναSμνuγuβRγβ −
1

3
εμναSμνR − 4S̄γβεγβμHμ

α: ð48Þ

This equation provides the divergence of H on V. Equation (47) is found from εγδðαhβÞμ∇λCγδμλ and Eq. (48) follows from
computing the projection εαγδuβ∇λCγδβλ. Computing the contraction εα

γδhμβuνðRγδμν − RμνγδÞ and using Eq. (16), we find
that there is a further relation, one between the tensors H and H̄,

Hα
β − H̄α

β þ εα
μβuνR½νμ� ¼ −

1

2
εα

μνDβðWνμ þ SνμÞ þ εαμνXνBβμ
⊥ − εαμνXνðW½βμ� þ SβμÞ − 1

2
εα

μνaβðWνμ þ SνμÞ
þ 2hαγhμβuν∇νS̄γμ þ 2S̄αβθ − 2hαβS̄μνðSμν þW½μν�Þ þ εαμνaνðWðμβÞ þ SμβÞ − hαβuν∇νS̄μμ

− hαβS̄μμθ þ εαμ
νDνðWðβμÞ þ SβμÞ þ εα

μνXβωμν − 2S̄μβB⊥μα −
1

2
εα

μνXβðWμν þ SμνÞ
þ 2hαβS̄μνB⊥μν − 2S̄αμWμ

β: ð49Þ

Note that in Eq. (49) the termwith theRicci tensor on the left-
hand side could be removed by taking the symmetric part in
the indices α and β; however, this will add more terms and
will overload the notation on the right-hand side, sowe opted
towrite the result as is. Note also that Eq. (49) shows how the
presence of torsion is responsible for the degeneracy removal
of the magnetic parts of the Weyl tensor. It is interesting to
note that the difference between the magnetic parts of the
Weyl tensor depends on the derivatives of the components of
the torsion tensor, on V and along u, making it clear that in
general both the value and the rate of change of the torsion
field affect the difference between the tensors H and H̄.
Moreover, since in Eq. (49) we have an algebraic relation for
the difference of the components of the tensors H and H̄,
Eqs. (47)–(49) characterize both H and H̄; i.e., we do not
need to find propagation and constraint equations for H̄ since
those will not be independent of Eqs. (47)–(49). Using
Eq. (14), we find the remaining equations that characterize
the torsion tensor components. These equations are

hανuμR½νμ� ¼ εαμνuγ∇γS̄μν þ
�
εγμνS̄μν −

1

2
Xγ

�
Bαγ
⊥

þ εγ
αμS̄μβðBβγ

⊥ −WβγÞ þ 1

2
DαWμ

μ −
1

2
DβWαβ

þ 1

2
Wμ

μaα −
1

2
Wαγaγ þ

1

2
Xαθþ Sγαaγ ð50Þ

and

εαμνRμν ¼ εασρ _S
σρ þ 2DβS̄βα þ εασρDσXρ

− εασρWμ
μðωσρ −WσρÞ þ 2S̄αμðXμ þ aμÞ

− εασρWρ
βðBβσ

⊥ −WβσÞ − εασρðXσaρ þ SρσθÞ
− 4εβμνS̄αβS̄μν: ð51Þ

Equations (50) and (51) are derived from computing the
projections hσαuγR½αβγ�β and hσαhργR½αβγ�β, respectively, and
using the first Bianchi identity, Eq. (14).
Equations (39)–(51) characterize the geometry of the

manifold, containing exactly the same information as the
Ricci and Bianchi identities.

III. THE STRESS-ENERGY-MOMENTUM
TENSOR AND THE STRUCTURE EQUATIONS

FOR THE MATTER FIELDS

A. The stress-energy tensor and its decomposition

For the stress-energy tensor T that characterizes the
matter fields permeating the spacetime manifold, we also
want to apply the 1þ 3 formalism in order to study its
dynamical evolution. Setting the congruence’s tangent
vector field u to coincide with the four-velocity of an
observer, without imposing any symmetries on T and using
Eq. (23) we find the following decomposition:

Tαβ ¼ μuαuβþphαβþq1αuβþuαq2βþπαβþ εαβ
γmγ; ð52Þ

with

μ¼uμuνTμν; p¼1

3
hμνTμν; q1α¼−hαμuνTμν;

q2α¼−uμhανTμν; παβ¼Thαβi; mα¼
1

2
εα

μνTμν; ð53Þ

where μ is the energy density measured by the chosen
observer, p is the pressure, q1α and q2α represent energy
and momentum density fluxes, παβ is the anisotropic
stress, and mα is a flux, in particular related with the
nonconservation of intrinsic angular momentum of matter.
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Note that we are free to arbitrarily choose the timelike
congruence; nonetheless, in the case of a single fluid, it is
useful to set the congruence’s tangent vector field u to
coincide with the four-velocity of the elements of volume
of the fluid, in which case the various projections of the
stress-energy tensor and the kinematical quantities of the
congruence directly represent the properties and evolution
of the matter fluid.

B. The structure equations for the matter fields

To find the set of equations describing the dynamical
evolution of the matter fields in the manifold, we will
consider the general conservation law for the stress-energy
tensor, given in general by

∇βTαβ ¼ Ψα; ð54Þ

where Ψα is some tensor to be determined by the field
equations and the Bianchi identities. From Eqs. (52) and
(54), the projections along u and on V are

_μþðθ−Wα
αÞðμþpÞ−εαβγmγðωαβ−WαβÞ

þπαβðσαβ−WαβÞþðqα1þqα2ÞaαþDαqα2¼−uαΨα; ð55Þ

ðμþ pÞaα þDαpþDμπα
μ þ εα

μνDμmν

þ ðπαν − εαμνmμÞaν þ hαβ _q1β þ
�
q1α þ

1

3
q2α

�
θ

− q1αWβ
β þ qβ2ðσβα þ ωβα −WβαÞ ¼ hαβΨβ: ð56Þ

At this point the imposition that the evolution equations for
the matter variables are determined by (54) is given ad hoc.
In practice, however, provided the field equations of a
gravity theory relating the Ricci and the stress-energy
tensors, the conservation equations will follow from the
second Bianchi identity. Hence, these are a pivotal com-
ponent to guarantee the consistency of the physical theory
and system of equations.

IV. THE EINSTEIN-CARTAN THEORY
FOR A WEYSSENHOFF-LIKE TORSION:

FIELD EQUATIONS

The general set of structure equations that arise from the
1þ 3 formalism can be used to study solutions of any
relativistic theory of gravitation based on an affine, metric
compatible connection. In this section, we will focus
on the Einstein-Cartan theory characterized by the field
equations

Rαβ −
1

2
gαβRþ Λgαβ ¼ 8πTαβ; ð57Þ

Sαβγ þ 2gγ½αSβ�μμ ¼ −8πΔαβγ; ð58Þ

whereTαβ represents the canonical stress-energy tensor,Δαβμ

is the intrinsic hypermomentum, and Λ is the cosmological
constant. The Einstein-Cartan theory defined by Eqs. (57)
and (58) can be derived from the Einstein-Hilbert action
I ¼ 1

16π

R
d4x

ffiffiffiffiffiffi−gp ðR − 2ΛÞ þ R
d4x

ffiffiffiffiffiffi−gp
Lm, where the

Ricci scalar contains the metric and the torsion as dynamical
variables, Lm is the matter Lagrangian density, and the
variation of I must be performed with respect to those two
fields. The conservation law is given by

∇βTα
β ¼ 2SαμνTνμ −

1

4π
SαμμΛþ 1

8π
ðSαμμR − SμνσRασμνÞ:

ð59Þ

To simplify the equations and, in agreement with what
we are going to consider in the following, we will impose
that the torsion tensor is characterized only by the tensor
Sαβ, i.e., the tensors S̄αβ, Wαβ, and Xα in Eq. (27) are
considered to be identically zero, so

Sαβγ ¼ Sαβuγ: ð60Þ

Given Eqs. (57)–(59) and assuming Eq. (60), the 1þ 3
structure equations have the following new forms.
The propagation equations for the kinematical quantities

associated with u are

_θ ¼ −4πðμþ 3pÞ þ Λ −
�
1

3
θ2 þ σαβσ

αβ þ ωαβω
βα

�

þDαaα þ aμaμ; ð61Þ

hμαhνβ _ωαβ ¼ −E½μν� þ 4πεμνγmγ −
2

3
θωμν

þ 2σα½μων�α þD½μaν�; ð62Þ

hμαhνβ _σαβ ¼ −EðμνÞ þ 4πðπμνÞ þDhμaνi þ ahμaνi

−
2

3
σμνθ − σδhμσνiδ − ωδhμωνiδ; ð63Þ

and the corresponding constraint equations are

εμνρDμωνρ þ εμνρaρωνμ ¼ Hρ
ρ þ εμνρaρSνμ; ð64Þ

εαβhμDαðσβνi þ ωβ
νiÞ þ εαβhμaνiωβα ¼ Hhμνi − εαβhμaνiSαβ;

ð65Þ

2

3
Dαθ−Dμðσαμþωα

μÞ−2aμωαμ ¼ 8πq1αþ2aμSμα; ð66Þ

where only upper indices enter the symmetrization process.
The propagation equations for the electric and magnetic

parts of the Weyl tensor are
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− hαμhβν _E
μν þ εμβ

νðDνH̄μ
α þ aνH̄μ

αÞ þ εμαδaδHμβ þ ðσαν þ ωανÞEν
β þ 2Eα

μðσμβ þ ωμβÞ

− Eαβθ − hαβEνμðσμν þ ωμνÞ ¼
4π

3
hαβ _μþ 4πhαμhβν _πμν þ 4πεαβ

γ _mγ þ 4πðq1αaβ þ aαq2βÞ

þ 4πDαq2β þ 4π

�
1

3
hαδθ þ σαδ þ ωαδ

�
½hδβðμþ pÞ þ πδβ þ εδβγmγ�; ð67Þ

H̄μ
μ

�
1

3
hαβθ − σαβ

�
þ 2H̄μ

ðασβÞμ − hαβH̄μνσμν þ ½2aμEν
ðα þDμEν

ðα�εβÞνμ − hμðαhβÞν _Hμν

þHμðαðσμβÞ þ ωμ
βÞÞ − 1

3

�
2Hαβ þ H̄αβ

�
θ

¼ 4πεγ
δðαhβÞμqγ1ðσδμ þ ωδμÞ þ 4πεμδðαqβÞ2 ωδμ þ 4πεγ

δðαDδπ
βÞγ þ 4πDðαmβÞ − 4πhαβDδmδ; ð68Þ

and the corresponding constraint equations are

DβEα
β þ εβγδH̄βα

�
ωδγ −

1

2
Sδγ

�
þ ðσδν þ ωδνÞενβγhαβHγ

δ

¼ 4πDαpþ 8π

3
Dαμþ 4π½παβ − εβαγmγ�aβ þ 4πðq2λ þ q1λÞ

�
σα

λ þ ωα
λ þ 1

3
hαλθ

�
þ 4πhαγ _q1γ

þ 4πðμþ pÞaα − 4πSαγq
γ
2; ð69Þ

4EβðδεαÞβγωδ
γ þ 2εαβ

γEβδσδγ − 2DγHγ
α þ

2

3
εαβδEβδθ

¼ −8πεαγδ½Dδqγ1 þ ωδγðμþ pÞ� − 8πεαγδðπγβ þ εγβνmνÞðσδβ þ ωδ
βÞ −

16π

3
θmα −

8π

3
εμναSμν

�
μþ 3p −

Λ
4π

�

þ 8πεμνγSμνðπγα þ εγανmνÞ − 2εσνγSσνEγα; ð70Þ

Hα
β − H̄α

β þ 4πεα
μβðq1μ − q2μÞ ¼ −

1

2
εα

μνDβSνμ −
1

2
εα

μνaβSνμ þ εαμνaνSμβ þ εαμ
νDνSβμ: ð71Þ

The equations that characterize the torsion tensor are

4πðqα2 − qα1Þ ¼ Sγαaγ; ð72Þ
16πmα ¼ εαρσðSρσθ þ _SρσÞ: ð73Þ

The equation relating the torsion to the hypermomentum is

Sαβuγ ¼ −8πΔαβγ: ð74Þ

The conservation of energy and momentum equations are

_μþθðμþpÞþ2qα1aαþDαqα2þπαβσαβþ εαβγmγωβα¼ 0;

ð75Þ

ðμþ pÞaα þDαpþ hαβ _q1β þDμπα
μ þ ðπαν − εαμνmμÞaν

þ
�
q1α þ

q2α
3

�
θ þ qβ2ðσβα þ ωβαÞ þ εα

μνDμmν

¼ −
1

8π
H̄α

ρSγδεργδ − Sαβq2β: ð76Þ

Once the matter model is given, Eqs. (61)–(76) completely
describe the geometry of the spacetime and the evolution of
the matter fluid for the Einstein-Cartan theory, for a torsion
tensor of the form given in Eq. (60), i.e., Sαβγ ¼ Sαβuγ . Note,
however, that we have not yet imposed any restriction on the
stress-energy tensor, and for a torsion that assumes the form
of Eq. (60), the field equations, Eqs. (61)–(76), are valid for
any matter model.
The form of the field equations, Eqs. (61)–(76), allows us

to compare them with the results in the literature and test
their validity. First, we see that our results differ from the
ones in [29]. In this reference the authors seem to have not
realized that in the presence of torsion, the Weyl tensor is
characterized by three tensors, more specifically, the
magnetic part of the Weyl tensor is described by two
distinct tensors; moreover, it is quite surprising that the
authors did not verify that the electric and magnetic parts of
the Weyl tensor do not carry all the usual symmetries found
in spacetimes with vanishing torsion. Second, setting the
torsion terms in Eqs. (61)–(76) to zero, H̄ ¼ H and both
the electric and magnetic parts of the Weyl tensor are
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symmetric, trace-free tensors, and imposing the stress-
energy tensor to be symmetric, such that mα ¼ 0 and
q1α ¼ q2α, we recover the expressions for the structure
equations for the theory of general relativity [22,25].

V. RELATIVISTIC COSMOLOGY IN EINSTEIN-
CARTAN THEORY: THE ISOTROPIC UNIVERSE
AND THE GEOMETRY OF THE THREE-SPACES

A. Field equations for the universe
with homogeneous spinning fluid

The general set of structure equations for the Einstein-
Cartan theory, Eqs. (61)–(76), even for a simplified torsion
tensor, is extremely complicated, and to find nontrivial
solutions we have to impose some idealized symmetries
and constraints on the matter fields. As a particular
application of the previous set of equations, we will
consider the effects of a neutral Weyssenhoff fluid (see,
e.g., Ref. [12]) in a cosmological setting.
The Weyssenhoff fluid represents a semiclassical model

for a perfect fluid composed by fermions, taking into
account the macroscopic effects of the intrinsic angular
momentum of its constituents. Following Refs. [12,14], for
a comoving observer, the canonical stress-energy tensor of
a Weyssenhoff fluid is such that T ¼ Tðμ; p; q1Þ; i.e., the
canonical stress-energy tensor only depends on the energy
density, pressure, and a heat flow term that arises from
the intrinsic spin of the particles. For the Weyssenhoff
fluid the intrinsic hypermomentum can be written as
Δαβγ ¼ − 1

8πΔ
αβuγ , where u represents the proper four-

velocity of an element of volume of the fluid and the
antisymmetric spin density tensor, Δαβ, verifies Δαβuβ ¼ 0.
From the field equation (74), we find that the torsion tensor
is given by Sαβ ¼ Δαβ, and the components S̄αβ, Wαβ, and
Xα are identically zero for the Weyssenhoff fluid. An
interesting consequence for the Weyssenhoff model is
given by Eq. (72), which simplifies to qα1 ¼ − 1

4π Sγ
αaγ .

This relation between the vector field q1 and the torsion
tensor was already found by Obukhov and Korotky for the
Weyssenhoff fluid stress-energy tensor [14]. Of course, the
model found in [14] is more general, since it is independent
of the considered gravitational theory, showing, nonethe-
less, the consistency of the results.
We are interested in studying solutions where a neutral

Weyssenhoff fluid acts as a source of spin and that could be
used to model the universe at very large scales, such that the
cosmological principle is verified by the matter fluid. So,
for the cosmological model we further assume a number of
conditions. (i) The shear tensor field of the fluid is
identically zero at every point and throughout the fluid’s
evolution; hence, σαβ ¼ 0. (ii) There are no spatial expan-
sion gradients, such thatDαθ ¼ 0. (iii) The matter fluid has
no intrinsic preferred spatial directions; therefore we
impose that there are no spatial energy density and pressure
gradients, namely, Dαμ ¼ 0 and Dαp ¼ 0. (iv) The fluid’s

elements of volume have zero four-acceleration at all points
and throughout the fluid’s evolution, aμ ¼ 0. (v) The
vorticity tensor is such that ωαβ ¼ Sαβ. This constraint is
equivalent to impose that the spatial spaces, orthogonal to
the curves of the congruence, are hypersurfaces [40].
(vi) The orthogonal spatial hypersurfaces are complete
and simply connected.
As we will see, these conditions guarantee that at the

level of the metric there are no preferred spatial directions.
On the other hand, an observer comoving with the fluid that
interacts directly with the torsion tensor will, in fact,
measure a preferred spatial direction; however, this does
not imply an intrinsic anisotropy of the matter fluid. We
will discuss this in more detail below.
In what follows, it is useful to define the vector fields:

ωγ ¼ 1

2
εγμνωμν; Sγ ¼ 1

2
εγμνSμν;

Δγ ¼ 1

2
εγμνΔμν; Eγ ¼ 1

2
εγμνEμν; ð77Þ

such that ωμν ¼ εμνγω
γ , Δμν ¼ εμνγΔγ , Sμν ¼ εμνγSγ , and

E½μν� ¼ εμνγEγ . Then, the structure equations (61)–(76)
together with the previous assumptions yield the following
set of equations.
We have for the kinematical quantities

_θ ¼ −4πðμþ 3pÞ þ Λ −
�
1

3
θ2 − 2SσSσ

�
; ð78Þ

Dαθ ¼ 0; ð79Þ

ωγ ¼ Sγ; ð80Þ

σαβ ¼ 0; ð81Þ

aβ ¼ 0; ð82Þ

for the Weyl tensor components

Eγ ¼ 1

3
θSγ; ð83Þ

EðμνÞ ¼ −ShμSνi; ð84Þ

H̄μν ¼ −DðμSνÞ; ð85Þ

Hαβ ¼ H̄αβ − hαβH̄σ
σ; ð86Þ

uγ∇γH̄αβ þ 4

3
θH̄αβ ¼ −2SγεμγðαH̄βÞ

μ; ð87Þ

εα
μνDνH̄μβ ¼

1

3
εαβγSγ

	
8πμþ Λ −

1

3
θ2 − SσSσ



; ð88Þ
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for the torsion field

_Sγ þ θSγ ¼ 0; ð89Þ

Sγ ¼ Δγ ð90Þ

εα
μνDμSν ¼ 0; ð91Þ

SμDμSν ¼ 0; ð92Þ

DνðSσSσÞ ¼ 0; ð93Þ

and for the matter variables

_μþ θðμþ pÞ ¼ 0; ð94Þ

Dαμ ¼ 0; ð95Þ

Dαp ¼ 0; ð96Þ

qα1 ¼ 0: ð97Þ

To close the system we have to either impose a function
to model the pressure, p ¼ pðxαÞ, where ðxαÞ is some local
coordinate system on the manifold, or relate p with the
energy density μ through a barotropic equation of state,
p ¼ pðμÞ, i.e.,

p ¼ pðxαÞ or p ¼ pðμÞ: ð98Þ

Moreover, we see that there is no divergence equation for
the torsion vector field, other than that it must be equal to
minus the trace of H̄. This is expected, since the geometry
and the field equations of the theory alone cannot determine
the relation between the spin density vector Δα and the
thermodynamical variables μ and p: this is something that
has to be provided by a physical model for the matter.
Therefore, to completely close the system, we must either
provide an ad hoc expression for the spin density vector
field, such thatΔα ¼ ΔαðxαÞ or, more physically motivated,
an equation that relates the spin density vector field with μ
and p, Δα ¼ Δαðμ; pÞ, i.e.,

Δ ¼ ΔðxαÞ or Δα ¼ Δαðμ; pÞ: ð99Þ

To further compare our results with those in the
literature, notice that from Eqs. (85), (92), and (93) we
find that H̄αρSρ ¼ 0. This constraint, H̄αρSρ ¼ 0, coincides
with a constraint given in [3,16], in which it is assumed that
each element of volume of the fluid follows autoparallel
curves and its rest mass is constant. In our derivation of this
constraint, we have not assumed that the rest mass is
constant; however, we have imposed that the fluid’s volume
elements have zero acceleration, and it can be shown that

this implies that their rest mass is constant, making the
whole procedure consistent.
The previous set of equations can be written in a

somewhat more compact form. Remembering that the
magnetic parts of the Weyl tensor, H and H̄, are sym-
metric tensors, Eqs. (85) and (91) can be replaced by the
single equation H̄μν ¼ −DμSν. In that case the relation
H̄αρSρ ¼ 0 can replace Eqs. (92) and (93). Notwith-
standing, we choose to keep all these properties explicit
to avoid any confusion.

B. Geometry of the three-spaces for the universe
with homogeneous spinning fluid

We will now study some implications of the field
equations, Eqs. (78)–(97). The matter equations of state,
Eqs. (98) and (99), will not be used at this stage. We
analyze in detail and obtain concrete results related to the
geometry of the three-spaces, i.e., three-hypersurfaces,
orthogonal to the congruence.
Without loss of generality, we will consider that the

separation vector field n, introduced in Sec. II C, at each
point is orthogonal to the tangent vector field u, such that
nμuμ ¼ 0 and nα is spacelike, i.e., we will consider the
separation between points in the same orthogonal hyper-
surface. This is always possible since, at a given point, we
may decompose a general separation vector in its compo-
nents along u and orthogonal to it. Then, in the light of
Eq. (33), in the considered setup, the orthogonal part will
stay orthogonal to u as we move along its integral curves.
From Eqs. (31) and (36) and setting σαβ ¼ 0 in accord to
Eq. (81) we have

DðnαnαÞ
dτ

¼ 2

3
θnαnα; ð100Þ

where we used the notation D
dτ ≡ uγ∇γ , with τ being an

affine parameter parametrizing the integral curves of u; i.e.,
τ represents up to a constant the proper time measured by
an observer comoving with the fiducial curve of the
congruence. Taking another derivative along u we find

D2ðnαnαÞ
dτ2

¼ 2

3
_θnαnα þ

4

9
θ2nαnα; ð101Þ

relating the second derivative of the square of the norm of
the separation vector with the expansion coefficient of the
congruence and its derivative.
Since n is spacelike, we can define a length l through the

equation

l ¼
ffiffiffiffiffiffiffiffiffiffi
nαnα

p
; ð102Þ

where in general l∶M → R; i.e., in some local coordinate
system, l ¼ lðxαÞ, specifically of proper time τ and the
spatial coordinates on the hypersurface. Nonetheless, since
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we have imposedDαθ ¼ 0, Eq. (79), it is always possible to
define n to represent the separation vector between points at
a fixed proper length at some particular hypersurface, then
Eqs. (100) and (102) imply that

l ¼ lðτÞ; ð103Þ

and Eq. (100) can be written as

1

3
θ ¼

_l
l
: ð104Þ

Now, let hab, 3Rab, and 3R represent, respectively, the
induced metric, the intrinsic Ricci tensor, and the intrinsic
Ricci scalar of an orthogonal three-hypersurface. Then, in the
considered setup, the Gauss embedding equation of differ-
ential geometry yields the following relations between 3Rab

and 3R, and the induced metric, the kinematical and matter
variables:

3Rab ¼
2

3
hab

�
−
1

3
θ2 − SσSσ þ 8πμþ Λ

�
; ð105Þ

3R ¼ 2

�
−
1

3
θ2 − SσSσ þ 8πμþ Λ

�
: ð106Þ

Equation (106) is the generalized Friedman equation for the
Einstein-Cartan system in which we are interested. We
remark that for the type of torsion that is being considered,
Eq. (60), one can show that the induced connection on the
orthogonal slices to u is the Levi-Civita connection; hence,
3Rab and 3R represent the Ricci tensor and the Ricci scalar
associated with the induced metric, hab.
From Eq. (106) we find 3Rl2 ¼ −6 _l2 − 2SσSσl2þ

16πμl2 þ 2Λl2. Taking the derivative along u of this
equation and using the Raychaudhuri equation (78) and
the conservation equations (89) and (94) yield D

dτð3Rl2Þ¼0;
i.e., the quantity 3Rl2 is a constant function between
distinct hypersurfaces. Indeed, using Eqs. (79), (93), and
(95) we conclude that

3R ¼ 6K
l2

; ð107Þ

where K is some constant to be dealt with and the number 6
appears for convenience. So, using Eqs. (103) and (107) we
have that the orthogonal three-hypersurfaces are manifolds
of constant Ricci curvature, i.e., 3Rjτ ¼ const. This result in
conjunction with Eqs. (105) and (106) leads us to conclude
that the Ricci tensor of the three-hypersurfaces is of the
form 3Rab ¼ 2K

l2 hab, i.e., a constant times the metric, so that
in the considered setup the three-hypersurfaces are Einstein
manifolds. Now, in three dimensions the Riemann tensor is
fully characterized by the Ricci tensor, specifically,
3Rabcd¼2ð3Ra½chd�b−3Rb½chd�aÞ−3Rha½chd�b, which in the

considered setup implies 3Rabcd ¼ K
l2 ðhachdb − hadhcbÞ,

and so the three-hypersurfaces are surfaces of constant
spatial curvature. Since we assume that the three-
hypersurfaces are complete and simply connected, we
have that the three-hypersurfaces are isometric to the
three-hyperbolic space, to the three-Euclidean space, or
to the 3-sphere; in other words, in the considered setup,
the three-hypersurfaces are isotropic and homogeneous
and the metric of the spacetime is a FLRW solution.
Nonetheless, note that due to the presence of the torsion
tensor, the whole spacetime is not described solely by the
metric tensor. In the light of these results, we can relate
the value of the integration constant K in Eq. (107) with the
value of the constant curvature of each three-hypersurface,
i.e., K ¼ f−1; 0; 1g, corresponding to the cases when the
orthogonal hypersurfaces are, for the natural topology,
open and hyperbolic, open and flat, or closed and spherical,
respectively. Note, however, that depending on the top-
ology, the solutions with K ¼ −1 or K ¼ 0 need not be
necessarily open, whereas the family of solutions with
K ¼ 1, to which the spherical solution belongs, is neces-
sarily closed (see, e.g., Ref. [26]).
Although the metric tensor is a FLRW solution, the

presence of torsion modifies the geometry of the spacetime;
in particular, we have found that the Weyl tensor does not
have to vanish [see, e.g., Eq. (83)]. This, of course, has
profound implications in the geometry of the spacetime and
the type of solutions that are allowed. In the light of the
field equations, we find the following results.
Theorem 1. In the considered setup, if SαSα ≠ 0 and

DαΔα ¼ fðμ; pÞ, where f is an arbitrary differentiable
function, then

3R ≤ 0; ð108Þ

i.e.,K ¼ −1 orK ¼ 0 in the FLRWmetric. Moreover, each
orthogonal hypersurface is flat; i.e., 3R ¼ 0, if and only if
H̄αβ ¼ 0 for all points on the hypersurface.
Proof.—From Eqs. (85) and (88) and H̄αρSρ ¼ 0, we

find the following relation:

SδDδðDαSαÞ ¼ −
2

3
SδSδ

	
8πμþ Λ −

1

3
θ2 − SσSσ




− H̄μνH̄μν: ð109Þ

Note that for the type of torsion that we are considering,
Eq. (60), one has that DαYα is indeed the divergence of a
vector field Y orthogonal to u, so that DαSα is the
divergence of the torsion vector S. Imposing that the
divergence of the spin density vector is a differentiable
function of the energy density μ and the pressure p, i.e.,
DαΔα ¼ fðμ; pÞ, and using Eqs. (90), (95), and (96)
implies that DδðDαSαÞ ¼ 0. Using this result and the
Friedman equation (106), Eq. (109) yields
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H̄μνH̄μν ¼ −
3R
3
SδSδ: ð110Þ

Since the hypersurfaces orthogonal to the tangent vector
field u are Riemannian manifolds, the terms H̄μνH̄μν and
SδSδ must be non-negative; therefore a consistent solution
of the field equations with SδSδ ≠ 0must verify 3R ≤ 0, i.e.,
K ¼ −1 or K ¼ 0 in the FLRW metric. Using this same
argument, it follows that if 3R ¼ 0, then H̄μν ¼ 0. Of course,
trivially, if H̄μν ¼ 0 and SδSδ ≠ 0, then 3R ¼ 0. ▪
The result in Theorem 1 is quite surprising. In the

considered setup and for a nonvanishing torsion vector
field, the orthogonal hypersurfaces that foliate the space-
time must either have negative curvature or be Ricci flat. In
addition, we find the following result.
Theorem 2. In the considered setup, if the torsion S is

such that SαSα ≠ 0 for all points on the hypersurfaces
orthogonal to the congruence associated with u, then the
hypersurfaces cannot be closed.
Proof.—Let us start by recalling that we have imposed

the congruence u to be hypersurface orthogonal. We then
chose a frame where the orthogonal slices V are hyper-
surfaces; hence, there exists an embedding between each
hypersurface V and a Riemannian manifold ðV; hÞ, where h
represents the induced metric and, for the type of torsion
that we are considering in this section, the induced torsion
tensor is zero. Since an embedding exists, we can pull back
and push forward nonvanishing orthogonal tensor fields in
ðM; g; SÞ to nonvanishing tensor fields in ðV; hÞ. In
particular, the pullback of the projected covariant deriva-
tives of an orthogonal one-form field Yα, i.e., Yαuα ¼ 0, is
given by DaYb, where Ya represents the pullback of Yα

and defines the induced connection in ðV; hÞ, which is
simply the Levi-Civita connection associated with h. Of
course, Yα represents the components of Y ∈ T�

pM in a
local coordinate system and Ya the components of
Y ∈ T�

pV in a local coordinate system, where T�
p means

the cotangent space of the corresponding manifold at the
point p. However, although an abuse of language, it is
much simpler and became a kind of convention to dis-
tinguish between the two tensors by using Greek and Latin
letters.
From Eq. (91), if we define Sa as the pullback of the one-

form Sα, we find that it verifies

εa
bcDbSc ¼ 0 ⇔ εa

bc
∂bSc ¼ 0; ð111Þ

where εabc represents the Levi-Civita tensor in ðV; hÞ.
Therefore, Sa is an exact one-form, i.e., there exists a
function ϕ, such that S ¼ dϕ. Moreover, since h is a
Riemannian metric, it is nondegenerate; hence, the con-
dition SaSa ≠ 0 implies that dϕ ≠ 0. To clarify, the induced
torsion tensor on ðV; hÞ is zero, meaning that the manifold
is endowed with only the Levi-Civita connection. However,
Sa does not have to be zero, and it should be regarded

simply as a one-form field in T�V with no relation with the
connection.
Now, if V is closed, it is, by definition, compact and it

has no boundary; then, from Stokes theorem, we haveR
V dϕ ¼ 0. However, dϕ ≠ 0, and hence, dϕ is a volume
form and its integral over V cannot be zero. ▪
This result is also surprising. In addition to the result of

Theorem 1 asserting that the orthogonal hypersurfaces
cannot have positive curvature, i.e., K ≤ 0, we see that
Theorem 2 establishes that they also cannot be closed,
limiting the topology of these solutions. This is indeed a
great disparity between the theory of Einstein-Cartan and
general relativity, since in the latter there is no limitation in
the sign of K nor on the topology.
The intermediate results for the proof of Theorem 1 also

allow us to infer the behavior of the magnetic part of the
Weyl tensor. Considering Eqs. (89), (104), (107), and (110)
we have the following result.
Proposition 1. In the considered setup, if SαSα ≠ 0,

3R < 0, and DαΔα ¼ fðμ; pÞ, where f is an arbitrary
differentiable function, then H̄μνH̄μν ∼ 1

l8.
Proposition 1 establishes the behavior of the tensor H̄,

and similarly for H, in terms of the scale factor l, so that if
the spacetime is expanding, H̄μνH̄μν tends to zero as 1

l8. In
the next section we further study the tensor H̄; in particular
we show that it is possible to derive a wave equation for H̄
and then study its solutions.
We use the results obtained here to clarify some confusion

regarding the possibility to consider a torsion caused by an
intrinsic spin of matter in a cosmological context. In [11] it
was shown that, under certain conditions, the symmetries of
themetric tensor, in the form ofKilling vector fields, are also
symmetries of the torsion tensor. Under those conditions, of
course, it was then found that a torsion tensor having its
origin in the intrinsic spin of matter, a torsion tensor of the
formSαβγ ¼ εαβμSμuγ , whereSμ is a spacelike vector field, is
not compatible with the cosmological principle. Since the
publication of [11], much of the literature considering an
isotropic and homogeneous universe in the Einstein-Cartan
theory has completely disregarded a torsion tensor of the
previous form. However, we have to analyze the conditions
under which it is valid: the assertion that symmetries of the
metric tensor are also symmetries of the torsion tensor. The
pivotal condition is that the symmetries of themetric are also
symmetries of the metric stress-energy tensor; however, in
[11] it is clearly stated that this very strong condition is
imposed ad hoc and, contrary to the theory of general
relativity, does not follow from the field equations of the
Einstein-Cartan theory. Nonetheless, it is defended that this
is a reasonable assumption if the Einstein-Cartan theory is
considered, in some sense, as a slightmodification to general
relativity. This, however, in general is not the case.Aswe can
readily infer from the structure equations (78)–(97), the
Einstein-Cartan theory, in general, is not a slight modifica-
tion to general relativity. For instance, notice that the torsion
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tensor directly couples and acts as a source to the Weyl
tensor. Of course, models with a vanishingWeyl tensor, as it
is the case in general relativity, or a nonvanishing Weyl
tensor, as generically presented here for the Einstein-Cartan
theory we have been considering, represent very distinct
physical setups. As shown above, the torsion tensor does not
have to have the same symmetries of the metric tensor and
the model just constructed is a consistent solution of the
Einstein-Cartan theory in a cosmological context for a
universe constituted of an isotropic and homogeneous
matter fluid.

VI. GRAVITATIONAL WAVES
IN RELATIVISTIC COSMOLOGY
IN EINSTEIN-CARTAN THEORY

A. Derivation of the gravitational wave equation
for the isotropic universe

Comparing Eqs. (78)–(97) with those found in the
theory of general relativity for a homogeneous and
isotropic spacetime (see, e.g., Refs. [25,26]), we see that
a glaring difference is that the Weyl tensor is, in general,
not identically zero. This contrast between the two
theories has profound implications in the evolution of
the spacetime geometry and of the matter fluid. Indeed, in
the previous section we have found that a nonvanishing
Weyl tensor restricts the allowed geometry and topology
of the orthogonal hypersurfaces, a restriction that does not
exist in general relativity. In this section, we study further
the Weyl tensor and its effects on the evolution of the
spacetime curvature.
TheWeyl tensor is known to be related with gravitational

waves and tidal forces, which, in fact, are interconnected
phenomena. In the model we are considering here, we have
found that torsion and its derivatives act as a source for the
Weyl tensor components; hence, a natural step to under-
stand the solutions of the structure equations is to study the
presence of gravitational waves induced by the matter
intrinsic spin. Because of the presence of torsion, if
K ¼ −1, the magnetic part of the Weyl tensor is non-
vanishing. In this subsection, we will show that if the
torsion tensor is caused by the matter fluid, the traceless
part of H̄ obeys a wave equation. These wave equations can
be formally solved, explicitly showing that in a nonstatic
universe the presence of intrinsic spin leads to the gen-
eration and emission of gravitational waves. From Eq. (86),
H and H̄ have the same traceless part, but distinct trace,
namely Hhαβi ¼ H̄hαβi and Hα

α ¼ −2H̄α
α. In fact, it is

straightforward to show that H and H̄ have the same
eigenvectors, but associated with distinct eigenvalues.
Then, in this section we will focus on studying H̄, and
all results are directly extended to H.
From the Ricci identity (11) and the field equations, we

find, in the considered setup, the following expression for
the projected derivative of the divergence of H̄:

ðDμDαH̄μ
βÞ − ðDαDμH̄μ

βÞ

¼
�
8πμþ Λ − SσSσ −

1

3
θ2
�
H̄hαβi

þ 1

3
θ
�
H̄μ

μεαβ
γ − H̄μβεα

μγ − H̄μ
αεμβ

γ
�
Sγ: ð112Þ

On the other hand, Eq. (88) implies

DμðDαH̄μβÞ−DμðDμH̄αβÞ

þ1

3
ðH̄αβ−hαβH̄μ

μÞ
�
8πμþΛ−

1

3
θ2−SσSσ

�
¼0: ð113Þ

Taking the derivative of Eq. (87) we find

D2

dτ2
H̄αβ þ 4

3
H̄αβ

�
_θ −

4

3
θ2 þ 3SγSγ

�
−
22

3
θSγεμγðαH̄βÞ

μ

¼ 2H̄μ
μðhαβSδSδ − SαSβÞ: ð114Þ

Gathering these results yields

�
D2

dτ2
−DμDμ

�
H̄αβ þDαðDβH̄μ

μÞ

þ 2H̄hαβi

�
8πμþΛ−

1

3
θ2 þ SσSσ

�
þ 4

3
H̄αβ

�
_θ −

4

3
θ2
�

þ 1

3
θðH̄μ

μεαβ
ν − 12εμναH̄μβ − 10εμνβH̄αμÞSν

þ 2H̄μ
μShαSβi ¼ 0: ð115Þ

Note that the operator D2

dτ2 −DμDμ is not the wave operator,
since it is defined in terms of the total connection; none-
theless, it is equal to the wave operator plus terms in H̄ and
its first derivatives.
Now, the term DαðDβH̄μ

μÞ in the left-hand side of the
previous equation does not have to be zero. Since this term is
a second order derivative of H̄, in general the components of
H̄ are not solutions of awave equation. Notwithstanding, it is
physically reasonable to consider that the divergence of the
spin density vector is a differentiable function of the energy
density μ and the pressure p, i.e., DαΔα ¼ fðμ; pÞ: this
expresses the idea that Δα has the matter fields as its source.
In that case, Eqs. (90), (95), and (96) imply thatDβH̄μ

μ ¼ 0.
Therefore, we have the following result.
Proposition 2. In the considered setup, if DαΔα ¼

fðμ; pÞ, where f is an arbitrary differentiable function, the
magnetic part of the Weyl tensor H̄ verifies the following
wave equation for the symmetric part without trace;

□̃H̄hαβi þ 2H̄hαβi

�
8πμþ Λ −

1

3
θ2 − SσSσ

�

þ 4

3
H̄hαβi

�
_θ −

4

3
θ2
�

¼ 0; ð116Þ
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where □̃H̄αβ ≔ ðD̃2

dτ2 − D̃μD̃μÞH̄αβ, defined in terms of the
Levi-Civita connection, represents the wave operator, and H̄
verifies further the following evolution equation for the trace:

D
dτ

H̄α
α þ 4

3
H̄α

αθ ¼ 0: ð117Þ

Thus, we have then found that the traceless part of H̄
verifies a homogeneous wave equation and the trace of H̄
verifies a first-order ordinary differential equation. Before
we proceed to study the solutions of the previous set of two
equations, we remark that the coefficient of the second term
in the left-hand side of Eq. (116) is simply the Ricci scalar
of the orthogonal hypersurfaces, Eq. (106).

B. The solutions

Theorem 1 establishes that the orthogonal hypersurfaces
to u cannot have positive curvature, and if these have
zero Ricci curvature, H̄ must be identically zero. Therefore,
the only nontrivial solutions of Eqs. (116) and (117) that
are of physical interest are those where K ¼ −1.
Notwithstanding, formally the treatment below is largely
independent of the sign of K, and we only have to specify
the allowed values of K when we consider the initial
conditions. Therefore, in an effort to be pedagogical about
the covariant analysis of gravitational waves in a cosmo-
logical setting, we will keep the discussion as general as
possible, and only when studying the behavior of the
solutions will we particularize to K ¼ −1.
The second equation in Proposition 2, Eq. (117), is a

first-order ordinary differential equation and can readily
be integrated in terms of the characteristic length l.
Using Eq. (104) we find H̄α

α ¼ C
l4, where C ∈ R. Note

that to find Eqs. (116) and (117) we have imposed that
DαΔα ¼ fðμ; pÞ, which implies DαH̄μ

μ ¼ 0. On the other
hand, finding the solutions of the wave equation given in
Eq. (116) is more involved. In that regard, we will assume
that the spatial and proper-time, τ, dependence of H̄hαβi are
separable. Then, we will consider the eigenfunctions of the
covariant Laplace-Beltrami operator D̃μD̃μ and expand
H̄hαβi over these eigenfunctions, such that

H̄hαβi ¼
X
k

hð0Þk Qð0Þ;k
αβ þ hð1Þk Qð1Þ;k

αβ þ hð2Þk Qð2Þ;k
αβ ; ð118Þ

where we have used a compact notation to unify the two
possibilities of k taking discrete or continuous values, such
that the symbol

P
k is to be understood as either a discrete

sum, if the hypersurfaces orthogonal to u have positive
curvature, K ¼ 1, or as an integral over a continuously
varying index, if these have zero or negative curvature; also

the coefficients hð0Þk , hð1Þk , and hð2Þk are in general functions

of the proper time τ and _Qð0Þ;k
αβ ¼ _Qð1Þ;k

αβ ¼ _Qð2Þ;k
αβ ¼ 0.

Moreover, the minimum values of the eigenvalues k2 are
k2 ¼ 0, 1, 3 if, respectively, the orthogonal hypersurfaces
are, for the natural topology, flat, open, or closed.
Nonetheless, bear in mind that since D̃αQ0 ¼ 0, even if
k2 ¼ 0 is an eigenvalue of the Helmholtz equation, we have

Qð0Þ;0
αβ ¼ 0 (see the Appendix). This type of decomposition

is known as scalar-vector-tensor decomposition due to

some properties of the harmonics Qð0Þ;k
αβ , Qð1Þ;k

αβ , and

Qð2Þ;k
αβ ; in particular, we have that the curl of Qð0Þ;k

αβ , defined

as εðαjμνD̃νQ
ð0Þ;k
μjβÞ , is identically zero, D̃βD̃αQð1Þ;k

αβ ¼ 0 and

D̃αQð2Þ;k
αβ ¼ 0. For completeness, we list various properties

of the scalar, vector, and tensor harmonics in the Appendix.
From Eq. (88), we have that curl H̄αβ ≡ εðαjμνDνH̄μjβÞ

vanishes. Hence, H̄ can be described solely by the scalar

harmonicsQð0Þ;k
αβ . Then, substituting the expansion H̄hαβi ¼P

k h
ð0Þ
k Qð0Þ;k

αβ in the wave equation given in Eq. (116), the
harmonics decouple and we find for each k the equation

ḧð0Þk þ hð0Þk

�
k2

l2
þ 4

3

�
_θ −

4

3
θ2
��

¼ 0: ð119Þ

Hence, the expansion coefficients verify an equation for a
harmonic oscillator with variable frequency, leading us to
conclude that, in an dynamic universe, the presence of
intrinsic spin may induce the emission of gravitational
waves. Introducing the Hubble parameter H≡ 1

3
θ, the

conformal time variable t, defined such that dt ¼ l−1dτ,

and writing hð0Þk ¼ fkðtÞ
l4 , we find that these are the solutions

of Eq. (119) if each fkðtÞ verifies

d2fk
dt2

− 9lH
dfk
dt

þ k2fk ¼ 0: ð120Þ

Equation (120) takes a surprisingly simple form and all
dependencies of the matter model are encapsulated in the
quantity lH, defined as the inverse comoving Hubble
radius RH, i.e., RH≡ðlHÞ−1. Now, to integrate Eq. (120)
one has either to assume a model for the matter fluid or to
resort to solutions valid within certain regimes. We stick to
the second alternative. For this, note that in the light of
Proposition 1, a consistent solution must be such that the
functions fk are bounded. Then, we can analyze the cases
for which k2

lH ≫ 1 and k2
lH ≪ 1.

In the regime where k2
lH ≫ 1 and such that the term in dfk

dt
is negligible, with no need for specifying the spacetime
matter fields, and further assuming fk and its derivatives up
to second order are bounded, the solutions of Eq. (119) for
the higher order modes are of the form

hð0Þk ¼ c1 cos ðktÞ þ c2 sin ðktÞ
l4

; ð121Þ
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where the integration constants c1 and c2 might change for

each hð0Þk . This result makes it clear that in the considered
setup, a nonvanishing H̄ characterizes gravitational waves
induced by intrinsic spin. Moreover, we see that in an
expanding universe these waves are strongly damped, as it
was found in Proposition 1.
In the regime where k2

lH ≪ 1, and also with no need for
specifying the spacetime matter fields, in the light of
Theorem 1, the only nontrivial solutions for Eq. (119) that
are of physical interest in the considered model are those
where K ¼ −1. In that case, the expansion coefficient k
takes continuous values and k ≥ 1. Now, the comoving
Hubble radius verifies _RH ¼ −l̈R2

H. Then, in an accelerat-
ing expanding universe, RH is a decreasing function of the
proper time. Therefore, for K ¼ −1, the regime where
k2
lH ≪ 1 represents the late-time behavior of the lower order
modes of the spin induced gravitational waves in an
accelerating expanding universe. In this regime, assuming
we can neglect the term in fk in Eq. (120) and disregarding
runaway solutions, we find that

hð0Þk ¼ const
l4

; ð122Þ

where the integration constant might change for each k,
confirming once again that Proposition 2 is consistent with
the results found in Sec. V B.

VII. TIDAL EFFECTS AND DYNAMICS OF THE
COSMIC FLUID IN RELATIVISTIC COSMOLOGY

IN EINSTEIN-CARTAN THEORY

A. Tidal effects

In addition to the magnetic part of the Weyl tensor, the
electric part of the Weyl tensor is also not identically zero in
the presence of torsion. Therefore, tidal effects, i.e., the
relative accelerations of nearby particles, suffer modifica-
tions when compared to the theory of general relativity.
The general formula for the tidal displacement in the

presence of torsion is

D2nδ

dτ2
¼ nμ∇μaδ þ Rαβγ

δnαuβuγ

þ 2uσ∇σðSαβδuαnβÞ; ð123Þ

where n represents the separation vector introduced in
Sec. II C. In the setup we are considering, Eq. (123) reduces
to D2nδ

dτ2 ¼ Rσμν
δnσuμuν, which is the familiar formula for

geodesic deviation. Assuming without loss of generality
that the separation vector is initially orthogonal to the
tangent vector field u, i.e., nμuμ ¼ 0, this can further be
manipulated to have the form

D2nδ

dτ2
¼ nμ

�
1

2
Rμ

δ þ 1

2
Rμνuνuδ − Eμ

δ

�

−
1

2

�
Rμνuμuν þ

1

3
R

�
nδ: ð124Þ

We see that Eq. (124) explicitly shows the influence of the
electric part of the Weyl tensor in the tidal displacement.
Using Eqs. (18), (57), (83), and (84), we find the following
expression for the relative acceleration between two infini-
tesimally close test particles in the considered model

D2nδ

dτ2
¼ nα

�
1

3
εαγ

δθSγ þ SαSδ
�

þ 1

3
ðΛ − SσSσ − 4πðμþ 3pÞÞnδ: ð125Þ

From Eq. (125), we see that the presence of intrinsic spin
induced torsion causes a distortion of the fluid as measured
by an observer comoving with the fluid that couples
directly with torsion. To interpret this result, it is clearer
to consider Eq. (80); i.e., the presence of torsion induces a
rotation of the frame of the observer. This is a well-known
effect of the torsion tensor, which, in fact, leads to its name:
a test particle, or an element of volume of the fluid, that
couples directly with the torsion field, in general, will have
its frame rotated. Then, the distortion of the fluid described
by Eq. (125) is caused by the relative acceleration of the
rotation of the fiducial observer’s frame due to the pre-
sence of torsion. This rotation of the frames is due to the
spacetime geometry; however, it is not intrinsic to the
motion of the fluid; i.e., the fluid is irrotational since
elements of volume of the fluid follow metric geodesics
of the spacetime, whose metric is described by a FLRW
solution. Thus, observers that do not couple directly
with the torsion tensor will not measure any relative
rotation between different points in the fluid. To see this,
consider an observer that does not couple directly with the
torsion tensor and only perceives the effects of the intrinsic
spin of matter through the metric tensor, such that its
world line is a metric geodesic of the spacetime and its
four-velocity coincides with u, the tangent vector of the
congruence. For this type of observer, the geodesic
deviation equation, in the considered setup, reads D̃2nδ

dτ2 ¼
1
3
ðΛþ2SσSσ−4πðμþ3pÞÞnδ, where D̃2nδ

dτ2 ≡uμ∇̃μðuν∇̃νnδÞ
and ∇̃ represents the Levi-Civita connection. We see, then,
that such an observer does not measure any relative change
in the rotation between nearby elements of volume of the
fluid. This type of observer will only measure a relative
acceleration of the distance between infinitesimally close
test particles. These results exactly express the discussion
in [16] where it was determined in the context of any
metric-affine gravity theory, particles with no intrinsic
hypermomentum will not directly experience the effects
of torsion.
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In addition, relative acceleration of the squared distance
between infinitesimally close test particles is a physical
observable; hence, both types of observers, namely, those
that couple directly to torsion and those that do not, will
agree on its magnitude. Using the Raychaudhuri equa-
tion (78) and the generalized Friedman equation (106) in
Eq. (125), or equivalently in Eq. (101), yields

D2ðnδnδÞ
dτ2

¼ D̃2ðnδnδÞ
dτ2

¼1

3
ð8πðμ−3pÞþ4Λþ2SσSσ− 3RÞnδnδ; ð126Þ

confirming that observers that couple directly with torsion
and observers that do not, will measure the same relative
acceleration of the distance between nearby elements of
volume of the fluid. Although it can also be inferred from
the Raychaudhuri equation (78), it is explicit in Eq. (126)
that the square of the norm of the torsion vector field, SσSσ,
has the same sign of a positive cosmological constant;
therefore, the torsion field also contributes to the positive
relative acceleration of the distance between infinitesimally
close test particles, an effect that is measurable by both
types of observers.

B. Dynamics of the cosmic fluid

In the previous subsection, we have found that the
torsion vector field may contribute to a positive cosmo-
logical constant. We are then interested in understanding if
it is possible to have solutions with zero cosmological
constant, Λ ¼ 0, such that the relative accelerated expan-
sion measured in our universe is completely fueled by the
torsion field.
To analyze this problem, we introduce the following

dimensionless parameters:

q≡ −1 −
_θ

3H2
; ΩK ≡ −

3R
6H2

; Ω≡ 8πμ

3H2
;

ΩΛ ≡ Λ
3H2

; ΩS ≡ SσSσ
3H2

; ð127Þ

where q is the acceleration parameter; H is the Hubble
parameter defined in Sec. VI; and Ω, ΩΛ, and ΩS represent
the matter fields, dark energy, and intrinsic spin dimension-
less densities, respectively, where we note that the density
parameter Ω accounts for the contribution to the energy
density of all matter fields, be it baryons, photons, dark
matter, or neutrinos, and note also that ΩS ≥ 0. We further
define the effective equation of state parameter χ as

χðτÞ≡ p
μ
: ð128Þ

Then, we can rewrite the Raychaudhuri and the
Friedman equations given in Eqs. (78) and (106) as

3
2
ðχþ 1

3
ÞΩ−ΩΛ−2ΩS ¼ q, and ΩK þ ΩþΩΛ −ΩS ¼ 1,

respectively. The measured empirical results indicate that
the universe is very close to being Ricci flat; hence, one can
put here ΩK ¼ 0. So, the Raychaudhuri and the Friedman
equations turn into

3

2

�
χ þ 1

3

�
Ω − ΩΛ − 2ΩS ¼ q; ð129Þ

ΩþΩΛ −ΩS ¼ 1; ð130Þ

respectively.We see that in theRaychaudhuri equation (129),
ΩS has the same sign of the cosmological constant termΩΛ,
and thus contributes to the acceleration of the expanding
universe, as it could be expected, since the spin can be
thought of as a source of centrifugation for the universe. On
the other hand, in the Friedman equation (130), ΩS has a
minus sign relative to the cosmological constant termΩΛ, as
it is also expected, since the spin can be thought of as a kinetic
term and thus contributes to the balance of the kinetic energy
of the universe,which is represented in the 1 of the right-hand
side of the equation. Let us see more clearly the effect ofΩS
by turning offΛ. SettingΩΛ ¼ 0 in Eqs. (129) and (130) we
find 3

2
ðχ þ 1

3
ÞΩ − 2ΩS ¼ q and Ω −ΩS ¼ 1, respectively.

In this case, the Friedman equation with ΩΛ ¼ 0 and
ΩS ≥ 0 necessarily implies that Ω ≥ 1. On the other hand,
the matter density in our universe is known to be less
than one, Ω < 1. Therefore solutions with ΩΛ ¼ 0 are
excluded. This fact, namely, that solutions of the considered
model where ΩΛ ¼ 0 are excluded, of course, does not
mean that the model is excluded. This simply implies
that if a torsion field of the considered type exists, ΩS
cannot solely contribute to the expansion of the universe
described by the Raychaudhuri equation, given in Eq. (129),
and to the energy balance of the Friedman equation given in
Eq. (130), ΩΛ also has to contribute. How much this ΩS
contribution is depends on the matter model. Following
[12,14] if we consider that the cosmological spinning fluid is
a medium whose elements are galaxies and galaxy clusters,
the torsion tensor would be caused by their macroscopic
angular momenta. In that case, the spin density ΩS could
provide a non-negligible contribution to the accelerated
expansion of the universe. On the other hand, if the only
source of the torsion tensor is the intrinsic spin of elementary
particles,where one finds that thevalueofΩS ismuch smaller
than Ω (see Refs. [8,9]), its contribution to the accelerated
expansion of the universe would be negligible.
To conclude the analysis, we remark that independently

of the actual value of the dimensionless spin density ΩS, if
ΩS is nonzero, i.e., ΩS > 0, the results in Theorems 1 and 2
are still verified. So, even though the contribution of the
torsion tensor to the accelerated expansion of the universe
may be negligible, it still markedly changes the geometry
and the allowed topology of the spacetime.

RELATIVISTIC COSMOLOGY AND INTRINSIC SPIN OF … PHYS. REV. D 107, 084004 (2023)

084004-19



VIII. CONCLUSIONS

We presented the general set of structure equations for
the 1þ 3 spacetime decomposition in four spacetime
dimensions, valid for any theory of gravitation based on
a metric compatible affine connection, showing in complete
generality the relations between the kinematical quantities
of the timelike congruence, the torsion tensor and the Weyl
and the Ricci tensors.
The new equations were then used to study solutions of

the Einstein-Cartan theory with a cosmological perfect
fluid having an intrinsic spin, such that the geometry of the
spacetime is described by both the metric and the torsion
tensor fields. The model showed that even in the presence
of a torsion field originated by the intrinsic spin of matter,
the metric tensor can be described by a general, spatially
isotropic and homogeneous, FLRW solution. Here we
would like to highlight that although we have assumed
that the torsion tensor has the intrinsic spin of the fluid’s
constituents as its source, this does not imply that the fluid’s
elements of volume must have a nonzero intrinsic spin
density. As was shown in [9], even if in an element of
volume containing many particles where the intrinsic spins
of the individual particles are randomly oriented, such that
the average spin density is zero, the variance is not zero;
hence, the torsion tensor is not zero. This, in our view, is the
correct approach to the Einstein-Cartan theory, where the
fluid is described by a semiclassical model, whose elements
of volume contain many particles. Of course, it could also
be the case that the individual spins are aligned, and the
average intrinsic spin density is not zero. In either case, in
the considered model the torsion tensor is not zero.
Although the metric tensor was found to be described
by a FLRWmodel, it was shown that the Weyl tensor might
not vanish, which leads to very strong constraints on the
allowed geometry and topology of the spacetime. Indeed,
due to the coupling between the torsion and Weyl tensors,
in the considered model, the universe must be either flat
or open.
In the open case, we then derived a wave equation for the

traceless part of the magnetic part of the Weyl tensor,
concluding that the presence of the intrinsic spin of matter
may induce gravitational waves, providing, to our knowl-
edge, the first explicit result showing that the torsion field
may source or influence the emission of gravitational
waves in a cosmological setting. Although these waves
are strongly damped in an expanding universe, this result
may provide a smoking gun for the presence of spacetime
torsion.
In the considered model, it was also possible to determine

that a torsion tensor field originated from intrinsic spin
contributes to the positive accelerated expansion of the
universe; nonetheless, comparing the theoretical predictions
of the model with the current experimental data, the torsion
tensor cannot completely replace the role of the cosmological
constant.
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APPENDIX: PROPERTIES OF THE
LAPLACE-BELTRAMI HARMONICS

1. Scalar harmonics

In this appendixwe list some of the properties of the scalar,
vector, and tensor eigenfunctions of the covariantly defined
Laplace-Beltramioperator on three-hypersurfaces of constant
curvature used to define the so-called scalar-vector-tensor
decomposition. For concreteness, we consider a spacetime
endowed with a FLRW metric, such that the homogeneous
spatial sections represent such three-hypersurfaces.
Let Qk represent the scalar eigenfunctions of the cova-

riantly defined Laplace-Beltrami operator D̃2 ≡ D̃αD̃α,
where D̃ represents the covariant derivative operator
associated with the Levi-Civita connection, such that

D̃2Qk ¼ −
k2

l2
Qk; ðA1Þ

and _Qk ¼ 0, where l represents the scale factor defined in
Eq. (104) and the harmonic index k may take discrete or
continuous values depending on whether K ¼ þ1 or
K ∈ f−1; 0g, respectively, where K was introduced in
Eq. (107). Then, we can define the following tensors from
the scalar eigenfunctions Qk:

Qð0Þ;k
α ¼ −

l
k
D̃αQk;

Qð0Þ;k
αβ ¼

l2

k2
D̃βD̃αQk þ 1

3
hαβQk; ðA2Þ

with the following properties:

_Qð0Þ;k
α ¼ 0;

D̃μQð0Þ;k
μ ¼

k
l
Qk;

D̃2Qð0Þ;k
α ¼

2K − k2

l2
Qð0Þ;k

α;

D̃½αD̃β�Qð0Þ;k
γ ¼

K
2l2

ðhαγQð0Þ;k
β − hβγQð0Þ;k

αÞ;
Qð0Þ;k

μ
μ ¼ 0;

_Qð0Þ;k
αβ ¼ 0;

εðαjμνDνQð0Þ;k
μjβÞ ¼ 0;

D̃μQð0Þ;k
αμ ¼

2

3lk
ðk2 − 3KÞQð0Þ;k

α;

D̃2Qð0Þ;k
αβ ¼

6K − k2

l2
Qð0Þ;k

αβ; ðA3Þ
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where in the previous expressions the k−1 factor is not a
problem because D̃αQ0 ¼ 0.

2. Vector harmonics

Given a sufficiently smooth one-form field Yα in a
FLRW spacetime, we can in general decompose it as

Yα ¼
X
k

Tð0Þ
k Qð0Þ;k

α þ Tð1Þ
k Qð1Þ;k

α ; ðA4Þ

where the vectors Qð0Þ;k
α are obtained from the scalar

eigenfunctions Qk, Eq. (A2), and Qð1Þ;k
α represent the

solutions of the vector Helmholtz equation

D̃2Qð1Þ;k
α ¼ −

k2

l2
Qð1Þ;k

α; ðA5Þ

with the following properties:

_Qð1Þ;k
α ¼ 0;

D̃μQð1Þ;k
μ ¼ 0: ðA6Þ

Similar to the scalar eigenfunctionsQk, we can find a set of
two-tensors associated with Qð1Þ;k

α,

Qð1Þ;k
αβ ¼ −

l
2k

�
D̃αQð1Þ;k

β þ D̃βQð1Þ;k
α

�
; ðA7Þ

with the following properties:

Qð1Þ;k
μ
μ ¼ 0;

_Qð1Þ;k
αβ ¼ 0;

D̃μQð1Þ;k
αμ ¼

k2 − 2K
2lk

Qð1Þ;k
α;

D̃2Qð1Þ;k
αβ ¼

4K − k2

l2
Qð1Þ;k

αβ: ðA8Þ

3. Tensor harmonics

Given a general smooth two-tensor field Yαβ in a FLRW
spacetime, we can in general decompose it as

Yαβ ¼
X
k

Tð0Þ
k Qð0Þ;k

αβ þ Tð1Þ
k Qð1Þ;k

αβ þ Tð2Þ
k Qð2Þ;k

αβ; ðA9Þ

where the two-tensors Qð2Þ;k
αβ are defined as the solutions

of the tensor Helmholtz equation

D̃2Qð2Þ;k
αβ ¼ −

k2

l2
Qð2Þ;k

αβ: ðA10Þ

These verify

Qð2Þ;k
μ
μ ¼ 0;

_Qð2Þ;k
αβ ¼ 0;

D̃μQð2Þ;k
αμ ¼ 0: ðA11Þ
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