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We investigate the bound orbits of massive/massless, neutral particles and photons moving around
regular black holes of Fan and Wang. For massive particles, we show the existence of stable/unstable
circular orbits and the charge dependence of the radius of the innermost stable circular orbit. Remarkably,
we find an unstable circular orbit of photons inside the event horizon. For massless particles and photons,
we show that both stable and unstable circular orbits can exist in a regular and horizonless spacetime with a
slight overcharge. Then, we also discuss the periapsis shift of massive neutral particles orbiting around the
black hole, and show that the charge gives a negative correction to the shift for black holes with small
nonlinearity of electrodynamics.
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I. INTRODUCTION

The singularity theorems of Penrose and Hawking [1,2]
state that under the assumption of the presence of matter
satisfying physically reasonable energy conditions, the
existence of singularities is unavoidable in General
Relativity (GR). However, it is widely believed that such
singularities are simply nonphysical objects which are
created by classical theories of gravity, and hence they
will be resolved if we can obtain complete quantum gravity
in our future. Bardeen [3] proposed the first model of
asymptotically flat, static, and spherically symmetric black
holes (BHs) with a regular center. Such a kind of BH is
called a regular black hole (RBH) or a nonsingular BH. At
first, this BH model was not obtained as an exact solution
of the Einstein equation, but thereafter, Ayón-Beato and
García [4] showed that the Bardeen model can be seen as a
solution of the Einstein equation coupled with a physical
source of a magnetic monopole in nonlinear electro-
dynamics (NED). They also found another type of RBH
solution which describes a Reissner-Nordström type space-
time to the Einstein-NED equation [5]. Subsequently, other
RBH models were proposed. For instance, Dymnikova [6]
proposed a different type of RBH, which coincides with the
Schwarzschild spacetime near infinity and behaves like
the de Sitter spacetime near a center. Hayward proposed a
static and spherically symmetric RBH model to resolve the
BH information-loss paradox [7]. Furthermore, Fan and
Wang [8] found a wide class of asymptotically flat, static,
and spherically symmetric RBH solution in NED, which

generalize the Bardeen BH [3] and the Hayward BH [7].
Other than these RBHs, numerous types of models and
solutions have been proposed so far. The readers can find
useful reviews in Refs. [9–11].
The observation of particle motion around BHs is useful

to test GR and alternative theories of gravity since it enables
one to give the constraints on the parameters of the spin and
charge of BH. So far, many researchers have also studied
particle motion around RBHs. Refs. [12–14] investigated
circular geodesics in the Bardeen BH and Ayón-Beato-
García BH. The gravitational lens of the Bardeen BH
was discussed in [15]. Moreover, Ref. [16] studied the
photon orbits around the Bardeen BH, and determined the
BH shadow. Reference [17] studied the periapsis shifts of
bound orbits of massive particles moving around Bardeen
BHs. Ref. [18] investigated the particle motion around a
special class of the Fan-Wang BH (FWBH) with Maxwell
weak-field limit. Reference [19] studied the particle
motion around the Hayward BH. A remarkable aspect in
nonlinear electrodynamics is that photons do not propagate
along the null geodesics of the spacetime geometry but
rather of an effective geometry [16,18,20,21]. The propa-
gation of photons has been studied for the Ayón-Beato-
García spacetime in Ref. [21], for the Bardeen spacetime
in Ref. [16] and for the Hayward spacetime in Ref. [22].
The photon orbits are also studied in rotating versions of
several RBHs of NED [23]. In this article, we aim to study
the motion of massive/massless neutral particles and
photons in the FWBH spacetime and derive the general
properties of RBHs spacetime because the RBH covers
the Bardeen BH and Hayward BH spacetimes as spe-
cial cases.
The rest of the paper is devoted to analyze the particle

motion around the FWBHs. In the next section, we review
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the FWBHs as solutions in NED, then present the metric
and the gauge potential with a magnetic monopole or an
electric charge, and further give the conditions for the
existence of horizon. In Sec. III, we discuss the stability of
circular orbits for massive particles around the FWBHs,
where the particle motion can be reduced to a one-
dimensional potential problem. In Sec. IV, we similarly
consider the motion for massless particles, whose potential
can be obtained as the divergence limit of an angular
momentum. However, the massless orbits do not corre-
spond to photon orbits in the Einstein gravity coupled with
NED. Hence, in Sec. V, we separately analyze photon orbits
around the FWBHs. In Sec. VI, we compute the periapsis
shift of the orbits for massive particles in the weak-field
limit. In Sec. VII, we summarize our results and discuss
possible generalization.

II. REVIEW OF REGULAR BLACK HOLES

Here we review the RBHs of general Fan-Wang class [8],
which are given as the solution with NED whose action is
given by

S ¼ 1

16πG

Z
dx4

ffiffiffiffiffiffi
−g

p ðR − LðF ÞÞ; F ≔ FαβFαβ: ð1Þ

The field equations derived from the Lagrangian density
LðF Þ of NED admit electrically charged solutions or
magnetically charged solutions, where in particular,
LðF Þ for the latter case can be written as

LðF Þ ¼ 4μ

α

ðαF Þνþ3
4

ð1þ ðαF Þν4Þμþν
ν

; ð2Þ

where μ, ν, and α are free parameters of the theory. This
theory reproduces the usual Maxwell theory at the weak
field limit F → 0 only if ν ¼ 1, which is the main subject
of Ref. [18]. The asymptotically flat, static, and spherically
symmetric BH solution with a magnetic monopole is given
by [8]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ;

fðrÞ ¼ 1 −
2M − 2q3α−1

r
−
2α−1q3rμ−1

ðrν þ qνÞμν ; ð3Þ

and

A ¼ q2ffiffiffiffiffiffi
2α

p cos θdϕ; F ¼ q4

αr4
; ð4Þ

whereM is the ADMmass of the spacetime.1 The magnetic
charge is given by

Qm ≔
1

4π

Z
F ¼ q2ffiffiffiffiffiffi

2α
p : ð5Þ

On the other hand, the gauge potential for an electrically-
charged BH solution with the same metric (3) can be
written as

A ¼ q2

2α

�
rμð3rν − ðμ − 3ÞqνÞ

ðrν þ qνÞμþν
ν

− 3

�
dt; ð6Þ

where q is now related to the electric charge defined by

Qe ≔
1

4π

Z
LF ⋆ F ¼ q2ffiffiffiffiffiffi

2α
p : ð7Þ

The scalar F is given by

F ¼−
μ2q2νþ4r2μ−2ðqνþrνÞ−2μ

ν−4ððμ−3Þqν−ðνþ3ÞrνÞ2
2α2

:

ð8Þ

Unlike the magnetic solution, one cannot obtain the explicit
form of the NED Lagrangian, but only its on-shell value for
the solution as

LðF Þ ¼ 2q3þνrμ−3

α

ðμ − 1Þqν − ðνþ 1Þrν
ðqν þ rνÞ2þμ

ν

: ð9Þ

In order to eliminate the singularity at the center r ¼ 0, one
must set

M ¼ α−1q3; ð10Þ

in which the metric function fðrÞ can be written as

fðrÞ ¼ 1 −
2Mrμ−1

ðrν þ qνÞμν : ð11Þ

This metric admits known RBH spacetimes for specific
parameter choices:

(i) ðμ; νÞ ¼ ð3; 2Þ: Bardeen BHs [3].
(ii) ðμ; νÞ ¼ ð3; 3Þ: Hayward BHs [7].

Although the mass and charge are constrained by Eq. (10),
we can treat them as independent parameters by adjusting
the parameter α.
In the following, we use the gravitational radius rg

instead of the mass M,

rg ≔ 2M: ð12Þ

The equationfðrÞ ¼ 0 has two roots r− and rþðr− < rþÞ
for r > 0, which corresponds to an inner horizon and an outer
horizon. Let us consider the extreme condition (rþ ¼ r−)
given by fðrÞ ¼ 0 and f0ðrÞ ¼ 0, which can be solved as1See also a comment [24] on the definition of the mass.
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r ¼ ðμ − 1Þ1νq ¼ rg
ðμ − 1Þμν

μ
μ
ν

≔ rexh ; ð13Þ

q ¼ rg
ðμ − 1Þμ−1ν

μ
μ
ν

≔ qex: ð14Þ

Therefore, we have four distinct cases depending on the
charge:
(1) a black hole with a single horizon (Schwarzschild

BH): q ¼ 0;
(2) a black hole with two horizons: 0 < q < qex;
(3) a degenerate horizon: q ¼ qex;
(4) an overcharged but regular horizonless space-

time: q > qex.
It is straightforward to show rexh monotonically increases

with respect to both parameters μ and ν, while qex

monotonically decreases with respect to μ and increases
with respect to ν. At large values of μ and ν, rexh , and qex

approaches to the following limits,

rexh =rg →

�
e−1=ν ðμ → ∞Þ
1 ðν → ∞Þ ; ð15Þ

qex=rg →

� ðμeÞ−1=ν ðμ → ∞Þ
1 ðν → ∞Þ : ð16Þ

In particular, qex tends to be zero for large μ. For the later
use, we also show

∂ðμ1=νqexðμ; νÞÞ
∂μ

< 0 ð17Þ

for fixed ν. Together with Eq. (16), this determines the
range of qex for a given ν as

e−1=ν ≤ μ1=νqex=rg ≤ ð2=3Þ2=ν ðμ ≥ 3Þ: ð18Þ

III. CIRCULAR ORBITS OF MASSIVE PARTICLES

The particle motion in the FW spacetimes (11) is
determined by the Lagrangian

Lp ¼ 1

2
gμν _xμ _xν; ð19Þ

where the dot denotes the derivative with respect to an
affine parameter. The motion should satisfy the constraint
gμν _xμ _xν ¼ −κ, in which κ ¼ 1 is for massive and κ ¼ 0 for
massless particles. The spherical symmetry of the space-
time allows us to assume the movement takes place in the
equatorial surface θ ¼ π=2without loss of generality. Since
the metric is independent of t and ϕ, their conjugates give
two constants of motion, the energy and angular momen-
tum of the particle

E ≔ −
∂Lp

∂_t
¼ f_t; L ≔

∂Lp

∂ _ϕ
¼ r2 _ϕ: ð20Þ

Then, the equation of motion can be written as a one-
dimensional motion in the effective potential

_r2 þ UðrÞ ¼ E2; UðrÞ ≔ fðrÞ
�
κ þ L2

r2

�
: ð21Þ

Without loss of generality, we may assume L ≥ 0. In this
section, we consider the motion of massive particles by
setting κ ¼ 1. In particular, we focus on the circular orbit
which corresponds to stationary points of U,

U ¼ E2; U;r ¼ 0: ð22Þ

By fixing the charge parameter q, the angular momentum L
and energy E are given by functions of the orbit radius rc as

L2ðrcÞ ¼
rgr

μþ2
c ðrνc − ðμ − 1ÞqνÞ

qνð2rcðqν þ rνcÞμ=ν þ ðμ − 3ÞrgrμcÞ þ rνcð2rcðqν þ rνcÞμ=ν − 3rgr
μ
cÞ ; ð23Þ

and

E2ðrcÞ ¼
2ðqν þ rνcÞ1−

μ
νðrcðqν þ rνcÞμ=ν − rgr

μ
cÞ2

rcðqνð2rcðqν þ rνcÞμ=ν þ ðμ − 3ÞrgrμcÞ þ rνcð2rcðqν þ rνcÞμ=ν − 3rgr
μ
cÞÞ : ð24Þ

Note that physical circular orbits should also satisfy L2 ≥ 0
and E2 ≥ 0. The signature of dL=drc coincides with that of
U;rrðrc; LðrcÞÞ as

U;rr ¼ −U;rL
dL
drc

; −U;rL ¼ 4Lf
rðr2 þ L2Þ > 0; ð25Þ

and hence the stable circular orbits are given equivalently
by U;rr > 0 or dL=drc > 0. Similarly, one can show

dE2

drc
¼ dL

drc

2Lf
r2

; ð26Þ

which means dE2=drc also has the same signature
as U;rr.
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As in the Schwarzschild case, circular orbits cannot exist
sufficiently close to the horizon. The inner edge of the
orbital area is characterized by the innermost stable circular
orbit (ISCO), which is given by

U ¼ E2; U;r ¼ 0; U;rr ¼ 0: ð27Þ
With the discussion above, the condition U;rr ¼ 0 is
equivalent to dL=drc ¼ 0.
However, we find that this only gives the ISCO as far as

the horizon exists, i.e., q ≤ qex. For the horizonless case
(q > qex), the ISCO is given by the orbit with zero angular
momentum

U ¼ E2; U;r ¼ 0; L ¼ 0: ð28Þ

This “orbit” corresponds to a particle in the static equilib-
rium between the repulsive force by the inner de Sitter-like
core and outer attraction. The radius for L ¼ 0 is explicitly
given by

r ¼ r0ðqÞ ≔ ðμ − 1Þ1=νq: ð29Þ

In Fig. 1, we plot the positions of stable and unstable
circular orbits for a given charge. Although we only show
the result for ðμ; νÞ ¼ ð3; 1Þ, other cases are qualitatively
the same. One can see that the ISCO is given by Eq. (27) for
0 ≤ q ≤ qex, and by Eq. (29) for q > qex. For q > qex,
although the curve by Eq. (27) is not the ISCO, it still gives
two branches of solution r ¼ r�s ðqÞ for a slightly over-
charged case, where we have an unstable orbits between the

r0 q

FIG. 1. Existence and stability of circular orbits in the Fan-Wang spacetime, plotted in ðq; rÞ-space for ðμ; νÞ ¼ ð3; 1Þ. The regions
colored by light blue have stable circular orbits, and light red only has unstable ones. Circular orbits do not exist in the white region.
The right figure is a closeup around q ¼ qex. As we mention later, the blue curve corresponds to massless orbits which splits to two
branches r�∞.

FIG. 2. Stability of circular orbits are compared with gradients of L2 and E2 for each q. Orbits only exist if E2 > 0 and L2 > 0.
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two r−s < r < rþs . This unstable region disappears for
q ≥ q⋆⋆, where the threshold value is given by r⋆⋆ ≔
rþs ðq⋆⋆Þ ¼ r−s ðq⋆⋆Þ.
Since both E and L must be real, circular orbits do not

exists if the solution of Eq. (22) gives either of L2 < 0 or
E2 < 0. The border of the existence region is given by both
L ¼ 0 and L ¼ ∞. The L ¼ ∞ curve corresponds to the

circular orbits for massless particles which is discussed
later. This massless curve also has two branches r ¼ r�∞ðqÞ
bifurcating at ðq⋆; r⋆Þ for a slightly overcharged case,
which is already observed in the previous study of
ν ¼ 1 cases [25]. One should note that all these character-
istics, in fact, also appear in the Reissner-Nordström
spacetime [26].

FIG. 3. Circular orbits for μ ¼ 3, 4, and ν ¼ 1, 2, 3, and 6. Curves in the plots correspond to those in Fig. 1.

FIG. 4. Circular orbits for ν ¼ 1, 2 with μ ¼ 3, 10, 50. Curves in the plots correspond to those in Fig. 1.
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As shown in Fig. 2, the branching points for r�∞ðqÞ and
r�s ðqÞ, which we denote q⋆ and q⋆⋆ respectively, gives
threshold values of q that causes qualitative changes on the
circular orbits.
We also study the effect of parameters μ and ν on circular

orbits. For ν ¼ 1, the μ dependence was studied in the
previous work [18]. In Fig. 3, the ν dependence of circular
orbits are shown for μ ¼ 3, 4. In each cases, as ν grows, the
appearance of circular orbits approach to a certain shape.
Especially, the ISCO curve and massless curve approaches
to almost straight lines for q ≤ qex. In Fig. 4, the μ
dependence is studied as well. Unlike the ν dependence,
we find that the appearance of circular orbits is quite
insensitive to the change in μ.
The parameter dependence of the ISCO radii around

the black hole can be roughly estimated by the value at
q ¼ qex, say rexISCO ¼ rþs ðqexÞ, as it gives the minimum
value of rISCO for q ≤ qex. Figure 5 shows rexISCO is a
monotonically increasing function of μ and ν.

IV. CIRCULAR ORBITS OF MASSLESS
PARTICLES

The effective potential for the massless particle is given
by setting κ ¼ 0 in Eq. (21),

V ≔
f
r2
: ð30Þ

The radius of the circular orbit for massless particles is
determined by

V;rðrc; qÞ ¼ 0; ð31Þ

which is explicitly written as

3rνc − ðμ − 3Þqν ¼ 2r−1g r1−μc ðrνc þ qνÞμþν
ν ; ð32Þ

This is equivalent to the condition (22) with L ¼ ∞, and
hence the position of circular orbits are given as r�∞ðqÞ
in Fig. 1.

Differentiating the orbit q ¼ qðrcÞ, we obtain

V;rr þ V;rq
dq
drc

¼ 0: ð33Þ

This leads to

dq
drc

¼ ðrνc þ qνÞμþ2ν
ν

μr2gqν−1ðνrgrμþν−4
c þ 2r−3c ðrνc þ qνÞμþν

ν ÞV;rr; ð34Þ

where we have used Eq. (32). From the positivity of the
factor before V;rr, one can show that dq=drc > 0 and
dq=drc < 0 correspond to stable and unstable circular
orbits, respectively. It is easy to see that the massless curve
intersects with the curve (27) at ðq⋆; r⋆Þ where we have
dq=drc ¼ 0. The curve (32) also intersects with the horizon
curve f ¼ 0 at the point ðq; rÞ ¼ ðqex; rexh Þ, since

V;rðqex; rexh Þ ¼
rf0ðqex; rexh ÞÞ − 2fðqex; rexh Þ

ðrexh Þ3
¼ 0: ð35Þ

Therefore, the massless curve has two branches, rþ∞ðqÞ
for r⋆ ≤ r ≤ 3rg=2 and r−∞ðqÞ for rex ≤ r ≤ r⋆, which
correspond to unstable circular orbits and stable circular
orbits for massless particles, respectively.

A. μ= 3 case

In general, the condition (32) is difficult to solve
explicitly. However, we find that the μ ¼ 3 case reduces
to the problem finding intersections between the following
two graphs y ¼ FðxÞ and y ¼ GðxÞ,

ðrνc þ qνÞ3νþ1 ¼ 3

2
rgμrνþ2

c ⇔

�
y ¼ FðxÞ ≔ ðxþ q̃Þνþ3

y ¼ GðxÞ ≔ ð3=2Þνxνþ2
;

ð36Þ
where x ≔ ðrc=rgÞν and q̃ ≔ ðq=rgÞν. In particular, the
critical value q⋆ and r⋆ is given by FðxÞ ¼ GðxÞ and
F0ðxÞ ¼ G0ðxÞ, which are analytically solved as

r⋆=rg ¼
3

2

�
νþ 2

νþ 3

�νþ3
ν

; q⋆=rg ¼
3

2

ðνþ 2Þνþ2
ν

ðνþ 3Þνþ3
ν

: ð37Þ

FIG. 5. μ and ν dependence of rexISCO. ν is fixed in the left panel and μ is fixed in the right panel.
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V. CIRCULAR PHOTON ORBITS

Under the NED Lagrangian LðF Þ, photons do not
propagate along null geodesics of the spacetime geometry,
but rather of the so-called effective geometry [20]. The
eikonal limit for photons leads to the condition

g̃μνkμkν ¼ 0; ð38Þ
and g̃μν is the effective geometry given by

g̃μν ¼ gμν −
4LFF

LF
Fμ

αFαν; ð39Þ

FIG. 6. Circular photon orbits and massless orbits for ðμ; νÞ ¼ ð3; 1Þ. The right figure is a closeup around q ¼ qex. The L ¼ 0 line for
massive particles is also drawn for reference.

FIG. 7. The effective potential for photon orbits with ðμ; νÞ ¼ ð3; 1Þ and different charges.
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where LF ≔ dL=dF and LFF ≔ d2L=dF 2. In the mag-
netic case, with LðF Þ and Fμν in Eqs. (2) and (4), the
effective metric is written as

g̃ðmÞ
μν ¼ diag

�
−f;

1

f
;
r2

ΦðmÞ ;
r2 sin2 θ

ΦðmÞ

�
; ð40Þ

where ΦðmÞ ≔ 1þ 2LFFF=LF jmagnetic. On the other hand,
the electric solution admits the effective metric of

g̃ðeÞμν ¼ diag

�
−

f

ΦðeÞ ;
1

fΦðeÞ ; r
2; r2 sin2 θ

�
; ð41Þ

where ΦðeÞ ≔ 1þ 2LFFF=LF jelectric is now given by the
electric counterparts in Eqs. (6) and (8). It is known that
these two cases cannot be distinguished by the photon
propagation [27]. This fact can be seen from a certain kind
of duality in NED with the same metric,

L2
FF jelectric ¼−F jmagnetic; LF jmagnetic ¼ðLF Þ−1jelectric;

ð42Þ

which leads to

ΦðmÞ ¼ 1

ΦðeÞ : ð43Þ

Therefore, the effective geometries for the electric and
magnetic solutions are related through the conformal
transformation2

g̃ðeÞμν ¼ ΦðmÞg̃ðmÞ
μν ; ð44Þ

and hence have the same causal structure. Thus, the
effective metrics for both the electrically and magneti-
cally charged spacetimes are different, but the effective
potentials for photons can be shown to be the same,
i.e.,

Ṽ ¼ f

r2ΦðeÞ ¼
f
r2
ΦðmÞ: ð45Þ

For this reason, the photon trajectories coincide in both
effective geometries.
With Eqs. (2) and (4), the effective potential becomes

FIG. 8. Comparison between photon orbits and massless orbits. The convention is the same as in Fig. 6.

2We do not consider the point ΦðmÞ ¼ 0, where the effective
geometry is singular [21]. The eikonal limit will not be appro-
priate there.
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Ṽ ¼ f
r2

�ðμ2 − 4μþ 3Þq2ν − ðμð3νþ 4Þ þ ν2 − 4ν − 6Þqνrν þ ðν2 þ 4νþ 3Þr2ν
2ðqν þ rνÞððνþ 3Þrν − ðμ − 3ÞqνÞ

�
: ð46Þ

In Fig. 6, we compare the circular photon orbits with that
of massless particles for ðμ; νÞ ¼ ð3; 1Þ. We find an
unstable photon orbit always exists for any q outside the
massless orbit as seen in the ν ¼ 1 case [16]. For q > qex,
this unstable orbit still appears outside the ISCO radius
r0ðqÞ. Below a certain critical charge q < q⋆;γ, we also
find another two orbits inside the ISCO radius r0ðqÞ. The
upper stable branch only exists in the overcharged case
qex < q < q⋆;γ , while the lower unstable branch exists with
and without the horizon. The lower branch crosses the
horizon at ðqc;γ; rc;γÞ. Remarkably, for 0 < q < qc;γ, the
lower branch gives a circular orbit between the inner and
outer horizon, where no stationary motion is allowed in the
spacetime geometry. For qc;γ < q < qex, the orbit appears
inside the inner horizon. In Fig. 7, the typical shapes of the
effective potential are shown corresponding to the range of
q. We also obtain qualitatively the same results for other
parameters (Fig. 8).

VI. PERIAPSIS SHIFTS

Next, we consider the perihelion shift in the massive
particle orbits. In Ref. [17], the shift was numerically
studied for the orbits close to the horizon. In this article,
instead, we focus on the distant orbits where the weak field
limit is available to find the analytic formula for the shift.
First, we expand the effective potential (21) at the large

distance from the horizon by assuming r ≫ rþ ∼ rg and
q=r ≪ 1,

U ¼ 1 −
rg
r
þ L2 þ rgμq

r2
−
�
rgL2 þ rgμðμ − 1Þq2

2

�
1

r3

þO
�
1

r4

�
ðν ¼ 1Þ; ð47Þ

U¼ 1−
rg
r
þL2

r2
−
�
rgL2−

rgμq2

2

�
1

r3
þO

�
1

r4

�
ðν¼ 2Þ;

ð48Þ

U ¼ 1 −
rg
r
þ L2

r2
−
rgL2

r3
þO

�
1

r4

�
ðν ≥ 3Þ; ð49Þ

where the dominant terms depends on the parameter ν.
Since the leading-order correction coincides with that of the
Schwarzschild, we will not consider ν ≥ 3 cases. In the
following, we study ν ¼ 1 and ν ¼ 2 cases. Note that, for
the valid expansion, q should not be much large

L2

r2g
≫

μq
rg

: ð50Þ

A. ν = 1

In the ν ¼ 1 case, the effective potential already differs in
the Newtonian order,

U ¼ 1 −
rg
r
þ α2l2r2g

r2
þO

�
1

r3

�
; ð51Þ

where we introduced dimensionless parameters

α ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μrgq

L2

r
; l ≔

L
rg
: ð52Þ

Therefore, the orbit at the Newtonian order can be solved as

r ¼ 2α2l2rg
1þ e cosðαϕÞ ; e ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2l2ðE2 − 1Þ þ 1

q
: ð53Þ

For α > 1, this orbit causes the precession in the Kepler
motion already at the Newtonian order, which apparently
seems to result in a retrograde shift that is opposite to the
known Schwarzschild result

δϕ ¼ 2π

α
− 2π ¼ 2π

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μq
rgl2

q − 1

!
< 0: ð54Þ

However, for the BH case q < qex, since the weak field
limit requires l ≫ 1, α must be close to 1,

α ≃ 1þ μq
2rgl2

; ð55Þ

which leads to the expression

δϕ ≃ −
πμq
rgl2

: ð56Þ

Note that the this approximation is independent on the
value of μ from Eq. (18). This is in the order of l−2 that is
the same order of the post-Newtonian correction from the
L2=r3 term. Hence, we have to take L2=r3 correction into
account as done in the Reissner-Nordström spacetime [28],

δϕ ≃ −
πμq
rgl2

þ 3π

2l2
¼ π

l2

�
3

2
−
μq
rg

�
; ð57Þ

where we ignored the second term in the coefficient of r−3

in Eq. (47) as it becomes of Oðl−4Þ. Using Eq. (18), we
obtain the upper bound for the charge term

μq=rg ≤ μqex=rg ≤ 4=9; ð58Þ

which indicates the shift remains prograde, δϕ ≥ 19π=
ð18l2Þ, even at the extremal limit.
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If we consider the overcharged case q > qex, we have
no upper bound for q. Therefore, the shift can become
retrograde for q > 3rg=ð2μÞ.3

B. ν = 2

In the ν ¼ 2 case, the difference only appears in the post-
Newtonian correction order

U ¼ 1 −
rg
r
þ l2r2g

r2
−
ðl2 − l2

cÞr3g
r3

þO
�
1

r4

�
; ð59Þ

where we introduced a dimensionless parameter

lc ≔
ffiffiffi
μ

2

r
q
rg
: ð60Þ

This shows the charge q slightly lowers the shift as in the
ν ¼ 1 case,

δϕ ¼ 3π

2l2

�
1 −

l2
c

l2

�
: ð61Þ

A caveat is that, Eq. (18) shows lc is bounded above in the
BH case as lc ≤

ffiffiffi
2

p
=3, and then Eq. (50) requires l ≫ lc

even for the overcharged case. Although it does not change
the conclusion on the charge effect, this implies the charge
correction is of Oðl−4Þ, and then one should add the
correction from next post-Newtonian order in Eq. (61) for
the correct estimate.

VII. SUMMARY

In this article, we have investigated the geodesic motion
of massive/massless particles and photons around general
Fan-Wang spacetimes. For massive and massless particles,
we have found that the characteristics of the motions
are classified into four cases depending on the strength
of the charge (i) 0 ≤ q ≤ qex, (ii) qex < q < q⋆,
(iii) q⋆ ≤ q < q⋆⋆, (iv) q⋆⋆ ≤ q. Case (i) has the ISCO
outside the horizon, while the cases (ii)–(iv), which is

horizonless, have the ISCO with zero angular momentum
where the repulsion from the de Sitter core and the
gravitational attraction balance.
The circular photon orbits are also studied by examining

the null geodesics in the effective geometry. We found three
types of orbits, outer, middle, and inner orbits. The outer
orbit is unstable and always exists for any charge q.
The middle one is stable and only exist in the range
qex < q < q⋆;γ. The inner one is unstable joining with the
middle one at q⋆;γ and exists for 0 < q ≤ q⋆;γ with and
without the horizon. Remarkably, the inner unstable orbit
appears between the inner and outer horizon for
0 < q < qc;γ, where no stationary motion is allowed in
the spacetime geometry.
We have also studied the periapsis shift by the massive

particle. We have found the shift is characterized by the
parameter ν as
(1) ν ¼ 1: the shift gets the negative correction, which

can change the sign of the shift for the over-
charged case,

(2) ν ¼ 2: the shift gets the negative correction, which
remains small in the weak field limit,

(3) ν ≥ 3: the charge effect is ignorable compared to the
GR effect.

We found that the massless particles and photons can
move along stable circular orbits for slightly overcharged
spacetimes. Since the existence of stable null circular orbits
is known to cause an instability in the spacetime [29–31],
it would be interesting to pursue the final state of the
spacetime with such orbits.
The optics inside the horizon would be another interest-

ing subject, due to the existence of the circular orbits of
photons. Other than circular orbits, one can also study the
motion of particles and photons falling into the event
horizon, which may be an interesting issue as well.
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3If one considers q is simply a cutoff scale of the quantum
gravity origin, it should be in the Planckian order and it is
unphysical to discuss the overcharged case. Here we consider q
simply as the charge in NED.
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