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We study the linear stability of nonrelativistic l-boson stars, describing static, spherically symmetric
configurations of the Schrödinger-Poisson system with multiple wave functions having the same value of
the angular momentum l. In this work we restrict our analysis to time-dependent perturbations of the radial
profiles of the 2lþ 1 wave functions, keeping their angular dependency fixed. Based on a combination
of analytic and numerical methods, we find that for each l, the ground state is linearly stable, whereas the
nth excited states possess 2n unstable (exponentially in time growing) modes. Our results also indicate that
all excited states correspond to saddle points of the conserved energy functional of the theory.
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I. INTRODUCTION

l-boson stars [1] are exotic compact objects composed
of N ¼ 2lþ 1 self-gravitating complex massive scalar
fields. They constitute a generalization of the standard
(l ¼ 0) boson stars [2–7] in which the internal symmetry
group is extended from Uð1Þ to UðNÞ. This allows one to
construct configurations in which each scalar field has
the same harmonic time dependency and carries angular
momentum l; yet as a whole, the configuration is static and
spherically symmetric [1,8]. A recent interpretation of
l-boson stars and more general configurations in semi-
classical gravity, which only requires a single and real
(quantum) scalar field, was recently presented in Ref. [9].
Similar to other compact objects (see e.g., [10] for

a review and [11,12] for more recent work in Horndeski
theory), l-boson stars present a rich phenomenology
[13–15]. In particular, it has been shown that—similar to
fluid stars—these objects possess a “stable branch,” that is,
configurations which are stable with respect to spherically
symmetric linear [16–18] and nonlinear [19,20] perturba-
tions. Furthermore, full 3D numerical simulations [21] of
the Einstein-Klein-Gordon equations have found no indi-
cation of nonspherical growing perturbations for these
configurations. However, the limited timescale of the
simulations makes it difficult to reach a firm conclusion
regarding the stability of these objects with respect to
generic small perturbations.
In the Newtonian limit, l-boson stars are expected to

reduce to solutions of the Schrödinger-Poisson (SP) sys-
tem. For l ¼ 0 such solutions have been discussed in a
variety of different physical contexts, including the Hartree-
Fock theory of plasmas [22], the discussion of quantum
state reduction by gravity [23,24], and the modeling of dark

matter galactic halos [25–28]. In particular, the following
results have been established for the l ¼ 0 configurations.
Lieb [22] showed the existence of a unique stationary
(that is, with the wave function having a time-harmonic
dependency) ground state solution which is spherically
symmetric and positive. The global in-time well-posedness
of the Cauchy problem for the SP system has been shown
in [29,30]. Further development led to the orbital stability
of the ground state configurations [31]. The existence of
excited spherical states, in which the radial profile of
the wave function has any number n of zeros, has been
established in [32]. This leads to an infinite family of
stationary, spherically symmetric solutions with negative
energy eigenvalues which increase monotonically in n.
For a recent review on the mathematical properties of
solutions of the SP and related system, see [33]. We also
refer the reader to [34] for a recent existence result of the SP
system with infinitely many states on a bounded domain.
Regarding the generalization to l-boson stars with l ≠ 0,
in [35] the existence of an infinite family of stationary,
spherically symmetric solutions to the SP system with n
nodes in the wave functions radial profile has been proven
for each n;l ¼ 0; 1; 2; 3;…. For numerical examples of
these configurations, see [35–37].
Similar to their relativistic counterparts, the realization

of these objects in nature demands that they are stable with
respect to sufficiently small dynamical perturbations.1

In the l ¼ 0 case, a stability analysis has been performed
in [38], based on a combination of analytic and numerical
methods. Their results indicate that the ground state
configuration is stable, whereas each excited state is
unstable, having n quadruples of modes characterized by

1Or, in case they are unstable, have a sufficiently large lifetime.
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a complex eigenvalue. For further numerical studies
regarding the nonlinear stability of the l ¼ 0 ground base
configurations, see Refs. [39,40]. For a generalization to
multistate solutions (having l ¼ 0 but different n’s)
see [41]. 3D numerical evolutions of the multistate SP
system which analyze the stability of multi-l multistate
configurations (i.e., solutions containing wave functions
with multiple values of l and n) and other configurations
which are axially symmetric have recently been performed
in [42]. In particular, it is claimed in that work that the
nonrelativistic ground state l-boson stars with l ¼ 1 are
stable.2 However, as far as we are aware, no linear stability
analysis for the l ≠ 0 configurations has been carried out
so far.
The goal of this article is to provide a systematic study of

the nonrelativistic l-boson stars’ main properties and to
analyze their mode stability with respect to spherically
symmetric linear perturbations. To this purpose, we start in
Sec. II with a description of the theoretical framework
underlying the construction of these objects and their linear
perturbations, starting with the N-particle SP system. Of
particular relevance for this work is the identification of a
time-conserved energy functional describing the total
energy of the system. This functional is an extension to
N particles of the well-known functional used in [22],
whose global minimum describes the l ¼ 0 ground state.
More generally, as we show, the nonrelativistic l-boson
stars correspond to critical points of this functional. The
reduction to one-particle states is presented in Sec. II A,
whereas the spherically symmetric system, in which
the wave functions are assumed to have the same radial
profile with particular angular dependencies, is derived
in Sec. II B. The stationary and linearized equations are
presented in Secs. II C and II D, respectively. Analytic
properties of the system, including its rescaling freedom, a
zero mode solution, and a fourfold symmetry between the
mode solutions of the linearized equations, are studied
in Sec. II E. Also in this subsection, we show that the
linearized system can be reduced to a single equation
involving a linear operator Q̂ which is related to the second
variation of the energy functional.
Section III presents our numerical implementation and

the results for the nonrelativistic l-boson stars. In Sec. III A
we rewrite the stationary system in a more suitable form
for the numerical calculations and analyze the regularity
conditions at the center and the asymptotic behavior of the
solutions at infinity. Further, we explain our shooting
method used for the computation of the wave function
and their energy eigenvalues. Next, in Sec. III B we exhibit
the numerical results for n ¼ 0, 1, 2, 3 and l ¼ 0, 1, 2, 3, 4,
5. In particular, we show the radial profiles of the wave

function and the gravitational potential and provide a table
for the energy eigenvalues. Also, we study the total energy
of the system, identifying energetically allowed transitions
between configurations with the same total number N of
fields. This analysis indicates that the ground state configu-
ration with zero angular momentum corresponds to the
global minimum of the conserved energy functional. In fact,
this property can be established from the results in [22].
Section IV is devoted to the numerical study of the

linearized system. Our method is a straightforward gener-
alization of the procedure used in [38] to arbitrary values
of l, in which the linearized equations are reduced to an
eigenvalue problem which is solved by spectral methods. In
Sec. IVA these equations are rewritten in a more appro-
priate form, and the physically relevant boundary condi-
tions at the origin and the asymptotic region, which are
then used to provide boundary conditions at a finite outer
boundary, are derived. Further, we describe our procedure
for solving the eigenvalue problem via a pseudo-spectral
collocation method with Chebyshev points [43,44]. In
Sec. IV B we exhibit the numerical linear stability results,
first for configurations in the ground state and next for the
excited states. In both cases, we show the spectrum of
eigenvalues and the profiles of the associated eigenfunc-
tions for some representative examples, and we comment
on the lifetime of the unstable configurations. Our results
indicate that for all l ≥ 0 the ground state solution is stable
and corresponds to a minimum of the (spherically sym-
metric reduced) energy functional, whereas all excited
states are unstable and correspond to saddle points.
Further, our results suggest that the ground states possess
only purely oscillatory modes.
Conclusions and open questions are provided in Sec. V.

Technical results, which include a Lagrangian formulation
of the SP system, the computation of the first and second
variations of the conserved energy functional, the numeri-
cal determination of the energy eigenvalues, and a vali-
dation of our numerical spectral code, are included in
appendixes.

II. THEORETICAL SETUP

Consider a nonrelativistic system consisting of N iden-
tical particles of mass μ whose only interaction is through
the gravitational potential Uðt; x⃗Þ generated by them. Such
a system is described by the N-particle Schrödinger-
Poisson (or gravitational Schrödinger) system [45–47]

iℏ
∂Ψðt; XÞ

∂t
¼
XN
i¼1

�
−
ℏ2

2μ
∇2

x⃗i
þ μUðt; x⃗iÞ

�
Ψðt; XÞ; ð1Þ

where ℏ denotes the reduced Planck constant, and Ψðt; XÞ
is the wave function with X ¼ ðx⃗1; x⃗2;…; x⃗NÞ the
3N-vector parametrizing the configuration space. Here,
∇2

x⃗i
refers to the 3D Laplace operator with respect to the

2Note that the definition of the quantum number n in [42]
differs from our definition; it is such that the node number of the
radial wave function is equal to n − 1 − l.

ROQUE, NAMBO, and SARBACH PHYS. REV. D 107, 084001 (2023)

084001-2



variable x⃗i, and the gravitational potential Uðt; x⃗Þ generated
by the N particles is determined by the Poisson equation

∇2Uðt; x⃗Þ ¼ 4πGμ
XN
i¼1

Z
jΨðt; XÞj2δð3Þðx⃗ − x⃗iÞd3NX; ð2Þ

with the requirement that Uðt; x⃗Þ → 0 for jx⃗j → ∞. Using
the Green’s function of the Laplace operator, one can
represent U as

Uðt; x⃗Þ ¼ −Gμ
XN
j¼1

Z jΨðt; YÞj2
jx⃗ − y⃗jj

d3NY; ð3Þ

where the integral is performed over the 3N-vector
Y ¼ ðy⃗1;…; y⃗NÞ and G refers to Newton’s constant.
The evolution described by the nonlinear system (1), (3)

is unitary; i.e., the L2-norm of the wave function Ψ is
preserved in time. Additionally, it is straightforward to
verify that the functional (cf. [22,31,45–47])

E½u� ¼
XN
i¼1

ℏ2

2μ

Z
j∇x⃗iuðXÞj2d3NX

−
Gμ2

2

XN
i;j¼1

Z Z juðXÞj2juðYÞj2
jx⃗i − y⃗jj

d3NXd3NY ð4Þ

is conserved in time; that is E½Ψðt; ·Þ� is independent of t
for any solution Ψðt; XÞ of Eqs. (1) and (3) for which
jE½Ψð0; ·Þ�j < ∞. As discussed in the next two sections, its
second variation will be very useful to understand the
stability properties of the l-boson stars.

A. Reduction to one-particle states

From now on, we focus on the particular case in
which the particles are indistinguishable and spinless.
Furthermore, we assume that these are uncorrelated,3 such
that the N-particle wave function is a (symmetrized)
product of single-particle states. Specifically, we consider
an orthonormal set of wave functions ψ j in the one-particle
Hilbert space L2ðR3Þ, such that ðψ j;ψkÞ ¼ δjk. Assuming
that there are Nj particles in the state ψ j, the N-particle
wave function can be written as

Ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N!

N1!N2! � � �NJ!

s
Ŝ
�
ψN1

1 ⊗ ψN2

2 ⊗ … ⊗ ψNJ
J

�
; ð5Þ

where
P

J
j¼1Nj ¼ N. Here, Ŝ ¼Pπ∈σðNÞ Pπ=N! denotes

the symmetrization operator [with σðNÞ referring to the
permutation group ofN elements and Pπ to the permutation
operator]. Introducing the ansatz (5) into Eqs. (1) and (2),
one finds that the one-particle wave functions ψ j satisfy
the system

iℏ
∂ψ jðt; x⃗Þ

∂t
¼
�
−
ℏ2

2μ
∇2 þ μUðt; x⃗Þ

�
ψ jðt; x⃗Þ; ð6aÞ

∇2Uðt; x⃗Þ ¼ 4πGμ
XJ
j¼1

Njjψ jðt; x⃗Þj2: ð6bÞ

It is not difficult to prove that the evolution preserves each
scalar product ðψ j;ψkÞ, such that it is sufficient to impose
the orthonormality condition ðψ j;ψkÞ ¼ δjk at the initial
time t ¼ 0. Furthermore, the functional E½u� reduces to

E½u� ¼
XJ
j¼1

Nj
ℏ2

2μ

Z
j∇ujðx⃗Þj2d3x

−
Gμ2

2

XJ
j;k¼1

NjNk

Z Z jujðx⃗Þj2jukðy⃗Þj2
jx⃗ − y⃗j d3xd3y;

ð7Þ

where the relation between u and uj is the same as the one
between Ψ and ψ j in Eq. (5).

B. Spherically symmetric system

The standard solutions of the SP system correspond to
the particular case N ¼ J ¼ 1 in which there is only one
wave function. However, allowing the presence of an
arbitrary number N of particles yields a much richer
model, even when restricted to spherically symmetric
configurations.
Like their relativistic counterparts, Newtonian l-boson

stars are obtained by considering N ¼ J ¼ 2lþ 1 particles
in a spherically symmetric static potential with associated
wave functions of the form

ψ jðt; x⃗Þ ≔ flðt; rÞYlmðϑ;φÞ: ð8Þ

Here, Ylm denote the standard spherical harmonics, and fl
a function describing the radial profile which has n nodes
in the interval 0 < r < ∞ and is identical for all states. In
other words, l-boson stars are characterized by the quan-
tum numbers ðn;l; mÞ, where n and l are fixed and m
varies over −l;−lþ 1;…;l. Accordingly, the relation
between the index j and ðn;l; mÞ in Eq. (8) is given by
j ¼ mþ lþ 1. A simple generalization of l-boson stars
consists in occupying each state ψ j with K particles instead
of just one, such that N ¼ KJ ¼ Kð2lþ 1Þ.

3This ansatz is valid because our model assumes that the
particles do not interact directly between themselves; they only
interact through the common “mean field”Newtonian potential U
they generate. For more details on this separability property, see
Refs. [45,48]. For the stationary case, the ansatz (5) is equivalent
to the Hartree approximation [49].
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Introducing the ansatz (8) into the system (6) and taking
into account the identities∇2Ylm ¼ −lðlþ 1ÞYlm=r2 andPl

m¼−l jYlmj2 ¼ ð2lþ 1Þ=ð4πÞ, one obtains

iℏ
∂flðt; rÞ

∂t
¼
�
ℏ2

2μ

�
−∇2

s þ
lðlþ 1Þ

r2

�
þ μUðt; rÞ

�
flðt; rÞ;

ð9aÞ

∇2
sUðt; rÞ ¼ ð2lþ 1ÞμGKjflðt; rÞj2; ð9bÞ

where here and in the following, ∇2
s ≔ 1

r2
∂

∂r ðr2 ∂

∂rÞ denotes
the radial part of the Laplacian. Note that the effect of
including the occupation number K is formally equivalent
to rescaling Newton’s constant G.
For the following, it is convenient to rewrite this system

in terms of dimensionless quantities. To this purpose, first
note that G, ℏ, μ give rise to a characteristic distance and
time defined by

dc ≔
ℏ2

2Gμ3
¼ 1.78048 × 1022

�
mp

μ

�
3

m; ð10aÞ

tc ≔
ℏ3

2G2μ5
¼ 1.0056 × 1052

�
mp

μ

�
5

s; ð10bÞ

where, as reference, we have specified the numerical values
resulting from the proton mass mp ¼ 1.67262 × 10−27 kg.
Next, we introduce the transformation

t ¼ tct̄=ðKΛÞ2; r ¼ dcr̄=ðKΛÞ;
fl ¼ K3=2Λ2f̄l=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þd3c

q
; U ¼ 2v2cðKΛÞ2Ū;

ð11Þ

with vc ≔ dc=tc a characteristic velocity. Here, the bar
refers to dimensionless quantities and Λ is an arbitrary
positive dimensionless scale factor. In order to simplify
the notation, in what follows we shall omit the bars and
denote dimensionful quantities with the superscript phys
whenever necessary.
Performing the transformation described in Eq. (11),

the system (9) reduces to

i
∂flðt; rÞ

∂t
¼
�
−∇2

s þ
lðlþ 1Þ

r2
þ Uðt; rÞ

�
flðt; rÞ; ð12aÞ

∇2
sUðt; rÞ ¼ jflðt; rÞj2: ð12bÞ

The normalization condition ðψ j;ψ jÞ ¼ 1 is satisfied pro-
vided that

1 ¼
Z

jψ jðt; x⃗Þj2d3x ¼ Λ
2lþ 1

Z
∞

0

jflðt; rÞj2r2dr: ð13Þ

Equivalently, the system (12) can be written as the single
nonlinear equation

i
∂flðt; rÞ

∂t
¼ Ĥlflðt; rÞ; ð14Þ

with the integro-differential operator

Ĥl ≔
�
−∇2

s þ
lðlþ 1Þ

r2
þ△−1

s ðjflðt; ·Þj2Þ
�
: ð15Þ

Here, △−1
s denotes the inverse of ∇2

s , defined by

△−1
s ðAÞðrÞ ≔ −

Z
∞

0

Aðr̃Þ
r>

r̃2dr̃; ð16Þ

when acting on an arbitrary function A depending only on
the radius r, where we have set r> ≔ max fr; r̃g.
For the particular subset of solutions of the form (8), the

conserved energy functional (7) reduces to

Ephys ¼ 2μv2cðΛKÞ3El½fl�; ð17Þ

where the dimensionless functional El is given by

El½f� ¼
Z

∞

0

�
j∂rfðrÞj2 þ

lðlþ 1ÞjfðrÞj2
r2

�
r2dr

−
1

2

Z
∞

0

Z
∞

0

jfðrÞj2jfðr̃ÞÞj2
r>

r2r̃2drdr̃: ð18Þ

Note that the scale factor Λ offers the possibility to solve
the system (12) or Eq. (14) without taking into account the
normalization condition (13) in a first step. Equation (13)
can be enforced in a second step by adjusting the value
of Λ.

C. The stationary equations

The nonrelativistic l-boson stars are obtained as sol-
utions of Eq. (14) with the time-harmonic ansatz

flðt; rÞ ¼ e−iEltσð0Þl ðrÞ; ð19Þ

where σð0Þl is a real-valued radial function and El is
determined by the nonlinear eigenvalue problem

Ĥl
ð0Þσð0Þl ¼ Elσ

ð0Þ
l ; ð20Þ

with

Ĥð0Þ
l ≔

�
−∇2

s þ
lðlþ 1Þ

r2
þ△−1

s ðjσð0Þl j2Þ
�
: ð21Þ
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The eigenvalue El represents the energy of each state
ðn;l; mÞ. In physical units, this energy value reads

Ephys
l ¼ 2μv2cðKΛÞ2El: ð22Þ

The existence of a normalizable solution of Eq. (20) for
each value of n and l has been established in [35]. In the
next section, we implement a numerical method to solve
Eq. (20) that generalizes the procedure presented in [24] to
arbitrary l. As shown in Appendix A the conserved energy
functional for any stationary solutions of the form (19)
takes the value

Ephys ¼ K
2lþ 1

3
Ephys
l : ð23Þ

For l ¼ 0 and K ¼ 1 this reduces to the well-known
relation Ephys ¼ Ephys

0 =3 presented in [50] for the standard
boson star solutions (note that the functional I in [50]
satisfies 2I ¼ Ephys). Equation (23) will turn out to be
useful when comparing the ground state energies of differ-
ent families of l-boson stars with each other.

D. The linearized equations

Next, we proceed to linearize the integro-differential
equation (14) about a stationary solution. To this purpose,
we assume an expansion of fl in terms of a small parameter
0 < ϵ ≪ 1 of the form

flðt; rÞ ¼ e−iElt½σð0Þl ðrÞ þ ϵσlðt; rÞ þOðϵ2Þ�; ð24Þ

where ðEl; σ
ð0Þ
l Þ is a solution of the nonlinear eigenvalue

problem (20) and σl is a complex-valued function depend-
ing on ðt; rÞ which describes the linear perturbation.
Following [38] we separate the temporal and radial parts
of this function by means of the following ansatz (see also
Sec. V.2 in [51] for details):

σlðt; rÞ ¼ ½AðrÞ þ BðrÞ�eλt þ ½AðrÞ − BðrÞ��eλ�t; ð25Þ

where A and B are complex-valued functions depending
only on r, λ is a complex constant, and the superscript �
denotes complex conjugation. A linear instability is sig-
naled by the presence of a solution with a positive real part
of λ. Introducing Eqs. (24) and (25) into Eq. (14) one
obtains, to linear order in ϵ and after setting the coefficients
in front of eλ

�t and eλt to zero,

iλA ¼ ðĤl
ð0Þ − ElÞB; ð26aÞ

iλB ¼ ðĤl
ð0Þ − ElÞAþ 2σð0Þl △−1

s ½σð0Þl A�: ð26bÞ

This system constitutes a linear eigenvalue problem for the
eigenvalue λ. In the next subsection, we derive some basic
properties satisfied by the solutions of Eqs. (14) and (26).

E. Basic properties of the solutions

As follows from Eq. (11) the system (12) has the
following rescaling freedom: Given a solution ðfl; UÞ, then

fΛl ðt; rÞ ¼ Λ2flðΛ2t;ΛrÞ; ð27aÞ

UΛðt; rÞ ¼ Λ2UðΛ2t;ΛrÞ ð27bÞ

is also a solution of the system (12). As pointed out
previously, this freedom offers the possibility to look
for a solution ðkl;ΦÞ of Eq. (12) whose normalization
is arbitrary but finite. The correct normalization condition
(13) can be enforced a posteriori by means of the trans-
formation ðfl; UÞ ¼ ðkΛl ;ΦΛÞ with

Λ ≔
2lþ 1R∞

0 jklðt; rÞj2r2dr
: ð28Þ

In the stationary case, the rescaling induces the trans-
formation EΛ

l ¼ Λ2El for the energy eigenvalues in
Eq. (19).
Next, we discuss a few properties of the system of

linearized equations (26). First, note the existence of the

zero mode solution ðA; BÞ ¼ ð0; βσð0Þl Þ with eigenvalue
λ ¼ 0 and an arbitrary complex constant β. For β ¼ i this
solution corresponds to an infinitesimal rotation in the
phase of the unperturbed wave function, whereas σlðt; rÞ is
identically zero if β is real. Second, it is simple to prove that
any solution ðλ; A; BÞ of the linearized system (26) gives
rise to the three other solutions:

ð−λ; A;−BÞ; ðλ�; A�;−B�Þ; ð−λ�; A�; B�Þ: ð29Þ

Therefore, the eigenvalues come in pairs ðλ;−λÞ if λ is real
or purely imaginary and in quadruples fλ;−λ; λ�;−λ�g
otherwise, and their corresponding eigenfunctions ðA; BÞ
are related to each other (up to a global factor) according to
Eq. (29). Therefore, linear stability requires that the real
part of each eigenvalue λ is zero.
Third, we note the following properties. Multiplying

Eq. (26a) with r2A� and Eq. (26b) with r2B� and integrating
yields

iλðB;AÞL2 ¼ ðB; ½Ĥl
ð0Þ − El�BÞL2 ; ð30aÞ

iλðA; BÞL2 ¼ ðA; ½Ĥl
ð0Þ − El�AÞL2

þ 2ðσð0Þl A;△−1
s ½σð0Þl A�ÞL2 ; ð30bÞ
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where from now on, ð·; ·ÞL2 refers to the standard scalar
product in the Hilbert space L2 ¼ L2ðRþ; r2drÞ, that is,

ðA1; A2ÞL2 ≔
Z

∞

0

A1ðrÞ�A2ðrÞr2dr; Ai ∈ L2: ð31Þ

Since the operator Ĥl
ð0Þ − El is self-adjoint in L2, it

follows that the right-hand side of Eq. (30a) is real.
Likewise, the right-hand side of Eq. (30b) is real.4

Therefore, it follows that

λ2jðA;BÞL2 j2 ∈ R; ð32Þ

which implies that either λ2 is real or ðA; BÞL2 ¼ 0. This
generalizes the corresponding result in Ref. [38] to arbitrary
values of l.
Fourth, we note that the right-hand side of Eq. (30b)

can also be written in terms of the second variation of the
energy functional El (see Appendix B for a derivation):

iλðA; BÞL2 ¼ 1

2
δ2El½AR� þ

1

2
δ2El½AI�; ð33Þ

where here and in the following, the subindices R and I
refer to the real and imaginary parts of the field.
Equation (33) will play an important role since it provides
a direct relation between the eigenvalue and eigenfunctions
of the linearized equations and the second variation of
the energy functional.
Fifth, we note that the system (26) can be reduced to the

single equation

Q̂A ¼ −λ2A; ð34Þ

with the fourth-order operator Q̂ defined as

Q̂ ≔ ðĤl
ð0Þ − ElÞ2 þ 2ðĤl

ð0Þ − ElÞσð0Þl △−1
s σð0Þl : ð35Þ

Note that the image of Q̂ is orthogonal to σð0Þl . Indeed, using
once again the self-adjointness of Ĥl

ð0Þ − El and the fact

that σð0Þl lies in its kernel one finds ðσð0Þl ; Q̂AÞL2 ¼ 0 for
all A. Therefore, we may restrict the domain of Q̂ to the
subspace Z consisting of the orthogonal complement of the

background field σð0Þl in L2 and consider Q̂ as an operator in
the Hilbert space Z. Since Ĥl

ð0Þ − El is invertible on this
subspace, we may equip Z with the new inner product

hA1jA2i ≔ ðA1; ½Ĥl
ð0Þ − El�−1A2ÞL2 ; Ai ∈ Z; ð36Þ

which is such that

hA1jQ̂A2i ¼ hQ̂A1jA2i; ð37Þ

for all A1, A2 lying in the domain of Q̂. Therefore, Q̂ is
symmetric with respect to this new product. However, note
that although this product is bounded and (anti) linear and
its (first) second argument, it is not always positive definite.

If σð0Þl is the ground state solution, such that El is the
minimum eigenvalue of Ĥl

ð0Þ, then h·j·i is positive definite
on Z and it follows from Eq. (37) that Q̂ is (formally) self-
adjoint, implying, in particular, that its eigenvalues −λ2 are
real. On the other hand, if σð0Þl is an excited state with n
nodes, it follows from the nodal theorem (see e.g., [52]) that
Ĥl

ð0Þ possesses precisely n eigenvalues smaller than El.
Hence, the inner product h·j·i has n independent directions
with negative norm, and in this case, there is no reason to
expect that the eigenvalues of Q̂ are real. It follows from
Eqs. (26a), (33), and (34) that

−λ2hAjAi¼hAjQ̂Ai¼1

2
δ2El½AR�þ

1

2
δ2El½AI�: ð38Þ

Based on these observations, we arrive at the following
conclusions. For the ground state solutions with n ¼ 0, λ2 is
real (which implies that λ itself is either real or purely
imaginary) and the inner product h·j·i is positive definite.
Furthermore, since the operator Q̂ is real, one can assume that
any eigenfunctionA ¼ AR is real aswell. In this case, Eq. (38)
implies that the signs of −λ2 and δ2El½A� coincide with each
other. Consequently, a purely imaginary point spectrum
implies that the background solution is linearly stable and
represents a local minimum of El (at least with respect to the
space spanned by the eigenfunctions). However, the presence
of a nonzero pure real eigenvalue would imply that the

solution σð0Þl is linearly unstable and correspondingly, there
would exist a direction for which δ2El½A� is negative,

meaning that σð0Þl could not be a minimum of El.
For the excited states (i.e., those with n > 0 nodes), λ2

does not need to be real, as commented above. To make
further progress, we note that Eqs. (26) and (B7) in
Appendix B imply

1

2
δ2El½AR� ¼ −λRðAR; BIÞL2 − λIðAR; BRÞL2 ; ð39aÞ

1

2
δ2El½AI� ¼ λRðAI; BRÞL2 − λIðAI; BIÞL2 : ð39bÞ

Taking into account the symmetries (29) we have the
following possibilities for the eigenvalue λ:

4This follows again from the self-adjointness of Ĥl
ð0Þ − El

and the identity

ðσð0Þl A;△−1
s ½σð0Þl A�ÞL2 ¼ −k∇sð△−1

s ½σð0Þl A�Þk2L2 ;

which shows that the second term on the right-hand side of
Eq. (30b) is real and negative.
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(i) λR ¼ 0; λI ¼ 0: This is the zero mode solution we
have already discussed above.

(ii) λR >0;λI ¼0: In this case, λ is real and from Eq. (26)
we can assume that A ¼ AR and B¼ iBI. It follows
from Eq. (39a) that δ2El½AR� ¼ −2λðAR; BIÞL2 , such
that the sign of the second variation of El is opposite
to the sign of the product ðAR; BIÞL2 .

(iii) λR ¼ 0; λI > 0: In this case, λ is purely imaginary
and we can assume that both A and B are real. It
follows from Eq. (39a) that the sign of δ2El½AR� is
opposite to the sign of ðAR; BRÞL2 .

(iv) λR > 0; λI > 0: In this case, λ2 ≠ R, and from the
previous points it follows that ðA;BÞL2 ¼ 0. In this
case, it follows from Eq. (33) that

δ2El½AR� þ δ2El½AI� ¼ 0; ð40Þ
such that the condition δ2El½AR� ≠ 0 [which can be
verified using Eq. (39a)] implies that the background

solution σð0Þl corresponds to a critical saddle point of
the energy functional.

The first three possibilities also apply to the ground state
solutions; however (iv) is excluded in this case since λ2

is real.
As we will see in Sec. IV, our numerical results indicate

the nonexistence of case (ii); that is, we do not find real
eigenvalues. In the case of purely imaginary eigenvalues
[case (iii)], we find that δ2El½AR� > 0 is always positive.
In particular, this implies that the ground states have no
unstable modes and that such modes locally increase the
energy functional El. For l ¼ 0 this result is in concord-
ance with [22] where it was proven that the l ¼ 0 ground
state is a global minimum of El. For all excited states, we
find that case (iv) occurs, implying that they are linearly
unstable and correspond to saddle points of El.

III. NONRELATIVISTIC l-BOSON STARS

As stated in the Introduction, numerical solutions of
the nonlinear eigenvalue problem (20) have been given
in [36,37] for a few values of n and l. In this section, we
extend the numerical construction to a wider range of n and
l and discuss some qualitative features of the solutions.

A. Implementation

To perform the numerical integration, it is convenient

to replace the gravitational background potential Uð0Þ ≔
△−1

s ðjσð0Þl j2Þ with the shifted potential uð0ÞðrÞ ≔
El −Uð0ÞðrÞ, which allows us to rewrite the problem (20)
in the equivalent form

∇2
sσ

ð0Þ
l ¼

�
lðlþ 1Þ

r2
− uð0Þ

�
σð0Þl ; ð41aÞ

∇2
suð0Þ ¼ −

			σð0Þl

			2: ð41bÞ

In a next step, we identify the correct boundary con-
ditions at r ¼ 0 and at r ¼ ∞ that guarantee that the
solution is normalizable and regular at the origin. Near
r ¼ 0, Eqs. (41) reduce to

d
dr

�
r2
dσð0Þl

dr

�
− lðlþ 1Þσð0Þl ≈ 0; ð42aÞ

d
dr

�
r2
duð0Þ

dr

�
≈ 0; ð42bÞ

whose regular solutions have the form uð0ÞðrÞ ∼ const, and

σð0Þl ðrÞ ∼ rl. For this reason, we rescale the wave function

as follows: σð0Þl ðrÞ ¼ rlσðrÞ with a new radial function
σðrÞ which has a finite nonzero limit as r → 0. By
performing a Taylor expansion near r ¼ 0 one finds the
following boundary conditions at the center5:

σðr ¼ 0Þ ¼ σ0;
dσ
dr

ðr ¼ 0Þ ¼ 0; ð43aÞ

uð0Þðr ¼ 0Þ ¼ u0;
duð0Þ

dr
ðr ¼ 0Þ ¼ 0; ð43bÞ

with constants σ0 and u0. Note that u0 must be positive for a
global solution to exist [35]. Furthermore, by means of the
rescaling (27), one can assume without loss of generality
that u0 ¼ 1. In turn, the value of the constant σ0 is fine-
tuned using a numerical shooting method which aims at
the condition limr→∞ σðrÞ ¼ 0, which is required for the
solution to be normalizable.
The numerical integration of the system (41) with the

boundary conditions (43) is performed using an adaptive
explicit 5(4)-order Runge-Kutta routine6 [53–55], where
we rewrite the system as a first-order system for the fields
ðσ; uð0ÞÞ. For the fine-tuning, we use a methodology similar
to the one described in [24], based on bisection.
Additionally, we find it necessary to match the numerical
solution obtained in this way to the asymptotic form of the
fields ðσ; uð0ÞÞ, given by

σðrÞ ≈ C1

r1þl−M=ð2κÞ e
−κr; ð44aÞ

uð0ÞðrÞ ≈ El þ
M
r
; ð44bÞ

5See [35] for a rigorous treatment of the local regular solutions
near the origin.

6The integration is performed using the fifth-order accurate
steps; the fourth-order steps are only performed in order to
estimate the error.
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with κ ≔
ffiffiffiffiffiffiffiffijElj

p
and constantsC1, El, andM. Here,El and

M represent, respectively, the (unrescaled) energy eigen-
value and total mass of the configuration. The form (44b) is
obtained by recalling the fact that limr→∞Uð0ÞðrÞ ¼ 0 and
the definition uð0ÞðrÞ ¼ El −Uð0ÞðrÞ. Here, the constants
El andM are determined using the methodology described
in Appendix C, whereas the constant C1 is computed by
fitting the profile of the right-hand side of Eq. (44a) to the
last ten points of the function σ obtained from the shooting
algorithm. This extension of the solution turns out to be
necessary for the numerical analysis of the first-order
equations discussed in the next section, which requires
the knowledge of the background solution for values of r
lying beyond the maximal radius obtained from the
shooting algorithm. Our code is publicly available in [56].
The physical energy eigenvalue is obtained as follows.

First, EΛ
l is computed using a generalization of the

methodology present in [24] (see Appendix C for more
details), according to the formula

EΛ
l ¼ ð2lþ 1Þ2

M2
El; ð45Þ

where

El ¼ u0 −
Z

∞

0

r2lþ1jσðrÞj2dr; ð46aÞ

M ¼
Z

∞

0

r2ðlþ1ÞjσðrÞj2dr: ð46bÞ

Next, the dimensional eigenvalue corresponding to K
particles in each state ðn;l; mÞ is obtained from

Ephys
l ¼ 2μv2cK2EΛ

l ; ð47Þ

and the corresponding total mass is

Mphys ¼ ð2lþ 1ÞKμ ¼ Nμ; ð48Þ

as expected. Alternatively, one can use the asymptotic form
described in Eq. (44b) to obtain El, assuming that the
solution has been properly normalized (as described at the
beginning of Sec. II E) such that El ¼ EΛ

l . This alternative
form to compute the energy eigenvalue was used to check
the validity of the results obtained from Eq. (45).

B. Results

We have solved the system (41) for values of l up to 10
and values of n up to 30. Typical examples for the radial
profile of the wave function for different values of l are
shown in Fig. 1. The left panel represents configurations
in the ground state (n ¼ 0). Notice that an increase in
the value of l leads to more flatness near the origin,

in accordance with the rl-behavior of σð0Þl , whereas the
radius of the maximum increases. This property is in
concordance with the corresponding results reported for
the relativistic case [1,13]. In the right panel, we show
configurations in the first excited state (n ¼ 1). Again,
higher values of l lead to more flatness near the origin
and a maximum which lies further away from the origin.
The positions of the node and the minimum also move to
the right as l increases starting from l ¼ 1 (whereas the

case l ¼ 0 is special since the field σð0Þl¼0 does not vanish
at the origin).
Figure 2 shows the Newtonian potential and its

first derivative corresponding to the configurations with

FIG. 1. Wave function profiles for different values of l. Left panel: configurations in the ground state (n ¼ 0). Right panel:
configurations in the first excited state (n ¼ 1). The thick dots indicate the location of the node in each configuration. Here, c1 refers to
the constant 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þd3c

p
appearing in Eq. (11).
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n ¼ 0, 1 and l ¼ 0, 1, 2, 3 shown in Fig. 1. As can be seen,
the potential profiles are monotonically increasing,
which can be understood from the identity dUð0Þ=dr ¼
−duð0Þ=dr which is positive according to Eq. (C4) in
Appendix C. We also observe that as l increases (and K
and n remain fixed), the potential well becomes more
profound. This seems to be related to the fact that the
number of fields increases with l which enhances the
gravitational source, although one should be careful with
this interpretation since configurations with higher l
are also more extended as shown in Fig. 1. However,
comparing configurations with the same number of fields
N and nodes n, one finds that the minimum of the potential
increases with increasing l, the deepest well occurring for

l ¼ 0. This is the expected behavior one has for a fixed
background potential, which is due to the repulsive con-
tribution originating from the centrifugal term in the effective
potential [see Eq. (41a)]. Furthermore, as l or n increase,
the configurations become more extended, which is also
visible in the profile of the potential. Note also the existence
of an additional local maximum in the derivative of the
potential for the first excited state. A parameter exploration
seems to indicate that in general, dUð0Þ=dr has a total of
nþ 1 maxima, corresponding to the nþ 1 maxima of the

density jσð0Þl j2.
Table I shows the results for the energy levels corre-

sponding to the ground and first three excited states for
l ¼ 0, 1, 2, 3, 4, 5 computed using Eq. (45). The left panel

FIG. 2. Profiles for the gravitational potential (upper panels) and its first derivative (lower panels) for the configurations shown in
Fig. 1 corresponding to l ¼ 0, 1, 2, 3.

TABLE I. Energy eigenvalues for the ground and first three excited states computed from Eq. (45) for l ¼ 0; 1;…; 5. The eigenvalues
obtained for l ¼ 0 and K ¼ 1 are in agreement with those reported in [23,38].

Ephys
l ½K2μv2c�
l-values:

0 1 2 3 4 5

n-nodes 0 −0.16276921 −0.48696445 −0.67701587 −0.79912216 −0.88467671 −0.9483675
1 −0.03079654 −0.15836933 −0.28505087 −0.39233267 −0.48134634 −0.55563343
2 −0.0125261 −0.07767856 −0.15754598 −0.23552556 −0.30705008 −0.37133678
3 −0.00674732 −0.04597782 −0.09987558 −0.15725454 −0.21347763 −0.26669641
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of Fig. 3 shows the energy levels as a function of n for
l ¼ 0, 1, 2, 3. As commented in the Introduction, for each
fixed value of l, the eigenvalues are negative and increase
monotonically in n. Similar to what has been found in the
case l ¼ 0 [23], this increase can be fitted to an inverse
power law of the form

Ephys
l ¼ −

α

ðnþ βÞγ × ½K2μv2c�; ð49Þ

with suitable parameter values for α, β, and γ. Table II
shows the best fit for these parameters using a least-squares
method, for the cases l ¼ 0, 1, 2, 3, 4, 5. The resulting
curve is also shown in the left panel of Fig. 3. Remarkably,
the value for the exponent γ seems to lie quite close to 2.
In fact, by performing the fit using only the excited states
n ¼ 10; 11;…; 30 one finds values of γ which are con-
sistent with 2 up to a relative error of 0.4%, at least for the
values of l ¼ 0; 1;…; 5 reported in the table. Therefore,
for large values of n and fixed l, Ephys

l seems to behave as
−α=n2, similar to the Balmer spectrum arising from the
Coulomb potential U ¼ −GM=r. However, note that in the
Coulomb case, the parameter β would be equal to lþ 1,
which is clearly not the case here. This is probably related

to the fact that although in our configurations U behaves as
the Coulomb potential in the asymptotic region r → ∞, it is
regular at the center.
Next, we compare the total energy Ephys

l of different
configurations having the same number of fields. For this,
recall that the nonrelativistic l-boson stars are composed of
N ¼ Kð2lþ 1Þ self-gravitating bosons. Unlike the stan-
dard nonrelativistic boson stars which have N ¼ 1, con-
sidering configurations with N ≥ 3 offers the interesting
possibility of constructing configurations with the same N
but different values for K and l, like for instance in the
pairs ðK;lÞ ¼ ð3; 0Þ and ðK;lÞ ¼ ð1; 1Þ. A relevant ques-
tion is which of these configurations has the least total
energy Ephys

l since this is expected to be the most stable
state (at least within the spherically symmetric configura-
tions). Using Eqs. (23) and (47), the difference between
two configurations ðK1;l1Þ and ðK2;l2Þ with N ¼
K1ð2l1 þ 1Þ ¼ K2ð2l2 þ 1Þ fields is

△Ephys
1→2 ¼ Ephys

2 − Ephys
1 ;

¼ K2
1N
3

�ð2l1 þ 1Þ2
ð2l2 þ 1Þ2 E2 − E1

�
; ð50Þ

FIG. 3. Left panel: numerical results for the first 30 energy levels (shown in the thick dots) corresponding to configurations with
angular momenta l ¼ 0, 1, 2, 3. The solid lines show the graph of the trial function in Eq. (49) with the best fit for the parameters α, β, γ
reported in Table II. Right panel: energy differences △Ephys½μv2c� computed from the relation Eq. (50) between ground state
configurations (n ¼ 0) with the same numbers of field N but different values of l, e.g., l ¼ 0; K ¼ 3, and l ¼ 1; K ¼ 1. The solid
arrows indicate the possible loss of energy due to a loss of angular momentum, e.g., l ¼ 1 ↦ l ¼ 0.

TABLE II. Best fit parameters for the trial function in Eq. (49), taking into account the first 30 energy levels. These parameters are
determined using a least-squares method. Results are shown for angular momenta l ¼ 0; 1;…; 5.

l-values:

0 1 2 3 4 5

Parameters α 0.0978� 0.0001 0.8497� 0.0016 2.1737� 0.0184 3.8769� 0.0637 5.8308� 0.1441 7.9516� 0.2607
β 0.7763� 0.0005 1.3222� 0.0011 1.8116� 0.0057 2.2639� 0.0128 2.6907� 0.0217 3.0987� 0.0320
γ 2.0115� 0.0007 1.9935� 0.0011 1.9632� 0.0040 1.9332� 0.0070 1.9058� 0.0098 1.8812� 0.0123
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where the energies Ei refer to the physical energy levels
Ephys
l for K ¼ 1 in both configurations (i.e., the values

reported in Table I in units of μv2c). For excited states, one
may also use Eq. (49) with the associated parameters from
Table II to provide approximate values for E1 and E2 and
compute the energy difference.
The right panel of Fig. 3 shows the energy difference

between ground state l-boson stars with l ¼ l1 > 0 and
ground state l-boson stars with l ¼ l2 ¼ 0 and the same
number of particles for the cases ðK1;l1Þ ¼ ð1; 1Þ, (2,1),
(1,2), (1,3). As can be appreciated from this plot,
this energy difference is always negative, △Ephys

1→2 < 0

and becomes larger as the value of l1 increases. A more
general exploration based in the fitting formula (49) reveals
the following properties: When n1 ≥ n2 and l1 ≥ l2, one
has△Ephys

1→2 < 0, as expected. This is consistent with the fact
that for any given number of wave functions, the configu-
ration corresponding to K ¼ N, n ¼ l ¼ 0 represents the
global minimum of the conserved energy functional
Eq. (18), as pointed out in the Introduction. Regarding
the energy difference between configurations with n1 ≥ n2
and l1 < l2, it turns out it can also be negative, provided
n1 is sufficiently large. An example is provided by the cases
of N ¼ 9 fields and n1 ≥ 2;l1 ¼ 1, n2 ¼ 0, and l2 ¼ 4

(whereas in this example △Ephys > 0 if n2 ¼ 2 but n1 ¼ 1
or n1 ¼ 2).

IV. LINEAR STABILITY OF NONRELATIVISTIC
l-BOSON STARS

In the previous section we constructed nonrelativistic
l-boson stars and discussed their main properties. In this
section we present our numerical implementation and main
results corresponding to their linear stability.

A. Linear system, boundaries conditions,
and discretization

Similar to the background equations, for the numerical
implementation of the linearized system (26), it is conven-
ient to rewrite it in a more appropriate form. For this, we
rewrite AðrÞ ≔ aðrÞ=r, BðrÞ ≔ bðrÞ=r with rescaled func-
tions a and b, and use the identity ∇2

s ¼ 1
r
d2

dr2 r to rewrite
this system as

b00 − Ueffb ¼ −iλa; ð51aÞ

a00 − Ueffa − 2σð0Þl

�
d2

dr2

�−1
½σð0Þl a� ¼ −iλb; ð51bÞ

where for convenience we have introduced the effective
potential UeffðrÞ ≔ −uð0ÞðrÞ þ lðlþ 1Þ=r2 and the oper-
ator ð d2dr2Þ−1 ¼ r△−1

s r−1 denoting the inverse of the second
derivative with homogeneous Dirichlet conditions at r ¼ 0
and r ¼ ∞.

To solve the system (51), four boundary conditions are
needed. Similar to the analysis applied to the background
configurations, one can study (heuristically) the dominant
terms of the perturbed system near the origin and infinity.

Using the fact that σð0Þl ðrÞ ∼ rl, one finds

r2Z00 − lðlþ 1ÞZ ≈ 0;

near r ¼ 0, with the column vector Z ≔ ða; bÞT. The
solution which is regular at the center behaves as
ZðrÞ ∼ rlþ1, which leads to the following boundary con-
ditions for all l ≥ 0 at the origin:

aðr ¼ 0Þ ¼ 0; bðr ¼ 0Þ ¼ 0: ð52aÞ

In the asymptotic region one finds, taking into account the

fact that uð0ÞðrÞ → El and that σð0Þl decays exponentially,

Z00 þ ElZ ≈ 0;

and the solution that is bounded at infinity is the one that
decays exponentially. Hence, as r → ∞, we require that

lim
r→∞

aðrÞ ¼ 0; lim
r→∞

bðrÞ ¼ 0: ð52bÞ

In order to numerically solve the linearized system (51)

we used the background solutions ðσð0Þl ; uð0ÞÞ found in the
previous section, and we represent these, as well as the
perturbed fields ða; bÞ, in terms of Chebyshev polynomials.
The derivative operators are discretized using a standard
spectral method (see, e.g., [43,44]), which leads to a matrix
eigenvalue problem. The next paragraph briefly describes
the details of this implementation.
First, we map the domain DC ≔ ½−1; 1�, on which the

Chebyshev polynomials are defined, onto the physical
domain D ≔ ½0; r⋆� which is truncated at a large radius
r⋆ [in Appendix D we also consider the case r⋆ → ∞ in
which the whole physical domain ½0;∞Þ is covered].
Specifically, we define this map DC → D through the
transformation, r ¼ r⋆ðxþ 1Þ=2 with x ∈ DC [38].
Second, on DC we introduce the set of Chebyshev points
xj ¼ cosðjπ=NÞ, j ¼ 0; 1;…;N, and we discretize d=dx
using the Chebyshev differentiation matrix DN. Since
dr=dx ¼ r⋆=2, the corresponding discretization of the
second-derivative operator d2=dr2 yields ð2=r⋆Þ2D2

N.
The explicit form of the ðNþ 1Þ × ðNþ 1Þ matrix DN
can be found in Chap. 6 of [43]. Third, in order to impose
the homogeneous boundary conditions (52) we use the
procedure described in [43] which amounts in striking the
first and last rows and columns in the second-derivative
differentiation operator D2

N, giving rise to an ðN − 1Þ ×
ðN − 1Þ matrix. This reduced matrix is then inverted in
order to discretize the operator ðd2=dr2Þ−1 appearing
in Eq. (51b).
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Using everything previously mentioned, the problem (51)
is reduced to the finite-dimensional eigenvalue problem 

0 D̃2
N − Ueff

D̃2
N − Ueff − 2Σ0ðD̃2

NÞ−1Σ0 0

!�
a

b

�

¼ −iλ
�
a

b

�
; ð53Þ

where here 0 represents the ðN − 1Þ × ðN − 1Þ zero matrix,

Ueff ≔ diagðUeffðx1Þ; Ueffðx2Þ;…; UeffðxN−1ÞÞ;
Σ0 ≔ diagðσð0Þl ðx1Þ; σð0Þl ðx2Þ;…; σð0Þl ðxN−1ÞÞ

are the discrete representation of the background quantities

Ueff and σð0Þl , and the vector

�
a

b

�
≔ ðaðx1Þ;…; aðxN−1Þ; bðx1Þ;…; bðxN−1ÞÞT

represents the eigenfields rðA; BÞT . We solve the discrete
eigenvalue problem (53) using the SciPy library [53]. After
some experimentation, we have found that using the number
N ≔ 3r⋆=4 of Chebyshev points7 with outer boundary
located at r⋆ ≔ 200ðnþ 1Þ for the nth excited state of
the background solution gave accurate results (see
Appendix D for details). Since r⋆ is much larger than the
typical maximal radius obtained from the shooting algo-
rithm, we extend the background solution on ½0; r�� using the
asymptotic expressions (44), as described in Sec. III A. A
validation of our results which is based on a convergence
study of the numerical solution as N and r⋆ vary, as well as
on an independent residual evaluation check using an
explicit Runge-Kutta method are provided in Appendix D.

B. Mode stability of the linear system

After having described our numerical implementation,
we turn our attention to the main results of this section,
which reveals the behavior of the mode solutions of the
linear perturbations of the nonrelativistic l-boson stars. To
this purpose, we recall the general form of these modes in
Eq. (25). Separating the fields ðA;BÞ and the eigenvalue
in their real and imaginary parts, this equation can be
rewritten as

σlðt; rÞ ¼ 2eλRt cos ðλItÞ½ARðrÞ þ iBIðrÞ�
− 2eλRt sin ðλItÞ½AIðrÞ − iBRðrÞ�; ð54Þ

where we recall that the subindices R and I refer to the real
and imaginary parts, respectively. As is evident from this

equation, a positive value of λR implies that the mode is
exponentially growing, whereas λI describes its oscillation
frequency.
Similar to Sec. II E we divide the stability study into

two parts. First, we study the modes corresponding to the
ground configurations and next the ones associated with
the excited states.

1. Ground state configurations

As we proved in Sec. II E, for the ground state
configurations, λ2 must be real, which implies that λ itself
is either real or purely imaginary. As a first result of our
numerical study, we have found that only purely imagi-
nary values of λ occur for the ground states.8 The first
eigenvalues (ordered according to their magnitude) are
shown in the first three rows of Table III for l ¼ 0, 1, 2, 3.
The left panel of Fig. 4 shows the spectrum in the complex
plane corresponding to the ground state configurations
with l ¼ 0, 2, 4, 6. These results are compatible with the
relation (29), which implies that the purely imaginary
eigenvalues come in pairs fλ;−λg.
Since the ground state configurations only have purely

imaginary eigenvalues, we conclude from Eq. (54) that the
configurations with n ¼ 0 and the values of l analyzed
only possess purely oscillatory modes (whose frequency is
equal to λI). This leads us to conjecture that all ground state
background configurations are stable with respect to time-
dependent linear perturbations of the form (24) and (25).
Furthermore, since −λ2 > 0, we conclude that all these
modes give rise to a positive second variation of the
conserved energy functional: δ2El½AR� > 0; see Sec. II E.
(Table IV shows an example in which the second variation
is computed numerically and its sign is found to agree with
the one of −λ2, as expected.) This implies that the ground
states represent local minima of El with respect to such
perturbations. However, recall from the results in the
previous section that ground state configurations with
l > 0 have values of El lying above the corresponding
value of El¼0 with N ¼ ð2lþ 1ÞK fields, implying that
these states cannot represent a global minimum of the
energy functional. Therefore, we conclude that ground state
configurations with l > 0 are either local minima or saddle
points of the conserved energy functional El under arbi-
trary perturbations (with or without symmetries).

2. Excited states

Next, we turn our attention to the mode stability of the
background configurations for which n > 0. Recall the four
possibilities (i)–(iv) discussed in Sec. II E. First, let us
explain the significance of these four cases for the behavior

7Recall that these points are not uniformly distributed; the
density of points is largest near the boundaries of DC.

8More precisely, we have found that the eigenvalues computed
from the 2ðN − 1Þ × 2ðN − 1Þ matrix in Eq. (53) have real parts
which are smaller than 10−6 in magnitude.
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of the corresponding mode described by Eq. (54). Clearly,
case (i) corresponds to a time-independent perturbation
since λ ¼ 0. As discussed above, it describes an infinitesi-
mal phase change of the background solution. Next, case
(ii) corresponds to a pair of modes, one growing exponen-
tially in time and the other one decaying exponentially.
Thus, its occurrence would imply that the underlying
background solution is linearly unstable. Next, case
(iii) describes a pair of purely oscillatory modes with
frequency λI ≠ 0. Finally, case (iv) gives rise to a quadruple
of oscillating modes, two of which have an exponentially
growing amplitude, whereas the other two have a decaying
amplitude. The occurrence of this case implies that
the background solution is linearly unstable and that it

represents a saddle critical point of the conserved
energy functional, provided the nondegeneracy condition
δ2El½AR� ≠ 0 holds.
Figure 5 shows an illustrative example for the eigen-

function profiles of the fields ðA;BÞ for the two eigenvalues
λ ¼ 0.00619398þ 0.03340186i and −λ� reported in
Table V corresponding to the first excited state n ¼ 1 with
l ¼ 1. Note the linear behavior near the center [which is
compatible with the asymptotic behavior aðrÞ; bðrÞ ∼ rlþ1

at the origin] and the decay of the amplitude for large
radii, which is compatible with the exponential decay of the
fields at infinity. Note also the relation between the
eigenfields corresponding to λ and −λ�, which is in
agreement with Eq. (29).

FIG. 4. Eigenvalue spectra for the ground state configurations n ¼ 0 (left panel) and the excited states with n ¼ 2 (center panel) and
n ¼ 4 (right panel) for l ¼ 0, 2, 4, 6. The points λ ¼ 0 correspond to the zero modes describing a phase change of the background
solution (see Sec. II E for more details). Notice that the eigenvalues come in quadruples fλ;−λ; λ�;−λ�g, as discussed in Sec. II E. The
only background configurations for which the spectrum is purely imaginary (and therefore leads to linear stability) are the ground states
with zero nodes; the remaining states with n ≥ 1 nodes have precisely n-quadruple eigenvalues with nonzero real parts which imply that
they are linearly unstable.

TABLE III. First three purely imaginary eigenvalue pairs for the background configurations with n ¼ 0, 1, 2, 3
and l ¼ 0, 1, 2, 3.

λ½K2=tc�
l-values:

0 1 2 3

n-nodes 0 0� 0.03412558i 0� 0.06385090i 0� 0.06408695i 0� 0.05903587i
0� 0.06030198i 0� 0.14328038i 0� 0.16575905i 0� 0.16827469i
0� 0.06882477i 0� 0.17565513i 0� 0.21233555i 0� 0.22189706i

1 0� 0.00300045i 0� 0.01185117i 0� 0.01736224i 0� 0.02017560i
0� 0.00812230i 0� 0.04155775i 0� 0.06711048i 0� 0.08323611i
0� 0.01073335i 0� 0.05025166i 0� 0.08170887i 0� 0.10244472i

2 0� 0.00078452i 0� 0.00406666i 0� 0.00709575i 0� 0.00931852i
0� 0.00297490i 0� 0.01667870i 0� 0.03118429i 0� 0.05061671i
0� 0.00366760i 0� 0.02154496i 0� 0.04306049i 0� 0.05994153i

3 0� 0.00031089i 0� 0.00185072i 0� 0.00357142i 0� 0.00506232i
0� 0.00134987i 0� 0.00870332i 0� 0.01961872i 0� 0.02916710i
0� 0.00182670i 0� 0.01175539i 0� 0.02394986i 0� 0.03932200i
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Our eigenvalue analysis reveals the following. First,
as for the ground state configurations, we found purely
imaginary eigenvalues, corresponding to case (iii). The first
few of them are exhibited in Table III for n ¼ 1, 2, 3 and
l ¼ 0, 1, 2, 3. However, in contrast to the ground states,
we have also found quadruples of eigenvalues with λR ≠ 0
and λI ≠ 0, corresponding to case (iv), implying that
the underlying configurations are linearly unstable.
Interestingly, our results indicate that in each case, there
are precisely n of such quadruples, with n the number of
nodes of the background solution (see the center and
right panels of Fig. 4 and Table V for some examples).
Furthermore, our results seem to indicate that for each
of these quadruples, the nondegeneracy condition
δ2El½AR� ≠ 0 is satisfied (see Table IV for specific exam-
ples with n ¼ 1 and l ¼ 0, 1). The presence of these n
quadruples implies that the excited states represent saddle
points of the energy functional El. Finally, our results
indicate that case (ii) never occurs since we have not found

any purely real eigenvalues aside from the zero mode.
These results lead us to the conjecture that all configura-
tions ðn;lÞ with n ≥ 1 and l ≥ 0 are linearly unstable
and possess precisely 2n exponentially in time growing
modes of the form (24) and (25). Furthermore, these
configurations correspond to saddle critical points of the
energy functional.
Before concluding this section, we would like to make a

few remarks regarding the behavior of the eigenvalues λ
that can be inferred from Tables III and V and further data
corresponding to higher values of n and l which are not
shown in these tables. First, let us analyze the period of the
first purely oscillatory modes (i.e., the slowest oscillating
one for each l and n) in Table III. We observe that this
period increases with n for fixed l, the shortest period
belonging to the ground state. Second, let us compare the
real parts of λ in a given column in Table V (i.e., fixing l)
for different values of n. Interestingly, the shortest living
unstable mode for each n (i.e., the one with the largest

TABLE IV. Numerical values of the second variation δ2El½Ai�, i ¼ R, I of the conserved energy functional
computed using Eqs. (39). The results shown correspond to the first few eigenvalues and eigenfunctions associated
with the background solutions with l ¼ 0, 1 and n ¼ 0, 1.

l-values n-nodes λ½K2=tc� 1
2
δ2El½AR� 1

2
δ2El½AI�

0 0 0� 0.03412558i 0.00637265 0

1 0� 0.00300045i 0.00039739 0
�0.00148347þ 0.00979587i 0.00011228 −0.00011228

1 0 0� 0.06385090i 0.00787292 0
1 0� 0.01185117i 0.00098164 0

�0.00619398þ 0.03340186i 0.00028039 −0.00028043

FIG. 5. Eigenfunction profiles for the fields A (left panel) and B (right panel) for the first excited background configuration with
l ¼ 1. Shown is the eigenvalue-eigenfunction pair fðλ; A; BÞ; ð−λ�; A�; B�Þg [see Eq. (29)] corresponding to λ ¼ 0.00619398þ
0.03340186i reported in Table V. The exterior plots show the real parts of A and Bwhile the plots in the inset show their imaginary parts.
Notice that AR and BR agree with each other, while AI and BI differ from each other by a sign, as expected from the above-mentioned
symmetry ðλ; A; BÞ ↦ ð−λ�; A�; B�Þ. Here, c1 refers to the constant 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þd3c

p
.
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real part) has a lifetime that increases with n. In this sense,
higher excited states are “less unstable” than lower excited
ones. Third, let us perform the same comparison for a fixed
row in Table V (i.e., a fixed number n of nodes) and
configurations with different values of l. This comparison
can be performed either for fixed K or for fixed number
N ¼ Kð2lþ 1Þ of fields. In the first case, the shortest
living mode has a lifetime that decreases with increasing l.
In the second comparison, the opposite occurs, i.e.,
configurations with higher l’s are less unstable.

V. CONCLUSIONS

We started this article by considering a nonrelativistic
system of N identical particles with zero spin, interacting
only through the common gravitational potential they
generate. By writing the N-particle wave function as a
symmetrized product of one-particle states whose angular
dependency has the particular form (8), the system was
reduced to the effective one-dimensional SP system (9).
Stationary solutions of this system describe nonrelativistic
l-boson stars which are compact objects generalizing the
standard l ¼ 0 configurations by extending the internal
symmetry group from Uð1Þ to UðNÞ. These objects are
characterized by the numbers ðN;l; nÞ with l representing
the angular momentum number of the fields, n the node
number of the radial wave function, and N being equal to
an integer multiple of 2lþ 1. For fixed values of N and l
their energy levels grow monotonically with n, the ground
state n ¼ 0 having minimum energy.
However, for the stability properties of the nonrelativistic

l-boson star configurations, it is the total energy (which
includes the gravitational binding energy in addition to the
energy of the wave functions) that turns out to be more
relevant than their energy levels. As we showed in
Appendix A, a conserved energy functional can be natu-
rally derived from the Lagrangian formulation of the SP
system. The rescaling freedom [see Eq. (27)], through
Noether’s theorem, gives rise to the connection formula (23)

between the stationary configurations’ total energy and
their energy levels.
Although these results constitute a straightforward gen-

eralization of known results for the l ¼ 0 case, the
inclusion of the angular momentum l leads to interesting
new effects. For instance, configurations with l > 0
have zero density at their center and thus—like their
relativistic counterparts [1,13]—their morphology is
shell-like, where the shell’s radius increases with l (see
Fig. 1). Regarding the stability property, recall that for each
fixed value of N the configuration ðN; 0; 0Þ represents the
global minimum of the conserved energy functional and
thus is expected to be stable with respect to small enough
perturbations. Therefore, the question arises whether or not
configurations ðN;l; nÞ with l > 0 or n > 0 are stable as
well. This is related to the question of what type of critical
point (local minimum, local maximum, or saddle point) of
the energy functional they represent. The results of this
article reveal the following properties. First, they indicate
that all ground state configurations are stable under
linearized perturbation modes of the spherically symmetric
reduced system (9) and that these configurations represent
local minima of the total energy with respect to such
perturbations. Second, they suggest that for l > 0 these
minima are only local, i.e., they have a total energy which is
larger than the corresponding energy of the ground state
configurations with l ¼ 0 and the same value of N. Third,
our results suggest that each excited configuration (i.e.,
each state with n > 0) is linearly unstable, possessing
precisely 2n spherical linearized modes that grow expo-
nentially in time. Fourth, they also indicate that each
excited configuration represents a saddle critical point of
the conserved energy functional.
Our stability results are consistent with previous studies

on the linear stability of l-boson stars with respect to
spherical perturbations [16–18] in the relativistic case. In
these works, it was shown that the relativistic ground state
configurations admit a stable branch which connects the
Newtonian configurations with those of maximal mass.

TABLE V. Eigenvalue quadruples fλ;−λ; λ�;−λ�g which have real parts different from zero for the background configurations with
n ¼ 0, 1, 2, 3 and l ¼ 0, 1, 2, 3. Only the member with positive real and imaginary parts is reported. The corresponding spectrum in the
complex plane is illustrated in Fig. 4 for the configurations with n ¼ 0, 2, 4 and l ¼ 0, 2, 4, 6.

λ½K2=tc�
l-values:

0 1 2 3

n-nodes 0 � � � � � � � � � � � �
1 0.00148347þ 0.00979587i 0.00619398þ 0.03340186i 0.00888859þ 0.04742445i 0.00923822þ 0.05471082i

2 0.00037420þ 0.00507753i 0.00135751þ 0.02218741i 0.00202943þ 0.03598465i 0.00282615þ 0.04277090i
0.00051995þ 0.00225911i 0.00271729þ 0.01142125i 0.00454164þ 0.01963532i 0.00559009þ 0.02557525i

3 0.00014893þ 0.00309572i 0.00057487þ 0.01547544i 0.00094498þ 0.02698601i 0.00107542þ 0.03559566i
0.00017445þ 0.00168940i 0.00086410þ 0.00955161i 0.00177133þ 0.01701821i 0.00273695þ 0.02361055i
0.00022483þ 0.00088225i 0.00132314þ 0.00519695i 0.00247179þ 0.00993824i 0.00335300þ 0.01399112i
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In particular, the linearized equations for mode solutions
with time dependency of the form e−iσt are reduced to an
eigenvalue problem of the form Hv ¼ σ2v, where H is a
two-channel Schrödinger operator. Since this operator is
self-adjoint, σ must be either real or purely imaginary,
which is compatible with our findings for the ground state
configurations. Interestingly, however, the method used
in [16–18] only works for the ground state solution since it
requires the radial profile of the background scalar field to
have a fixed sign. The results in our article indicate that
excited states lead to the existence of imaginary eigenval-
ues; hence the underlying linear operator cannot be self-
adjoint. Therefore, the results in the present article suggest
that a liner stability analysis of the relativistic excited states
requires a more general ansatz for the perturbed scalar field,
which probably includes both factors e−iσt and eiσ

�t.
We end this article with a few comments regarding

the physical implications of our results and a list of open
questions. First, let us analyze the allowed range of
numerical values for the total massMphys and radius (which
we define as the radius Rphys

99 of the centered ball containing
99% of the mass) of the configurations ðN;l; nÞ. These
quantities scale with Nμ and 1=ðμ3NÞ, respectively, as can
be seen from the definition of the dimensionless variables
in Eq. (11). Hence, for given l and n the object’s mass and
radius are determined by the two parameters N and μ.
However, note that these parameters are not independent
from each other. In order to be consistent with the non-
relativistic limit, Rphys

99 needs to be much larger than the
Schwarzschild radius Rphys

s ≔ 2GMphys=c2, which leads to
the restriction9

Rphys
s

Rphys
99

¼ ð2NÞ2
ð2lþ 1ÞR99

�
μ

mpl

�
4

≪ 1; ð55Þ

where mpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p ¼ 2.17643 × 10−8 kg is the Planck
mass and R99 is the dimensionless radius containing 0.99M
of the dimensionless total mass for the correctly normalized
radial profile. For example, for heavy masses of the order
of the Higgs boson, such that μ ≈ 1.25 × 1011 eV=c2 ≈
2.22 × 10−25 kg, the restriction (55) yields N ≪ 1032 for
values of l ≤ 10 and assuming R99 < 100. This would give
rise to objects with a maximal mass much lower than
107 kg (and configurations with such maximal masses
would have a radius smaller than the Bohr one).
However, particles with light masses are capable of ful-
filling the Newtonian restriction (55) and have masses and
radii compatible with typical astrophysical objects at the
same time. For instance, objects formed ofN ≈ 1055 bosons

of mass μ ¼ 10−3 eV=c2 ≈ 1.78 × 10−39 kg have masses
and radii similar to a typical dwarf planet, for which
Mphys ≈ 1016 kg and Rphys ≈ 200 km. On the other hand,
an ultralight mass μ ¼ 10−22 eV=c2 ≈ 1.78 × 10−58 kg
with N ≈ 1098 yields values compatible with dark matter
galactic halos for whichMphys≈1010M⊙ and Rphys≈1Kpc.
In both examples, the chosen number of fields N fulfills
the Newtonian restriction, which is N ≪ 1061; 1099 for
μ ¼ 10−3; 10−22 eV=c2 respectively.
Second, let us comment on the timescales associated

with the unstable modes of the unstable configurations
ðN;l; nÞ with n > 0. Such configurations could still be
considered to be stable for practical purposes if their
lifetime is sufficiently large (e.g., of the order of the age
of the Universe). For this reason, it is important to quantify
these timescales. A referential value for them is defined
by tlife ≔ 1=λR, where λR refers to the real part of the
eigenvalue associated with the fastest growing mode.
According to Eq. (11) the physical lifetime scales like
1=ðN2μ5Þ. For the configurations ðN; 1; 1Þ, for which the
fastest growing mode has λR ¼ 0.00619398 and whose
masses and radii correspond to the typical astrophysical
objects discussed in the previous paragraph, one obtains
the following values. For dwarf planets, one obtains short
lifetimes of the order tlife ≈ 104s ≈ 2.8h. For dark matter
galactic halos the resulting lifetime is of the order
tlife ¼ 1013s ≈ 3.17 × 105 yr, which is much shorter than
the lifetime of a typical galaxy.
Of course, the numerical method used in this article has

only been able to explore a finite parameter space; hence
it would be interesting to put our stability results on a
rigorous mathematical basis, and to prove that they are
indeed true for arbitrary configurations ðN;l; nÞ. However,
a more pressing question is whether the ground state
configurations ðN;l; 0Þ with l > 0 are (linearly and non-
linearly) stable with respect to small time-dependent
perturbations which are not necessarily spherical. This is
related to the question of whether these configurations
represent local minima or saddle critical points of the
conserved energy functional with respect to arbitrary (i.e.,
not just spherical) variations. A further interesting prob-
lem consists in analyzing the stability properties of the
nonrelativistic analogs of the multi-l multistate configu-
rations found in [9], which include fields with different
values of l and n. We hope to address these questions in
future work.
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APPENDIX A: LAGRANGIAN FORMULATION
AND TOTAL ENERGY

In this appendix, we provide a compact derivation of the
relation between the total energy and the energy eigenval-
ues presented in Eq. (23) which is based on a Lagrangian
formulation for the SP system (6). To this purpose, we first
introduce the column vector ψ, the row vector ψ�, and the
diagonal matrix A as follows:

ψ ¼ ðψ1;ψ2;…;ψJÞT; ðA1aÞ

ψ� ¼ ðψ̄1; ψ̄2;…; ψ̄JÞ; ðA1bÞ

A ¼ diagðN1; N2;…; NJÞ; ðA1cÞ

where we recall that Nj (j ¼ 1; 2;…; J) refer to the number
of particles in the state ψ j. Here, the superscript T denotes
the transposed and � the conjugate transposed. With this
notation, the action corresponding to the SP system (6) can
be written as [57]

S½ψ ;ψ�; U� ¼
Z
Ω
Lðψ ;ψ�; ∂μψ ; ∂μψ�; U; ∂kUÞd4x; ðA2Þ

with an open subset Ω ⊂ R4. Here and in the following,
ðxμÞ ¼ ðt; x1; x2; x3Þ ¼ ðt; x⃗Þ, greek and latin indices run
over 0,1,2,3 and 1,2,3, respectively, and greek indices are
raised and lowered by means of the Euclidean metric δμν.
The Lagrangian is given by

L ¼ −
ℏ2

2μ

X3
k¼1

ð∂kψ�ÞA∂kψ þ iℏ
2
ðψ�A _ψ − _ψ�AψÞ

− μUψ�Aψ −
1

8πG

X3
k¼1

ð∂kUÞ2: ðA3Þ

It is simple to check that the corresponding Euler-Lagrange
equations give rise to the SP system (6) and its complex
conjugate.
According to Noether’s theorem [58], a continuous

symmetry of the action gives rise to the conserved current

Jμ ¼ ∂L
∂ð∂μψÞ

δψ þ δψ� ∂L
∂ð∂μψ�Þ þ

∂L
∂ð∂μUÞ δU þ Lδxμ;

ðA4Þ

where δψ , δψ�, δU, δxμ refer to the first variations of the
fields ψ , ψ�, U and the coordinates xμ with respect to the
action of the symmetry. For example, a translation gives
rise to the conserved current

Jμ ¼ −
X3
ν¼0

Tμνδxν; ðA5Þ

with the stress energy-momentum tensor

Tμν ¼ ∂L
∂ð∂μψÞ

∂
νψ þ ∂

νψ� ∂L
∂ð∂μψ�Þ þ

∂L
∂ð∂μUÞ ∂

νU − Lδμν:

ðA6Þ
In particular, assuming that the fields decay sufficiently fast
at infinity, it follows that the total energyZ

R3

T00d3x ðA7Þ

is conserved in time. Using Eqs. (A3) and (A6), one can
check that this energy coincides precisely with the con-
served energy functional E in Eq. (7).
For the following, we consider the scale transformation

[cf. Eq. (11)]

t ↦ t̃ ¼ Λ−2t; xi ↦ x̃i ¼ Λ−1xi;

ψ ↦ ψ̃ ¼ Λ2ψ ; ψ� ↦ ψ̃� ¼ Λ2ψ�;

U ↦ Ũ ¼ Λ2U; ðA8Þ
with an arbitrary positive factor Λ > 0. This transformation
implies that the Lagrangian rescales according to L̃≔
Lðψ̃ ;ψ̃�;∂μψ̃ ;∂μψ̃�;Ũ;∂iŨÞ¼Λ6Lðψ ;ψ�;∂μψ ;∂μψ�;U;∂iUÞ;
hence it leaves the equations of motion invariant. The
action, however, is not invariant but satisfies the relationZ

Ω̃
L̃d4x̃ ¼ Λ

Z
Ω
Ld4x; ðA9Þ

which, upon variation (i.e., derivation with respect to Λ
evaluated at Λ ¼ 1), yields the following relation for
solutions of the Euler-Lagrange equations:

X3
μ¼0

∂μJμ ¼ L: ðA10Þ

Although the current Jμ is not conserved in this case, one
still obtains a useful relation by integrating this equation
over R3. Assuming sufficiently rapid decay of the fields at
infinity, one obtains

d
dt

Z
Ω
J0d3x ¼

Z
Ω
Ld3x; ðA11Þ

where, using Eq. (A4), one finds the following expression
for J0:

RADIAL LINEAR STABILITY OF NONRELATIVISTIC … PHYS. REV. D 107, 084001 (2023)

084001-17



J0 ¼ 2tT00 þ
X3
k¼1

T0kxk: ðA12Þ

For the particular case of time-harmonic solutions of
the form

ψ jðt; x⃗Þ ¼ e−iEj t=ℏujðx⃗Þ; j ¼ 1; 2;…; NJ; ðA13Þ

with functions uj which are independent of t and satisfy the
normalization condition ðuj; ukÞ ¼ δjk, one obtains from
Eqs. (A3), (A11), and (A12) the relation

3E½u� ¼
XJ
j¼1

NjEj: ðA14Þ

In particular, for the l-boson stars considered in this article
this yields10

E½u� ¼ N
3
El ¼ ð2lþ 1ÞK

3
El; ðA15Þ

which proves the relation (23).

APPENDIX B: FIRST AND SECOND
VARIATIONS OF THE ENERGY FUNCTIONAL

In this appendix, we compute the first and second
variations of the reduced energy functional El defined in
Eq. (18), which reads

El½f� ¼
Z

∞

0

�
j∂rfðrÞj2 þ

lðlþ 1ÞjfðrÞj2
r2

�
r2dr

−
1

2

Z
∞

0

Z
∞

0

jfðrÞj2jfðr̃ÞÞj2
r>

r2r̃2drdr̃; ðB1Þ

where we recall the notation r> ¼ max fr; r̃g. We also
prove the relation (38) between the second variation
of El and the expectation value of the operator Q̂ defined
in Eq. (35).
To perform the variation, we expand the wave function f

in the following form:

fðt; rÞ ¼ fð0Þðt; rÞ þ ϵδfðt; rÞ þ ϵ2

2
δ2fðt; rÞ þOðϵ3Þ;

ðB2Þ

where fð0Þðt; rÞ denotes the (real-valued) background field
and δfðt; rÞ; δ2fðt; rÞ denote their first- and second-order
(complex-valued) perturbations, respectively. The nth
variation of El is defined as

δnEl ≔
dn

dϵn
El½f�

				
ϵ¼0

: ðB3Þ

After some manipulations a straightforward calculation
yields

δEl ¼ 2Re
Z

∞

0

drr2δf�Ĥð0Þ
l fð0Þ; ðB4aÞ

δ2El ¼ 2Re
Z

∞

0

drr2ðδ2f�Ĥð0Þ
l fð0Þ þ δf�Ĥð0Þ

l δfÞ

− 4

Z
∞

0

Z
∞

0

drdr̃r2r̃2
Reðfð0Þδf�ÞReðf̃ð0Þδf̃Þ

r>
;

ðB4bÞ

where we have used the definition of the operator Ĥð0Þ
l

defined in Eq. (21) and where, for notational simplicity, we
have omitted the argument r of the functions, using the tilde
to indicate that the function is evaluated at r̃ instead of r.
For the particular case that fð0Þ is a solution of the

system (12) with a harmonic temporal dependence as in

Eq. (19) we have Ĥð0Þ
l fð0Þ ¼ Elfð0Þ and obtain

δEl ¼ 2El Reðδf; fð0ÞÞL2 ; ðB5aÞ

δ2El ¼ 2ðδf; Ĥð0Þ
l δfÞL2 þ 2El Reðδ2f; fð0ÞÞL2

− 4

Z
∞

0

Z
∞

0

drdr̃r2r̃2
Reffð0Þδf�gReff̃ð0Þδf̃g

r>
;

ðB5bÞ

where we recall that ð·; ·ÞL2 refers to the standard scalar
product defined in Eq. (31). Taking into account
the normalization condition Eq. (13), which implies that
ðf; fÞL2 is constant, such that

Reðδf; fð0ÞÞL2 ¼ 0; Reðδ2f; fð0ÞÞL2 ¼ −ðδf; δfÞL2 ;

ðB6Þ
we conclude that δEl ¼ 0 and

δ2El ¼ 2ðδf; ½Ĥð0Þ
l − El�δfÞL2

− 4

Z
∞

0

Z
∞

0

drdr̃r2r̃2
Reffð0Þδf�gReff̃ð0Þδf̃g

r>
:

ðB7Þ

Comparing this expression with the definitions (35) and
(36) of the operator Q̂ and the inner product h·j·i we arrive
at the fundamental relation between the second variation of
El and the expectation value of Q̂:

2hAjQ̂Ai ¼ δ2El½AR� þ δ2El½AI�; ðB8Þ
10Note that in this appendix wework in physical units such that

E ¼ Ephys and El ¼ Ephys
l .
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where we have set A ¼ AR þ iAI and the notation δ2El½Ai�
refers to the second variation evaluated at δf ¼ Ai.
This relation allows one to connect the sign of the second
variation of El with the one of the expectation values of Q̂
and plays a crucial role in our stability analysis.

APPENDIX C: DETERMINATION OF THE
ENERGY EIGENVALUES

In this appendix we present the methodology to compute
the energy eigenvalue El corresponding to a solution

ðσð0Þl ; uð0ÞÞ of the background system (41). Our procedure
is a straightforward generalization to l ≥ 0 of the pre-
scription given in [24].
Recall the expression for the gravitational potential

Uð0Þðt; rÞ ¼ △−1
s ðjσð0Þl j2Þ ¼ El − uð0ÞðrÞ; ðC1Þ

which is defined in terms of the shifted potential uð0Þ

defined in Sec. III A. Since Uð0Þ vanishes at infinity, we can
in principle calculate the energy eigenvalues El by taking
the asymptotic limit

El ¼ lim
r→∞

uð0ÞðrÞ: ðC2Þ

However, the problem is that with the shooting method
used in this article, the asymptotic value of uð0Þ is out of
reach. To deal with this problem we use the following
approximation.

Recalling the relation σð0Þl ðrÞ ¼ rlσðrÞ, integrating the
system (41) twice with respect to r, using integration by
parts, and taking into account the boundary conditions (43),
we arrive to the equivalent integral system,

σðrÞ ¼ σ0 þ
Z

r

0

uð0ÞðxÞσðxÞ
2lþ 1

��
x
r

�
2lþ1

− 1

�
xdx; ðC3aÞ

uð0ÞðrÞ ¼ u0 þ
Z

r

0

jσðxÞj2
�
x
r
− 1

�
x2lþ1dx: ðC3bÞ

Differentiating Eq. (C3b) with respect to r yields

duð0ÞðrÞ
dr

¼ −
1

r2

Z
r

0

jσðxÞj2x2ðlþ1Þdx; ðC4Þ

which implies that uð0Þ is monotonically decreasing.
Consequently, the gravitational potential Uð0Þ is monoton-
ically increasing to zero (which is consistent with the
behavior shown in Fig. 2). Further, since σðxÞ is exponen-
tially decaying as x → ∞, one can expand uð0Þ in powers
of r−1,

uð0ÞðrÞ ¼ El þ
M
r
þOðr−3Þ; ðC5Þ

where the constants El and M are given by

El ¼ u0 −
Z

∞

0

x2lþ1jσðxÞj2dx; ðC6aÞ

M ¼
Z

∞

0

x2ðlþ1ÞjσðxÞj2dx: ðC6bÞ

Note that M is the integral over the mass density jσð0Þl ðrÞj2
times r2; hence it represents the dimensionless total mass of
the configuration.
The relation (C6) provides an alternative method for

computing El, provided u0 and the radial profile of σðrÞ
are known.11 However, recall that the numerical solution
obtained from the shooting method does not directly satisfy
the normalization condition Eq. (13), which means that
Eq. (C6a) yields the unrescaled energy eigenvalue. There
are two options to compute the correctly scaled eigenvalue.

The first one consists in rescaling the solution ðσð0Þl ; uð0ÞÞ
using the relations in Eqs. (27) with Λ ¼ ð2lþ 1Þ=M [see
Eq. (28)] and then compute El according to Eq. (C6a).
The second option is to first compute the unrescaled value
of El using Eq. (C6a) and then use the transformation
EΛ
l ¼ Λ2El, which yields

EΛ
l ¼ ð2lþ 1Þ2

M2
El: ðC7Þ

The results reported in this article are based on the
second option which determines El from Eq. (C6a) from
the unrescaled profiles. The (correctly rescaled) dimen-
sional eigenvalue corresponding to N ¼ Kð2lþ 1Þ par-
ticles is obtained from the formula

Ephys
l ¼ 2μv2cK2EΛ

l ; ðC8Þ

with EΛ
l given by Eq. (C7). However, we have also checked

the results using the first option.
To close this appendix, we notice that the physical mass

is given by

Mphys ¼ KμΛM: ðC9Þ

For configurations with radial profiles σΛ satisfying
the normalization conditions Eq. (13) one has M ¼
ð2lþ 1Þ=Λ, such that the physical mass is

11In practice, the integrals in Eq. (C6) cannot be computed over
the whole range 0 < x < ∞ since the profile σ obtained from
the shooting algorithm is only known up to some maximum
radius rmax. However, due to the exponential decay of σ, one can
truncate the integral at rmax; the contributions from the interval
rmax < x < ∞ do not affect the results at the level of the
significant figures reported in this work.
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Mphys ¼ ð2lþ 1ÞKμ ¼ Nμ; ðC10Þ

as expected.

APPENDIX D: CONVERGENCE AND
INDEPENDENT RESIDUAL ANALYSIS

In this appendix we check the convergence of our
pseudo-spectral collocation method used to compute the
eigenvalues of the linearized system (51). Furthermore, we
present an independent residual analysis based on a Runge-
Kutta integration of the linearized equation.
As discussed in Sec. IVA our method involves mapping

the truncated physical domain ½0; r⋆� on the computation
domain x ∈ ½−1; 1� by means of the transformation

r ¼ r⋆
�
xþ 1

2

�
: ðD1Þ

Alternatively, we consider the transformation

r ¼ 2S

�
1

1 − y
−
1

2

�
; ðD2Þ

with S > 0 a characteristic distance, which maps the whole
physical domain ½0;∞� onto y ∈ ½−1; 1� and is independent
of r⋆. Recall that we discretize the computational domain
using a Chebyshev distribution with Nþ 1 points, which
yields the best accuracy for homogeneous Dirichlet boun-
dary conditions (see Chap. V in [43]). Therefore, the
numerical error depends on the two parameters r⋆ and N
(in the case of the compactified y-domain the parameters
are S and N), and it is necessary to analyze the convergence
of the numerical results with respect to these parameters.
The results shown in this paper are computed using the

map (D1), whereas the alternative map (D2) is used to
validate them. The ideal choice for N and r⋆ depends on
the background solution; for instance, as can be seen from
Fig. 1, a large node number leads to more extended
configurations which require higher values of N and r⋆
than the ground states to achieve the same accuracy (see
e.g., Program 15 in [43] for an illustrative example). We
found that the empirical choices r⋆ ≔ 200ðnþ 1Þ, with n
the background solution’s node number, and N ≔ 3r⋆=4
lead to acceptable results (in particular, it guarantees
an accuracy of seven significant digits for the first
eigenvalues).
Figure 6 shows a convergence study for the eigenvalue

with nonzero real part, λ ¼ 0.00619398þ 0.03340186i,
corresponding to the configuration with ðl; nÞ ¼ ð1; 1Þ
(cf. Table V and Fig. 5 for the associated eigenfunction),
in which both parameter values N and r⋆ are varied. This
study indicates that our choice yields relative errors
comparable or smaller than 10−7 also for this configuration.
As is also visible from these plots, it is possible to chooseN
much less than 3r⋆=4 keeping a comparable accuracy for

the eigenvalue λ. However, in this case, we have found
that the zero eigenvalue (corresponding to the zero mode
discussed in the Sec. II E) may not be zero to machine
precision anymore and may be confused with a nonzero
eigenvalue.
After this convergence study, we turn our attention to

the independent residual analysis. To this purpose, we
implemented an explicit 5(4)-order Runge-Kutta routine
and integrate the system (51) from the origin r ¼ 0
outward, fixing the eigenvalue found from the spectral
analysis. Similar to the treatment of the background
equations, we rescale the perturbed fields ða; bÞ according
to ða; bÞ ¼ rlþ1ðX2; X3Þ, such that the new fields ðX2; X3Þ
are regular at r ¼ 0 (see Sec. IVA). Further, we introduce
the new field

X1ðrÞ ≔
2

r

�
d2

dr2

�−1
½σð0Þl a�; ðD3Þ

with ð d2dr2Þ−1 denoting the inverse of the second-derivative
operator with homogeneous Dirichlet conditions at r ¼ 0
and r ¼ ∞. With this notation, the system (51) can be
written as the following first-order system of ordinary
differential equations

X0
1 ¼ Y1; ðD4aÞ

X0
2 ¼ Y2; ðD4bÞ

X0
3 ¼ Y3; ðD4cÞ

Y 0
1 ¼ 2rlX2σ

ð0Þ
l −

2Y1

r
; ðD4dÞ

Y 0
2 ¼ −iλX3 − X2uð0Þ þ

X1σ
ð0Þ
l

rl
−
2ðlþ 1ÞY2

r
; ðD4eÞ

Y 0
3 ¼ −iλX2 − X3uð0Þ −

2ðlþ 1ÞY3

r
; ðD4fÞ

with ðσð0Þl ; uð0ÞÞ the background fields and λ an eigenvalue
corresponding to an associated linear mode. The system is
numerically solved subject to the boundary conditions

X1ð0Þ ¼ x1; X2ð0Þ ¼ x2; X3 ¼ x3; ðD5aÞ

Y1ð0Þ ¼ 0; Y2ð0Þ ¼ 0; Y3ð0Þ ¼ 0; ðD5bÞ

where here the conditions Yið0Þ ¼ 0 follow from a
standard regularity requirement on the fields and the
values xi are computed from the respective fields ða; bÞ
obtained from the spectral method. In practice, we specify
the data at the first grid point after the origin in order
to avoid the singular 1=r terms, and we use Eq. (D3) to
determine x1.
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FIG. 7. Comparison between the linearized mode ðA; BÞ obtained from the spectral and Runge-Kutta methods for the background
configuration corresponding to ðn; lÞ ¼ ð1; 1Þ and the eigenvalue λ ¼ 0.00619398þ 0.03340186i. As can be appreciated from this
plot, the Runge-Kutta results are consistent with the spectral ones up to a radius of the order r ∼ 70.

FIG. 6. Convergence study for the eigenvalue λ ¼ 0.00619398þ 0.03340186i corresponding to the background configuration
with ðn;lÞ ¼ ð1; 1Þ. The plots in the left column show the numerical values for λ for fixed r⋆ ¼ 400 and varying number of
Chebyshev points N. The plots in the right column show the same quantity, now for fixed value of N ¼ 300 and varying r⋆. Here, the
top and bottom plots show the real (λR) and imaginary (λI) parts of λ. The points corresponding to the dark circle and star correspond
to the values reported in this article, and as can be seen, they lie in the region in which the relative error is comparable or smaller
than 10−7.
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Figure 7 shows the corresponding results for the same
background configuration ðn;lÞ ¼ ð1; 1Þ and eigenvalue
λ ¼ 0.00619398þ 0.03340186i as in the convergence
study. Shown are the fields ðA;BÞ ¼ rlðX2; X3Þ computed
from the Runge-Kutta method described here and the same

fields obtained from the spectral calculation described in
Sec. IVA. Despite the sensitive dependency of the Runge-
Kutta solution on the data at r ¼ 0 [i.e., the values of λ and
xi in Eq. (D5)], we see from this figure that both results are
consistent at least up to radii r ∼ 70.

[1] M. Alcubierre, J. Barranco, A. Bernal, J. C. Degollado, A.
Diez-Tejedor, M. Megevand, D. Núñez, and O. Sarbach,
l-boson stars, Classical Quantum Gravity 35, 19LT01
(2018).

[2] D. J. Kaup, Klein-Gordon Geon, Phys. Rev. 172, 1331
(1968).

[3] R. Ruffini and S. Bonazzola, Systems of self-gravitating
particles in general relativity and the concept of an equation
of state, Phys. Rev. 187, 1767 (1969).

[4] P. Jetzer, Boson stars, Phys. Rep. 220, 163 (1992).
[5] F. E. Schunck and E.W. Mielke, General relativistic boson

stars, Classical Quantum Gravity 20, R301 (2003).
[6] S. L. Liebling and C. Palenzuela, Dynamical boson stars,

Living Rev. Relativity 15, 6 (2012).
[7] L. Visinelli, Boson stars and oscillatons: A review, Int. J.

Mod. Phys. D 30, 2130006 (2021).
[8] I. Olabarrieta, J. F. Ventrella, M.W. Choptuik, and W. G.

Unruh, Critical behavior in the gravitational collapse of a
scalar field with angular momentum in spherical symmetry,
Phys. Rev. D 76, 124014 (2007).

[9] M. Alcubierre, J. Barranco, A. Bernal, J. C. Degollado, A.
Diez-Tejedor, M. Megevand, D. Núñez, and O. Sarbach,
Boson stars and their relatives in semiclassical gravity,
Phys. Rev. D 107, 045017 (2023).

[10] V. Cardoso and P. Pani, Testing the nature of dark compact
objects: A status report, Living Rev. Relativity 22, 4 (2019).

[11] J. Barranco, J. Chagoya, A. Diez-Tejedor, G. Niz, and A. A.
Roque, Horndeski stars, J. Cosmol. Astropart. Phys. 10
(2021) 022.

[12] A. A. Roque and L. A. Ureña López, Horndeski fermion–
boson stars, Classical Quantum Gravity 39, 044001 (2022).

[13] M. Alcubierre, J. Barranco, A. Bernal, J. C. Degollado, A.
Diez-Tejedor, V. Jaramillo, M. Megevand, D. Núñez, and O.
Sarbach, Extreme l-boson stars, Classical Quantum Gravity
39, 094001 (2022).

[14] N. Sanchis-Gual, F. Di Giovanni, C. Herdeiro, E. Radu, and
J. A. Font Multifield, Multifrequency Bosonic Stars and a
Stabilization Mechanism, Phys. Rev. Lett. 126, 241105
(2021).

[15] V. Jaramillo, N. Sanchis-Gual, J. Barranco, A. Bernal, J. C.
Degollado, C. Herdeiro, M. Megevand, and D. Núñez,
Head-on collisions of l-boson stars, Phys. Rev. D 105,
104057 (2022).

[16] M. Gleiser, Stability of boson stars, Phys. Rev. D 38, 2376
(1988); 39, 1257(E) (1989).

[17] M. Gleiser and R. Watkins, Gravitational stability of scalar
matter, Nucl. Phys. B319, 733 (1989).

[18] M. Alcubierre, J. Barranco, A. Bernal, J. C. Degollado, A.
Diez-Tejedor, M. Megevand, D. Núñez, and O. Sarbach,
On the linear stability of l-boson stars with respect to radial
perturbations, Classical Quantum Gravity 38, 174001
(2021).

[19] S. H. Hawley and M.W. Choptuik, Boson stars driven to the
brink of black hole formation, Phys. Rev. D 62, 104024
(2000).

[20] M. Alcubierre, J. Barranco, A. Bernal, J. C. Degollado, A.
Diez-Tejedor, M. Megevand, D. Núñez, and O. Sarbach,
Dynamical evolutions of l-boson stars in spherical sym-
metry, Classical Quantum Gravity 36, 215013 (2019).

[21] V. Jaramillo, N. Sanchis-Gual, J. Barranco, A. Bernal, J. C.
Degollado, C. Herdeiro, and D. Núñez, Dynamical l-boson
stars: Generic stability and evidence for nonspherical
solutions, Phys. Rev. D 101, 124020 (2020).

[22] E. H. Lieb, Existence and uniqueness of the minimizing
solution of Choquard’s nonlinear equation, Stud. Appl.
Math. 57, 93 (1977).

[23] D. H. Bernstein, E. Giladi, and K. R.W. Jones, Eigenstates
of the gravitational Schrödinger equation, Mod. Phys. Lett.
A 13, 2327 (1998).

[24] I. M. Moroz, R. Penrose, and P. Tod, Spherically symmetric
solutions of the Schrodinger-Newton equations, Classical
Quantum Gravity 15, 2733 (1998).

[25] H.-Y. Schive, T. Chiueh, and T. Broadhurst, Cosmic
structure as the quantum interference of a coherent dark
wave, Nat. Phys. 10, 496 (2014).

[26] H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T.
Chiueh, T. Broadhurst, and W. Y. P. Hwang, Understand-
ing the Core-Halo Relation of QuantumWave Dark Matter
from 3D Simulations, Phys. Rev. Lett. 113, 261302
(2014).

[27] D. J. E. Marsh and A.-R. Pop, Axion dark matter, solitons
and the cusp–core problem, Mon. Not. R. Astron. Soc. 451,
2479 (2015).

[28] A. X. González-Morales, D. J. E. Marsh, J. Peñarrubia, and
L. A. Ureña López, Unbiased constraints on ultralight axion
mass from dwarf spheroidal galaxies, Mon. Not. R. Astron.
Soc. 472, 1346 (2017).

[29] G. Jean and V. Giorgio, On a class of non linear Schrödinger
equations with non local interaction, Math. Z. 170, 109
(1980).

[30] R. Illner, P. F. Zweifel, and H. Lange, Global existence,
uniqueness and asymptotic behaviour of solutions of the
Wigner–Poisson and Schrödinger-Poisson systems, Math.
Models Methods Appl. Sci. 17, 349 (1994).

ROQUE, NAMBO, and SARBACH PHYS. REV. D 107, 084001 (2023)

084001-22

https://doi.org/10.1088/1361-6382/aadcb6
https://doi.org/10.1088/1361-6382/aadcb6
https://doi.org/10.1103/PhysRev.172.1331
https://doi.org/10.1103/PhysRev.172.1331
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1016/0370-1573(92)90123-H
https://doi.org/10.1088/0264-9381/20/20/201
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.1142/S0218271821300068
https://doi.org/10.1142/S0218271821300068
https://doi.org/10.1103/PhysRevD.76.124014
https://doi.org/10.1103/PhysRevD.107.045017
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1088/1475-7516/2021/10/022
https://doi.org/10.1088/1475-7516/2021/10/022
https://doi.org/10.1088/1361-6382/ac4614
https://doi.org/10.1088/1361-6382/ac5fc2
https://doi.org/10.1088/1361-6382/ac5fc2
https://doi.org/10.1103/PhysRevLett.126.241105
https://doi.org/10.1103/PhysRevLett.126.241105
https://doi.org/10.1103/PhysRevD.105.104057
https://doi.org/10.1103/PhysRevD.105.104057
https://doi.org/10.1103/PhysRevD.38.2376
https://doi.org/10.1103/PhysRevD.38.2376
https://doi.org/10.1103/PhysRevD.39.1257
https://doi.org/10.1016/0550-3213(89)90627-5
https://doi.org/10.1088/1361-6382/ac0160
https://doi.org/10.1088/1361-6382/ac0160
https://doi.org/10.1103/PhysRevD.62.104024
https://doi.org/10.1103/PhysRevD.62.104024
https://doi.org/10.1088/1361-6382/ab4726
https://doi.org/10.1103/PhysRevD.101.124020
https://doi.org/10.1002/sapm197757293
https://doi.org/10.1002/sapm197757293
https://doi.org/10.1142/S0217732398002473
https://doi.org/10.1142/S0217732398002473
https://doi.org/10.1088/0264-9381/15/9/019
https://doi.org/10.1088/0264-9381/15/9/019
https://doi.org/10.1038/nphys2996
https://doi.org/10.1103/PhysRevLett.113.261302
https://doi.org/10.1103/PhysRevLett.113.261302
https://doi.org/10.1093/mnras/stv1050
https://doi.org/10.1093/mnras/stv1050
https://doi.org/10.1093/mnras/stx1941
https://doi.org/10.1093/mnras/stx1941
https://doi.org/10.1007/BF01214768
https://doi.org/10.1007/BF01214768
https://doi.org/10.1002/mma.1670170504
https://doi.org/10.1002/mma.1670170504


[31] T. Cazenave and P. L. Lions, Orbital stability of standing
waves for some nonlinear Schrödinger equations, Commun.
Math. Phys. 85, 549 (2017).

[32] P. Tod and I.M. Moroz, An analytical approach to the
Schrödinger-Newton equations, Nonlinearity 12, 201 (1999).

[33] V. Moroz and J. Van Schaftingen, A guide to the Choquard
equation, J. Fixed Point Theory Appl. 19, 773 (2017).

[34] O. Kavian and S. Mischler, A global approach to the
Schrödinger–Poisson system: An existence result in the
case of infinitely many states, J. Math. Pures Appl. 104, 942
(2015).

[35] E. Chávez Nambo, Sobre la existencia de estrellas de
bosones newtonianas con momento angular en simetría
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