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We explore the dynamics of Friedmann-Lemaître-Robertson-Walker (FLRW) cosmologies which
consist of dark matter, radiation, and dark energy with a quadratic equation of state. Standard
cosmological singularities arise due to energy conditions which are violated by dark energy, therefore
we focus our analysis on nonsingular bouncing and cyclic cosmologies, in particular focusing on the
possibility of closed FLRW models always having a bounce for any initial conditions. We analyze the
range of dynamical behavior admitted by the system, and find a class of closed models that admit a
nonsingular bounce, with early- and late-time accelerated expansion connected by a decelerating phase.
In all cases, we find the bouncing models are only relevant when dark matter and radiation appear at a
certain energy scale, and so require a period such as reheating. We then investigate imposing an upper
bound on the dark matter and radiation, such that their energy densities cannot become infinite. In this
case, we find that all closed models bounce, and a class of models exist with early- and late-time
acceleration, connected by a decelerating phase. We also consider parameter values for the dark energy
component, such that the discrepancy between the observed value of Λ and the theoretical estimates of
the contributions to the effective cosmological constant expected from quantum field theory would be
explained. However, we find that the class of models left does not allow for an early- and late-time
accelerated expansion, connected by a decelerating period where large-scale structure could form.
Nonetheless, our qualitative analysis serves as a basis for the construction of more realistic models with
realistic quantitative behavior.
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I. INTRODUCTION

The Λ-cold-dark-matter (ΛCDM) model has provided
a successful framework to describe the history of the
Universe, and is consistent with a wealth of observational
data [1,2]. Despite its robustness, there are problems which
require addressing. The issue of the inevitability of a
singularity as the origin of our Universe has been debated
for many years. Assuming the strong-energy condition
holds, singularities appear to be unavoidable [3–10],
however their current interpretation is that they represent
points where General Relativity breaks down [11–14].
Broadly speaking, there are two ways to tackle this
problem; solve the singularity problem by developing a

modified theory of gravity to unify General Relativity with
this high-energy regime, or avoid the singularity by break-
ing the standard-energy conditions in an alternative origin
story of the Universe in General Relativity. For the latter,
nonsingular bouncing models have been proposed as a way
to evade a singularity [15–32].
Another problem facing ΛCDM is that of Λ itself.

Observations have provided strong evidence for the accel-
erated expansion of our Universe [33,34], which requires a
component that violates the strong-energy condition [9],
known as dark energy. The cosmological constant Λ is the
simplest explanation we have for dark energy, however
the observed value of Λ is at odds by up to 120 orders of
magnitude with theoretical estimates of the contributions to
the effective cosmological constant expected from quantum
field theory (QFT) [35–37].
Taking into account a dynamic dark energy component

beyond Λ, it is worth considering whether a bounce can be
produced. A noninteracting vacuum is equivalent to Λ in
General Relativity [38], so a simple extension is to consider a
vacuum that interactswith other components, thereby becom-
ing dynamical [39]. It has been shown that nonsingular
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bounces can arise for both a linear and nonlinear interaction
of a vacuum with a perfect fluid in Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmologies [40].
For noninteracting models, dark energy represented by a

single fluid with a quadratic equation of state (EoS) in
FLRW can admit nonsingular bounces with the right
combination of parameters [41]. In addition, a quadratic
EoS finds motivations from e.g., brane-world models
[42–46], loop-quantum cosmology [47,48] and k-essence
[49,50] (see also [41,51] and references therein). In general,
a nonlinear EoS can allow for the existence of effective
cosmological constants, appearing as asymptotic states of
the dynamical dark energy. Although simple, analyzing a
quadratic EoS serves well to illustrate the general quali-
tative behavior of a system that can admit two effective
cosmological constants, a high-energy one acting as a
repeller and a low-energy one acting as a future attractor for
the expanding models. Therefore, it is useful to understand
the global dynamics as it is only dependent on the existence
of the effective cosmological constants and not on the
specific model used to produce them.
In this paper, we analyze a subset of the quadratic EoS

from [41,51] which admit two effective cosmological
constants and produce a bounce for models with positively
curved spatial sections, i.e., closed FLRW models. This
dark energy only violates the strong-energy condition, and
not the null-energy condition, hence a bounce can only
occur when the curvature is positive. Here, we extend the
scenario in [41,51] to include noninteracting dark matter
and radiation in order to understand the effect these
components have on the bounce. In particular, we inves-
tigate whether all closed models will bounce when matter
and radiation are included, thereby providing a scenario
where the bounce is generic, i.e., does not depend on initial
conditions. Standard radiation and dark matter diverge
more quickly at high enough energies than the curvature
and dark energy considered here. We find that we obtain
bouncing models for certain values of parameters, but at
high energies, if dark matter and radiation become dom-
inant, some models become singular. We therefore consider
models where dark matter and radiation are produced at a
certain energy scale after the bounce, by imposing an upper
bound on their energy densities. In this case, we find that all
closed models bounce.
We would also like to understand whether such a model

could alleviate the cosmological constant problem, and
unite theoretical estimates from QFT with observational
constraints on Λ. We restrict our analysis such that the dark
energy has an effective EoS parameter satisfying w > −1,
so that it decays during the expansion between the
high-energy and low-energy cosmological constants, even
allowing a decelerated phase in general, and do not
consider phantom dark energy (w < −1). The analysis
for this paper is available through GitHub, provided the
reader has a Mathematica license [52].

The paper is organized as follows: In Sec. II we present
the system of equations we are analyzing in terms of
dimensionless variables as well as in compactified form. In
Sec. III we show the submanifolds of the system, where the
dimensions of the dynamics is reduced and we explore the
stability of the fixed points. The submanifolds of the system
include cases analogous to ΛCDM, and ones in which only
dark energy is present which highlight the dynamics before
including dark matter and radiation. In Sec. IV we study
the dynamics of the full system, where both dark matter
and radiation are present in standard form, i.e., with EoS
parameters wm ¼ 0 and wr ¼ 1=3. We show that a class
of closed models exist where bounces are obtained with
early- and late-time accelerated expansion phases, con-
nected by a decelerating phase. The caveat with this full
system is that not all closed models bounce, and above a
certain energy scale matter and radiation become dominant,
and, depending on the initial conditions, a subset of closed
models evolve between two singularities. Therefore, these
models require a postbounce process such as reheating,
when matter and radiation are created. In this spirit, in
Sec. V we reconsider the equations for dark matter and
radiation, introducing scale-dependent EoSs that limit their
energy densities to an upper bound, i.e., an energy scale at
which they appear, such that at lower energies we still have
wm → 0 and wr → 1=3. We present the phase spaces for the
new system of equations, showing that in general all closed
models bounce. We find that it is possible for these models
to evolve with early- and late-time accelerated expansion
separated by a deceleration period, however the cosmo-
logical constant problem cannot be solved simultaneously.
We conclude in Sec. VI. In this paper, we employ natural
units such that 8πG ¼ c ¼ 1.

II. COSMOLOGICAL DYNAMICAL SYSTEM

A. Cosmology with nonlinear EoS dark energy

FLRW models with no cosmological constant term in
Einstein’s field equations evolve according to a dynamical
system, consisting of the energy conservation equations
for each component and the Raychaudhuri equation. We
consider the dynamics of a universe filled with dark energy,
pressureless dark matter, and radiation, which evolve
according to

_ρx ¼ −3Hðρx þ PxÞ; ð1Þ

_ρm ¼ −3Hρm; ð2Þ

_ρr ¼ −4Hρr; ð3Þ

where ρx and Px are the energy density and isotropic
pressure of dark energy, ρm is the energy density of dark
matter and ρr is the energy density of radiation; overdots
are derivatives with respect to time t. H is the Hubble
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expansion function, and the Raychaudhuri equation
describing it’s evolution is

_H ¼ −H2 −
1

6
ðρx þ 3Px þ ρm þ 2ρrÞ: ð4Þ

We assume that the dark energy EoS is barotropic,
Px ¼ PxðρxÞ, with PxðρxÞ ≥ −ρx, such that Eq. (1) has
two fixed points (_ρx ¼ 0), corresponding to two effective
cosmological constants,

PxðρΛÞ ¼ −ρΛ; Pxðρ�Þ ¼ −ρ�: ð5Þ

It follows from the assumption PxðρxÞ ≥ −ρx that the
dark energy density decreases/increases during a period of
expansion/contraction. Then, during expansion (H > 0),
we take ρΛ to represent the attractor at low energy close
to the dark energy density we observe today, and ρ� the
repeller at high energy; their roles are inverted during
contraction. We assume ρ� is positive and is an energy scale
between the Planck scale and that typical of inflation, to
ensure the evolution is always classical, but does not
interfere with particle production at lower energies.
In this paper we assume the same quadratic EoS used

in [41,51], which is the simplest nonlinear case to study
and, as we said in the Introduction (see also [41,51]), has
other motivations from various scenarios [42–50]. With
respect to [41,51], we restrict parameters such that the
linear term is always positive, α > 0, the quadratic term is
always negative, β ¼ −1=ρ�, and the constant pressure
term is negative, P0 ¼ −ρΛ. With this choice of parameters
our EoS is

Px ¼ −ρΛ þ ρΛ
ρ�

ρx −
ρ2x
ρ�

: ð6Þ

This secures the two effective cosmological constants in
Eq. (5), as now the energy conservation equation of the
dark energy (1) can be written as

_ρx ¼ −3Hðρx − ρΛÞ
�
1 −

ρx
ρ�

�
: ð7Þ

We note however that the qualitative dynamics that follows
from the specific EoS (6) is going to be representative
of the dynamics for any EoS satisfying the condition
PxðρxÞ þ ρx > 0 for ρΛ < ρx < ρ�, i.e., between the two
fixed points (5) satisfying PxðρxÞ ¼ −ρx, as these con-
ditions are enough to describe any monotonically decreas-
ing ρx between ρ� and ρΛ during expansion, see e.g., the
EoS in [53].
The effective EoS parameter wx ¼ Px=ρx for the dark

energy is as

wx ¼ −
ρΛ
ρx

þ ρΛ
ρ�

−
ρx
ρ�

; ð8Þ

and the EoS parameters for dark matter and radiation are
wm ¼ 0 and wr ¼ 1=3, respectively. This system admits a
first integral, the Friedmann equation, which is written in
terms of each energy density as

H2 ¼ ρm
3

þ ρr
3
þ ρx

3
−

k
a2

; ð9Þ

where k is the curvature and a is the cosmic scale factor,
connected to the Hubble expansion function through the
expressionH ¼ _a=a. We set a0 ¼ 1 today, therefore k is an
arbitrary constant which is positive, negative or zero for
closed, open and flat models, respectively.

B. Dimensionless variables

Examining the equations above, a dimensional analysis
suggests that the dynamics really only depends on a single
parameter, the dimensionless ratio of the two effective
cosmological constants, if we use dimensionless variables.
Following [41,51], we define these variables as

x ¼ ρx
ρ�

y ¼ Hffiffiffiffiffi
ρ�

p z ¼ ρm
ρ�

r ¼ ρr
ρ�

R ¼ ρΛ
ρ�

η ¼ ffiffiffiffiffi
ρ�

p
t: ð10Þ

The variable R is the ratio of the low-energy effective
cosmological constant ρΛ to the high-energy effective
cosmological constant ρ� and takes values in the range
(0,1), x is the normalized dark energy density, varying
between the two dimensionless effective cosmological
constants in the range ½R; 1�. The variable y is the
normalized Hubble parameter, z the normalized dark
matter energy density, r the normalized-radiation energy
density and η the normalized time variable. We consider
the region of phase space where the energy densities for
matter and radiation are always positive, i.e., z, r > 0.
Equations (2), (3), and (7) then become

z0 ¼ −3yz; ð11Þ

r0 ¼ −4yr; ð12Þ

x0 ¼ −3yðx −RÞð1 − xÞ; ð13Þ

where the primes indicate differentiation with respect to η.
The Raychaudhuri equation (4) can now be expressed as

y0 ¼ −y2 −
1

6
½zþ 2r − 3Rþ ð1þ 3RÞx − 3x2�; ð14Þ

and the Friedmann equation (9) becomes

y2 ¼ x
3
þ z
3
þ r
3
−

k
ρ�a2

: ð15Þ
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The effective EoS parameter for the dark energy (8) in
dimensionless variables becomes

wx ¼ −
R
x
þR − x; ð16Þ

therefore, the necessary condition for acceleration is

−
R
x
þR − x < −1=3: ð17Þ

We can also express the evolution of the cosmic scale factor
a using our dimensionless variables

a0 ¼ ay: ð18Þ

The Friedmann equation (15) can then be rearranged for a
kinetic term a02=2, a potential U and total energy E

a02

2
þ U ¼ E; ð19Þ

where U is given by

U ¼ −
a2

6
ðxþ zþ rÞ ð20Þ

and E by

E ¼ −
k
2ρ�

: ð21Þ

E is zero, positive and negative for flat, open and closed
models, respectively.
From Eqs. (11), (12), and (18), we get the standard

behavior for matter and radiation, zðaÞ∼a−3 and rðaÞ∼a−4,
respectively. For x (13), we obtain

xðaÞ ¼ a−3ð1−RÞ þ caR

a−3ð1−RÞ þ ca
; ð22Þ

where the constant of integration is

ca ¼
1 − x0
x0 −R

: ð23Þ

In the following, however, we will express z, r, and a as
functions of x.

C. Compactified variables

In our system, y takes values in the range ð−∞;∞Þ,
and z and r in the range ½0;∞Þ. x is already limited to the
range ½R; 1�. In order to analyze the full dynamics, it is
desirable to deal with a compact phase space. Therefore, we
compactify the y, z and r variables in the following way:

Y ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p ; ð24Þ

Z ¼ z
1þ z

; ð25Þ

R ¼ r
1þ r

; ð26Þ

so that Y takes values in the range ½−1; 1� and R and Z in the
range [0, 1]. Using these variables, Eqs. (11)–(14) become

Z0 ¼ −3YZð1 − ZÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p ; ð27Þ

R0 ¼ −4YRð1 − RÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p ; ð28Þ

x0 ¼ −3Yðx −RÞð1 − xÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p ; ð29Þ

Y 0 ¼ −Y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p
−
ð1 − Y2Þ32

6

×

�
Z

1 − Z
þ 2R
1 − R

þ xð1þ 3RÞ − 3R − 3x2
�
; ð30Þ

and the Friedmann equation (15) can be expressed as

Y2

1 − Y2
¼ x

3
þ Z
3ð1 − ZÞ þ

R
3ð1 − RÞ −

k
ρ�a2

: ð31Þ

Now, setting a0 ¼ 1, we find

k
ρ�

¼ x0
3
þ Z0

3ð1 − Z0Þ
þ R0

3ð1 − R0Þ
−

Y2
0

1 − Y2
0

: ð32Þ

Finally, the potential U (20) in terms of compact variables
is given by

U ¼ −
a2

6

�
xþ Z

1 − Z
þ R
1 − R

�
: ð33Þ

III. SUBMANIFOLDS OF THE SYSTEM

To analyse our autonomous dynamical system, we first
need to find the submanifolds and the fixed points, and
determine their linear stability character [54–56]. The fixed
points u�j satisfy fiðu�jÞ ¼ 0, where fi are the first-order
derivatives of the independent variables uj with respect to
time. We then linearize about each fixed point, first finding
the Jacobian matrix, which has the form

Mij ¼
∂fi
∂uj

: ð34Þ
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Evaluating this Jacobian matrix at each of the fixed points
and finding the eigenvalues then tells us the stability of the
fixed points. If the eigenvalues have nonzero real parts,
the fixed point is said to be hyperbolic. If all real parts of the
eigenvalues are positive, then the fixed point is a repeller,
and if the eigenvalues have negative real parts, then the
fixed point is an attractor. If there are positive and negative
real parts of the eigenvalues, then the fixed point is a saddle
point or a cusp. Finally, if the eigenvalues are purely
imaginary, and the real parts are therefore zero, then the
fixed point is a center if the system is linear. For a nonlinear
system this requires verification from numerical integration
and plots of the phase space. The case of complex
eigenvalues is not relevant here.
We also classify the fixed points by the type of universe

model they represent. The de Sitter models correspond to
a cosmological constant and constant energy density of
matter and radiation, which in our system corresponds to
x0 ¼ Z0 ¼ R0 ¼ 0. Y can vary for positively and negatively
curved de Sitter models. For flat models, Y is constant,
Y 0 ¼ 0, giving rise to de Sitter fixed points. These occur at
the effective cosmological constants x ¼ R and x ¼ 1, and
when Z ¼ R ¼ 0. An Einstein universe is static, and in our
system is represented by fixed points at Y 0 ¼ Y ¼ 0.
Finally, our system admits singularities, which occur when
the energy densities of matter and radiation become infinite
at Z ¼ R ¼ 1.
In the following subsections we consider the sub-

manifolds of the system, which simplifies the dynamics
by reducing the dimensions of the system [57]. This helps
us to understand the conditions for the existence of each
fixed point, and understand their nature. A summary of
the fixed points of each submanifold, along with their
eigenvalues and stability character, can be found in
Table I. The fixed points labeled E represent a static
Einstein universe and the fixed points labeled dS�
represent spatially flat expanding (þ) and contracting
(−) de Sitter models. S� denotes singularities with
infinite expansion (þ) or contraction (−) and infinite
energy density. Note we cannot compute the eigenvalues
of any fixed point at Y ¼ �1, as the Jacobian becomes
singular and we therefore cannot Taylor expand around
them. However, from the Raychaudhuri equation (30), we
find that Y 0 is negative along the de Sitter lines x ¼ R and
x ¼ 1 around the fixed points at Y ¼ �1.

A. ΛCDM dynamics

We begin with the submanifolds with an effective
cosmological constant and so are analogous to ΛCDM,
except here x ¼ 1 and x ¼ R are asymptotic values rather
than true constants. In each of these cases, x0 ¼ 0 (29).

1. x = 1

We begin with the x ¼ 1 submanifold. The resulting
dynamics is three-dimensional (3D), given by the equations

for dark matter (27), radiation (28), and the Hubble
variable (30), which reduces to

Y 0 ¼ −Y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p
−
ð1 − Y2Þ32

6

×

�
Z

1 − Z
þ 2R
1 − R

− 2

�
: ð35Þ

In this case, the Friedmann equation (31) becomes

Y2

1 − Y2
¼ 1

3
þ Z
3ð1 − ZÞ þ

R
3ð1 − RÞ −

k
ρ�a2

; ð36Þ

and the potential (33) is

U ¼ −
a2

6

�
1þ Z

1 − Z
þ R
1 − R

�
: ð37Þ

For the submanifolds where x is a constant, we express a
in terms of Z. Integrating a0 (18) with respect to Z (27),
we find

a ¼
�
1 − Z
Z

Z0

1 − Z0

�1
3

: ð38Þ

We can then solve for the fixed points of the system. There
are de Sitter fixed points where Z ¼ R ¼ 0, and Y ¼ �1=2
and Y ¼ �1. The fixed points at Y ¼ �1 and at Z ¼ R ¼ 0
are coordinate singularities of the de Sitter spacetime when
represented as an FLRW, see [9]. At Z ¼ R ¼ 1, (27)
and (28) have fixed points, and at Y ¼ �1 (35) has fixed
points. Together, the asymptotic points at Z ¼ R ¼ 1 and
Y ¼ �1 represent singularities, with infinite expansion (þ)
or contraction (−) and infinite energy density. At the
Einstein fixed point, Y ¼ 0 and the condition Y 0 ¼ 0
reduces Eq. (35) to a constraint between Z and R,

ZE

1 − ZE
þ 2RE

1 − RE
− 2 ¼ 0; ð39Þ

where the subscript E refers to the values of variables at the
Einstein point. On the other hand, matter and radiation do
not evolve independently, and from (2) and (3), they can be
related by

ρr ¼
1

ð3H2
0Þ1=3

Ωr

Ω4=3
m

ρ4=3m ; ð40Þ

where H0, Ωr and Ωm can be fixed using Planck values [2].
This results in (27) and (28) admitting a first integral crz,
which can be used to write a relation between R and Z

R
1 − R

¼ crz

�
Z

1 − Z

�4
3

; ð41Þ
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TABLE I. The sub-manifolds of the system with their fixed points, eigenvalues and stability character. E denotes an Einstein universe,
dS� an expanding (þ) or contracting (−) de-Sitter universe, and S� a singularity with infinite expansion (þ) or contraction (−). The
fixed points at Y ¼ �1 representing infinities do not admit a linearization, and therefore eigenvalues cannot be found (denoted by N/A in
the Eigenvalues column). We provide details of how we find their stability character in the text.

Submanifold Fixed points Name Eigenvalues Stability character

x ¼ 1, Z ¼ 0 Y ¼ � 1
2
, R ¼ 0 dS1�

 ∓ 4ffiffi
3

p

∓ 2ffiffi
3

p

!
Attractor/Repeller

Y ¼ 0, R ¼ 1
2

E
 

2ffiffi
3

p

− 2ffiffi
3

p

!
Saddle

Y ¼ �1, R ¼ 0 dS2� N/A Saddle
Y ¼ �1, R ¼ 1 S� N/A Repeller/Attractor

x ¼ 1, R ¼ 0 Y ¼ � 1
2
, Z ¼ 0 dS1�

 
∓ ffiffiffi

3
p

∓ 2ffiffi
3

p

!
Attractor/Repeller

Y ¼ 0, Z ¼ 2
3

E
�

1

−1

�
Saddle

Y ¼ �1, Z ¼ 0 dS2� N/A Saddle
Y ¼ �1, Z ¼ 1 S� N/A Repeller/Attractor

x ¼ 1 Y ¼ � 1
2
, Z ¼ 0, R ¼ 0 dS1�

0
B@

∓ 4ffiffi
3

p

∓ ffiffiffi
3

p
∓ 2ffiffi

3
p

1
CA

Attractor/Repeller

Y ¼ 0, R ¼ −2þ3Z
−4þ5Z

E 0
B@

0ffiffiffiffiffiffiffiffiffiffiffi
8−9Z
6ð1−ZÞ

q
−

ffiffiffiffiffiffiffiffiffiffiffi
8−9Z
6ð1−ZÞ

q
1
CA

Saddle

Y ¼ �1, Z ¼ 0, R ¼ 0 dS2� N/A Saddle
Y ¼ �1, Z ¼ 1, R ¼ 1 S� N/A Repeller/Attractor

x ¼ R, Z ¼ 0 Y ¼ �
ffiffiffiffiffiffiffiffi
R

3þR

q
, R ¼ 0 dS1�

 ∓ 4
ffiffiffi
R

pffiffi
3

p

∓ 2
ffiffiffi
R

pffiffi
3

p

!
Attractor/Repeller

Y ¼ 0, R ¼ R
1þR

E
 

2
ffiffiffi
R

p
3

− 2
ffiffiffi
R

p
3

!
Saddle

Y ¼ �1, R ¼ 0 dS2� N/A Saddle
Y ¼ �1, R ¼ 1 S� N/A Repeller/Attractor

x ¼ R, R ¼ 0 Y ¼ �
ffiffiffiffiffiffiffiffi
R

3þR

q
, Z ¼ 0 dS1�

 
∓ ffiffiffiffiffiffiffi

3R
p

∓ 2
ffiffiffi
R

pffiffi
3

p

!
Attractor/Repeller

Y ¼ 0, Z ¼ 2R
1þ2R

E
 ffiffiffiffiffi

R
p
−
ffiffiffiffiffi
R

p
!

Saddle

Y ¼ �1, Z ¼ 0 dS2� N/A Saddle
Y ¼ �1, Z ¼ 1 S� N/A Repeller/Attractor

x ¼ R Y ¼ �
ffiffiffiffiffiffiffiffi
R

3þR

q
, Z ¼ 0, R ¼ 0 dS1�

0
B@ ∓ 4

ffiffiffi
R

pffiffi
3

p

∓ ffiffiffiffiffiffiffi
3R

p
∓ 2

ffiffiffi
R

pffiffi
3

p

1
CA

Attractor/Repeller

Y ¼ 0, R ¼ Z−2Rþ2ZR
−2þ3Z−2Rþ2ZR

E 0
B@

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R−Zð1þ8RÞ

6ð1−ZÞ
q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R−Zð1þ8RÞ

6ð1−ZÞ
q

1
CA

Saddle

Y ¼ �1, Z ¼ 0, R ¼ 0 dS2� N/A Saddle
Y ¼ �1, Z ¼ 1, R ¼ 1 S� N/A Repeller/Attractor

(Table continued)
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where crz depends on Ωm, Ωr, and ρ�. Together, (39)
and (41) give the values of Z and R at the Einstein fixed
point for a given value of crz. Once the first integral crz is
fixed, a surface in phase space is defined and the dynamics
is effectively two-dimensional (2D). In order to fix crz, we
first have to give a value to ρ� ¼ ρΛ=R, where the future
asymptotic value ρΛ is by definition some fraction of our
current observed dark energy density,

ρΛ ¼ αρx;0; ð42Þ

and 0 < α < 1. For the purpose of our qualitative analysis,
we fix α ¼ 0.5 as currently we are not far from this
asymptotic value as our Universe is already accelerating.
For a reasonable model to solve the cosmological constant
problem, we would fix 10−120 < R < 10−60 so the dark
energy evolved between the high estimate of the contri-
butions to the effective cosmological constant from QFT
and the low observed value. However, the dynamics cannot
be depicted in plots of the phase space for these small
values of R. We therefore choose R ¼ 0.05 in order to
illustrate the evolution of our variables, given that the value

TABLE I. (Continued)

Submanifold Fixed points Name Eigenvalues Stability character

Z ¼ 0, R ¼ 0 Y ¼ �
ffiffiffiffiffiffiffiffi
R

3þR

q
, x ¼ R dS1�

 
∓ 2

ffiffiffi
R

pffiffi
3

p

∓ ffiffiffiffiffiffiffi
3R

p ð1 −RÞ

!
Attractor/Repeller

Y ¼ � 1
2
, x ¼ 1 dS2�

� ∓ 2ffiffi
3

p

� ffiffiffi
3

p ð1 −RÞ

�
Saddle

Y ¼ 0,
x ¼ 1

6
ð1þ 3R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 30Rþ 9R2

p
Þ

E
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ30R−9R2∓ð1þ3RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−30Rþ9R2

p
18

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ30R−9R2∓ð1þ3RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−30Rþ9R2

p
18

q
1
CA

Saddle, cusp, or center

Y ¼ �1, x ¼ R dS3� N/A Saddle
Y ¼ �1, x ¼ 1 dS4� N/A Repeller/Attractor

Z ¼ 0 Y ¼ �
ffiffiffiffiffiffiffiffi
R

3þR

q
, x ¼ R, R ¼ 0 dS1�

0
B@

∓ 4
ffiffiffi
R

pffiffi
3

p

∓ 2
ffiffiffi
R

pffiffi
3

p

∓ ffiffiffiffiffiffiffi
3R

p ð1 −RÞ

1
CA

Attractor/Repeller

Y ¼ 0, R ¼ −xþ3x2þ3R−3xR
2−xþ3x2þ3R−3xR

E 0
B@

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð9R2þ18R−1Þ−x2ð27Rþ9Þþ18x3þ9Rð1−RÞ

6

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð9R2þ18R−1Þ−x2ð27Rþ9Þþ18x3þ9Rð1−RÞ

6

q
1
CA

Saddle

Y ¼ �1, x ¼ R, R ¼ 0 dS2� N/A Saddle
Y ¼ �1, x ¼ 1, R ¼ 1 S� N/A Repeller=Attractor

R ¼ 0 Y ¼ �
ffiffiffiffiffiffiffiffi
R

3þR

q
, x ¼ R, Z ¼ 0 dS1�

0
B@ ∓ ffiffiffiffiffiffi

3R
p

∓ 2
ffiffiffi
R

pffiffi
3

p

∓ ffiffiffiffiffiffiffi
3R

p ð1 −RÞ

1
CA

Attractor/Repeller

Y ¼ 0, Z ¼ −xþ3x2þ3R−3xR
1−xþ3x2þ3R−3xR

E 0
B@

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð7Rþ3R2Þ−x2ð9Rþ4Þþ6x3þRð2−3RÞ

2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð7Rþ3R2Þ−x2ð9Rþ4Þþ6x3þRð2−3RÞ

2

q
1
CA

Saddle

Y ¼ �1, x ¼ R, Z ¼ 0 dS2� N/A Saddle
Y ¼ �1, x ¼ 1, Z ¼ 1 S� N/A Repeller/Attractor

k ¼ 0 Y ¼ �
ffiffiffiffiffiffiffiffi
R

3þR

q
, x ¼ R, R ¼ 0 (Z ¼ 0Þ dS�

0
B@ ∓ 4

ffiffiffi
R

pffiffi
3

p

∓ ffiffiffiffiffiffiffi
3R

p
∓ ffiffiffiffiffiffiffi

3R
p ð1 −RÞ

1
CA

Attractor/Repeller

Y ¼ 0, R ¼ 3x2−3Rxþ3R
1þ3x2−3Rxþ3R

E 0
B@

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð5Rþ3R2Þ−x2ð2þ9RÞþ6x3þRð4−3RÞ

2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð5Rþ3R2Þ−x2ð2þ9RÞþ6x3þRð4−3RÞ

2

q
1
CA

Saddle

Y ¼ �1, x ¼ R, R ¼ 0 (Z ¼ 1Þ S1� N/A Saddle
Y ¼ �1, x ¼ 1, R ¼ 1 (Z ¼ 0Þ S2� N/A Repeller/Attractor
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of R will not qualitatively change the dynamics. We
therefore find

crz ¼
Ωr

ðΩmÞ43
�
αΩΛ

R

�1
3 ¼ Ωr

�
ΩΛ

Ω4
m

�1
3

�
α

R

�1
3

≃ 0.00083;

ð43Þ

where we have used ΩΛ ¼ 0.6889 and Ωm ¼ 0.3111, and
calculated Ωr ¼ 9.1824 × 10−5 using Ωm and the redshift
of matter-radiation equality z ¼ 3387 [2].
The phase space for the x ¼ 1 submanifold is shown in

Fig. 1, where the dynamics takes place on the first integral
surface crz, shown in yellow. The green outer most thick
curve is the flat Friedmann separatrix (FFS), which
separates the closed models (in between the green curves)
from the open models. This separatrix on the 2D surface is
a subset of the general separatrix hypersurface, which has
the general form

Y2

1 − Y2
¼ x

3
þ Z
3ð1 − ZÞ þ

R
3ð1 − RÞ ; ð44Þ

where here x ¼ 1 and R and Z are related by (41). The inner
most curve is the closed Friedmann separatrix (CFS),
which in general is the hypersurface consisting of the
Einstein fixed points present in the phase space, and
trajectories asymptotic to them. This shows the boundaries
between the different types of closed model. The CFS has
the general form

Y2

1 − Y2
¼ x

3
þ Z
3ð1 − ZÞ þ

R
3ð1 − RÞ

−
1

a2

�
xE
3
þ ZE

3ð1 − ZEÞ
þ RE

3ð1 − REÞ
�
; ð45Þ

where again here x ¼ xE ¼ 1 and the relations in Eqs. (38)
and (41) apply.
The 2D dynamics taking place on the first integral

surface in the 3D phase space can also be projected onto
the Z-Y plane in order to make the dynamics more visible,
again using (41). The projected submanifold can be seen in
Fig. 2. The vertical black lines along Z ¼ 0 and Z ¼ 1
show the de Sitter models in the phase space, where
x0 ¼ Z0 ¼ R0 ¼ 0. Expanding (contracting) open and flat
models evolve from (to) a singularity to (from) a flat

FIG. 1. The phase space for the x ¼ 1 submanifold, with the
dynamics shown on the yellow crz surface, given by (41). The
green curves represent flat models asymptotic to the de Sitter
fixed points at Z ¼ 0 and singularities at Z ¼ 1. The fixed point
at Y ¼ 0 (a saddle) represents the Einstein model, and the black
separatrices asymptotic to it separate the different types of closed
models in the phase space.

FIG. 2. x ¼ 1 submanifold, top panel: the projection on the Z-Y
plane of the 2D dynamics taking place on the first integral surface
in the 3D phase space in Fig. 1; the qualitative behavior is typical
of any ΛCDM model, independently of the parameter values.
Bottom panel: the corresponding potential in Eq. (37), where
trajectories of the same color in the two panels correspond to each
other. Bounded trajectories are below the maximum of the
potential, and unbounded are above.
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de Sitter fixed point. Closed models outside the CFS evolve
in the same way. Within the CFS there are bouncing
models, which contract until they reach a maximum energy
density at a minimum a where they bounce, and then
expand again. The bounce occurs when the dark energy
component is dominant over the matter and radiation, and
the magnitude of the curvature term is equal to the sum of
all other contributions to the Friedmann equation (36),
giving Y ¼ 0. There are also turnaround models, which
expand until they reach a minimum energy density at a
maximum a before contracting again, that evolve between
the two singularities. The turnaround occurs at Y ¼ 0,
when the dark matter and radiation are dominant over the
dark energy, and the magnitude of the curvature term
becomes large enough to equal the sum of all other
contributions to the Friedmann equation (36). Note that
for all trajectories in the Z-Y plane, the expansion (con-
traction) is accelerating (a00 > 0) to the left of the Einstein
point. Therefore in aΛCDM cosmology, such as the one we
are illustrating here, bouncing models are always accel-
erating, and re-collapsing models are never accelerating.
There are also two other 2D submanifolds at x ¼ 1; one

for Z ¼ 0 (radiation only) and the other when R ¼ 0
(matter only). The dynamics of these two subcases is
qualitatively the same as in Fig. 2. In the Z ¼ 0 case the
Einstein point occurs at RE ¼ 1=2, and in the R ¼ 0 case it
occurs at ZE ¼ 2=3.

2. x =R

Next we consider the case where x ¼ R. The remaining
three-dimensional dynamics is given by the equations
for the dark matter (27), radiation (28), and the Hubble
function (30), which reduces to

Y 0 ¼ −Y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p
−
ð1 − Y2Þ32

6

�
Z

1 − Z
þ 2R
1 − R

− 2R
�
:

ð46Þ

The Friedmann equation (31) when x ¼ R becomes

Y2

1 − Y2
¼ R

3
þ Z
3ð1 − ZÞ þ

R
3ð1 − RÞ −

k
ρ�a2

; ð47Þ

and the potential (33) is

U ¼ −
a2

6

�
Rþ Z

1 − Z
þ R
1 − R

�
: ð48Þ

The dynamics of this system is qualitatively the same as
in Fig. 1. The singularities are present at Z ¼ R ¼ 1

and Y ¼ �1, and there are de Sitter points at Y ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=ð3þRÞp

and Y ¼ �1 along Z ¼ R ¼ 0. At the
Einstein fixed point, the Hubble expansion variable (46)
reduces to

ZE

1 − ZE
þ 2RE

1 − RE
− 2R ¼ 0; ð49Þ

which is solved numerically using (41) to find the values of
ZE and RE at this point.
As before, this submanifold can be reduced to 2D at

Z ¼ 0 and at R ¼ 0, which are both qualitatively the
same as in Fig. 2. The de Sitter points and singularities
are as outlined above. The Einstein point in the Z ¼ 0 case
occurs at RE ¼ R=ð1þRÞ, and in the R ¼ 0 case
at ZE ¼ 2R=ð1þ 2RÞ.

B. Dynamic dark energy

We now consider the submanifolds with dynamic dark
energy so that x is not fixed, and therefore x0 ≠ 0 in Eq. (29).

1. Z = 0 and R= 0

We consider the submanifold where matter and radiation
are not present, and there is only dark energy. In this case
Z0 ¼ 0 in Eq. (27) and R0 ¼ 0 in Eq. (28). The remaining
dynamics is 2D and given by the equations for the dark
energy (29) and the Hubble expansion variable (30) which
becomes

Y 0 ¼ −Y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p
−
ð1 − Y2Þ32

6
½xð1þ 3RÞ − 3R − 3x2�:

ð50Þ

When Z ¼ R ¼ 0, the Friedmann equation (31) becomes

Y2

1 − Y2
¼ x

3
−

k
ρ�a2

; ð51Þ

and the potential (33) is

U ¼ −
xa2

6
: ð52Þ

In order to plot the potential and the CFS in the phase
space, we must express the scale factor a in terms of x.
Integrating a0 (18) with respect to x (13), we find

aðxÞ ¼
�
ca

x −R
1 − x

� −1
3ð1−RÞ

; ð53Þ

i.e., the inverse of Eq. (22), where ca is as in Eq. (23). There
are de Sitter points at Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R=ð3þRÞp
and Y ¼ �1

along x ¼ R, and at Y ¼ �1=2 and Y ¼ �1 along x ¼ 1.
The fixed points at Y ¼ �1 and at x ¼ R and x ¼ 1 are
coordinate singularities of the de Sitter spacetime when
represented as an FLRW, see [9]. At the Einstein fixed
point, Y ¼ 0, Eq. (50) reduces to

xEð1þ 3RÞ − 3R − 3x2E ¼ 0: ð54Þ
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Rearranging for xE, we find

xE� ¼ 1þ 3R
6

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3RÞ2

36
−R

r
: ð55Þ

Given the condition 0 < R < 1, both roots in Eq. (55) will
be positive, provided that the term under the square root is
greater or equal to zero. Thus, for Einstein points to exist,
we find

R ≤ RM ≡ 5

3
−
2
ffiffiffi
6

p

3
: ð56Þ

Therefore, there are three cases for this submanifold; no
Einstein points are admitted when R > RM, two Einstein
points exist when R < RM, and there is a limiting case in
between when R ¼ RM where one Einstein point is
admitted. The open and flat models evolve in the same
way for each case. Expanding (contracting) open models
evolve between two de Sitter fixed points, from (to) an open
geometry to (from) a flat geometry. Expanding (con-
tracting) flat models evolve between two de Sitter fixed
points along the FFS. In general, all closed models admit a
bounce, however the qualitative behavior changes depend-
ing on the number of Einstein points admitted.
The R > RM case is shown in Fig. 3, where the system

admits no Einstein fixed points. The two vertical black lines
along x ¼ R and x ¼ 1 highlight the de Sitter models in the
phase space. All closed models bounce, evolving between
two de Sitter fixed points. The limiting R ¼ RM case is
shown in Fig. 4. Here, the system admits one Einstein
point, which is a cusp, so all closed models bounce,
evolving between two de Sitter fixed points.
Finally, the case whereR < RM is shown in Fig. 5. Two

Einstein points are admitted: the fixed point at xE ≃ 0.07 is
a saddle point, which is part of the CFS (the black loop in
Fig. 5), and the other at xE ≃ 0.28 is a center. Closed
models within the CFS either bounce once, evolving
between two de Sitter fixed points, or are cyclic around
the center fixed point, repeatedly contracting until they
bounce, then expanding until they turnaround. Closed
models outside the CFS also bounce and evolve between
two de Sitter fixed points. These closed models outside the
CFS evolve with an early- and late-time acceleration,
connected by a decelerating period for x between the
two Einstein points. This is the only case for this set of
submanifolds to have a period of deceleration, as hereR is
small enough for the effective EoS to be larger than −1=3
for x values between the two Einstein points, which violates
the condition for acceleration in Eq. (17).

2. Z = 0, R = 0

A three-dimensional submanifold exists where Z ¼ 0,
and another when R ¼ 0. Adding only dark matter to the
system has the same effect as adding only radiation; the

difference between the two are the values of the first
integral of ZðxÞ and RðxÞ needed to obtain each case. The
dynamics is qualitatively the same as the cases we present
of the full system in Sec. IV, where we include both dark
matter and radiation in our analysis, therefore we do not
include these submanifolds explicitly here.

3. Spatially flat models: k = 0

Finally, we consider the submanifold where the models
are all spatially flat, shown in Fig. 6, where we have
compactified the four-dimensional (4D) phase space to 2D
on the x − Y plane. In order to do this, we express z and r as
functions of x. From Eqs. (11) and (13), we find

zðxÞ ¼ cz

�
x −R
1 − x

� 1
1−R

; ð57Þ

FIG. 3. Top panel: the phase space of the Z ¼ 0, R ¼ 0
submanifold, with R > RM. Bottom panel: corresponding po-
tential in Eq. (52), where trajectories of the same color in the two
panels correspond to each other. In this case, there are no Einstein
points present, and so all closed models bounce, however there is
never a decelerating phase.
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where the constant of integration is

cz ¼ z0

�
1 − x0
x0 −R

� 1
1−R

: ð58Þ

Here, to express cz, we set z0 using the Friedmann
equation (31) when k ¼ 0,

Y2

1 − Y2
¼ x

3
þ Z
3ð1 − ZÞ þ

R
3ð1 − RÞ : ð59Þ

We can then express z0 as

z0 ¼
Z0

ð1 − Z0Þ
¼ 3Y2

0

1 − Y2
0

− x0 −
R0

ð1 − R0Þ
: ð60Þ

Then to express r in terms of x, from Eqs. (12) and (13)
we find

rðxÞ ¼ cr

�
x −R
1 − x

� 4
3ð1−RÞ

; ð61Þ

where the constant of integration is

cr ¼ r0

�
1 − x0
x0 −R

� 4
3ð1−RÞ

: ð62Þ

We set cr in a similar way to crz, using the density parameters
[2], and our definitions of R (10) and ρΛ (42). Keeping our
choice of R ¼ 0.05, we then find

cr ¼
R
α

Ωr

ΩΛ

�
α −R

Rð1 − αÞ
� 4

3ð1−RÞ
≃ 0.00077: ð63Þ

FIG. 4. Top panel: the phase space of the Z ¼ 0, R ¼ 0
submanifold, with R ¼ RM. Bottom panel: corresponding po-
tential in Eq. (52), where trajectories of the same color in the two
panels correspond to each other. One Einstein point (cusp) is
present, and all closed models bounce, however there is never a
decelerating period.

FIG. 5. Top panel: the phase space of the Z ¼ 0, R ¼ 0
submanifold, with R < RM. Bottom panel: corresponding po-
tential in Eq. (52), where trajectories of the same color in the two
panels correspond to each other. Two Einstein points at xE ≃ 0.07
(a saddle) and xE ≃ 0.28 (a center) are present, therefore all
closed models bounce, either once or in repeated cycles.
Deceleration occurs for x between the two Einstein points.
The closed models outside the CFS evolve with an initial and
final acceleration, with a decelerating period in between.
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The potential is as in Eq. (33). The shape of the potential
in this case changes with the initial conditions, and as k ¼ 0
the total energy of the system E ¼ 0 (21). Therefore the
behavior of each trajectory in the phase space can be seen
along U ¼ 0 in the bottom panel of Fig. 6. Here, the green
separatrix represents models where Z ¼ 0, so there is no
dark matter component, and the innermost black curve is
the CFS. There are no de Sitter lines along x ¼ R or x ¼ 1
as in the flat case, Z varies for constant x. We do not
consider models within the FFS as Z < 0 in this region.
The models outside this separatrix always have positive
dark matter energy density, Z > 0. Expanding (contracting)
models evolve from (to) an initial (a future) singularity to
(from) a de Sitter fixed point. Since these models do not

exhibit any bouncing behavior, they are not interesting with
respect to our investigation.

IV. THE FULL SYSTEM

To show the full range of dynamics, we project the full
4D dynamics to 2D on the x − Y plane, by expressing z
and r in terms of x as in Eqs. (57) and (61), respectively. We
set cr as in Eq. (63), keeping R ¼ 0.05 in order for the
dynamics to be visible, and to be able to analyse the full
range of the dynamics. We do not fix cz in the full system,
but instead investigate how the dynamics varies for differ-
ent values of this parameter. In order to produce plots of
the phase space, we must also express the scale factor a in
terms of x, using Eq. (53). The Friedmann equation (31)
can therefore be written just in terms of x and Y, and the
potential (20) can be written in terms of x only. The fixed
points for the full system are given in Table II.
As before, E represents a static Einstein universe, dS�

represents spatially flat expanding (þ) and contracting (−)
de Sitter models, and S� represents singularities with
infinite expansion (þ) or contraction (−) and infinite
energy density. Note that the dS2� fixed points are
coordinate singularities of the de Sitter spacetime when
represented as an FLRW, see [9].
Table III shows the eigenvalues of the fixed points for

this system, and the linear stability classification for each
point is given in Table IV. Again, we cannot include the
eigenvalues of the fixed points at Y ¼ �1 in Table III, as
the Jacobian becomes singular. Therefore, we find that the
singularity at Y ¼ þ1 is a repeller and the singularity at
Y ¼ −1 is an attractor, and the de Sitter points at Y ¼ �1
are saddle points, with trajectories moving away from the
Y ¼ þ1 point and towards the Y ¼ −1 point along x ¼ R.
Note that the linear stability analysis of the Einstein points
needs to be done for each individual case, as these can be a
center, a cusp or a saddle point, whereas the linear stability
of the de Sitter points and singularities are general for all
cases considered here.
At an Einstein point, the remaining expression left in the

Hubble expansion variable (30), which we call fðxÞ, is

fðxÞ ¼ zðxÞ þ 2rðxÞ þ xð1þ 3RÞ − 3R − 3x2; ð64Þ

FIG. 6. Top panel: the phase space of the k ¼ 0 submanifold.
Bottom panel: corresponding potential in Eq. (33), where
trajectories of the same color in the two panels correspond to
each other. Models within the green Z ¼ 0 separatrix always have
negative dark matter energy density Z < 0. The shape of the
potential changes with the initial conditions, and as these are all
flat models k ¼ 0 the total energy of the system E ¼ 0 (21).
Therefore, the behavior of each trajectory can be seen along
U ¼ 0 for each potential.

TABLE II. The fixed points of the full system. E denotes an
Einstein universe, dS� an expanding (þ) or contracting (−)
de Sitter universe, and S� a singularity with infinite expansion
(þ) or contraction (−).
Name x Y Z R

E x 0 Z −3x2ð1−ZÞþZð1þ3RÞ−3Rþxð1−ZÞð1þ3RÞ
−2−3x2ð1−ZÞ−3Rþ3Zð1þRÞþxð1−ZÞð1þ3RÞ

dS1� R �
ffiffiffiffiffiffiffiffi
R

3þR

q
0 0

dS2� R �1 0 0
S� 1 �1 1 1
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which we need to solve numerically. An Einstein point
exists whenever this expression is equal to zero. Taking the
limit of fðxÞ when x → R we find fðxÞ → −2R, and
taking the limit of fðxÞ when x → 1 we find fðxÞ → ∞.
Therefore, between x ¼ R and x ¼ 1, fðxÞ is always equal
to zero at least once, and so at least one Einstein point
always exists. The possible number of Einstein points
admitted by the system can be seen in Fig. 7. For each curve
in the plot, which have a specific value of cz, an Einstein
point occurs when the curve meets the x-axis at fðxÞ ¼ 0.
Between the smallest and largest values of cz, we find the
maximum number of Einstein points the system may
admit is three.
The cases where two Einstein points are admitted are

limiting cases, where two roots coincide, and where the

maximum or minimum of the fðxÞ curve touches but does
not cross fðxÞ ¼ 0. To find the values of cz in these limiting
cases, we first need to find the derivative of fðxÞ (64) with
respect to x, which is

dfðxÞ
dx

¼ 1

3ð1− xÞðx−RÞ ½18x
3 − 3x2ð7þ 9RÞ

þ 3xð1þ 10Rþ 3R2Þ− 3Rð1þ 3RÞ þ 3zþ 8r�:
ð65Þ

Setting this equal to zero and rearranging for cz, we find

cz ¼
1

3

�
1 − x
x −R

� 1
1−R½−18x3 þ 3x2ð7þ 9RÞ

− 3xð1þ 10Rþ 3R2Þ þ 3Rð1þ 3RÞ − 8r�; ð66Þ

which we substitute into fðxÞ ¼ 0 (64). Solving this
equation for x, we find x ≃ 0.25 and x ≃ 0.60, which
from (66) correspond to cz ≃ 0.20 and cz ≃ 0.38. These
values are shown in Fig. 7 by the blue and green curves,
respectively.
In the general case where there are three Einstein points,

there is a limiting case. In general, there are two separate
CFS curves when three Einstein points are present; one
through the lower and one through the upper Einstein point.
In the limiting case, the two CFS curves coincide and the
maxima of the potential are equal. To find where this
occurs, we choose an initial value for cz, then equate the
potential U (20) at the upper and lower Einstein points. We
iterate until we converge on a value of cz, which occurs
at cz ≃ 0.32.
Therefore, we find seven different dynamical cases for

this system. The open and flat models in each case all
evolve in the same way. Expanding (contracting) models
evolve from (to) an initial (a future) singularity to (from) a
flat de-Sitter spacetime. Closed models within the FFS
but outside the CFS also evolve in this way in each case,
as the curvature is never large enough for a bounce or
turnaround to occur. The behavior of models within the
CFS changes depending on the value of cz as this affects
the number and character of the Einstein points present.
We present these subcases in the following subsections,
starting with the smallest range of cz and increasing the
value with each case.

TABLE III. The eigenvalues for the fixed points of the full system given in Table II.

Name λ1 λ2 λ3 λ4

E 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18x3ðZ−1Þ−9x2ðZ−1Þð3Rþ1ÞþxðZ−1Þð9R2þ18R−1ÞþZð−9R2þ9Rþ1Þþ9ðR−1ÞR

p ffiffi
6

p ffiffiffiffiffiffiffi
Z−1

p −λ3

dS1� ∓4
ffiffiffi
R
3

q ∓ ffiffiffiffiffiffiffi
3R

p
∓2

ffiffiffi
R
3

q ∓ ffiffiffiffiffiffiffi
3R

p ð1 −RÞ

TABLE IV. The linear stability character for the fixed points of
the full system given in Table II.

Name Stability character

E Center, saddle, or cusp
dS1þ Attractor
dS1− Repeller
dS2� Saddle
Sþ Repeller
S− Attractor

FIG. 7. A plot of fðxÞ (64) with varying values of cz to show the
possible number of Einstein points admitted by the system.
Starting from the top we have cz > 0.38 (orange), cz ≃ 0.38
(green), 0.20 < cz < 0.38 (magenta), cz ≃ 0.20 (blue), and cz <
0.20 (purple). The system always admits at least one Einstein
point, and a maximum of three can exist.
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A. One Einstein point

The phase space for the range cz < 0.20 is given in
Fig. 8. One Einstein point exists at xE ≃ 0.97 which is a
saddle point, and corresponds to the maximum of the
potential. Most of the phase space within the CFS to the left
of the Einstein point consists of bouncing models driven by
the dark energy, while matter and radiation are subdomi-
nant, which evolve between two de Sitter fixed points. For
the models which are dominated by matter and radiation,
to the right of the Einstein point, the evolution is between
two singularities with a turnaround. For all trajectories, the
expansion (contraction) is always accelerating (a00 > 0) to
the left of the Einstein point. Therefore, for this case, the
bouncing models are always accelerating, and the turn-
around models are never accelerating.

B. Two Einstein points

The phase space for the first limiting case with two
Einstein points where cz ≃ 0.20 is shown in Fig. 9. The
Einstein point at xE ≃ 0.87 is a saddle point, which
corresponds to the maximum of the potential and is part
of the outer CFS. Within this CFS, dark matter and radiation
dominate for x > 0.87 where turnaround models evolve
between two singularities. For x < 0.87, dark energy is
dominant and we obtain bouncing models which evolve
between two de Sitter points. The Einstein point at xE ≃ 0.25
is a cusp (corresponding to the two de Sitter points
coinciding), which corresponds to the horizontal point of
inflection in the potential, and is part of the innermost CFS.
Within this CFS, the bouncing models also evolve between

FIG. 8. cz < 0.20 case, top panel: the projection of the full 4D
dynamics on the 2D x-Y plane. Bottom panel: the corresponding
potential as in Eq. (20), where a is given by Eq. (53), z by
Eq. (57), and r by Eq. (61), and trajectories of the same color in
the two panels correspond to each other. One Einstein fixed point
xE ≃ 0.97 (a saddle) exists, which corresponds to the maximum
of the potential, therefore we obtain bouncing trajectories for
x < 0.97 within the CFS, however they are always accelerating.

FIG. 9. The first limiting case where cz ≃ 0.20, top panel: the
projection of the full 4D dynamics on the 2D x-Y plane. Bottom
panel: the corresponding potential as in Eq. (20), where a is given
by Eq. (53), z by Eq. (57), and r by Eq. (61), and trajectories of
the same color in the two panels correspond to each other. Two
Einstein fixed points occur. The fixed point xE ≃ 0.25 (a cusp)
corresponds to the horizontal point of inflection in the potential,
and the fixed point at xE ≃ 0.87 (a saddle) corresponds to the
maximum of the potential. We obtain bouncing trajectories for
x < 0.87 within the CFS, however these are always accelerating.
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the two de Sitter points. To the left of the Einstein point at
xE ≃ 0.87, trajectories are always accelerating, therefore
the bouncing models are always accelerating, and the re-
collapsing models are always decelerating.

C. Three Einstein points

1. Extra bouncing region

The first case where three Einstein points exist is shown
in Fig. 10. The Einstein point at xE ≃ 0.19 is a saddle point,
which corresponds to a local maximum of the potential, and

is part of the innermost CFS. Within this CFS, bouncing
models evolve between two de Sitter points. Cyclic models
are present around the Einstein fixed point at xE ≃ 0.34,
which is a center, corresponding to a local minimum of the
potential. These models contract until they bounce, and
expand until they reach a turnaround. The Einstein point at
xE ≃ 0.83 is another saddle point, corresponding to the
maximum of the potential, and is part of the outermost CFS.
Within this CFS, turnaround models which evolve between
two singularities are present for x > 0.83, where dark matter
and radiation are dominant over the dark energy. For
x < 0.83, dark energy is the dominant component, and
bouncing models are present between the two CFS curves
which evolve between two de Sitter points. These bounces
evolve with an early- and late-time acceleration, connected
by a period of deceleration. These are the physically
important models, which we discuss in Sec. IV F.

2. Limiting case

A limiting case exists for the general case with three
Einstein points, when the two maxima of the potential have
the same value. This case is shown in Fig. 11. Here, the two
saddle Einstein fixed points at xE ≃ 0.17 and xE ≃ 0.76
correspond to the two maxima of the potential, and the
two CFS curves corresponding to each of the fixed points
merge and coincide. Within the CFS, turnaround models
which evolve between two singularities are present in the
x > 0.76 region of the phase space, where dark matter and
radiation are dominant. Bouncing models which evolve
between two de Sitter points are present when x < 0.17.
Cyclic models are present around the Einstein point at
xE ≃ 0.43 (a center) which corresponds to the local
minimum value of the potential. These models contract
until they bounce, and expand until they reach a turn-
around. In this case, the cyclic models evolve with an
early acceleration and late-time deceleration, the bounc-
ing models always accelerate, and the recollapsing
models never accelerate.

3. Extra turnaround region

The final case with three Einstein points is given in
Fig. 12. The Einstein point at xE ≃ 0.72 is a saddle point,
which corresponds to the local maximum value of the
potential, and is part of the innermost CFS. Within this
CFS, turnaround models which evolve between two sin-
gularities are present for the x > 0.72 region of the phase
space. These models never accelerate, and dark matter and
radiation are dominant. For x < 0.72, dark energy is the
dominant component. Cyclic models are present around the
center Einstein fixed point at xE ≃ 0.48, which has a local
minimum value of the potential. These models contract
until they bounce, then expand until they turnaround and
evolve with early acceleration and late-time deceleration.
The Einstein fixed point at xE ≃ 0.16 is another saddle
point which is part of the outermost CFS, and occurs at the

FIG. 10. 0.20 < cz < 0.32 case, top panel: the projection of the
full 4D dynamics on the 2D x-Y plane. Bottom panel: the
corresponding potential as in Eq. (20), where a is given by
Eq. (53), z by Eq. (57), and r by Eq. (61), and trajectories of the
same color in the two panels correspond to each other. The
Einstein fixed points xE ≃ 0.19 and xE ≃ 0.83 (saddle) corre-
spond to the maxima of the potential, and xE ≃ 0.34 (center) to a
local minimum. Bouncing behavior is obtained for x < 0.83
within the outer CFS, and cyclic behavior is obtained for
x > 0.19 within the inner CFS. The cyclic models evolve with
early acceleration and late-time deceleration, and the bouncing
models evolve with early- and late-time acceleration connected
by a decelerating period.
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maximum of the potential. Bouncing models evolve
between two de Sitter points for x < 0.16, which always
accelerate. For the x > 0.16 region of the phase space
between the two CFS curves, turnaround models are
present which evolve between two singularities. In these
models, radiation and dark matter are initially dominant,
but decrease more rapidly than the dark energy, which
becomes dominant as the trajectory passes the fixed point at
xE ≃ 0.72. After the turnaround, the radiation and matter
increase more rapidly than the dark energy, and become
dominant again when x > 0.72, where the models approach
a singularity. These recollapsing models evolve with an
early and late-time deceleration connected by an accelerat-
ing period.

D. Two Einstein points

The phase space for the system for cz ≃ 0.38 is shown in
Fig. 13, which is the second limiting case with two Einstein
points. The Einstein point at xE ≃ 0.60 is a cusp (corre-
sponding to the two de Sitter points coinciding), which
corresponds to the horizontal point of inflection in the
potential, and is part of the innermost CFS. Within this
CFS, turnaround models evolve between two singularities,
where the dark matter and radiation are the dominant
components, and so never accelerate. The Einstein point at
xE ≃ 0.16 is a saddle which is part of the outermost CFS,
and corresponds to the maximum value of the potential. For
the x < 0.16 region of the phase space, bouncing models

FIG. 11. The limiting case cz ≃ 0.32, where the two CFS curves
coincide. Top panel: the projection of the full 4D dynamics on the
2D x − Y plane. Bottom panel: the corresponding potential as in
Eq. (20), where a is given by Eq. (53), z by Eq. (57), and r by
Eq. (61), and trajectories of the same color in the two panels
correspond to each other. The fixed points xE ≃ 0.17 and xE ≃
0.76 (saddle) correspond to the maxima of the potential which
have the same value of the potential, and xE ≃ 0.43 (center) to a
local minimum. Cyclic behavior is obtained for 0.17 < x < 0.76
and bouncing behavior for x < 0.17, both within the CFS.

FIG. 12. 0.32 < cz < 0.38 case, top panel: the projection of
the full 4D dynamics on the 2D x-Y plane. Bottom panel: the
corresponding potential as in Eq. (20), where a is given by
Eq. (53), z by Eq. (57), and r by Eq. (61), and trajectories of the
same color in the two panels correspond to each other. The fixed
points xE ≃ 0.16 and xE ≃ 0.72 (saddle) correspond to the
maxima of the potential, and xE ≃ 0.48 (center) to a local
minimum. Cyclic behavior is obtained for x < 0.72 within the
inner CFS and bouncing behavior for x < 0.16 within the outer
CFS. Cyclic models evolve with early acceleration and late-time
deceleration, and the bouncing models always accelerate.
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evolve between two de Sitter points. In these models, the
dark energy always dominates, and they always accelerate.
Between the two CFS curves, turnaround models are
present which evolve between two singularities, and never
accelerate. Dark matter and radiation are dominant for
x > 0.60, and dark energy is dominant for the x < 0.60
region of the phase space. After the turnaround, the
radiation and dark matter components increase more
quickly than the dark energy throughout the collapse,
and become dominant on approach to the singularity.

E. One Einstein point

The final case for this system is given in Fig. 14.
Qualitatively, the behavior here is the same as in Fig. 8,

except that the Einstein point in this case is much closer to
x ¼ R at xE ≃ 0.14. This is a saddle point that corresponds
to the maximum value of the potential for the system, and is
part of the CFS. Within the CFS, bouncing models are
present for the x < 0.14 region of the phase space, in which
dark energy is always dominant. For the x > 0.14 region,
turnaround models which evolve between two singularities
exist. These models are initially dominated by matter and
radiation, and then by dark energy. After the turnaround,
the dark matter and radiation increase more quickly than
the dark energy, and become dominant again as the
singularity is approached. For all trajectories, the expansion
(contraction) is always accelerating to the left of the
Einstein point, therefore the bouncing models always
accelerate, and the recollapse models always decelerate.

FIG. 13. cz ≃ 0.38 case, top panel: the projection of the full 4D
dynamics on the 2D x-Y plane. Bottom panel: the corresponding
potential as in Eq. (20), where a is given by Eq. (53), z by
Eq. (57), and r by Eq. (61), and trajectories of the same color
in the two panels correspond to each other. The fixed point
xE ≃ 0.16 (saddle) corresponds to the maximum of the potential,
and xE ≃ 0.60 (cusp) to the horizontal point of inflection in the
potential. Bouncing behavior is obtained within the CFS for
x < 0.16, however these models always accelerate.

FIG. 14. cz > 0.38 case, top panel: the projection of the full 4D
dynamics on the 2D x-Y plane. Bottom panel: the corresponding
potential as in Eq. (20), where a is given by Eq. (53), z by
Eq. (57), and r by Eq. (61), and trajectories of the same color in
the two panels correspond to each other. The fixed point xE ≃
0.14 (saddle) corresponds to the maximum of the potential.
Bouncing models are obtained within the CFS for x < 0.14,
which always accelerate.
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F. Acceleration regions

In order to determine which of the cases are viable, we
can consider the acceleration regions in each phase space.
For our models to be feasible, they must have an early and
late time acceleration, connected by a decelerating phase
where large-scale structure can form. The acceleration
equation for this system is given by

a00

a
¼ zþ 2r − 3Rþ ð1þ 3RÞx − 3x2: ð67Þ

We can find the boundaries between accelerating and
decelerating regions by setting the acceleration equa-
tion (67) to zero. We find that the boundaries where
acceleration is zero go through each Einstein fixed point
parallel the Y-axis. Therefore, one case remains where a
bouncing model exhibits early and late time acceleration,

which is the 0.20 < cz < 0.32 case. This case is shown
again in Fig. 15, where we have included the red a00 ¼ 0
boundaries. The 0 < x < 0.19 and 0.34 < x < 0.83
regions are accelerating, and the 0.19 < x < 0.34 and
0.83 < x < 1 regions are decelerating. Therefore, the
bouncing models present between the two CFS curves
evolve with an early- and late-time accelerated phase, and
are therefore the models of interest.
However, we find that for all of the cases we have

presented, the bouncing behavior is spoiled when dark
matter and radiation become dominant, and turnaround
models occur for trajectories in the phase space near x ¼ 1.
Therefore, these bouncing models are only relevant when
matter and radiation appear after the bounce, and would
need a mechanism such as inflation with a subsequent
period of reheating in order to be feasible. These models
also only occur when they have sufficient curvature.
Although we cannot make a quantitative statement from
our qualitative analysis, in principle, these models would be
in tension with observations [2].

V. UPPER BOUNDS ON z AND r

In light of the results thus far, we introduce an upper
bound on the dark matter and radiation, such that their
energy densities cannot reach infinity. The idea is that
matter and radiation are not always present in standard
cosmology, but that they are created in a period of
reheating. It is beyond the scope of our paper to introduce
a reheating phase, perhaps through an interaction
between radiation, dark matter and the dark energy
component, so we simply assume that matter and radi-
ation have an upper bound. In the following, we focus on
investigating whether bouncing models can be the general
closed model when matter and radiation appear after the
bounce has occurred, even for models that are close to
being spatially flat.
In order to implement an upper bound on matter and

radiation, we assume that their EoSs are modified by a
nonlinear term at high energies in a similar way to the high
energy bound for the dark energy component. Physically,
these EoSs are not particularly meaningful, however this is
a simple way of imposing an energy scale at which matter
and radiation appear such that the bounce is not spoiled. As
far as our qualitative analysis is concerned, the specific
physical mechanism for having an upper bound for matter
and radiation is not that relevant. We therefore rewrite
Eqs. (11) and (12) as

z0 ¼ −
3Yzð1 − z

z�
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Y2
p ; ð68Þ

r0 ¼ −
4Yrð1 − r

r�
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Y2
p ; ð69Þ

FIG. 15. The phase space (top panel) and corresponding
potential (bottom panel) for 0.20 < cz < 0.32 as in Fig. 10, with
the boundaries between accelerating and decelerating regions in
red. The 0 < x < 0.19 and 0.34 < x < 0.83 regions are accel-
erating, and the 0.19 < x < 0.34 and 0.83 < x < 1 regions are
decelerating.
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where z� and r� are the characteristic energy scales of dark
matter and radiation, respectively. Should we model a
proper inflationary era, we could set z� and r� at the energy
scale of reheating. Here, we will simply assume that the
upper bounds imposed on matter and radiation are at the
highest possible energy scale, coinciding with the high-
energy cosmological constant of the dark energy, some-
where between the Planck scale and that of inflation. This
assumption does not qualitatively change the dynamics,
and is the most robust way of investigating the survival of
the bounce, therefore we set z� ¼ r� ¼ 1.
The effective EoSs for dark matter and radiation can be

found by equating z0 (68) and r0 (69) to the continuity
equation. We find

wz ¼ −z; ð70Þ

wr ¼
1

3
−
4

3
r: ð71Þ

For z > 1=3 and r > 1=2, we find their respective effective
EoSs are less than −1=3, and so the dark matter and
radiation can contribute to acceleration in these regions of
the phase space. We find that the Raychaudhuri equation
for Y, the compact variable representing the Hubble
expansion scalar, now becomes

Y 0 ¼ −Y2ð1 − Y2Þ12 − ð1 − Y2Þ32
6

½zð1 − 3zÞ þ 2rð1 − 2rÞ
− 3Rþ xð1þ 3RÞ − 3x2�; ð72Þ

and x0 is still as in Eq. (29). As previously, we project the
4D dynamics onto the x-Y plane. Integrating z (68) with
respect to x (29), we find

zðxÞ ¼ czðx−R1−x Þ
1

1−R

1þ czðx−R1−x Þ
1

1−R
; ð73Þ

and integrating r (69) with respect to x (29), we obtain

rðxÞ ¼ crðx−R1−x Þ
4

3ð1−RÞ

1þ crðx−R1−x Þ
4

3ð1−RÞ
: ð74Þ

We can then calculate the first integral cr in same way as
before. Using the Planck 2018 density parameters [2],
along with our definition of R (10) and the low-energy
cosmological constant ρΛ (42), we find

cr ¼
RΩr

αΩΛ −RΩr

�
α −R

Rð1 − αÞ
� 4

3ð1−RÞ
≃ 0.00077 ð75Þ

for a value of R ¼ 0.05.
The fixed points for this system are given in Table V. In

this system, there are no physical singularities, but the fixed
points dS2� and dS4� are coordinate singularities of the de
Sitter spacetime when represented as an FLRW, see [9].
The eigenvalues of the fixed points for this system are

shown in Table VI, and the linear stability classification for
each point is given in Table VII. As previously, we cannot
include the eigenvalues of the fixed points at Y ¼ �1,
however we find from the Raychaudhuri equation (72) that
the de Sitter point at Y ¼ þ1 is a repeller and the de Sitter

TABLE V. The fixed points of the system when z and r have an upper bound.

Name x Y z r

E x 0 z 1
4
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðxþ zÞ þ 12ðxR −R − x2 − z2Þ

p
Þ

dS1� R �
ffiffiffiffiffiffiffiffi
R

3þR

q
0 0

dS2� R �1 0 0
dS3� 1 � 1ffiffi

2
p 1 1

dS4� 1 �1 1 1

TABLE VI. The eigenvalues for the fixed points of the system when z and r have an upper bound.

Name λ1 λ2 λ3 λ4

E 0 0 1ffiffi
6

p f−1þ 18x3 − zþ 9z2ð2z − 1Þ þ 27R − 9x2ð1þ 3RÞ
−xþ ½1þ 2zð3z − 1Þ þ 2xð3x − 1Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4zð1 − 3zÞ − 12Rþ 4xð1 − 3xþ 3RÞp g1
2

−λ3

dS1� ∓4
ffiffiffi
R
3

q ∓ ffiffiffiffiffiffiffi
3R

p
∓2

ffiffiffi
R
3

q ∓ ffiffiffiffiffiffiffi
3R

p ð1 −RÞ
dS3� �4 �3 ∓2 �3ð1 −RÞ

BOUNCING COSMOLOGY FROM NONLINEAR DARK ENERGY … PHYS. REV. D 107, 083533 (2023)

083533-19



point at Y ¼ −1 is an attractor along x ¼ 1. The de Sitter
points along x ¼ R at Y ¼ �1 are saddle points, with
trajectories moving away from the Y ¼ þ1 point and
towards the Y ¼ −1 point. Similarly to before, the stability
character of the Einstein fixed points depends on the value
of the first integral cz for a fixed R and cr.
In this case, in order to find the Einstein points from the

Raychaudhuri equation (72), we need to find the zeros of
the following function

fðxÞ ¼ zðxÞ½1 − 3zðxÞ� þ 2rðxÞ½1 − 2rðxÞ�
− 3Rþ xð1þ 3RÞ − 3x2: ð76Þ

We need to solve numerically for the values xE, such that
fðxEÞ ¼ 0. Taking the limit of fðxÞ when x → R, we find
fðxÞ → −2R, and when x → 1, we find fðxÞ → −6.
Therefore, this system does not necessarily admit any
Einstein points between x ¼ R and x ¼ 1 as both limits
are negative. Figure 16 shows the range of Einstein points
which can be admitted by the system for different values of cz.
In total, we find three different cases for the dynamics,

except here more than one range of cz can give the

same qualitative dynamics. Increasing cz increases the
contribution of the zð1 − 3zÞ term to fðxÞ (76) until
z ¼ 1=3. Once this point is reached, increasing cz then
increases a negative contribution from the zð1 − 3zÞ term.
There are two limiting cases where one Einstein point is
admitted which have the same qualitative dynamics that
are shown by the green and blue curves in Fig. 16.
As before, to find the values of cz in the limiting cases,
we take the first derivative of fðxÞ and solve for cz when
dfðxÞ=dx ¼ fðxÞ ¼ 0, and find cz ≃ 0.25 and cz ≃ 11.0.
Both cz < 0.25 and cz > 11.0 admit the same qualitative
dynamics, where no Einstein points are admitted. In the
range 0.25 < cz < 11.0 two Einstein points are admitted.
The open and flat models evolve in the same way for

each case. Expanding (contracting) open models evolve
between two de Sitter fixed points, from (to) an open
geometry to (from) a flat geometry. Expanding (con-
tracting) flat models evolve between two de Sitter fixed
points along the FFS. The dynamical behavior of the closed
models changes depending on the value of cz. In each case,
we find that the closed models avoid a singularity asU → 0
as x → 1, forming a potential barrier. Therefore, there are
no turnaround models that evolve between singularities,
and all closed models admit a bounce. We present these
cases in the following subsections, and note that qualita-
tively the dynamics is the same as the submanifolds in
Sec. III when only dark energy is present.

A. No Einstein points

The phase space for the system when cz < 0.25 is shown
in Fig. 17, which is qualitatively the same as when
cz > 11.0. As before, the green outermost thick curve is
the flat Friedmann separatrix (FFS), which here has the
general form

Y2

1 − Y2
¼ x

3
þ z
3
þ r
3
: ð77Þ

The inner most curve is the closed Friedmann Separatrix
(CFS), which has the general form

Y2

1 − Y2
¼ x

3
þ z
3
þ r
3
−

1

a2

�
xE
3
þ zE

3
þ rE

3

�
: ð78Þ

z and r are given by Eqs. (73) and (74), respectively, and a
is given by Eq. (53). As previously, the horizontal lines
along x ¼ R and x ¼ 1 are the de Sitter lines where
x0 ¼ z0 ¼ r0 ¼ 0.
In this case, no Einstein points are admitted, and all

closed models bounce, evolving between two de Sitter
points. Therefore, when matter and radiation have an upper
bound, the bounce is no longer spoiled and a singularity is
avoided. When cz < 0.25, dark energy is the dominant
component for most of the phase space, until x ¼ 1 is
approached where dark matter and radiation become
comparable to the dark energy. When cz > 11.0, dark

TABLE VII. The linear stability character for the fixed points of
the system when z and r have an upper bound.

Name Stability character

E Center, saddle, or cusp
dS1þ Attractor
dS1− Repeller
dS2� Saddle
dS3� Saddle
dS4þ Repeller
dS4− Attractor

FIG. 16. fðxÞ with varying values of cz to show the different
number of Einstein points which can be admitted by the system.
Starting from the left we have cz > 11.0 (orange), cz ≃ 11.0
(green), 0.25 < cz < 11.0 (magenta), cz ≃ 0.25 (blue), and
cz < 0.25 (purple). When cz < 0.25 or cz > 11.0 no Einstein
points are admitted. One Einstein point is admitted in the limiting
cases when cz ≃ 0.25 and cz ≃ 11.0, and two Einstein points are
admitted when 0.25 < cz < 11.0.
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matter is the dominant component for most of the phase
space, except sufficiently close to x ¼ 1 where all three
components are comparable, and close to x ¼ R where
dark energy becomes dominant. All trajectories are always
accelerating in this case.

B. One Einstein point

The limiting case where cz ≃ 0.25 and one Einstein point
is admitted is shown in Fig. 18. The qualitative dynamics in
this case is the same when cz ≃ 11.0. One Einstein point is
admitted at xE ≃ 0.23 (cusp) which is part of the CFS, and
corresponds to the horizontal point of inflection in the
potential. All closed models bounce, evolving between two
de Sitter fixed points. When cz ≃ 0.25, dark energy is
dominant for most of the phase space, and when cz ≃ 11,
dark matter is mostly dominant, except close to x ¼ R

where dark energy is dominant. All three components
become comparable near x ¼ 1. Here, all trajectories are
always accelerating.

C. Two Einstein points

The case where two Einstein points are admitted is
shown in Fig. 19. The Einstein point at xE ≃ 0.15 (saddle)
corresponds to a local maximum of the potential, and is part
of the CFS. There are bouncing models which evolve
between two de Sitter points within the CFS, and cyclic
models around the Einstein point at xE ≃ 0.31 (center),
which corresponds to a local minimum of the potential.
These bouncing models always accelerate, and the cyclic
models evolve with an early-time acceleration and a late-
time deceleration. Outside of the CFS, all closed models

FIG. 17. cz < 0.25 case, which is qualitatively the same as the
cz > 11.0 case. Top panel: the projection of the full 4D dynamics
on the 2D x-Y plane. Bottom panel: the corresponding potential
as in Eq. (20), where a is given by Eq. (53), z by Eq. (73), and r
by Eq. (74). Trajectories of the same color in the two panels
correspond to each other. No Einstein points are admitted, and all
closed models bounce, which always accelerate.

FIG. 18. cz ≃ 0.25 case, which is qualitatively the same as the
cz ≃ 11.0 case. Top panel: the projection of the full 4D dynamics
on the 2D x-Y plane. Bottom panel: the corresponding potential
as in Eq. (20), where a is given by Eq. (53), z by Eq. (73), and r
by Eq. (74). Trajectories of the same color in the two panels
correspond to each other. One Einstein point exists at xE ≃ 0.23
(cusp) corresponding to the horizontal point of inflection in the
potential. All closed models bounce, and these are always
accelerating.

BOUNCING COSMOLOGY FROM NONLINEAR DARK ENERGY … PHYS. REV. D 107, 083533 (2023)

083533-21



bounce, evolving between two de Sitter points. These
models evolve with an early- and late-time accelerated
expansion, connected by a decelerating period. If the value
of cz is closer to 0.25, most of the phase space will be dark
energy dominated, however if its value is closer to 11.0,
then dark matter will be mostly dominant.

D. Acceleration

As before, we calculate where the acceleration is zero to
find the boundaries between accelerating and decelerating
regions of the phase space. In this system, the acceleration
equation is given by

a00

a
¼ zð1 − 3zÞ þ 2rð1 − 2rÞ − 3Rþ ð1þ 3RÞx − 3x2:

ð79Þ

The case of interest in this new system is 0.25 < cz < 11.0,
in which two Einstein points are admitted. This case
with the boundaries between accelerating and decelerating
regions of the phase space can be seen in Fig. 20. The two
curves through the Einstein fixed points parallel to the
Y-axis denote where acceleration is zero. The 0.15 < x <
0.31 region of the phase space is decelerating, and the
x < 0.15 and x > 0.31 regions are accelerating. Therefore,
bouncing models outside the CFS evolve with early- and
late-time acceleration, with a decelerating phase in
between, and are therefore the models of interest.
Finally, using a0 ¼ ay and a00=a ¼ y0 þ y2 in Eq. (79)

(where each variable now is a function of a), in Fig. 21 we
illustrate this model with the phase space for the scale
factor a (normalized to ao ¼ 1 today) and noncompactified

FIG. 19. 0.25 < cz < 11.0 case, top panel: the projection of the
full 4D dynamics on the 2D x-Y plane. Bottom panel: the
corresponding potential as in Eq. (20), where a is given by
Eq. (53), z by Eq. (73), and r by Eq. (74). Trajectories of the same
color in the two panels correspond to each other. Two Einstein
points exist at xE ≃ 0.15 (saddle), which corresponds to a local
maximum of the potential, and at xE ≃ 0.31 (center) correspond-
ing to a local minimum of the potential. Trajectories around the
xE ≃ 0.31 fixed point within the CFS are cyclic, and all other
closed models bounce. Bouncing models outside the CFS evolve
with an early- and late-time acceleration, connected by a period of
deceleration.

FIG. 20. The phase space (top panel) and corresponding
potential (bottom panel) for 0.25 < cz < 11.0 as in Fig. 19, with
the boundaries between accelerating and decelerating regions in
red. The 0.15 < x < 0.31 region of the phase space is decelerat-
ing, and the x < 0.15 and x > 0.31 regions are accelerating.
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Hubble expansion scalar y. Again, we see in this plot that at
high energies, i.e., small a, all models have an accelerated
phase, followed by a decelerated one and a final accelerated
one at recent times, i.e., when a → 1.

E. A note on R

As we mentioned previously, in order to alleviate the old
cosmological constant problem we would set 10−120 <
R < 10−60, however purely for the purpose of illustrating
the full range of dynamics in readable phase plots, we have
set R ¼ 0.05. If we had set 10−120 < R < 10−60, only one
case for the dynamics would remain in each system. For
both systems we have considered, we find from Eqs. (63)
and (75) that for 10−120 < R < 10−60, we obtain 1016 <
cr < 1036. The effect of increasing radiation has qualita-
tively the same effect as increasing matter.

For the first system of equations (27)–(30) where z and r
are unbounded, we find the only dynamical case left,
regardless of the value of cz, is as in Fig. 14. The Einstein
point would be pushed further towards x ¼ R and the
closed models are mostly turnaround models which always
decelerate. The bouncing models in this case are always
accelerating, which is not the evolution we require for a
realistic model.
For the second system of equations (29), (68), (69),

and (72) where z and r have an upper bound, we find that
the only dynamical case is as in Fig. 17. All closed models
bounce, however they are always accelerating, which again
is not the evolution we require.
As a final remark, we note that in order for a bouncing

model to be theoretically robust and realistic, the value ofR
would need to satisfy the bounds 10−120 < R < 10−60,
producing a bounce with an early acceleration, followed by
a decelerated era, and finally a late-time acceleration as in
Fig. 20. The decelerated era should be a standard matter
and radiation dominated phase, in order to satisfy obser-
vational constraints, but a contribution from the homo-
geneous dark energy remains a possibility.

VI. CONCLUSIONS

In this paper, we have studied the dynamics of FLRW
models containing dark matter, radiation and dark energy
with a quadratic EoS. This is an extension of [41], who
studied a more general quadratic EoS in the high-, low-,
and full-energy regimes without the inclusion of matter
and radiation, and found bouncing and cyclic models
were possible with certain combinations of parameters.
A quadratic EoS is the simplest nonlinear EoS and the
qualitative analysis of the dynamics that it generates
serves as guidance for more complicated nonlinear
models; its study finds motivations in brane models,
k-essence and loop quantum cosmology [42–50] (see
also [41,51] and references therein). We have restricted
the EoS here so that the dark energy evolves between a
high-energy effective cosmological constant, which
could be of order of the Planck energy, and a low-energy
effective cosmological constant close to the observed
dark energy density today. Our aim was to investigate the
effect of matter and radiation on the bouncing and cyclic
models, to find whether these were still possible in this
more realistic scenario. In particular, our focus was on all
closed models avoiding singularities, instead having a
bounce or cycles. Because the EoS we consider is
barotropic, naturally the evolution of the system is
adiabatic, so that in phase space the expansion is a mirror
image of the contraction, as in [40,41,51].
In Sec. II, we have presented the system of equations for

compactified variables, with the energy densities of dark
matter and radiation satisfying the standard energy con-
servation equations, and as such are in principle unbounded
and able to become infinite. In Sec. III, we present the

FIG. 21. The phase space (top panel) and corresponding
potential [bottom panel, where now U ¼ UðaÞ] for 0.25 < cz <
11.0 in terms of the scale factor a and noncompactified Hubble
expansion scalar y. This plot is equivalent to Fig. 20, with the
boundaries separating the accelerating and decelerating regions
shown in red. The region in between the two Einstein fixed points
is decelerating, and the regions outside are accelerating.
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submanifolds of the system. In Sec. IV, we found one case
of interest, shown in Fig. 15, where closed bouncing
models can evolve with early- and late-time acceleration.
However, we found that this bouncing behavior is spoiled
when matter and radiation become dominant for certain
values of the initial conditions, and instead the system
evolves with a turnaround between two singularities. In
comparison to Fig. 5 (with the same parameters but no
matter and radiation), in which all closed models bounce,
we concluded that these closed models could only be
viable, i.e., always have a bounce independently of the
initial conditions, if matter and radiation are only present at
energies below the energy scale of the bounce. This would
require a process such as reheating during the expansion
phase after the bounce.
In light of this, we modelled the process by simply

introducing upper bounds on dark matter and radiation in
Sec. V, in order to avoid any models becoming singular. To
keep things simple, with no need of extra parameters, we
set this upper energy scale in line with the high energy
effective cosmological constant of the dark energy com-
ponent. In this case, all closed models have a bounce. The
case of interest, shown in Fig. 20, admits bouncing models
that evolve with early- and late-time acceleration which are
not spoiled by the inclusion of matter and radiation, as they
only appear at the same energy scale as the dark energy.
However, we noted that for the specific case of a

quadratic EoS, this case of interest is not possible with a
model that can alleviate the old cosmological constant
problem [35–37]. For a model where the two cosmological

constants differ by 60 to 120 orders of magnitude, we found
that the only case for the dynamics of the system is as in
Fig. 17. All closed models bounce, however they always
accelerate and so the evolution is undesirable.
Overall, our qualitative analysis shows that a model with

nonlinear dark energy and radiation and matter can be a
realistic scenario like the one shown in Figs. 20 and 21,
with an early- and a late-time acceleration, where all closed
models have a bounce, assuming that matter and radiation
appear only after the bounce through a process such as
reheating. However, while the simple specific model for
dark energy considered here helps our understanding
of precisely what the qualitative realistic scenario should
be, it does not give the right quantitative behavior. Learning
from the present analysis, in future work we will consider
models for dark energy, or for an interacting vacuum [40],
giving the qualitative behavior of Fig. 20 and 21, but with a
realistic quantitative behavior that will be worth con-
straining with data. Another interesting possibility that
we leave for a future analysis will be to include a reheating
phase through an interaction term between the dark energy
and radiation components, with a possible role of dark
matter.
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