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Galaxy power spectrum and bispectrum signals are distorted by peculiar velocities and other relativistic
effects arising from a perturbed spacetime background. In addition, study of correlation functions of tracers
in Fourier space is often done in the plane-parallel approximation, under which it is assumed that line-of-
sight (LOS) vectors are parallel. In this work, we show that a simple perturbative procedure can be
employed for a fast evaluation of beyond plane-parallel (wide-angle) corrections to the power spectrum and
bispectrum. We also show that evolution of linear matter density fluctuations in a relativistic context can be
found from a simple method. For the power spectrum at linear level, we compare leading-order wide-angle
contributions to multipoles of the galaxy power spectrum with those from nonintegrated and integrated
relativistic corrections and estimate their possible contamination on local fNL measurements to be of order
a few. We also compute wide-angle corrections in the presence of nonlinear terms at one-loop order. For the
bispectrum, we show that wide-angle effects alone, even with fully symmetric choices of LOS, give rise to
imaginary, odd-parity multipoles of the galaxy bispectrum (dipole, octupole, etc.), which are, in many
cases, larger than previously known ones of relativistic origin. We calculate these contributions and provide
an estimator for measuring the leading-order bispectrum dipole from data, using a symmetric LOS
definition. Finally, we calculate the leading-order corrections to multipoles of real plane-parallel
bispectrum multipoles and estimate the apparent local fNL induced to be of order unity.
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I. INTRODUCTION

Dark matter inhomogeneities at large scales obey simple
conservation laws, which can be described by matter
overdensities and peculiar velocities responding to gravity.
Evolution of the matter density contrast and velocity fields
at large scales has been extensively studied at both linear
and weakly nonlinear regimes (see, e.g., Refs. [1–3]).
Biased tracers like galaxies follow the peculiar motions
of dark matter leading to the addition of a redshift/blueshift
term to their Hubble redshift along the line of sight (LOS).
This results in distortion of their observed number density
contrast and anisotropies in their clustering statistics in
galaxy redshift surveys [4,5].
In fact, the redshift-space comoving distance of an object

s differs from that in real space x by s ¼ xþ x̂ðvo · x̂Þ=H,
where vo is the peculiar velocity of the object, H is the
conformal Hubble parameter (H ¼ aH), and x̂ denotes the
LOS direction. Tracers follow the large-scale bulk motion
of dark matter with almost the same peculiar velocity
due to the equivalence principle [6] (v0 ≈ vDM). Then one
can write vDM ¼ −Hfu and study ∇ · u, which is a
scalar quantity that, assuming negligible vorticity, contains

all the information about the velocity field and equals
density perturbation δ in linearized standard perturbation
theory (SPT) [2]. In such a context, the growth rate
f ≡ d lnDþ=d ln a, where Dþ represents the linear growth
factor of perturbations.
The distortion of observed distances breaks the transla-

tional symmetry due to being dependent on the LOS
direction. At linear level in SPT, assuming uniform selec-
tion function, it can be shown that the leading redshift-
space distortion (RSD) contribution to observed galaxy
number density contrast is

δg;sðxÞ ¼ δgðxÞ þ fx̂ ·∇xðug · x̂Þ þ � � � ; ð1Þ

where subscript “s” labels redshift-space quantities
and dots denote nonlinear/higher-order terms and other
subleading corrections. The well-known Kaiser multipoles
[4,5] can be obtained from this equation in the so-called
“plane-parallel” limit where all x̂ vectors are assumed to be
parallel, i.e., x̂≡ ẑ ≈ const. In such a limit, the linear
galaxy power spectrum in redshift space becomes
Plin
g;sðk; μÞ ¼ ð1þ βμ2Þ2Plin

g ðkÞ, where Plin
g ðkÞ is the linear

(isotropic) power in absence of RSD: hδgðkÞδgðk0Þi ¼
Plin
g ðkÞδDðkþ k0Þ, μ≡ k̂ · ẑ, and β≡ f=b1, with b1 being

the linear bias coefficient. This expression can be expanded
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in terms of Legendre polynomials LlðμÞ, giving rise to
Kaiser multipoles.
The analysis of RSD provides opportunities for testing

cosmological and gravitational models [7–17], as they have
different predictions for the growth rate of perturbations.
In addition, RSDs impact our cosmological inferences based
on N-point correlation functions of galaxy overdensities
from redshift surveys. These applications often use the
“plane-parallel/infinite-observer” approximations (here-
after simply referred to as plane-parallel approximation),
inwhich the LOS is a constant direction and next-to-leading-
order inverse-distance corrections to the structures observed
are neglected. In this paper, we use the terms “wide angle”
and “inverse distance” for those contributions beyond plane-
parallel and infinite-distance limit, respectively.
In addition to RSD, there are subleading corrections to

the observed galaxy number density contrast, including
those with relativistic origins [18–27] that stem from the
change in redshift, light trajectories, volume elements, etc.
because of the perturbed background spacetime. Taking
these into account in statistical analyses can lead to
constraints on relativistic parameters. Usually, inverse-
distance contributions are calculated along with other
relativistic corrections, but the plane-parallel approxima-
tion is still considered. However, wide-angle effects can be
as large as other relativistic corrections and, in some cases,
even larger (as we will explicitly show below).
Wide-angle and inverse-distance contributions to two-

point statistics at linear level have been extensively studied
so far [28–38]. Also the impact of a combination of full sky
(angular) or wide-angle effects with relativistic terms on
galaxy/halo two-point functions have also been studied in
configuration space [39–42]. Furthermore, there have been
recent works on the investigation of relativistic effects
(including observer terms) [43] and also relativistic, wide-
angle, and observer effects [44,45] on multipoles of galaxy
power spectrum at linear level. Evaluations of such cor-
rections to galaxy two-point functions in Fourier space are
often done numerically. It is also useful to do similar
evaluations with analytic or simple relations, which make it
easier to compare different contributions separately and
also have a quick idea about dependence of each contri-
bution on various parameters. In this work, we provide a
procedure for obtaining such relations.
It is also well known that local primordial non-

Gaussianities can lead to scale-dependent corrections to
the power spectrum [46,47] that scale similarly with
relativistic and wide-angle effects (see, e.g.,
Refs. [23,48–56] for an investigation of the bias on the
local primordial non-Gaussianity (PNG) parameter caused
by ignoring relativistic corrections). Therefore, it is useful
to have a simple and fast modeling of wide-angle and
relativistic effects on redshift-space correlation functions,
as it can make cosmological inferences more accurate. This
is especially motivated in the era of precision cosmology

with upcoming redshift surveys covering larger patches of
sky with increased precision [57–62].
It is worth noting that, although angular power spectra

(based on redshifts and angles of tracers) use the observ-
ables in the most direct way, the estimators in the Fourier
basis are simplest from the theoretical point of view and are
enough to illustrate the size of the effects in which we are
interested. In addition, the vast majority of measurements
have so far been done in this basis, although as the surveys
probe larger scales it is more natural to change to a more
suitable basis.
One useful approach for this purpose is to first perform

perturbative expansions based on appropriate parameters
that quantify wide-angle effects in configuration space and
then take the Fourier transform of the result [35,36]. In this
work, we also use a perturbative procedure, but in a way
that makes calculations simpler and, more importantly,
easily extendable to nonlinear regimes and higher-order
statistics. For the galaxy power spectrum at linear level, we
utilize this procedure to find simple formulas for leading-
order wide-angle corrections and compare them with
“nonintegrated” and integrated relativistic terms at large
scales. In this work, we also provide a simple procedure for
finding the evolution of dark matter density contrast and
other fluctuations in a relativistic context. This procedure
can be extended to other situations, e.g., including large-
distance modifications of gravity.
At the nonlinear level for two-point statistics, wide-angle

corrections have been investigated in the Zel’dovich
approximation (first order in Lagrangian perturbation
theory) [63,64]. Also nonlinear RSD effects have been
studied in spherical harmonic space [65]. However, to the
best of our knowledge, wide-angle corrections to nonlinear
power spectra in SPT have not been calculated so far. The
perturbative procedure to deal with wide-angle corrections
used in this work can significantly simplify such calcu-
lations to any order. As an example, we keep galaxy
number density contrast and velocity fields up to third order
in SPT and find leading-order wide-angle and inverse-
distance corrections to one-loop galaxy power spectrum
around baryon acoustic oscillations scales and larger,
assuming Λ cold dark matter (CDM) cosmology. We also
compare, approximately, the size of fingers-of-God (FOG)
contributions with that of wide-angle effects at those scales.
From these results, we draw a conclusion about the
importance of wide-angle and relativistic corrections at
large scales in the presence of nonlinearities.
Regarding higher-order statistics, three-point correlation

functions (3PCFs) in redshift space have been largely
studied in the plane-parallel approximation in both
Fourier (bispectra) and configuration spaces [66–73].
Extensions to this include full sky analysis of bispectrum/
3PCFs in angular space with inclusion of relativistic
corrections [74–81]. However, to the best of our knowledge,
a full calculation of wide-angle contributions to bispectra
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and higher-order correlations in Cartesian Fourier space has
not been carried out yet. The perturbative procedure fol-
lowed in this work can be easily extended to facilitate such
computations. We make use of that to calculate leading-
order wide-angle effects on galaxy bispectrum multipoles
and compare them with inverse-distance/relativistic contri-
butions. See also a recent work [82], where authors find
wide-angle effects in the galaxy bispectrum using a formu-
lation based on an expansion in spherical tensors.
It has been realized that relativistic effects in the plane-

parallel approximation can result in nonzero odd-parity
multipoles, such as a dipole for bispectrum [76–78,80],
which are also detectable in upcoming surveys. In this paper,
we show that wide-angle effects alone, with symmetric LOS
definitions, also lead to such multipoles and that these are as
important as (and, in many cases, more important than)
relativistic contributions and should not be neglected for
constraining relativistic parameters from data. Our perturba-
tive procedure helps us separate different contributions in an
efficient way. We also provide an estimator for the meas-
urement of a leading-order dipole signal from data, which is
based on a symmetric LOS definition.
The paper is organized as follows. Section II is devoted to

perturbative calculations of wide-angle and relativistic cor-
rections to multipoles of the galaxy power spectrum in
redshift space. It begins with general definitions and con-
tinues in the following subsections that are assigned to
finding the relativistic evolution of fluctuations, computing
relativistic andwide-angle corrections and investigating their
effects on local primordial non-Gaussianity measurements.
Finally, wide-angle and inverse-distance corrections in the
presence of nonlinearities at large scales are investigated. In
Sec. III, the perturbative procedure is extended to the
calculation of wide-angle effects on the lowest higher-order
statistic, namely, the galaxy bispectrum. After some general
definitions, in Sec. III A, we show how imaginary odd-parity
multipoles emerge from wide-angle effects and we compare
them to relativistic effects. In addition, bispectrum dipole
moment signal-to-noise ratios are estimated for upcoming
surveys. In Sec. III B, leading-order wide-angle and inverse-
distance corrections to even-parity (real) multipoles of
bispectrum are obtained and compared with each other.
Finally, in Sec. IV, we conclude with some discussions.

II. THE POWER SPECTRUM

A. General strategy

We adopt the following conventions for integrals in
configuration and Fourier spaces:

Z
x
≡
Z

d3x
ð2πÞ3 ;

Z
k
≡
Z

d3k: ð2Þ

Calculation of anisotropic N-point correlation functions
in Fourier space beyond the plane-parallel approximation

can become involved due to broken translational symmetry.
However, a helpful approach is to define “local” quantities
such as the local power spectrum Pgðk;xÞ and bispectrum
Bgðk1;k2;k3;xÞ, which are defined at each position x (a
suitable choice of LOS) by taking the Fourier transform
with respect to the relative position vectors of galaxies [83]
(see also Ref. [35]). Then, these local quantities can be
inserted into estimators that integrate over position vectors
and yield the final multipoles in Fourier space [83,84].
Definition of the LOS in these local quantities is not

unique. For the power spectrum, it can be defined as the
bisector or midpoint of two galaxy displacement vectors or
can also be chosen to be aligned with one of the galaxy
position vectors (end point LOS) [11,85,86]. The latter
makes it possible to evaluate estimators via fast Fourier
transform techniques [83,87]. In this work, we use the
midpoint for the power spectrum and centroid for the
bispectrum, which are symmetric under exchange.
To illustrate the main ideas, consider the general formula

for calculating the galaxy power spectrum multipoles from
the density perturbations,

Pl
g ðkÞ ¼

ð2πÞ3
Vs

ð2lþ 1Þ
Z

dΩk

4π

Z
x1

Z
x2

e−ik·x12Wðx1ÞWðx2Þ

× Llðk̂ · x̂cÞhδgðx1Þδgðx2Þi; ð3Þ

where x1 and x2 integrals can be taken over an infinite
volume with window functionsWðxÞ appropriately defined
to force the integrals to be confined to the survey region
with volume Vs. Here xc ¼ ðx1 þ x2Þ=2 is the midpoint of
the pair, which is chosen to define the LOS. This vector is
measured with respect to the observer, i.e., xc ¼ 0 at the
observor’s location. We have x1 ¼ xc þ x12=2 and
x2 ¼ xc − x12=2. The above integral can be rewritten as

Pl
g ðkÞ ¼

ð2πÞ3
Vs

ð2lþ 1Þ
Z

dΩk

4π

Z
xc

Llðk̂ · x̂cÞ

×
Z
x12

e−ik·x12Wðx1ÞWðx2Þhδgðx1Þδgðx2Þi: ð4Þ

In general, it is a tedious task to evaluate this integral
including all relevant contributions. In this work, we aim to
provide a simple and fast way of such a calculation to
especially determine the importance of different corrections
and their relative sizes. This can help one to decide which
contribution should be kept and which can be neglected.
The window function in Eq. (4) enforces the limitations

in volume (and its shape). Therefore, we can always take
the x12 integral over infinity and take the xc integral over
the survey volume. Since we mainly do the calculations for
scales that are well within the survey volume, we can just

WIDE-ANGLE AND RELATIVISTIC EFFECTS IN FOURIER- … PHYS. REV. D 107, 083528 (2023)

083528-3



set the window function to unity for those modes. In Sec. II
E, we will discuss how our results can be generalized to
include effects of the window function and nontrivial
survey geometries. Let us start from the definition of the
local power spectrum, which sets the stage for the rest of
calculations in this section. It describes the power at
position xc contributed by Fourier modes k and is given
by [83]

Ploc
g;nðk;xcÞ ¼

Z
x12

e−ik·x12hδg;nðx1Þδg;nðx2Þi; ð5Þ

where δgðxÞ is the observed galaxy density contrast,
measured at comoving position x. The index n is a label
that denotes the type of contribution, e.g., RSD, relativistic,
etc. Note that, in the most general case, for scales
comparable to the survey size, Eq. (5) must be generalized
to its windowed form, the innermost integral in Eq. (4). We
will discuss this in Sec. II E.
The relevant geometry under consideration is shown in

Fig. 1. Sincewe are integrating overx12, the final local power
spectrum is only a function of xc. We assume the time
dependence of fields implicitly, i.e., δg;nðxÞ ¼ δg;nðx; τÞ, but
do not write it for brevity.
The local power spectrum can be expanded in terms of

Legendre polynomials as

Ploc
g;nðk;xcÞ ¼

X
l

PðlÞ
g;nðk; xcÞLlðk̂ · x̂cÞ; ð6Þ

which reproduces plane-parallel multipoles in the limit

xc → ∞ and constant x̂c. In this equation, PðlÞ
g;nðk; xcÞ can

be considered as the local power spectrum multipole, which
is calculated as

PðlÞ
g;nðk;xcÞ≡ ð2lþ1Þ

Z
dΩk

4π
Llðk̂ · x̂cÞPloc

g;nðk;xcÞ: ð7Þ

The full power spectrum multipoles are obtained by
summing over all LOS vectors [83],

PðlÞ
g;nðkÞ≡

Z
Vs

d3xc

Vs
PðlÞ

g;nðk; xcÞ

¼
Z
Vs

dΩs

Vs

Z
Vs

x2cdxcP
ðlÞ
g;nðk; xcÞ; ð8Þ

which depends on the geometry of the survey volume Vs.

B. Galaxy density fluctuation with RSD
and inverse-distance terms only

We start from the simplest case, where we implement the
mapping from real to redshift space, excluding corrections
emanating from the effects of the perturbed background on

light ray trajectories (observed angles and redshifts).
Assuming uniform selection function (n̄ðxÞ ¼ n̄ðsÞ), here
and throughout the paper, conservation of galaxy numbers
in real and redshift spaces implies

½1þ δg;sðsÞ�d3s ¼ ½1þ δgðxÞ�d3x: ð9Þ

Using the RSD map s ¼ xþ x̂ðvg:x̂Þ=H and Eq. (9), one
finds

δg;sðkÞ ¼
Z
x

e−ik:xfe−i 1Hðk·x̂ÞðvgðxÞ·x̂Þ½1þ δgðxÞ� − 1g; ð10Þ

which can be used to obtain δs at any comoving position,

δg;sðxÞ ¼
Z
x0;k

eik:ðx−x0Þfe−i 1Hðk·x̂0Þðvgðx0Þ·x̂0Þ½1þ δgðx0Þ� − 1g:

ð11Þ

The exponential factor inside the integral can be expanded
to any desired order. Doing so, products involving
Cartesian components of k will have the general form
kmj with m being the power and j ¼ 1, 2, 3 representing x,
y, z components. These can be turned into derivatives with
respect to xj, ð−i∂jÞm, which can then be pulled out of the
integral. This results in

FIG. 1. Relevant geometry for local power spectrum calcula-
tions. The vector xc is the midpoint, which we take to define the
local line of sight and x12 ¼ x1 − x2.
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δg;s¼ δg

þ
X∞
n¼1

ð−1Þn
n!Hn ∂i1…∂in ½ð1þδgÞx̂i1…x̂inðv · x̂Þn�; ð12Þ

where all fields are evaluated at x and we have assumed
that velocities are unbiased (vg ¼ v), with v being the dark
matter velocity. This is valid at the large scales we are
interested in. Now, when at least one derivative acts on the
unit vectors, it generates the inverse-distance corrections
(absent for a fixed LOS), since

∂ix̂j ¼
δij − x̂ix̂j

jxj ; ð13Þ

whereas when all derivatives act on the fields, they generate
the usual plane-parallel result for δg;sðxÞ, where the fixed
LOS is replaced by the true varying LOS x̂: expanding
these type of terms around a fixed direction generates the
strict plane-parallel results and their wide-angle correc-
tions, as we discuss below.

C. RSD, inverse-distance, relativistic, and wide-angle
corrections to the linear galaxy power spectrum

At linear level, one only needs the first two terms in
Eq. (12) and should add to that relativistic terms that come
from perturbed angles and redshifts of the received light
due to background spacetime perturbations. The coefficient
of the inverse-distance term should also be modified by
magnification bias. Here we only consider metric pertur-
bations caused by scalar modes in an otherwise flat metric.
Therefore, for the perturbed flat Friedmann-Lemaître-
Robertson-Walker metric, in conformal Newtonian gauge
(CNG), we have

ds2 ¼ a2½−ð1þ 2ΦÞdτ2 þ ð1 − 2ΨÞδijdxidxj�: ð14Þ

The linear, leading-order relativistic calculation has
received a fair amount of attention [18–23]. Here we
follow, in particular, [21] [see their Eq. (37)], add observer
terms to that from [43,44,88], and write

δg;LðxÞ ¼ δg −
1

H
x̂i∂iðv · x̂Þ þ

�
2 − 5s
Hx

þ 5s − be þ
_H
H2

�
½Ψ −Ψo þ ðvo − vÞ · x̂þH0Vo� þ

1

H
_Φþ ð5s − 2ÞΦþ Ψ

−
2 − 5s

x
Vo þ ð2 − 5sÞvo · x̂þ ð5s − 2Þ

2

Z
τ

τ0

dτ0
τ − τ0

ðτ0 − τÞðτ0 − τ0Þ∇
2
x̂0 ðΦþ ΨÞ þ 2 − 5s

x

Z
τ0

τ
dτ0ðΦþ ΨÞ

þ
�
2 − 5s
Hx

þ 5s − be þ
_H
H2

� Z
τ0

τ
dτ0ð _Φþ _ΨÞ: ð15Þ

All parameters here are in CNG. We will relate δg
to the dark matter density contrast later. In this equation,
terms with a subscript o are evaluated at the observer’s
location and a dot refers to a partial derivative with
respect to the conformal time. The remaining parameters
in Eq. (15) are as follows. The magnification bias is
s≡ −ð2=5Þð∂ ln n̄g=∂ lnLÞjL̄, with n̄g being the back-
ground galaxy number density and L̄ the threshold
luminosity. The parameter be ≡ ∂ ln½n̄ga3�=∂ ln ameasures
the evolution of the galaxy comoving number density
(evolution bias) and the velocity potential V is related to
the peculiar velocity via v ¼ −∇V. Also, the integrated
terms are integrated along the LOS (x̂0 ¼ x̂).

1. Relativistic evolution of fluctuations

In this section, we relate the Fourier modes of fluc-
tuation fields appearing in Eq. (15), δg, Φ, v;… to the
dark matter density contrast δm and its derivatives, and
then find the evolution of δm in a relativistic context.
While such calculations have been done before (see, e.g.,
Ref. [89]), the emphasis here is to find the evolution using

a simple method that can be applied to more general
situations.
Denoting the perturbed density of cold dark matter in the

CNG by ρ̄mð1þ δmÞ, we aim to find the evolution of δmðkÞ
starting at τ ¼ τ⋆ long after the radiation-dominated era.
Here we ignore contributions of massless neutrinos and
photons given the eras we are interested in. Also, since at
the end we focus on power spectrum at large scales
(k≲ 0.01 h=Mpc) we can ignore the contribution of
massive neutrinos because these mostly impact smaller
scales. We also neglect anisotropic stress, which leads to
Φ ¼ Ψ from Einstein equations. Under these assumptions,
at linear level, the continuity and Euler equations for the
nonrelativistic dark matter fluid lead to the following
equations for fluctuations in Fourier space (in CNG):

_δmðkÞ − 3 _ΦðkÞ þ ΘvðkÞ ¼ 0; ð16Þ
_ΘvðkÞ þHΘvðkÞ ¼ k2ΦðkÞ; ð17Þ

where ΘvðxÞ ¼ ∇ · vðxÞ, with vi ¼ dxi=dτ as the peculiar
velocity. The velocity potential at Fourier space can also be
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written asVðkÞ ¼ ΘvðkÞ=k2. Also all quantities have proper
time dependence, but we do not write it explicitly for brevity.
Assuming the fluctuations are sourced by adiabatic

(curvature) perturbations, we have δmðkÞ ¼ δbðkÞ, where
b refers to baryons. We also assume that Θv;mðkÞ ¼
Θv;bðkÞ ¼ ΘvðkÞ, which is a good approximation at large
scales. Then, Einstein equations for G0

0, G0
i, and Gi

i lead
to the following relations for fluctuations in Fourier space
(in units where c ¼ 1):

ΦðkÞ þ 3
H
k2

_ΦðkÞ þ 3
H2

k2
ΦðkÞ

¼ −
4πGa2

k2
ðρ̄mδmðkÞ þ ρ̄bδbðkÞÞ

¼ −
3

2

H2

k2
ΩMδmðkÞ; ð18Þ

_ΦðkÞ þHΦðkÞ ¼ 4πGa2ðρ̄m þ ρ̄bÞ
ΘvðkÞ
k2

¼ 3

2

H2

k2
ΩMΘvðkÞ; ð19Þ

Φ̈ðkÞ þ 3H _ΦðkÞ þ ð2 _HþH2ÞΦðkÞ ¼ 0; ð20Þ

where for the last equalities in Eqs. (18) and (19) we
have used Friedmann equations with ΩM ¼ Ωm þΩb the
total matter (darkþ baryon) density parameter. Taking a
time derivative of the continuity equation (16) and
making use of a combination of the Euler equation (17),
and equations above, one finds the following second-
order equation for the evolution of dark matter density
contrast:

δ̈mðkÞ þ 3H _ΦðkÞ þ 6 _HΦðkÞ þH_δmðkÞ

−
3

2
H2ΩMδmðkÞ ¼ 0: ð21Þ

Now we need to express _ΦðkÞ and ΦðkÞ in terms of
δmðkÞ, _δmðkÞ. To this end, we can take Eqs. (16), (18),
and (19) as a system of three equations, three unknowns
[ΦðkÞ, _ΦðkÞ, ΘðkÞ] and solve for these in terms of other
parameters. The result is

ΦðkÞ ¼ 3H2ð6HΩM
_δmðkÞ − 2k2ΩMδmðkÞ þ 9H2Ω2

MδmðkÞÞ
2ð2k4 − 27H4ΩM − 9H2k2ΩMÞ

; ð22Þ

_ΦðkÞ ¼ 3ð−3H4ΩM
_δmðkÞ −H2k2ΩM

_δmðkÞ þH3k2ΩMδmðkÞÞ
2k4 − 27H4ΩM − 9H2k2ΩM

; ð23Þ

ΘvðkÞ ¼ −
2k4 _δmðkÞ − 9H3k2ΩMδmðkÞ
2k4 − 27H4ΩM − 9H2k2ΩM

: ð24Þ

After inserting these expressions into Eq. (21), one can factor out the common denominator (multiplied by 2k4) to get

2k4

ð2k4 − 27H4ΩM − 9H2k2ΩMÞ
ð� � �Þ ¼ 0: ð25Þ

For nonzero k, the only solution to this equation is ð� � �Þ ¼ 0. Therefore, the equation for the relativistic evolution of δm
takes the following form:

δ̈mðkÞ þ _δmðkÞ −
3

2
H2ΩMδmðkÞ −

�
9H2

2k2
þ 27H4

2k4

�
ΩMδ̈mðkÞ −

�
9H3

k2
þ 27H5

k4

�
1 −

_H
H2

��
ΩM

_δmðkÞ

þ
�
9H4

2k2

�
1þ 3

2
ΩM − 2

_H
H2

�
þ 81H6

4k4
ΩM

�
1þ 2

_H
H2

��
ΩMδmðkÞ ¼ 0: ð26Þ

The first three terms above constitute the well-known
equation for the evolution of dark matter density fluctuation
in the absence of relativistic corrections. The rest are such
corrections that are suppressed by powers of H=k and can
be omitted for modes far below the (conformal) Hubble
scale. The first piece has two solutions, DþðτÞCþ

τ⋆ðkÞ
(growing mode) and D−ðτÞC−

τ⋆ðkÞ (decaying mode),

where C�
τ⋆ðkÞ are determined from initial conditions at

τ ¼ τ⋆ and

DþðτÞ ¼
5

2
ΩMH3

Z
a

0

da0

Hða0Þ3 ; D−ðτÞ ¼
HðτÞ
H0

: ð27Þ

To find two solutions of Eq. (26) that include relativistic
corrections, we can postulate that
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δþmðkÞ ¼ DþðτÞ
�
1þH2

k2
ξðτÞ

�
Aþ

τ⋆ðkÞ; ð28Þ

δ−mðkÞ ¼ D−ðτÞ
�
1þH2

k2
γðτÞ

�
A−

τ⋆ðkÞ; ð29Þ

which are inspired by the form of relativistic suppression
factors, and plug them into Eq. (26) to find ξ and γ. The
quantities A�

τ⋆ðkÞ will be determined later. After doing so
and making use of

_Dþ ¼ ΩM

2
ð5a − 3DþÞH; ð30Þ

_H ¼
�
1 −

3

2
ΩM

�
H2; ð31Þ

_ΩM ¼ 3HΩMðΩM − 1Þ; ð32Þ

the equation for growing and decaying modes take the
following general forms:

H2

k2
Ψþ

1 ðξ; _ξ; ̈ξÞ þ
H4

k4
Ψþ

2 ðξ; _ξ; ̈ξÞ þ
H6

k6
Ψþ

3 ðξ; _ξ; ̈ξÞ ¼ 0;

H2

k2
Ψ−

1 ðγ; _γ; γ̈Þ þ
H4

k4
Ψ−

2 ðγ; _γ; ̈γÞ þ
H6

k6
Ψ−

3 ðγ; _γ; ̈γÞ ¼ 0;

where theΨþ’s are also functions ofDþ,ΩM, a, andH, and
Ψ−’s have the same functionality except for Dþ. To find ξ
and γ, we can use a simple trick inspired by the fact that any
solution for ξ and γ needs to be valid at all scales in tandem
with the fact that Ψ’s in the equations above are suppressed
at sub-Hubble scales by different powers of H=k. This
implies that one can find solutions for ξ and γ by requiring
the Ψ’s to be separately zero for each of the equations
above. For example, for the growing mode, requiring
Ψþ

m ¼ 0 (m ¼ 1, 2, 3), leaves us with a system of three
equations with three unknowns (ξ, _ξ, ̈ξ) from which ξ can
be found. A similar procedure can be used for finding γ.
One can also show that direct first- and second-order
derivatives of ξ and γ are consistent with _ξ, ̈ξ and _γ, ̈γ,
respectively. The final results are

ξðτÞ ¼ 3ð5a − 3DþÞΩM

2Dþ
¼ 3

d lnDþ
d ln a

≡ 3f; ð33Þ

γðτÞ ¼ −
9

2
ΩM; ð34Þ

which show that, unlike γ, ξ is proportional to the growth
rate parameter f, as one expects for the growing mode.
Therefore, to sum the results up, the full solution for the
relativistic evolution of dark matter fluctuation is given by
the simple expression

δmðkÞ ¼ DþðτÞ
�
1þ 3f

H2

k2

�
Aþ

τ⋆ðkÞ

þD−ðτÞ
�
1 −

9

2
ΩM

H2

k2

�
A−

τ⋆ðkÞ: ð35Þ

Since we are interested in τ ≫ τ� at which time the
decaying mode can be neglected, we can set δm ≈ δm;þ and
define Aþ

τ⋆ðkÞ≡Aτ⋆ðkÞ. Finally, one can plug this result
into Eqs. (22)–(24) to find the other parameters. After some
algebra, one gets

δmðkÞ ¼ Dþ

�
1þ 3f

H2

k2

�
Aτ⋆ðkÞ; ð36Þ

ΦðkÞ ¼ −
3

2

H2

k2
DþΩMAτ⋆ðkÞ; ð37Þ

_ΦðkÞ ¼ −
3

2

H3

k2
DþΩMðf − 1ÞAτ⋆ðkÞ; ð38Þ

ΘvðkÞ ¼ −HfDþAτ⋆ðkÞ: ð39Þ

The relations above are for fluctuation modes in CNG at
τ ≫ τ⋆. However, comparison between the dark matter
density contrast in CNG and its analog in synchronous
gauge gives us a better insight about Aτ⋆ðkÞ. The density
contrast and velocity divergence in CNG can be related to
those in synchronous gauge at linear level via the standard
gauge transformation (see, e.g., Ref. [90]),

δ̃mðkÞ ¼ δmðkÞ − α
_̄ρm
ρ̄m

; ð40Þ

Θ̃vðkÞ ¼ ΘvðkÞ − αk2; ð41Þ
where a tilde signifies a synchronous gauge quantity. Now
we can work in the synchronous/comoving gauge (SCG) in
which comoving coordinates are defined by free falling
dark matter particles with ṽi ¼ 0. Therefore, Θ̃v ¼ 0 in
SCG and from Eqs. (40) and (41) one finds

δ̃mðkÞ ¼ δmðkÞ þ 3
H
k2

ΘvðkÞ; ð42Þ

where we have used ρ̄m ∝ a−3. Now we can make use of
Eqs. (36) and (39) to obtain

δ̃mðkÞ ¼ Dþ

�
1þ 3f

H2

k2

�
Aτ⋆ðkÞ − 3

H
k2

ðHfDþAτ⋆ðkÞÞ

¼ DþAτ⋆ðkÞ: ð43Þ
This result implies that one can replace Aτ⋆ðkÞ in
Eqs. (36)–(39) by δ̃mðkÞ=Dþ to find

δmðkÞ ¼
�
1þ 3f

H2

k2

�
δ̃mðkÞ; ð44Þ
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ΦðkÞ ¼ −
3

2

H2

k2
ΩMδ̃mðkÞ; ð45Þ

_ΦðkÞ ¼ −
3

2

H3

k2
ΩMðf − 1Þδ̃mðkÞ; ð46Þ

ΘvðkÞ ¼ −Hfδ̃mðkÞ: ð47Þ

This relates the quantities in CNG to the density fluctuation
in SCG (with linear power spectrum ≃kns as k → 0, where
ns is the scalar spectral index), which will make calcu-
lations much easier.
The final step for calculating the observed galaxy power

spectrum from Eq. (15) is relating δg to δm via an appropriate
bias relation. In a relativistic context, galaxy density fluc-
tuation is most easily related to the dark matter fluctuation in
the SCG [21,23], via δ̃g ¼ b1δ̃m at linear level. This bias
relation is also gauge invariant [23], allowing one to find
the corresponding bias relation in other gauges. The gauge
transformation for the galaxy density fluctuation and
velocity modes are similar to Eqs. (40) and (41), except
_̄ρg=ρ̄g ¼ ð−3þ beÞH. Assuming zero velocity bias at large
scales (Θv;g ¼ Θv; Θ̃v;g ¼ 0), one finds δ̃gðkÞ ¼ δgðkÞ þ
ð3 − beÞHΘvðkÞ=k2. Now, using δ̃gðkÞ ¼ b1δ̃mðkÞ and
Eq. (47), one obtains

δgðkÞ ¼ b1δ̃mðkÞ þ ð3 − beÞ
H2

k2
fδ̃mðkÞ: ð48Þ

2. The full linear galaxy density contrast

Using Eqs. (44)–(48), one can rewrite the linear galaxy
density fluctuation in Eq. (15) by expressing its constitu-
ents in terms of inverse Fourier integrals. We have

δg;LðxÞ ¼ δRSDðxÞ þ δNIðxÞ þ δIðxÞ; ð49Þ

where we have ignored observer terms. It has been shown in
[43,44] that the inclusion of observer terms renders the
variance of the observed galaxy density fluctuations free of
IR divergences and is also necessary for a gauge invariant
expression of the observed galaxy density contrast. It is also
shown that, when all relativistic terms including observer
contributions are included, relativistic effects in cosmologi-
cal observable statistics become infrared insensitive at linear
and nonlinear levels [91]. However, for modes well within
survey volume, observer effects on Fourier-space correla-
tion functions should be negligible because these are
evaluated at a single position of the observer. For modes
comparable to the survey size when window function is
included (see Sec. II E), the convolution with window
function and the mixing between window and correlation
function multipoles can make observer terms relevant.
For example, contributions like observer’s velocity induce
a kinematic dipole in the measured galaxy density con-
trast, which can affect the measured galaxy power spectrum
multipoles in realistic situations (see, e.g., Ref. [45]).
However, for the scales we are interested in, we can omit
these contributions. Therefore, we will only focus on other
terms. In the equation above, δNIðxÞ is comprised of all
relativistic and inverse-distance terms that are evaluated at
the source position. This also includes the second term in
Eq. (48). The δIðxÞ terms are integrated relativistic con-
tributions. The total linear galaxy density fluctuation in
Eq. (49) can be written in the instructive form,

δg;LðxÞ ¼
Z
k0

eik
0·xðFRSD þ FNIÞðk0;xÞδ̃m0ðk0Þ

þ
Z
k0

Zx

0

dx0eik0·x0FIðk0;x;x0Þδ̃m0ðk0Þ; ð50Þ

where F functions are

FRSDðk0;xÞ ¼ ðb1 þ fðk̂0 · x̂Þ2ÞD̃þðτxÞ; ð51Þ

FNIðk0;xÞ ¼
�
ð3 − beÞf

H2

k02
þ 3

2

H2

k02
ΩM

�
5s − 2

Hx
− 10sþ be þ

3

2
ΩM − f þ 1

�

− f
iðk̂0 · x̂ÞH

k0

�
5s − be þ 1 −

3

2
ΩM −

5s − 2

Hx

��
D̃þðτxÞ; ð52Þ

FIðk0;x;x0Þ ¼ 3H2
0ΩM0ð1þ zx0 Þ

�
ð5s − 2Þ ðx − x0Þx0

2x

�
1 − ðk̂0 · x̂0Þ2 þ 2i

ðk̂0 · x̂0Þ
k0x0

�

þ
�
2 − 5s
Hx

þ 5s − be þ 1 −
3

2
ΩM

� ð1 − fx0 ÞHðx0Þ
k02

þ 5s − 2

k02x

�
D̃þðτx0 Þ; ð53Þ

where D̃þðτxÞ≡ D̃þðτxÞ=D̃þðτ0Þ represents the normalized growth factor of the SCG density fluctuation and D̃þ can be
obtained from Eq. (27). For these results, we have used∇2

x̂0ϕ¼ x02∇2ϕ−∂x0 ðx02∂x0ϕÞ andH2ΩM ¼ H2
0ΩM0ð1þ zÞ. Also, for

calculating integrated contributions in Eq. (15), proper time differences are converted to comoving distances, e.g., τ0 − τ0 ¼ x0.
Now we can construct the corresponding local power spectrum defined in Eq. (5). This becomes
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Ploc
g;Lðk;xcÞ

¼
Z
x12

e−ik·x12hδg;Lðxcþx12=2Þδg;Lðxc−x12=2Þi; ð54Þ

where we have used that x1;2 ¼ xc � x12=2, following the
geometry of Fig. 1. In the following, we will also use
hδ̃m0ðk1Þδ̃m0ðk2Þi¼δDðk1þk2ÞP̃m0ðkÞ, with P̃m0ðkÞ being
the linear dark matter power spectrum in the SCG at the
corresponding redshift.

3. Wide-angle corrections

We now illustrate, with an example, how wide-angle
effects can be easily calculated using perturbative expan-
sions. Let us consider, for instance, the RSD-RSD con-
tribution to the local power spectrum in Eq. (54) which,
from Eqs. (50) and (51), takes the form

Z
x12;k0

e−iðk−k0Þ·x12 ½b1 þ fðk̂0 · x̂1Þ2�½b1 þ fðk̂0 · x̂2Þ2�

× P̃mðk0Þ: ð55Þ

Wide-angle corrections arise when one relaxes the
assumption that x̂1 and x̂2 are equal to x̂c. Here we ignore
the variation of f itself and assume it is evaluated at xc.
Similarly, P̃mðk0Þ is evaluated at xc. In general, calculation
of wide-angle corrections can be complicated, but for a
sufficiently small ratio of x12=xc one can compute them
perturbatively.
Perturbative methods for calculation of leading-order

wide-angle corrections to two-point correlation functions
have been used in [35,36] by choosing x12=xc or other
suitable choices (like the bisector instead of the midpoint
in the denominator) for quantifying magnitudes of cor-
rections. Here our approach for perturbative calculations
is relatively different, as we find analytic relations in
Cartesian Fourier space that can be easily extended to
the nonlinear regime and also higher-order statistics like
the bispectrum.
Let us again consider the geometry of Fig. 1 as a sketch

of galaxy pair positions and our choice of LOS. We define
the perturbation parameter vector to be

ϵ≡ x12

xc
; ð56Þ

with x12 ¼ x1 − x2. We can assume that pairs are within
spherical bins with mean radius at redshift z̄ and depth Δz.
For most surveys, Δz=z̄ < 1. Therefore, the sample volume
can be written as

Vs ¼
4π

3
fsky

��
r̄þ Δr

2

�
3

−
�
r̄ −

Δr
2

�
3
�
; ð57Þ

where fsky ≡Ωs=Ωtot is the fraction of the sky covered by
the survey (Ωtot ≃ 41253 deg2) and r̄ and Δr correspond
to the comoving distances at z̄ and Δz. We assume that,
for most galaxy pairs within the bin, the ratio of Eq. (56)
is small. It is also worth noting that, looking at Eq. (4), the
results that will be obtained in the following can be
windowed by any survey-specific window function (see
Sec. II E). Also, there can be pairs for which (56) is larger
than 1. However, their corresponding separations are
most of the time much larger than k−1 for the scales in
which we are interested. Therefore, these have negligible
contributions and one can still use the entire survey
volume.
To evaluate integrals such as Eq. (55), one can expand

x̂1, x̂2 and any scalar function made out of them in terms of
ϵ to any desired order. For example,

x̂1 ¼
xc þ x12=2
jxc þ x12=2j

¼ x̂c þ
1

2
ϵþ � � � þOðϵ3Þ;

1

x1
¼ 1

xc

�
1 −

1

2
ϵ · x̂c þ � � �

�
; ð58Þ

and similar expansions for x̂2, 1=x2. Here we keep terms up
to second order to compute leading-order contributions.
But, in general, these help us separate wide-angle correc-
tions in a perturbative manner to any desired order.
After these expansions, we can decompose ϵ into its

Cartesian components, with the z direction defined to be
along the LOS unit vector x̂c. Doing so, Eq. (55) can be
expressed as a sum of integrals that have the following
general form:

IL
m;n;l ¼

Z
x12;k0

eiðk0−kÞ·x12Cm;n;lðk0; x̂c; xcÞðϵxÞmðϵyÞnðϵzÞl;

ð59Þ
where C contains all corresponding terms apart from
perturbation factors and (m, n, l) can be 0, 1, and 2 such
that ðmþ nþ lÞ ≤ 2 (for terms up to second order). Now,
according to Eq. (56), all ðϵjÞa terms turn into the ath
derivative of the exponential factor with respect to kj and
can be pulled out of the integral. This results in no x12

factor being left inside and the integral over x12 becomes
delta function δDðk0 − kÞ, which results in

IL
m;n;l ¼

�
iðmþnþlÞ

xmc xncxlc

��
∂
m

∂kmx

∂
n

∂kny

∂
l

∂klz

�
Cm;n;lðk; x̂c; xc

�
;

ð60Þ
and we sum over all such terms,

ILðk; k̂:x̂c; xcÞ ¼
X

ðmþnþlÞ≤2
IL
m;n;lðk; k̂:x̂c; xcÞ: ð61Þ
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This result depends only on k and xc, as expected. Also
with our symmetric choice of LOS there is no imaginary
term and, therefore, no 1=ðkxcÞ contribution. The leading-
order wide-angle corrections to the power spectrum are
therefore suppressed by 1=ðkxcÞ2 or ð1=ðkxcÞÞðH=kÞ,
where the latter corresponds to mixing with relativistic
corrections.

4. Nonintegrated relativistic corrections

The procedure explained above for wide-angle effects
involves computing the mixing between wide-angle
and relativistic contributions. Therefore, to find non-
integrated relativistic terms, one can evaluate the cor-
responding contributions to Ploc

g;L with plane-parallel
assumption.

Finally, it is worth mentioning that, in previous parts, we
assumed that parameters like f, D̃þ,ΩM, etc. are evaluated at
xc. As an example, we assumed fðx1Þfðx2Þ ≈ fðxcÞ2. While
one would expect that this is a good approximation for
surveys that radially narrow, it is straightforward to obtain
corrections to this assumption by performing an expansion
around xc. This will result in terms that are suppressed by
H2=k2, where H is evaluated at xc. Then, the result is
integrated over, as in Eq. (8), to yield the final multipoles.

5. Integrated relativistic corrections

To find the leading-order correction from integrated
contributions to the local power spectrum, one should start
from Eq. (54) and, considering Eq. (50), cross-correlate
Eq. (53) with the RSD term (51). This results in

Z
x12;k0

e−ik·x12
�Z

x1

0

dx0eik0·ðx0−x2ÞFIðk0; x1; x0; k̂0 · x̂0ÞFRSDð−k̂0 · x̂2Þ þ
Z

x2

0

dx0eik0·ðx1−x0ÞFIðk0; x2; x0;−k̂0 · x̂0ÞFRSDðk̂0 · x̂1Þ
�

× P̃m0ðk0Þ: ð62Þ
Now we can make use of the fact that x̂0 ¼ x̂1 ¼ x1=x1 in the first integral and x̂0 ¼ x̂2 ¼ x2=x2 in the second one (at linear
level in fluctuations) and also perform the coordinate transformation y ¼ x0xc=x1 and y ¼ x0xc=x2 in the first and second
integrals, respectively. Then, using that x1;2 ¼ xc � x12=2, one obtains

Z
x12;k0

e−iðk−
xcþy
2xc

k0Þ·x12
�Z

xc

0

dy

�
x1
xc

�
eik

0·ð y
xc
−1Þ·xcFI

�
k0; x1;

x1
xc

y; k̂0 · x̂1

�
FRSDð−k̂0 · x̂2Þ

þ
Z

xc

0

dy

�
x2
xc

�
e−ik

0·ð y
xc
−1Þ·xcFI

�
k0; x2;

x2
xc

y;−k̂0 · x̂2

�
FRSDðk̂0 · x̂1Þ

�
P̃m0ðk0Þ: ð63Þ

Now, to find the leading-order contribution, we can ignore mixing with wide-angle corrections and set x̂1 ¼ x̂2 ¼ x̂c in
the equation above. In addition x1;2=xc can also be set to 1, as any correction will produce subleading terms. The final result then
becomes

Z
xc

0

dy

�
2xc

xc þ y

�
3
�
ei2ð

y−xc
yþxc

Þk·xcFI
�

2xck
xc þ y

; xc; y; k̂ · x̂c

�
FRSDð−k̂ · x̂cÞ

þ e−i2ð
y−xc
yþxc

Þk·xcFI
�

2xck
xc þ y

; xc; y;−k̂ · x̂c

�
FRSDðk̂ · x̂cÞ

�
P̃m0

�
2xck
xc þ y

�
; ð64Þ

which is a simple 1D integral for numerical integration as will be discussed in the following.
Final results.—The final results for the local linear power spectrum with nonintegrated relativistic (including inverse-

distance) and wide-angle corrections take the following form:

Ploc;NI
g;L ðk; η; xcÞ ¼ Ppp

g;Lðk; ηÞ þ
1

ðkxcÞ2
PR1
g ðk; ηÞ þH2

k2
PR2
g ðk; ηÞ þ 1

ðkxcÞ
H
k
PR12
g ðk; ηÞ

þ 1

ðkxcÞ2
Pw1
g ðk; ηÞ þ 1

ðkxcÞ
H
k
Pw2
g ðk; ηÞ þO

�
1

ðkxcÞ4
�
þ � � � ; ð65Þ

where again η ¼ k̂ · x̂c. The first term is just the local plane-parallel approximation result,
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Ppp
g;Lðk; ηÞ ¼ ðb1 þ fη2Þ2P̃LðkÞ: ð66Þ

The next three terms are nonintegrated relativistic corrections that include inverse-distance (R1) modified by
magnification bias and other local (nonintegrated) relativistic (R2) contributions and the mixing between them (R12).
We have

PR1
g ðk; ηÞ ¼ f2η2ð2 − 5sÞ2P̃LðkÞ ð67Þ

and

PR2
g ðk; ηÞ ¼ 1

4
½−4b1fð−6þ 2be þ 3ΩMÞ þ 6b1ΩMð2þ 2be − 20sþ 3ΩMÞ þ fη2ð6ΩMð2þ 2be − 20sþ 3ΩMÞ

þ fð28þ 4b2e þ 40sþ 100s2 − 4beð4þ 10s − 3ΩMÞ − 24ΩM − 60sΩM þ 9Ω2
MÞÞ�P̃LðkÞ; ð68Þ

PR12
g ðk; ηÞ ¼ ð−2þ 5sÞð3b1ΩM þ 3fη2ΩM þ f2η2ð−2þ 2be − 10sþ 3ΩMÞÞP̃LðkÞ: ð69Þ

The last two terms in Eq. (65) are the leading-order wide-angle corrections, which have mixing with
inverse-distance and other nonintegrated relativistic terms. These two contributions vanish in the limit x1 ¼ x2.
We find

Pw1
g ðk; ηÞ ¼ fðb1ð−16η4 þ 17η2 þ ð5 − 20η2Þs − 2Þ þ fη2ð−24η4 þ 26η2 þ 5s − 7ÞÞP̃LðkÞ

þ fðb1ð10η4 − 11η2 þ 5ð2η2 − 1Þsþ 2Þ þ fη2ð9η4 − 8η2 þ 5sÞÞkP̃0
LðkÞ

−
1

2
fðη2 − 1Þð4b1η2 − b1 þ 2fη4 þ fη2Þk2P̃00

LðkÞ ð70Þ

and

Pw2
g ðk; ηÞ ¼ −fη2ðb1 − 2fη2 þ fÞð2be − 10sþ 3ΩM − 2ÞP̃LðkÞ þ

1

2
fðη2 − 1Þðb1 − fη2Þð2be − 10sþ 3ΩM − 2ÞkP̃0

LðkÞ;

with P̃0 ¼ dP̃=dk, etc. A similar procedure is followed for
integrated relativistic correction. In fact, the local power
spectrum for these contributions can be found by inserting
(64) into the integral of Eq. (71) and doing the integral
over η ¼ k̂ · x̂c first. This results in a straightforward one-
dimensional integral over y.
From these results, one can insert them into Eq. (7) to

find the local multipoles,

PðlÞ
g;Lðk; xcÞ≡ ð2lþ 1Þ

2

Z
1

−1
dηLlðηÞPg;Lðk; η; xcÞ; ð71Þ

which can be used in Eq. (8) to obtain the power spectrum
multipoles,

PðlÞ
g ðkÞ≡

Z
Vs

d3xc

Vs
PðlÞ

g;Lðk; xcÞ; ð72Þ

where the integration is done within the volume of the
galaxy sample Vs, see Eq. (57).
Let us now illustrate these corrections and estimate their

relative importance. Here we show plots of corrections to
the local power spectrum and do not specify a survey bin.

However, it is very straightforward to find the final power
spectrum multipoles by performing the integration in
Eq. (72), since the local power spectrum multipoles are
functions of magnitude of xc only. In addition, for bins
with narrow depth, the results are close. Figure 2 shows
our results at redshift z ¼ 1 and linear bias b1 ¼ 1.5. For
the cosmology, we assumed a flat ΛCDM model with
ΩM ¼ 0.32, σ8 ¼ 0.828, ns ¼ 0.968, and negligible radi-
ation. For this plot, we also assumed s ¼ 1 and be ¼ 0

(i.e., ng ∝ 1=a3). In general, the relative importance of
different contributions depends on redshift and total
corrections scale almost like 1=k2 at these k’s. Figure 3
shows the variation of monopole corrections at a fixed
scale k ¼ 0.005 h=Mpc. We can see here that there is
much more sensitivity to magnification bias as compared
with evolution bias.
Implications for local fNL measurements.—It is well

known that local PNG induces a scale-dependent bias with
the following form [46,47]:

ΔbðkÞ ¼ 3fNLδcðb1 − 1Þ ΩMH2a

D̃þðzÞk2TðkÞ
; ð73Þ
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which modifies the (plane-parallel) linear galaxy power
spectrum as Ppp;NG

g ðk; ηÞ → ðb1 þ ΔbðkÞ þ fη2ÞP̃LðkÞ.
At large scales (k≲ 0.01 h=Mpc) where TðkÞ → 1, the
1=k2 scaling of Δb resembles that of wide-angle
and relativistic contributions calculated already. This
implies that such corrections can be mistaken with a
true fNL term if are not taken into account in theoretical
modeling. Comparing power spectrum monopoles, for

example, we can find such apparent fNL. Figure 4
shows such a term as a function of magnification bias.
It is estimated by comparing the PNG correction to the
linear monopole power spectrum with the similar
corrections from the total wide-angle and relativistic
(integrated and nonintegrated) contributions. It is smaller
than current limits, but not negligible, compared to upcom-
ing survey forecasts [92].

FIG. 3. Similar plot as above (not absolute value) for monopole, but at a fixed scale, k ¼ 0.005 h=Mpc and varying magnification bias
with be ¼ 0 (left) and evolution bias with s ¼ 0 (right) at redshift z ¼ 1.

FIG. 2. Absolute values of relative corrections to monopole and quadrupole of the plane-parallel linear local power spectrum from
leading local (nonintegrated) relativistic (corresponding to functions R1, R2, and R12 defined above), wide angle alone (function w1,
which also includes the mixing with inverse-distance corrections modified by magnification bias), wide-angle/relativistic mixing
(function w2), and integrated relativistic corrections [based on the integral of (64)]. The black line shows the sum of all these
contributions. The linear bias is b1 ¼ 1.5, and magnification and evolution biases are set to s ¼ 1 and be ¼ 0, respectively.
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D. The one-loop power spectrum

1. Beyond linear theory

We now show how to apply the perturbative approach
followed in the linear case to include nonlinear
effects. Here we keep terms up to third order in SPT
(one loop). For this case, we neglect relativistic H=k
contributions and consider inverse-distance and wide-
angle corrections only. This is because their inclusion is
an unnecessary complication for our purpose of compar-
ing the wide-angle corrections with other local effects
as inverse-distance terms and other local relativistic
terms are typically of the same order (see, e.g.,
Refs. [93,94] for an investigation of relativistic effects
in nonlinear regimes). Therefore, hereafter we remove the
tilde on top of SCG quantities for simplicity and, for
example, use δ instead of δ̃.
Equation (12) can be recast by writing δg and v in

terms of their Fourier representations, and assuming
negligible vorticity, the velocity field can be rewritten

in terms of its scalar mode, the divergence Θv ¼
∇ · v≡ −Hf∇ · u ¼ −HfΘ, which carries the same
amount of information. Therefore, Eq. (12) can be
rewritten as

δg;sðxÞ ¼ δgðxÞ þ f
Z
k

eik·xDθðk;xÞΘðkÞ þ f
Z
k1;k2

eik12·xDθδðk1;k2;xÞΘðk1Þδgðk2Þ

þ f2
Z
k1;k2

eik12·xDθθðk1;k2;xÞΘðk1ÞΘðk2Þ þ f2
Z

k1;k2;k3

eik123·xDθθδðk1;k2;k3;xÞΘðk1ÞΘðk2Þδgðk3Þ

þ f3
Z

k1;k2;k3

eik123·xDθθθðk1;k2;k3;xÞΘðk1ÞΘðk2ÞΘðk3Þ þ…; ð74Þ

where the D kernels collect terms proportional to δg and powers of Θ as denoted by their subindex, and we have displayed
only the necessary terms for a one-loop power spectrum calculation. These kernels are given by

Dθðk;xÞ ¼
ðk · x̂Þ2

k2
−
2i
x
k · x̂
k2

;

Dθδðk1;k2;xÞ ¼
ðk12 · x̂Þðk1 · x̂Þ

k21
−
2i
x
k1 · x̂
k21

;

Dθθðk1;k2;xÞ ¼
ðk1 · x̂Þðk2 · x̂Þ

k21k
2
2

�
1

2
ðk12 · x̂Þ2 −

2i
x
ðk12 · x̂Þ −

1

x2

�
;

Dθθδðk1;k2;k3;xÞ ¼
ðk1 · x̂Þðk2 · x̂Þ

k21k
2
2

�
1

2
ðk123 · x̂Þ2 −

2i
x
ðk123 · x̂Þ −

1

x2

�
;

Dθθθðk1;k2;k3;xÞ ¼
ðk1 · x̂Þðk2 · x̂Þðk3 · x̂Þ

k21k
2
2k

2
3

�
1

6
ðk123 · x̂Þ3 −

i
x
ðk123 · x̂Þ2 −

1

x2
ðk123 · x̂Þ

�
; ð75Þ

where k12… ¼ k1 þ k2 þ � � �. The first term in each of these kernels corresponds to the plane-parallel result where the fixed
LOS is replaced by x̂, and the second and further terms correspond to inverse-distance corrections.

FIG. 4. Apparent fNL induced by deviations of the plane-parallel
approximation for linear galaxy bias b1 ¼ 1.5 as a function of
magnification bias at k ¼ 0.005 h=Mpc and assuming be ¼ 0.
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These expressions include all RSD contributions needed
for the calculation of the tree-level bispectrum and one-loop
galaxy power spectrum. These results can also be used to
derive the RSD perturbation theory (PT) kernels, after

using the PT expansion for δ and Θ. We discuss them in the
Appendix.
We start from Eq. (74), and plugging it into Eq. (5)

we find

Ploc
g;sðk;xcÞ¼

Z
x12;k1

eiðk1−kÞ·x12fPggðk1ÞþfðDθð−k1;x2ÞþDθðk1;x1ÞÞPgθðk1Þþf2Dθðk1;x1ÞDθð−k1;x2ÞPθθðk1Þg

þ
Z

fx12;k1;k2g

eiðk12−kÞ·x12ff2b21Dθδðk1;k2;x1ÞðDθδð−k1;−k2;x2ÞþDθδð−k2;−k1;x2ÞÞPLðk1ÞPLðk2Þ

þf4Dθθðk1;k2;x1ÞðDθθð−k1;−k2;x2ÞþDθθð−k2;−k1;x2ÞÞPLðk1ÞPLðk2Þg

þ
�� Z

x12;k1;k2

eiðk1−kÞ·x12ffDθδðk2;−k12;x2ÞBgθgðk1;k2;−k12Þþf2Dθθðk2;−k12;x2ÞBgθθðk1;k2;−k12Þ

þf2Dθðk1;x1ÞDθδðk2;−k12;x2ÞBθθgðk1;k2;−k12Þþf3Dθðk1;x1ÞDθθðk2;−k12;x2ÞBθθθðk1;k2;−k12Þ
þf2b21ðDθθδð−k1;k2;−k2;x2ÞþDθθδðk2;−k1;−k2;x2ÞþDθθδðk2;−k2;−k1;x2ÞÞPLðk1ÞPLðk2Þ
þf3b1ðDθθθð−k1;k2;−k2;x2ÞþDθθθðk2;−k1;−k2;x2ÞþDθθθðk2;−k2;−k1;x2ÞÞPLðk1ÞPLðk2Þ
þf3b1Dθðk1;x1ÞðDθθδð−k1;k2;−k2;x2ÞþDθθδðk2;−k1;−k2;x2ÞþDθθδðk2;−k2;−k1;x2ÞÞPLðk1ÞPLðk2Þ
þf4Dθðk1;x1ÞðDθθθð−k1;k2;−k2;x2ÞþDθθθðk2;−k1;−k2;x2ÞþDθθθðk2;−k2;−k1;x2ÞÞPLðk1ÞPLðk2Þg

þ
Z
x12;k1;k2

eiðk12−kÞ·x12ff3b1Dθδðk1;k2;x1ÞðDθθð−k1;−k2;x2ÞþDθθð−k2;−k1;x2ÞÞPLðk1ÞPLðk2Þg
�

þðx1↔x2Þ
�
; ð76Þ

where we have used the fact that four-point functions can
be treated in the Gaussian limit due to our one-loop
approximation, the D functions are defined as in Eq. (75),
and, as usual,

hδgðk1Þδgðk2Þi ¼ δDðk1 þ k2ÞPggðk1Þ;
hδgðk1ÞΘðk2Þi ¼ δDðk1 þ k2ÞPgθðk1Þ;
hΘðk1ÞΘðk2Þi ¼ δDðk1 þ k2ÞPθθðk1Þ; ð77Þ

hδgðk1Þδgðk2ÞΘðk3Þi¼ δDðk1þk2þk3ÞBggθðk1;k2;k3Þ;
ð78Þ

and similarly for other bispectra terms such as Bgθg, etc.
To perform a one-loop calculation of the galaxy power
spectrum in redshift space, we need biased bispectra at
tree level and biased power spectra at one loop. There-
fore, we include local bias terms up to second order (b1,
b2) with nonlocal bias contributions from tidal fields at
second and third order (γ2 and γ21 in the parametrization
of [95–97]). The bias expansion then reads

δgðxÞ ¼ b1δðxÞ þ
b2
2
δ2ðxÞ þ γ2G2ðΦvjxÞ

þ γ21G2ðφ1;φ2jxÞ þ � � � ; ð79Þ

where “� � �” refers to higher-order terms or those that
enforce hδgi ¼ 0. The latter do not change the power
spectrum as long as k ≠ 0. In this equation, G2ðΦvjxÞ is
the second-order Galileon arising from tidal effects
defined as

G2ðΦvjxÞ≡ ð∇ijΦvÞ2 − ð∇2ΦvÞ2; ð80Þ

with ∇2Φv ¼ Θ. In addition, G2ðφ1;φ2jxÞ is a non-
local third-order bias contribution that depends on the
Lagrangian linear and quadratic potentials φ1;2 [96],

G2ðφ1;φ2jxÞ≡∇ijφ1∇ijφ2 −∇2φ1∇2φ2; ð81Þ

where ∇2φ1 ¼ −δ and ∇2φ2 ¼ −G2ðφ1Þ.
The galaxy-galaxy and matter-galaxy power spectra in

this bias basis has been calculated in [96,97]. Using their
formulas, one can also find galaxy-velocity power spec-
trum. We have
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PggðkÞ ¼ b21PmmðkÞ þ 4b1PLðkÞ
Z
q
½2γ2G2ðk;−qÞ þ γ21Kðk;qÞ�Kðk − q;qÞPLðjk − qjÞ

þ 2b1

Z
q
½b2 þ 2γ2Kðk − q;qÞ�F2ðk − q;qÞPLðjk − qjÞPLðqÞ

þ 1

2

Z
q
½b22 þ 2b2γ2Kðk − q;qÞ þ 4γ22Kðk − q;qÞ2�PLðjk − qjÞPLðqÞ ð82Þ

and

PgθðkÞ ¼ b1PmθðkÞ þ 2PLðkÞ
Z
q
½2γ2G2ðk;−qÞ þ γ21Kðk;qÞ�Kðk − q;qÞPLðjk − qjÞ

þ
Z
q
½b2 þ 2γ2Kðk − q;qÞ�G2ðk − q;qÞPLðjk − qjÞPLðqÞ: ð83Þ

In these equations, Pmm and Pmθ are the one-loop matter-matter and matter-velocity power spectra. These, along with Pθθ,
have the following well-known expressions [2]:

PmmðkÞ ¼ PLðkÞ þ 2

Z
fqg

F2ðk − q;qÞ2PLðjk − qjÞPLðqÞ þ 6PLðkÞ
Z
fqg

F3ðk;−q;qÞPLðqÞ;

PmθðkÞ ¼ PLðkÞ þ 2

Z
fqg

F2ðk − q;qÞG2ðk − q;qÞPLðjk − qjÞPLðqÞ þ 3PLðkÞ
Z
fqg

ðF3ðk;−q;qÞ þ G3ðk;−q;qÞÞPLðqÞ;

PθθðkÞ ¼ PLðkÞ þ 2

Z
fqg

G2ðk − q;qÞ2PLðjk − qjÞPLðqÞ þ 6PLðkÞ
Z
fqg

G3ðk;−q;qÞPLðqÞ; ð84Þ

where Fn and Gn represent SPT kernels [2], e.g. (x12 ≡ q̂1 · q̂2),

F2ðq1;q2Þ ¼
5

7
þ x12

2

�
q1
q2

þ q2
q1

�
þ 2

7
x212; G2ðq1;q2Þ ¼

3

7
þ x12

2

�
q1
q2

þ q2
q1

�
þ 4

7
x212; Kðq1;q2Þ ¼ x212 − 1: ð85Þ

For the bispectra appearing in Eq. (76), we have

Bgθgðk1;k2;−k12Þ ¼ Γð2Þ
g ðk1;k2ÞΓð1Þ

g ðk1ÞΓð1Þ
θ ðk2ÞPLðk1ÞPLðk2Þ þ Γð2Þ

θ ðk1;−k12ÞΓð1Þ
g ðk1ÞΓð1Þ

g ðk12ÞPLðk1ÞPLðk12Þ
þ Γð2Þ

g ðk2;−k12ÞΓð1Þ
g ðk2ÞΓð1Þ

θ ðk12ÞPLðk2ÞPLðk12Þ

and similar expressions for other combinations Bgθθ, Bθθg,
and Bθθθ, with Γ functions up to the needed order given by
[96,97]

Γð1Þ
g ðkÞ ¼ b1; Γð1Þ

θ ðkÞ ¼ 1;

Γð2Þ
g ðk1;k2Þ ¼ 2b1F2ðk1;k2Þ þ b2 þ 2γ2Kðk1;k2Þ;

Γð2Þ
θ ðk1;k2Þ ¼ 2G2ðk1;k2Þ: ð86Þ

Now we turn to a discussion of the impact of going
beyond the plane-parallel approximation from these one-
loop expressions.

2. Inverse-distance and wide-angle effects

We proceed in the same way as done in linear theory.
Considering the geometry of Fig. 1 again, the inverse-
distance corrections come from 1=xn terms in Eq. (76) by
setting x1 ¼ x2 ¼ xc and x̂1 ¼ x̂2 ¼ x̂c. Then, since there
will be no explicit dependence on x1 and x2 in the D
functions, the integral over x12 turns into a delta function
and we are left with just one loop integral, which can be
easily evaluated numerically. At the end, these terms
produce 1=ðkxcÞ2 corrections, but without wide-angle
contributions. For wide-angle corrections, before applying
the perturbative method to evaluate the integrals in Eq. (76),
it is instructive to highlight a few steps one can take to
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reduce the number of parameters involved and to make the
expressions more amenable to perturbative expansion. As
an example, let us consider the second and forth integrals in
Eq. (76) (others are simpler), which take the following
general form:

I2;4 ¼
Z

x12;k1;k2

eiðk12−kÞ·x12Cðk1;k2;x1;x2Þ; ð87Þ

where C contains all parameters and functions in the
integrand. This integral, via coordinate transformations
k1 þ k2 ¼ kR and k1 − k2 ¼ kr, can be rewritten as

I2;4 ¼
1

8

Z
x12;kR;kr

eiðkR−kÞ·x12CðkR;kr;x1;x2Þ: ð88Þ

Inside C, there are combinations of products such as
k̂R · k̂r, k̂R · x̂1, k̂r · x̂1, etc. We first take the integral over
kr. For this purpose, we choose the coordinate system
whose z direction is defined by k̂R, i.e., ẑ0 ≡ k̂R and x̂0, ŷ0
are defined accordingly on its normal plane. As an

example, let us consider the following integral as one of
the most general forms of the terms that appear in Eq. (88),

Z
x12;kR;kr

eiðkR−kÞ·x12ðk̂r · x̂1Þ2ðk̂r · x̂2Þ2

× F ðkR · x̂1;kR · x̂2; k̂r · k̂R; kr; kRÞ; ð89Þ

with F being a function. The first expression can be
decomposed in the above-mentioned coordinate system as
ðk̂r · x̂1Þ2ðk̂r · x̂2Þ2 ¼ ðk̂ri0 x̂1i0 Þ2ðk̂rj0 x̂2j0 Þ2 with repeated
indices being summed over and i0, j0 denoting (x0, y0, z0)
each. Now we can write the components in terms
of the corresponding spherical coordinates: k̂rx0 ¼
sinðθrÞ cosðϕrÞ, k̂ry0 ¼ sinðθrÞ sinðϕrÞ, k̂rz0 ¼ cosðθrÞ,
and similarly, x̂1x0 ¼sinðθ1Þcosðϕ1Þ, x̂1y0 ¼sinðθ1Þsinðϕ1Þ,
x̂1z0 ¼ cosðθ1Þ, etc. Also let us define k̂r ·k̂R¼cosðθrÞ≡μr.
Plugging all these into Eq. (89), we first take the integral
over ϕr (note that arguments of F are all independent of
ϕr). The result, after some algebra, is

Z
x12;kR

eiðkR−kÞ·x12
Z

dkrdμrk2r

�
π

4

�
½ð1þ 2ðx̂1 · x̂2Þ2Þðμ2r − 1Þ2 − 4ð1 − 6μ2r þ 5μ4rÞðx̂1 · x̂2Þðk̂R · x̂1Þðk̂R · x̂2Þ

þ ð−1þ 6μ2r − 5μ4rÞððk̂R · x̂1Þ2 þ ðk̂R · x̂2Þ2Þ þ ð3 − 30μ2r þ 35μ4rÞðk̂R · x̂1Þ2ðk̂R · x̂2Þ2�
× F ðkR · x̂1;kR:x̂2; μr; kr; kRÞ: ð90Þ

Now, considering the 2D integral inside, we are left with
two remaining integrals (over kR and x12) and a dependence
on x̂1:x̂2 that can be added to theF function. The same is true
for the first and third integrals of Eq. (76) and they are even
simpler because there is no x̂1:x̂2 term produced in the
calculations. For the first one, the analog of the 2D integral is
the loop integral inside power spectra. For the third one, k2

plays the role of kr and the steps are the same.
The two-dimensional loop integrals are the only objects

that need to be evaluated numerically, which is not difficult
given their simple structure. The rest of the calculations are
analytic. Therefore, the most general outcome for each of
the four integrals of the local power spectrum (76) takes the
form

Iα ¼
Z

x12;k0

eiðk0−kÞ·x12Cα

�
k̂0 · x̂1; k̂

0 · x̂2; x̂1 · x̂2; k0;
1

x1
;
1

x2

�
;

ð91Þ

with α ¼ 1, 2, 3, 4. This is where we can employ the
perturbative expansions to find wide-angle corrections to
any desired order. Replacing the unit vectors and 1=x
factors with the expansions in Eq. (58), we can follow the

same steps as in the linear case [Eqs. (59)–(61)] and find all
leading-order wide-angle contributions. Although the pro-
cedure is straightforward, the number of terms involved is
quite large and therefore we do not write them down
explicitly here.
The final result for the one-loop local galaxy power

spectrum beyond the plane-parallel limit takes the follow-
ing form:

Ploc
g;sðk;xcÞ¼Ppp

g;one loopðk;ηÞþ
1

ðkxcÞ2
Pid
g;one loopðk;ηÞ

þ 1

ðkxcÞ2
Pwa
g;one loopðk;ηÞþO

�
1

ðkxcÞ4
�
; ð92Þ

where as before η≡ k̂ · x̂c. P
pp
g;one loopðk; ηÞ represents the

plane-parallel result of Eq. (76), which is obtained by
neglecting all inverse-distance terms in the D functions [see
Eq. (75)] and also setting x̂1 ¼ x̂2 ¼ x̂c. The following two
terms are inverse-distance and wide-angle corrections,
respectively, which are obtained following the steps
explained previously. For bias parameters, we use local-
Lagrangian values for γ2, γ21 and peak-background split fit
for quadratic bias [95–99],
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b2 ¼ 0.412 − 2.143b1 þ 0.929b21 þ 0.008b31 þ
4

3
γ2; ð93Þ

γ2 ¼ −
2

7
ðb1 − 1Þ; ð94Þ

γ21 ¼
2

21
ðb1 − 1Þ þ 6

7
γ2: ð95Þ

Inserting Eq. (92) into Eq. (7), one can find the local
multipoles and then, by plugging the result into Eq. (8),
find the final multipoles. For the plane-parallel one-loop
case, this yields even parity multipoles up to l ¼ 8 and
wide-angle corrections increase it to l ¼ 10. However,
given the difficulty in detecting high multipoles, we only
plot the first three, using Eq. (57) for a Euclid-like survey
bin [100] with z̄ ¼ 1, Δz ¼ 0.2, and b1 ¼ 1.46. It is worth
reminding the reader that, for loop calculations, we did not
include magnification bias.
Figure 5 shows relative plots of such corrections for

this survey bin. The figure on the right shows the total
corrections, which are also compared with their linear
counterparts. Although loop effects start becoming impor-
tant after k≳ 0.1 h/Mpc, they do notmake any enhancement
in the magnitudes of corrections beyond the plane-parallel
approximation that could be important in practice. The most
significant enhancement is seen in the monopole, but this
happens when the corrections are already well below
detectable levels for the foreseeable future. In any case,
the perturbative procedure developed here can be a fast and
easy way for assessing the importance of such effects for
different galaxy samples, if desired.

3. Velocity dispersion and cosmological distortions

Velocities of galaxies within virialized halos can be
significantly larger than peculiar velocities predicted from
linear theory. This causes apparent elongation of galaxy

clusters along the line of sight known as the FOG effect.
To see how this changes in the presence of corrections to
the plane-parallel approximation, it is enough to consider a
simple approach to velocity dispersion effects, where the
pairwise velocity distribution is Gaussian and scale inde-
pendent, characterized by variance σp. In this case, the
linear redshift-space power spectrum gets modulated by a
damping factor [101–103]. Neglecting wide-angle and
relativistic effects for now, this reads

Ploc
g;Lðk;xcÞ

¼ ðb1 þ fðk̂ · x̂cÞ2Þ2 exp
�
−
ðkσpðk̂ · x̂cÞÞ2

2

�
PLðkÞ: ð96Þ

Similar to previous cases, the final multipoles for this
modulated local power spectrum can be found. Figure 6
shows a comparison between FOG corrections to the
monopole and quadrupole power against the corrections
from linear wide-angle and local (nonintegrated) relativistic
terms we found earlier. We have used σp ≈ 4.5 Mpc=h for
z̄ ¼ 1 from [71], be ¼ 0, s ¼ 1, and other parameters are as
presented in the one-loop case. This figure implies that one
can ignore the mixing between wide-angle/relativistic
corrections with FOG corrections at large scales shown,
as these are all subleading. In fact, wide-angle and rela-
tivistic corrections are suppressed by 1=ðkxcÞ2 and ðH=kÞ2,
while leading FOG corrections are suppressed by ∼ðkσpÞ2.
Therefore, the mixing is suppressed by ∼σp=xc and ∼Hσp,
which are subleading to wide-angle/relativistic terms at
these scales. Therefore, one can separately modulate
the plane-parallel power spectrum as in Eq. (96) and then
add wide-angle and relativistic contributions. In other
words,

FIG. 5. Nonlinear beyond plane-parallel corrections to multipoles of one-loop galaxy power spectrum, for a Euclid-like galaxy
sample. The left figure separates wide-angle and inverse-distance corrections, both relative to nonlinear plane-parallel multipoles. The
bias parameters are b1 ¼ 1.46 and b2, γ2, and γ21, which are obtained from Eqs. (93)–(95). The figure on the right combines both
corrections and shows the total result. Also in that panel, the total nonlinear corrections are compared with the corresponding linear ratio.
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Ploc
g;Lðk;xcÞ
¼ PPP;FOG

g;L ðk;xcÞ þ wide angleþ relativistic: ð97Þ

Therefore, in practice, one can compute the nonlinear
redshift-space power spectrum (including loop and FOG
effects) in the plane-parallel approximation and then
simply add linear wide-angle and relativistic corrections
on top.
Finally, let us briefly comment on the impact of going

beyond the plane-parallel approximation in cosmological
distortions. The Alcock-Paczynski (AP) parameters (α⊥,
αk) [104] scale the actual modes in perpendicular and
parallel directions to account for the anisotropic distortion
caused by the assumption of the wrong cosmology when
mapping angles and redshifts to comoving positions or
wave vectors. In other words, one replaces kk → kk=αk
(or xk → xkαk) and k⊥ → k⊥=α⊥ (or x⊥ → x⊥α⊥) and
constrains α’s from data (using the true cosmological
model leads to both parameters being measured to be 1).
This parametrization can be easily applied to the previous
calculations of wide-angle effects based on local power
spectrum definitions. For example, at the linear level, one
can start from Eq. (65) and rescale k, xc, and η≡ k̂:x̂c as

k → k
�
η2

α2k
þ ð1 − η2Þ

α2⊥

�
1=2

;

xc → αkxc;

η →
η

αk

�
η2

α2k
þ ð1 − η2Þ

α2⊥

�−1=2
: ð98Þ

In this way, AP effects can be included in k space in the
presence of wide-angle corrections at both linear and
nonlinear regimes. Such effects have been investigated

for wide-angle two-point correlation functions of galaxies
at the linear level in [105].

4. Wide-angle and relativistic corrections
in the presence of nonlinearities

We now summarize the results of previous parts and
make a general conclusion. Figures 5 and 6 imply that at
large scales the presence of nonlinear effects will not
change the relative size of the wide-angle corrections.
The same thing can be said about relativistic effects.
This means that, in practice, we can separately calculate
corrections from nonlinear terms and wide-angle and
relativistic contributions and calculate the latter in linear
theory. In other words, we have

Ploc
g;Lðk;xcÞ ¼ PPP;L

g;L ðk;xcÞ þ nonlinear corrections

þ linear wide angleþ linear relativistic

þ subleading cross terms; ð99Þ

which significantly simplifies the calculations.

E. Inclusion of window effects

We finish the power spectrum section by discussing
how the results of previous parts can be generalized to
situations where window effects become important. Here,
by window function, we also mean the function that
determines the shape of the survey volume. Beginning
from Eq. (4), one can write the product of window
functions as

Wðx1ÞWðx2Þ ¼
Z
x0
12

δDðx0
12 − x12ÞW

�
xc þ

x0
12

2

�

×W

�
xc −

x0
12

2

�
; ð100Þ

which leads to the convolution

Pl
g ðkÞ¼

ð2πÞ3
Vs

ð2lþ1Þ
Z

dΩk

4π

Z
xc

Llðk̂ · x̂cÞ
Z

d3q
ð2πÞ3

×
Z
x12

e−iðk−qÞ·x12hδgðx1Þδgðx2Þi

×
Z
x0
12

e−iq·x
0
12W

�
xcþ

x0
12

2

�
W

�
xc−

x0
12

2

�
; ð101Þ

where the integration over d3q comes from the definition of
delta function for δDðx0

12 − x12Þ. The integral in front of
d3q is the local power spectrum according to Eq. (5), which
is exactly what we calculated in previous parts. One can use
those results and replace k with k − q. More straightfor-
wardly, one can make a change of variables: k − q≡ p, to
write

FIG. 6. Comparison between corrections to plane-parallel
monopole and quadrupole power and the corresponding correc-
tions due to velocity dispersion effects. Here we have included
local (nonintegrated) relativistic corrections only, for the sake of
illustration.
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Pl
g ðkÞ ¼

ð2πÞ3
Vs

ð2lþ 1Þ
Z

dΩk

4π

Z
xc

Llðk̂ · x̂cÞ

×
Z

d3p
ð2πÞ3 P

loc
g ðp;xcÞ

Z
x0
12

e−iðk−pÞ·x012

×W
�
xc þ

x0
12

2

�
W
�
xc −

x0
12

2

�
: ð102Þ

This result implies that, in order to incorporate window
effects that also include the effects of nontrivial geometry,
all one needs to do is to find the convolution between the
results of previous parts [for Ploc

g ðp;xcÞ] and window
products. It is clear from this integral that for modes that
are well below the survey size (i.e., k−1 much smaller than
survey size), the integral over window functions can be
approximated with a delta function that reproduces the
previous results (the window function always enforces
the integral over xc to be limited to the survey volume,
as we also assumed).

III. THE REDSHIFT-SPACE BISPECTRUM

Similar to the power spectrum case, we first start with the
definition of the local bispectrum [83],

Bloc
g;sðk1;k2;xcÞ ¼

Z
d3x13

ð2πÞ3
d3x23

ð2πÞ3 e
−ik1·x13e−ik2·x23

× hδg;sðx1Þδg;sðx2Þδg;sðx3Þi; ð103Þ

for which we are considering triangle configurations in k
space satisfying k3 þ k1 þ k2 ¼ 0. For the local bispec-
trum, xc ¼ ðx1 þ x2 þ x3Þ=3 is the centroid of the cor-
responding real-space triangles made by the points at
which vectors x1, x2, and x3 end. The geometry of the
problem is drawn in Fig. 7. We choose xc to define our
LOS for the local bispectrum. This has the advantage of
being fully symmetric with respect to point exchanges. To
describe k space triangle configurations, one needs five
parameters. Using the parametrization in [66], three of
these can be k1, k2, and the cosine of angle between their
vectors (k̂1 · k̂2 ≡ cos θ≡ μ). The other two determine
the orientation of the triangle with respect to the observer.
One of them can be defined, without loss of generality,
as the angle between the centroid (LOS) vector and the k1
side (cos θ1 ≡ k̂1 · x̂c). The other one, ϕ12, can be defined
in the following way: in the plane whose normal is
determined by k1, ϕ12 is the angle between projections
of k2 and xc onto that plane. This implies k̂2 · x̂c ¼
μ cos θ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
sin θ1 cosϕ12.

The local bispectrum can then be expanded in terms of
spherical harmonics defined by orientation angles,

Bloc
g;sðk1;k2;xcÞ ¼

X
l;m

Bðl;mÞ
g;s ðk1; k2; μ; xcÞYlmðθ1;ϕ12Þ;

and, similar to the power spectrum, “local multipoles” of
the bispectrum can be obtained from

Bðl;mÞ
g;s ðk1;k2;μ;xcÞ

¼ ð2lþ1Þ
4π

Z
dΩTBloc

g;sðk1;k2;xcÞY�
lmðθ1;ϕ12Þ; ð104Þ

where dΩT ≡ d cos θ1dϕ12. Ultimately, the “final” multi-
poles can be calculated by integrating over LOS vectors
within the survey volume,

Bðl;mÞ
g;s ðk1; k2; μÞ ¼

Z
Vs

d3xc

Vs
Bðl;mÞ
g;s ðk1; k2; μ; xcÞ: ð105Þ

The plane-parallel multipoles of the bispectrum can be
obtained taking the limit x1 ¼ x2 ¼ xc and xc → ∞. In the
following subsections, we go beyond this limit and inves-
tigate contributions from relativistic and wide-angle terms.

A. Odd-parity (imaginary) multipoles from
relativistic and wide-angle contributions

Inclusion of relativistic corrections to the galaxy number
density contrast can lead to imaginary odd-parity multi-
poles [76–78] that are totally absent in the plane-parallel
limit. In this section, we show that, in addition to relativistic

FIG. 7. Relevant geometry for local bispectrum calculations.
Here xc is the centroid of the triangle, which we take to be the line
of sight. Also, xnm ¼ xn − xm.
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terms, wide-angle corrections alone produce odd-parity
multipoles too. We calculate these imaginary terms from
different physical origins and compare them.
For the tree-level galaxy bispectrum, only terms up to

second order in δ or u are needed. Also for relativistic

contributions, we only need to keep terms that produce
odd-parity multipoles in which we are interested in this
part. We use the results in [26] (see also Refs. [24,25,27])
for relevant second-order relativistic terms. Combining
Eq. (12) with these terms leads to

δg;sðx1Þ ¼ δgðx1Þ þ
�
fx̂1j∂x1j ½ðugðx1Þ · x̂1Þð1þ δgðx1ÞÞ� þ

f2

2
x̂1kx̂1j∂x1j∂x1k ½ðugðx1Þ · x̂1Þ2�

�

þ 1

x1

�
fð2 − 5sÞðugðx1Þ · x̂1Þ½1þ δgðx1Þ� þ

�
2 −

5

2
s

�
f2x̂1j∂x1j ½ðugðx1Þ · x̂1Þ2�

�

þH
�
A1fugðx1Þ · x̂þA2f2x̂1j∂x1j ½ðugðx1Þ · x̂1Þ2� þA1fugðx1Þ · x̂1δgðx1Þ −

f
H

ugðx1Þ · x̂1
_δgðx1Þ

− 2f2ugj∂x1jðugðx1Þ · x̂1Þ þ
f
H2

ϕx̂1jx̂1k∂x1j∂x1kðugðx1Þ · x̂1Þ þ
1

H2
ϕx̂1j∂x1jδgðx1Þ

−
f
H2

ðugðx1Þ · x̂1Þx̂1jx̂1k∂x1j∂x1kϕ

�
; ð106Þ

where δg’s here are in SCG (as the difference with the
CNG parameter is subleading for odd-parity multipoles),
but we have dropped the tilde for simplicity. Also hereA1≡
ð5sþ 1 − 3

2
ΩM − beÞ and A2 ≡ ð3 − 9

4
ΩM þ 5

2
s − beÞ.

Also we have used _H=H2 ¼ 1 − ð3=2ÞΩM.
There are three brackets after δgðx1Þ in this equation. The

first one is the RSD contribution. The second one is the
inverse-distance term that is part of Eq. (12), but its
coefficient has been modified to include magnification
bias [26]. Since the leading suppression factor in the
imaginary bispectrum will be 1=ðkxcÞ, we neglect 1=x2n

terms in Eq. (12). They will be relevant for real (even-
parity) multipoles that we consider later. The last bracket is
the “pure” relativistic contribution, which leads to a H=kn
suppression in the bispectrum. Again, usually the last two
brackets combined are called relativistic terms.
Similar to the power spectrum case, we assume here

that the velocity field is unbiased, i.e., ug ¼ u and for
density field biasing we use Eq. (79) up to quadratic order
needed for the tree-level bispectrum, i.e., we omit the γ21
contribution. This leads to the following Fourier-space
relation:

δgðkÞ ¼ b1δðkÞ þ
b2
2

Z
x;q1;q2

eiðq1þq2−kÞ·xδðq1Þδðq2Þ þ γ2

Z
x;q1;q2

eiðq1þq2−kÞ·xKðq1;q2Þδðq1Þδðq2Þ; ð107Þ

where K is given in Eq. (85). Since we keep terms up to second order in δ or Θ, most of the Fourier fields from δg’s and ug’s
in Eq. (106) can be treated as linear. For a few other terms that appear at first order, we can write

δðkÞ ¼ δLðkÞ þ
Z
q1;q2

δDðk − q1 − q2ÞF2ðq1;q2ÞδLðq1ÞδLðq2Þ ð108Þ

and

ΘðkÞ ¼ δLðkÞ þ
Z
q1;q2

δDðk − q1 − q2ÞG2ðq1;q2ÞδLðq1ÞδLðq2Þ; ð109Þ

where the second-order SPT kernels F2, G2 are given in Eq. (85). Note that in Eq. (106) we also use _δ ¼ fHδ and
ϕðkÞ ¼ −ð3=2ÞΩMðH2=k2ÞδðkÞ from Eq. (45) (again, the tilde sign for the SCG parameter is dropped for simplicity).
Taking all these into account and sorting terms out, the final result for galaxy number density contrast up to second order in
δL becomes
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δg;sðx1Þ ¼
Z
q1

eiq1·x1Rtotal
1 ðq1;x1ÞδLðq1Þ þ

Z
q1;q2

eiq12·x1Rtotal
2 ðq1;q2;x1ÞδLðq1ÞδLðq2Þ; ð110Þ

where q12 ¼ q1 þ q2. We have Rtotal
1 ðq1;xnÞ≡ RRSD

1 ðq1;xnÞ þ RID
1 ðq1;xnÞ þ Rrel

1 ðq1;xnÞ with n ¼ 1, 2 and similarly for
Rtotal
2 ðq1;q2;xnÞ. Here we have separated inverse-distance (denoted “ID”) terms from pure relativistic ones (denoted “rel”)

just to keep track of different suppression factors. For these functions, we have

RRSD
1 ðq1;x1Þ ¼ b1 þ f

ðq1 · x̂1Þ2
q21

; ð111Þ

RRSD
2 ðq1;q2;x1Þ ¼ b1F2ðq1;q2Þ þ

b2
2
þ γ2Kðq1;q2Þ þ f

ðq12 · x̂1Þ2
q212

G2ðq1;q2Þ þ fb1
ðq12 · x̂1Þðq1 · x̂1Þ

q21

þ f2
ðq1 · x̂1Þðq2 · x̂1Þ

2q21q
2
2

ðq12 · x̂1Þ2; ð112Þ

RID
1 ðq1;x1Þ ¼ −fð2 − 5sÞ i

x1

q1 · x̂1

q21
; ð113Þ

RID
2 ðq1;q2;x1Þ ¼ −

i
x1

�
fð2 − 5sÞq12 · x̂1

q212
G2ðq1;q2Þ þ fð2 − 5sÞb1

q1 · x̂1

q21
þ ð114Þ

f2
�
2 −

5

2
s

� ðq1 · x̂1Þðq2 · x̂1Þ
q21q

2
2

ðq12 · x̂1Þ
�
; ð115Þ

Rrel
1 ðq1; x̂1Þ ¼ −

H
q1

ifA1

q1 · x̂1

q1
; ð116Þ

Rrel
2 ðq1;q2; x̂1Þ ¼ H

�
−ifA1

q12 · x̂1

q212
G2ðq1;q2Þ − iA2f2

ðq1 · x̂1Þðq2 · x̂1Þðq12 · x̂1Þ
q21q

2
2

− ib1fðA1 − fÞq1 · x̂1

q21

þ 2if2
q̂1 · q̂2

q1q2
ðq1 · x̂1Þ −

3

2
ifΩm

ðq1 · x̂1Þ3
q21q

2
2

−
3

2
ib1Ωm

q2 · x̂1

q21
þ 3

2
ifΩm

ðq1 · x̂1Þ2q2 · x̂1

q21q
2
1

�
: ð117Þ

Now we can calculate the local bispectrum by plugging Eq. (110) into Eq. (103). The result is

Bloc
g;sðk1;k2;xcÞ ¼

Z
q1;q2;x13;x23

eiðq1−k1Þ·x13eiðq2−k2Þ·x23Rtotal
1 ðq1;x1ÞRtotal

1 ðq2;x2Þ½Rtotal
2 ð−q1;−q2;x3Þ

þ Rtotal
2 ð−q2;−q1;x3Þ�PLðq1ÞPLðq2Þ þ

�
k1

k2 → k3

�
þ
�
k1 → k2

k3

�
; ð118Þ

which assumes closed triangle configurations, i.e.,
k3 ¼ −k1 − k2.
Our goal is to find odd-parity local multipoles (all

imaginary) by inserting this equation into Eq. (104). In
fact, there are no plane-parallel contributions (which come
from RRSD terms only) for these multipoles. The leading-
order imaginary terms are produced by inverse-distance,
pure relativistic, and wide-angle contributions. Before
calculating them, we find the plane-parallel local bispec-
trum, which is all real, by inserting RRSD

1;2 into the equation

above and taking the limit x̂1 ¼ x̂2 ¼ x̂c. It can be easily
seen that the result is

Blocal;pp
g ðk1;k2;xcÞ
¼RRSD

1 ðk1;xcÞRRSD
1 ðk2;xcÞ

× ½RRSD
2 ð−k1;−k2;xcÞþRRSD

2 ð−k2;−k1;xcÞ�

×PLðk1ÞPLðk2Þþ
�

k1

k2→k3

�
þ
�
k1→k2

k3

�
; ð119Þ
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which can then be used in Eq. (104) to yield the local plane-
parallel multipoles,

Bðl;mÞ
g;pp ðk1;k2;μ;xcÞ

¼ ð2lþ1Þ
4π

Z
dΩTB

local;pp
g ðk1;k2;xcÞY�

lmðθ1;ϕ12Þ; ð120Þ

and the final multipoles are found by integrating this over
LOS vectors within the survey volume via Eq. (105). The
only nonzero multipoles for the plane-parallel case are
those of even l.
Let us now explain how each of the aforementioned odd-

parity contributions are obtained.

Odd-parity multipoles from inverse-distance and rela-
tivistic terms.—For inverse-distance terms, we mix RSD
functions, RRSD

1;2 from Eqs. (111) and (112), with RID
1;2 from

Eqs. (113) and (114) in Eq. (118), and separate the
imaginary part. For relativistic terms, we do the same
but with Rrel

1;2 from Eqs. (116) and (117). Also, since these
contributions are separate from wide-angle ones [the
leading-order suppression factors of all three contributions
are of the same order, i.e., it is 1=ðkxcÞ for ID and wide-
angle terms andH=k for relativistic terms], they do not mix
with each other and we can simply set x̂n ¼ x̂c and 1=xn ¼
1=xc for inverse-distance and relativistic contributions.
Therefore, we have

Blocal;ID=rel
g ðk1;k2;xcÞ ¼ fRRSD

1 ðk1;xcÞRRSD
1 ðk2;xcÞ½RID=rel

2 ð−k1;−k2;xcÞ þ RID=rel
2 ð−k2;−k1;xcÞ�

þ ðRID=rel
1 ðk1;xcÞRRSD

1 ðk2;xcÞ þ RRSD
1 ðk1;xcÞRID=rel

1 ðk2;xcÞÞ½RRSD
2 ð−k1;−k2;xcÞ

þ RRSD
2 ð−k2;−k1;xcÞ�gPLðk1ÞPLðk2Þ þ

�
k1

k2 → k3

�
þ
�
k1 → k2

k3

�
; ð121Þ

where we use k3 ¼ jk1 þ k2j for cyclic permutations.
Again, suppression factors at leading order are 1=ðknxcÞ
and H=kn for inverse-distance and relativistic terms,
respectively. This result depends on k1, k2, μ, k̂1 · x̂c ¼
cos θ1, and k̂2 · xc ¼ μ cos θ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
sin θ1 cosϕ12.

Therefore, to find the corresponding local imaginary multi-
poles, we insert this expression into Eq. (104) to integrate
over angular dependencies,

Bðl;mÞ
Im;ID=relðk1;k2;μ;xcÞ
ð2lþ1Þ

4π

Z
dΩTB

local;ID=rel
g ðk1;k2;xcÞY�

lmðθ1;ϕ12Þ ð122Þ

and use this in Eq. (105) to integrate over xc and find the
final multipoles. We will later plot them together and call
this combination “relativistic terms” to be consistent with
the literature.
Odd-parity wide-angle multipoles.—Leading-order

wide-angle terms that produce imaginary odd-parity multi-
poles are also suppressed by 1=ðkxÞ factors and, as
mentioned above, there is no mixing between these
and inverse-distance/relativistic terms at leading order.
Therefore, to find the leading wide-angle contributions,
we only need to put the RRSD

1;2 functions into Eq. (118) and
take the imaginary part (as real parts are all even-parity).
We have

Blocal;wa
g ðk1;k2;xcÞ ¼ Im

� Z
q1;q2;x13;x23

eiðq1−k1Þ·x13eiðq2−k2Þ·x23RRSD
1 ðq1;x1ÞRRSD

1 ðq2;x2Þ½RRSD
2 ð−q1;−q2;x3Þ

þ RRSD
2 ð−q2;−q1;x3Þ�PLðq1ÞPLðq2Þ

�
þ
�

k1

k2 → k3

�
þ
�
k1 → k2

k3

�
: ð123Þ

Now, to extract wide-angle terms, we use a method
inspired by the geometry of the problem in Fig. 7,
which is the natural extension of what we did in the
power spectrum case. Let us define the perturbation
vectors as

ϵ1 ≡ x13

xc
; ϵ2 ≡ x23

xc
: ð124Þ

There can be pairs for which these quantities are larger
than 1. However, their corresponding separations are
most of the time much larger than k−11 and k−12 for the
scales in which we are interested. Therefore, these have
negligible contributions and one can still use the entire
survey volume.
Now, using x1 ¼ xc þ 2x13=3 − x23=3, x2 ¼

xc þ 2x23=3 − x13=3, and x3 ¼ xc − x13=3 − x23=3, we
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can expand x̂n’s up to any desired order in ϵ’s. For example,
we have

x̂1 ¼
xc þ 2x13=3 − x23=3
jxc þ 2x13=3 − x23=3j

¼ x̂c þ
2

3
ϵ1 þ � � � ; ð125Þ

1

x1
¼ 1

jxc þ 2x13=3 − x23=3j

¼ 1

xc

�
1 −

2

3
ϵ1:x̂c þ

1

3
ϵ2:x̂c þ � � �

�
; ð126Þ

and similar expansions for x̂2, x̂3, 1=x2, and 1=x3. For the
odd-parity case, we neglect Oðϵ21;2Þ terms and higher.
Again, plane-parallel contributions, Eq. (119), are repro-
duced in the limit ϵ1;2 → 0 or x̂1 ≃ x̂2 ≃ x̂3 ≃ x̂c and
1=xc → ∞.
By applying these expansions to unit vectors in the RRSD

1;2
functions, defined in Eqs. (111) and (112), we can separate
all terms of order ϵ1 and ϵ2 in Eq. (123) and find the
leading-order wide-angle contributions. Such terms have
the following general form:

Iwa
ða1;…;a6Þðk1;k2;xcÞ

¼
Z
q1;q2;x13;x23

eiðq1−k1Þ·x13eiðq2−k2Þ·x23Ca1;…;a6ðq1;q2; x̂cÞ

× ðϵ1xÞa1ðϵ1yÞa2ðϵ1zÞa3ðϵ2xÞa4ðϵ2yÞa5ðϵ2zÞa6
þ cyclic; ð127Þ

where C contains all objects except perturbation parameters
and a1…a6 can be 0 or 1 with

P
6
j¼1 aj ¼ 1.

Now, from Eq. (124), we can pull ϵ1j and ϵ2j factors out
of the integral by replacing x13j and x23j with derivatives
i∂=∂k1j and i∂=∂k2j, which act on the entire integral. Doing
so, the integrals over x13 and x23 turn into delta functions
and that simply replaces q’s with k’s. In this way, the above
expression becomes

Iwa
ða1;…;a6Þðk1;k2;xcÞ

¼
�
iða1þ���þa6Þ

xa1c …xa6c

��
∂
a1

∂ka11x
…

∂
a6

∂ka62z

�
Ca1;…;a6ðk1;k2; x̂c

�

þ cyclic;

where we use k3 ¼ −k1 − k2 for cyclic permutations.
Given the condition on aj’s, this result produces imaginary
terms that are suppressed by factors of 1=ðk1xcÞ, 1=ðk2xcÞ,
and 1=ðk12xcÞ. The final wide-angle local bispectrum is the
sum of all such terms,

Bloc;wa
g;Im ðk1;k2;xcÞ ¼

X
fa1;…;a6g

Iwa
ða1;…;a6Þðk1;k2;xcÞ:

ð128Þ

Again, this expression depends on k1, k2, μ, k̂1 · x̂c ¼
cos θ1, and k̂2 · x̂c ¼ μ cos θ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
sin θ1 cosϕ12.

Finally, to get odd-parity multipoles, we repeat the same
steps of using this result in Eq. (104) (which integrates over
cos θ1 and ϕ12) to find the corresponding local multipoles

Bðl;mÞ
Im;waðk1; k2; μ; xcÞ, and then insert these into Eq. (105) to

find the final multipoles.
Dipole moment, signal-to-noise ratio, and measure-

ments.—From the previous two subsections, we get the
final local odd-parity multipoles as

Bðl;mÞ
g;Im ðk1;k2;μ;xcÞ¼Bðl;mÞ

Im;IDðk1;k2;μ;xcÞþBðl;mÞ
Im;relðk1;k2;μÞ

þBðl;mÞ
Im;waðk1;k2;μ;xcÞ; ð129Þ

with different contributions separated as labeled. We can
then find the final multipoles using

Bðl;mÞ
g;Im ðk1; k2; μÞ ¼

Z
Vbin

d3xc

Vbin
Bðl;mÞ
g;Im ðk1; k2; μ; xcÞ ð130Þ

and separate each contribution.
Figure 8 shows examples for the relative size of the

dipole moment (l ¼ 1) from wide-angle contributions

(Bðl;0Þ
Im;wa) and inverse-distance + pure relativistic (or

relativistic in general) terms (Bðl;0Þ
Im;ID þ Bðl;0Þ

Im;rel) with respect

to the plane-parallel monopole moment (Bð0;0Þ
g;pp ). These

quantities are plotted against θ=π, which is the angle
between two sides of the triangle, k1 and k2. The plots in
Fig. 8 correspond to two redshift bins, one being a
Euclid-like sample bin with z̄ ¼ 1, Δz ¼ 0.2, and Vs ¼
7.94 Gpc3h−3 [100] and the other one being a DESI
bright galaxy survey (BGS)-like sample bin with
z̄ ¼ 0.25, Δz ¼ 0.1, and Vs ¼ 0.58 Gpc3h−3 [57].
From these plots, we clearly see that wide-angle con-

tributions have important effects on odd-parity signals and
should not be neglected if one intends to constrain
relativistic effects from imaginary signals.
Let us now estimate the signal-to-nose ratio for the

bispectrum dipole as a function of relativistic parameters be
and s. For noise, we use the Gaussian cosmic variance of
the bispectrum dipole, assuming m ¼ 0 for simplicity. This
can be a reasonable approximation for the scales we are
considering. We have

ðσð1;0ÞB Þ2 ¼hB̂ð1;0Þ
g ðk1;k2;μÞ2i− hB̂ð1;0Þ

g ðk1;k2;μÞi2; ð131Þ
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and we can use the following estimator (we only need
leading contributions to dipole variance so we can neglect
relativistic and wide-angle corrections here):

B̂ð1;0Þ
g ðk1; k2; μÞ ¼

3

V123

Y3
i¼1

Z
ki

d3qiδDðq123ÞL1ðq̂1:xcÞ

× δg;sðq1Þδg;sðq2Þδg;sðq3Þ; ð132Þ

where we have set
R ðdΩT=4πÞFðqnÞ¼ð1=V123Þ×Q

3
i¼1

R
kn
d3qnδDðq123ÞFðqiÞwith V123¼

R
kn
d3qnδDðq123Þ≃

8π2k1k2k3Δk3. Again, since we are only interested in
leading contributions to the variance, we can put
δg;sðqÞ ¼ ðb1 þ fðq̂ · xcÞ2ÞδLðqÞ. Using Eq. (132) in
Eq. (131), after some straightforward calculations and
taking shot noise into account, one can write

ðσð1;0ÞB Þ2 ¼ −s123
Vf

V123

9

4π

Z
1

−1
dη1

Z
2π

0

dϕ12L1ðη1Þ2

×
Y3
a¼1

�
Pg;ppðka; ηaÞ þ

1

ð2πÞ3n̄g

�
; ð133Þ

which leads to an imaginary error for the dipole, as
expected. Here s123 ¼ 6, 2, 1 for equilateral, isosceles,
and other triangles, respectively, Vf is the volume of the
fundamental cell in Fourier space, i.e., Vf ≡ ð2πÞ3=Vs, and
Pg;ppðk; ηÞ ¼ ðb1 þ fη2Þ2PLðkÞ. Here η1¼ k̂1 · x̂c¼cosθ1,

η2¼k̂2 ·x̂c¼η1μþ
ffiffiffiffiffiffiffiffiffiffiffi
1−η21

p ffiffiffiffiffiffiffiffiffiffiffi
1−μ2

p
cosϕ12, and η3¼k̂3 ·x̂c,

which can be expressed in terms of the previous two
expressions using k3 ¼ −k1 − k2.
We calculate signal-to-noise ratio (SNR) for a given

redshift bin using

ðSNRÞ2¼
X

fk1;k2;k3g

Bðl;mÞ
g;Im ðk1;k2;μÞB�ðl;mÞ

g;Im ðk1;k2;μÞ
ðσð1;0ÞB Þ2

; ð134Þ

where we sum over all triangles assuming k1 ≤ k2 ≤ k3,
from a minimum wave number kmin ¼ 0.007h/Mpc in
steps of Δk ¼ kf ¼ ð2πÞ=V1=3

s . Figure 9 shows the SNR
for different surveys as a function of evolution bias be
(with s ¼ 1) and magnification bias s with (be ¼ 0). For
Euclid results, we used forecast parameters from [100]
(Table 3) and considered the whole range (0.9 < z < 1.8)
as one bin centered at z̄ ¼ 1.35. For DESI we have used
forecast data in [57] (Tables 2.3 and 2.5). We take 0 <
z < 0.5 for Bright Galaxy Survey (BGS) and 0.6 < z <
1.2 for LRG (Luminous Red Galaxies) as single bins. For
ELG (Emission Line Galaxies), we break the redshift
range into two bins: 0.6 < z < 1.2 and 1.2 < z < 1.7 and
add up their corresponding SNR. The signal-to-noise ratio
for the relativistic-only dipole (dashed line) is quite
consistent with the results in [78], reemphasizing its
detectability in upcoming surveys. However, we are also
showing here that wide-angle effects are even more
important in many cases (as can be seen from the solid
lines) and should be taken into account for any likelihood
analysis of relativistic parameters from bispectrum
dipole data.
Let us finish this section commenting on the measure-

ment of odd-parity signals accounting for wide-angle
effects that we just calculated. Using Eqs. (103)–(105),
and changing variables (x13, x23, xc) back to (x1,x2,x3),
we can rewrite the multipole formula as (we take m ¼ 0
for simplicity)

Bðl;0Þ
g;s ðk1; k2; μÞ

¼ ð2lþ 1Þ
V123

Y3
i¼1

Z
ki

d3qiδDðq123Þ
Z
Vs

d3x1

ð2πÞ3
d3x2

ð2πÞ3
d3x3

ð2πÞ3

× e−iq1·x1e−iq2·x2eiq3·x3Llðq̂1 · xcÞ
× hδg;sðx1Þδg;sðx2Þδg;sðx3Þi; ð135Þ

FIG. 8. Examples for imaginary dipole moments of galaxy bispectrum from different origins. Relativistic terms also include inverse-
distance contributions. These are plotted for different triangle configurations as a function of the angle between k1 and k2 (θ≡ cos−1 μ).
Bias parameters are b1 ¼ 1.46 for z̄ ¼ 1 bin and b1 ¼ 1.5 for the other one with b2, γ2 calculated from Eqs. (93) and (94) for each bin.
Also for relativistic coefficients, we set be ¼ 0 and s ¼ 1.
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where the integration is over positions of tracers inside the
surveyvolumeVs.Onewaytoevaluate this integralusingfast
Fourier transforms is to replace xcwith x̂1 [83].However, for
odd-parity signals the leading suppression factor is ðknxcÞ−1,
and to this order one can factorize the integral without such
replacement, thereforebeingmoreaccurate. Indeed, fromthe
expansion in Eq. (125) we can see that

x̂1 þ x̂2 þ x̂3 ¼ 3x̂c þOðϵ21;2Þ; ð136Þ
which means the leading-order correction to this sum is
subleading for odd-party multipoles whose corrections
were Oðϵ1;2Þ. Therefore, we can simply replace x̂c with
1=3 (x̂1þ x̂2þ x̂3) andfactorize the integrals.Asanexample,
for thedipole,we canwriteL1ðk̂1 · x̂cÞ ¼ 1=3ðL1ðk̂1 · x̂1Þþ
L1ðk̂1 · x̂2Þ þ L1ðk̂1 · x̂3ÞÞ, which simplifies Eq. (135) for
numerical integrations with subleading errors compared to
relativistic and wide-angle effects. This can be used for
calculation of imaginary multipoles from data.

B. Beyond plane-parallel corrections
to even-parity (real) multipoles

We now compute corrections beyond the plane-parallel
approximation in Eq. (12), keeping terms up to second
order in u and δ for the tree-level bispectrum. We also keep
1=x2 corrections because, as we will see, the leading-order
suppression factor for real multipoles is 1=ðkxÞ2. We have

δg;sðxÞ¼δgðxÞþfx̂j∂xj ½ðugðxÞ · x̂Þð1þδgðxÞÞ�

þf
2

x
ðugðxÞ · x̂Þ½1þδgðxÞ�

þf2

2
x̂kx̂j∂xj∂xk ½ðugðxÞ · x̂Þ2�

þf2
2

x
x̂j∂xj ½ðugðxÞ · x̂Þ2�þ

f2

x2
½ðugðxÞ · x̂Þ2�: ð137Þ

Here we do not include relativistic corrections, which are
suppressed by powers of H=k in Fourier space, but we
keep inverse-distance terms. This is adequate for our
purpose of comparing wide-angle corrections with other
contributions because, again, inverse-distance and relativ-
istic corrections are of the same order. In addition to that,
wide-angle and inverse-distance terms combined comprise
the leading corrections to multipoles of the plane-parallel
bispectrum.
Similar to the odd-parity case, we use Eqs. (107)–(109)

to rewrite Eq. (137) in the following form:

δg;sðxÞ¼
Z
q1

eiq1·xRtotal
1 ðq1;xÞδLðq1Þ

þ
Z
q1;q2

eiq12·xRtotal
20 ðq1;q2;xÞδLðq1ÞδLðq2Þ; ð138Þ

where Rtotal
1 ≡ RRSD

1 þ RID
1 and Rtotal

20 ≡ RRSD
2 þ RID

20 . R
RSD
1;2

and RID
1 are the same as Eqs. (111)–(113). For RID

20 , the
following term should be added to Eq. (114) that was
subleading in previous case:

RID
20 ðq1;q2;xÞ¼RID

2 ðq1;q2;xÞ−
f2

x2
ðq1 · x̂Þðq2 · x̂Þ

q21q
2
2

: ð139Þ

The relation for the local bispectrum is Eq. (118) with
Rtotal
2 replaced with Rtotal

20 . Also, we remind the reader that
the plane-parallel parallel multipoles are obtained from
Eq. (119).
Inverse-distance corrections.—Similar to the previous

cases, since we are separating inverse-distance corrections
from wide-angle ones, we can set x̂1 ¼ x̂2 ¼ x̂c for these
contributions. Contrary to the imaginary case, there is

FIG. 9. Estimates of signal-to-noise ratio for bispectrum dipole moments in different surveys as a function of evolution bias (be) and
magnification bias (s). For the former (left plots) we set s ¼ 1 and for the latter (right) we used be ¼ 0. All forecast parameters are taken
from [57,100] for DESI and Euclid surveys, respectively. Solid lines show results when all contributions to the dipole are included.
Dashed lines show results when wide-angle terms are neglected.
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mixing between wide-angle and inverse-distance correc-
tions here. We will include these mixing terms later when
we calculate wide-angle corrections, so here we focus on
inverse-distance terms alone. Therefore, since there is no x1

and x2 dependence in this case, the integrations over x13,
x23 in Eq. (118) turn into delta functions replacing q’s with
k’s. This leads to the following expression for leading-
order real inverse-distance corrections:

Blocal;ID
g;R ðk1;k2;xcÞ ¼

�
RRSD
1 ðk1;xcÞRRSD

1 ðk2;xcÞ
�
−
2f2

x2c

ðk1 · x̂cÞðk2 · x̂cÞ
k21k

2
2

�

þ RID
1 ðk1;xcÞRID

1 ðk2;xcÞ½RRSD
2 ð−k1;−k2;xcÞ þ RRSD

2 ð−k2;−k1;xcÞ�
þ ðRRSD

1 ðk1;xcÞRID
1 ðk2;xcÞ þ RID

1 ðk1;xcÞRRSD
1 ðk2;xcÞÞ

× ½RID
2 ð−k1;−k2;xcÞ þ RID

2 ð−k2;−k1;xcÞ�
�
PLðk1ÞPLðk2Þ

þ
�

k1

k2 → k3

�
þ
�
k1 → k2

k3

�
; ð140Þ

where RRSD
2 ’s in this equation are given in Eq. (112). From

this expression, it is straightforward to calculate the real
local multipoles from Eq. (104),

Bðl;mÞ
R;ID ðk1; k2; μ; xcÞ

¼ ð2lþ 1Þ
4π

Z
dΩkB

local;ID
g;R ðk1;k2;xcÞY�

lmðθ;ϕÞ: ð141Þ

Wide-angle corrections.—The last step is to find the real
(even-parity) wide-angle corrections to the plane-parallel
multipoles. Similar to the inverse-distance terms, these are
suppressed by 1=ðkxcÞ2. Therefore, from Eq. (118), we start
from the following local bispectrum, which includes RSD
terms plusRID

1;2 contributions that comewith an imaginary i=x
factor. The latter, when mixed with wide-angle corrections,
become real and get an extra 1=x factor like other leading-
order real corrections. These are the mixing terms. We have

Blocal;ðppþwaÞ
g;R ðk1;k2;xcÞ¼Re

� Z
q1;q2;x13;x23

eiðq1−k1Þ·x13eiðq2−k2Þ·x23ðRRSD
1 ðq1;x1ÞRRSD

1 ðq2;x2Þ

þRRSD
1 ðq1;x1ÞRID

1 ðq2;x2ÞþRID
1 ðq1;x1ÞRRSD

1 ðq2;x2ÞÞ½RRSD
2 ð−q1;−q2;x3ÞþRRSD

2 ð−q2;−q1;x3Þ�

þRRSD
1 ðq1;x1ÞRRSD

1 ðq2;x2Þ½RID
2 ð−q1;−q2;x3ÞþRID

2 ð−q2;−q1;x3Þ�ÞPLðq1ÞPLðq2Þ
�

þ
�

k1

k2→k3

�
þ
�
k1→k2

k3

�
; ð142Þ

where “pp” refers to the plane-parallel contribution, which is the special limit of the expression above. Similar to the
imaginary case, to extract wide-angle corrections we consider the geometry of Fig. 7 and make use of expansions as in
Eq. (125) and Eq. (126) for unit vectors and 1=xn terms in these expressions. In this case, we keep terms up to second order
in ϵ1 and ϵ2 and their mixing. Then, Eq. (142) can be written as sum of terms that take the following general form:

IR
b1;…;b6

ðk1;k2;xcÞ ¼
Z
fq1;q2;x13;x23g

eiðq1−k1Þ·x13eiðq2−k2Þ·x23Cb1;…;b6ðq1;q2;xcÞ

× ðϵ1xÞb1ðϵ1yÞb2ðϵ1zÞb3ðϵ2xÞb4ðϵ2yÞb5ðϵ2zÞb6 þ c:p:; ð143Þ

where b1…b6 can be 0, 1, or 2 with the condition
P

6
j¼1 bj ≤ 2 for leading-order contributions. Again, we can pull ϵ1j;2k

factors out of the integral to obtain
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IR
b1;…;b6

ðk1;k2;xcÞ

¼
�
iðb1þ���þb6Þ

xb1c …xb6c

��
∂
b1

∂kb11x
…

∂
b6

∂kb62z

�
Cb1;…;b6ðk1;k2;xcÞ

þ c:p:

The plane-parallel contributions (119) are reproduced in the
limit ϵ1;2 → 0 or x̂1 ≃ x̂2 ≃ x̂3 ≃ x̂c and 1=xc → ∞. For
such terms, bm ¼ 0. These are followed by leading-order
wide-angle corrections that build up the corresponding
local bispectrum,

Bloc;wa
g;R ðk1;k2;xcÞ¼

X
fb1;b2;…;b6g

IR
b1;…;b6

ðk1;k2;xcÞ; ð144Þ

with
P

6
j¼1 bj ¼ 1 or 2 [in the case of 1 in Eq. (143) there is

an extra 1=kxc factor, which comes from ID terms]. Finally,
it is straightforward to calculate wide-angle multipoles
using Eqs. (104) and (144),

Bðl;mÞ
R;wa ðk1; k2; μ; xcÞ

¼ ð2lþ 1Þ
4π

Z
dΩkB

loc;wa
g;R ðk1;k2;xcÞY�

lmðθ;ϕÞ: ð145Þ

Again, we do not write down the expressions explicitly
because of the large number of terms involved in the
expansion.
Full results.—Using the local multipoles from previous

results into Eq. (105), we get the following contributions
for the final multipoles:

Bðl;mÞ
g;R ðk1; k2; μÞ ¼ Bðl;mÞ

g;pp ðk1; k2; μÞ þ Bðl;mÞ
R;wa ðk1; k2; μÞ

þ Bðl;mÞ
R;ID ðk1; k2; μÞ: ð146Þ

In this section, we plot the relative magnitude of corrections
to plane-parallel multipoles for l ¼ 0, 2 (m ¼ 0) and
compare them to cosmic variance. Figure 10 shows examples

of such quantities where ΔBðl;0Þ
g;R ¼ Bðl;mÞ

R;wa=IDðk1; k2; μÞ and
their sum. Plots are generated for the same two redshift bins
used in odd-parity cases. Variances are calculated by follow-
ing the same procedure that resulted in Eq. (133). For even
values of l (m ¼ 0), one finds

ðσðl;0ÞB Þ2 ¼ s123
Vf

V123

ð2lþ 1Þ
4π

Z
1

−1
dη1

Z
2π

0

dϕ12Llðη1Þ2

×
Y3
a¼1

�
Pg;ppðka; ηaÞ þ

1

ð2πÞ3n̄g

�
: ð147Þ

The relative sizes of these corrections are subpercent and
smaller compared to the imaginary case. This is expected
because of the additional suppression factor in this case.
The ratio to cosmic variance also suggests that, although
these corrections become more important at lower redshifts,
they can be safely neglected given the current and near
future precision.
Impact of wide-angle effects on primordial non-

Gaussianity parameter measurements.—Finally, we com-
ment on how big a contamination wide-angle effects are to
local fNL constraints from galaxy bispectrum measure-
ments. At leading order, primordial non-Gaussianity leaves
its footprints in the galaxy bispectrum with corrections
linear in fNL. Similar to what was done in the power

FIG. 10. Corrections to plane-parallel multipoles of the bispectrum for different triangle shapes for monopole (top) and quadrupole
(bottom) withm ¼ 0 in all cases. Again, θ is the angle between k1 and k2. We assumed the same redshift bins as in the dipole case. The
rightmost plots are ratios of total corrections to the corresponding sample variances calculated from Eq. (147). We set Δk ¼ kf
for each bin.
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spectrum case, to have an idea about how important these
contaminations are, we can find the “apparent” fNL by
comparing the linear (in fNL) non-Gaussian contribution to
the bispectrum for isosceles triangles in the squeezed limit
with the local monopole of the wide-angle and inverse-
distance corrections. From the general relation for the
primordial non-Gaussianity term in the bispectrum [106],
we take the special case k1 ¼ k2 ≫ k3, which results in

Bf
gðk1; k2; k3; zÞ

≈
3fNLδcrðb1 − 1ÞΩM0H2

0

DðzÞTðk3Þ
Pmðk1ÞPmðk3Þ

k23

×

�
2b31

δcrðb1 − 1Þ þ 2b21

�ð2δcr − 1Þðb1 − 1Þ þ δcrbL2
2δcrðb1 − 1Þ

�

þ 2b1

�
10

7
b1 þ b2 −

2

3
bK2

��
; ð148Þ

where we have ignored stochasticity, bK2 ¼ γ2, and bL2 ¼
b2 − 8=21ðb1 − 1Þ is the Lagrangian quadratic bias.
Figure 11 shows a plot of the apparent PNG parameter
as a function of the isosceles triangle scale with θ ¼ 0.95π.
Other parameters are similar to previous plots and we have
ignored stochasticity. This result implies that wide-angle
and inverse-distance corrections should not be a significant
problem for fNL measurements from the galaxy bispectrum
when using the plane-parallel assumption until precision of
ΔfNL ∼ 1 is reached.

IV. SUMMARY AND DISCUSSION

In this paper, we presented a simple analytic perturbative
calculation of wide-angle and inverse-distance corrections
for galaxy clustering statistics. Also, a simple procedure
is provided for calculation of the evolution of fluctua-
tions in a relativistic context. At linear level, we computed

wide-angle corrections to multipoles of the galaxy power
spectrum and compared these with relativistic contributions
in the linear case. Figures 2 and 3 show examples of such
comparisons. These show that wide-angle effects are as
important as relativistic effects and their relative dominance
depends on the details of the galaxy sample. Also there is
more sensitivity to magnification bias compared with
evolution bias.
In addition, we calculated wide-angle and inverse-dis-

tance corrections [which are of the same order as local
(nonintegrated) relativistic corrections] to multipoles of
galaxy power spectrum at nonlinear regime (one loop in
SPT) and showed that nonlinear effects change the relative
magnitude of corrections after k≳ 0.1 h=Mpc, where
loop effects start becoming important (see right panels in
Fig. 5). This implies that the mixing between nonlinear and
wide-angle/relativistic effects can be ignored. Similarly, the
mixing between wide-angle/relativistic corrections and
FOG effects at large scales is small, as is shown in Fig. 6.
In general, the relative sizes of all these corrections are

small at k≳ 0.01 h=Mpc. Therefore, we can conclude that
the plane-parallel approximation remains a valid procedure
for the power spectrum at these scales as long as we are not
able to resolve well-below subpercent uncertainties.
However, at large scales, wide-angle and relativistic effects
can become a contamination for local fNL measurements
due to similar scaling. Figure 4 shows an estimate of how
large these contaminations can be as a function of mag-
nification bias.
For the power spectrum case, because of our symmetric

choice of the line of sight and the fact that we studied
autocorrelations, i.e., hδgδgi, we did not have any imaginary
contribution tomultipoles due to parity invariance. However,
it is not true in the case of cross-correlations [107,108]. In
those situations, the perturbative method developed here can
be used for an efficient analytic evaluation of wide-angle
corrections to the power spectrum multipoles.
We then extended the method to compare wide-angle

effects on multipoles of the local galaxy bispectrum. For
the imaginary (odd-parity) case (see Fig. 8 for two
examples), we estimated the signal-to-noise ratio based
on forecast parameters of Euclid and DESI surveys (Fig. 9).
We conclude that wide-angle effects are as important as
relativistic contributions (more important in many cases)
and should not be neglected if these signals are going to be
used to constrain large-scale gravity. For even multipoles,
Fig. 10, the same conclusion is true but signals are much
less important, as their ratio to cosmic variance is much
smaller compared to similar ratios for plane-parallel multi-
poles. Also, we can conclude that assuming plane-parallel
approximation should not be a significant problem for
local fNL measurements from the galaxy bispectrum until
ΔfNL ∼ 1 is reached (Fig. 11).
Some possible extensions of this work are worth men-

tioning. In this work, we neglected window effects for

FIG. 11. An estimate of the apparent primordial local non-
Gaussianity parameter fNL when ignoring wide-angle and in-
verse-distance effects. For simplicity, we have ignored stochas-
ticity, b1 ¼ 1.5 and z ¼ 1.
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simplicity. In general, as discussed in Sec. II E, the results
obtained here can be windowed by convolution in Eq. (4).
The actual mask usually has a complicated behavior
depending on the geometry of the survey volume at a
given redshift bin. In addition, the range of kmodes that we
are interested in makes a difference in how important these
effects are. For example, multipoles of the window function
itself can mix up with those of the power spectrum or
bispectrum and cause contamination. However, for
k ≥ 0.01 h=Mpc, these window multipoles should not be
that important (see, for example, [34] for a discussion on
this). Nonetheless, a more realistic comparison of obser-
vationally measured and calculated multipoles requires a
detailed understanding of window function for a given
survey (see, e.g., Ref. [109] for a detailed calculation of
window effects and their mixings with wide-angle effects in
linear theory). In this work, we also assumed a uniform
selection function, which can be the most important source
of systematic error as it limits the amount of accessible

information on galaxy number density contrasts. This is,
however, highly dependent on the specific survey under
consideration.
Despite our simplifications, the generic conclusions of

this paper are expected to apply to more realistic galaxy
survey settings: (1) use of the plane-parallel galaxy power
spectrum (including nonlinear corrections) is justified
provided we add deviations from it in linear theory [as
in Eq. (99)] and (2) deviations from the plane-parallel
approximation for the galaxy bispectrum induce imaginary
contributions that are important at large scales when
compared to relativistic effects.

APPENDIX: RSD KERNELS

Here we derive the RSD PT kernels including wide-
angle and inverse-distance corrections. The starting point
is Eq. (10), which can be rewritten by expanding the
exponential as

δsðkÞ ¼
X∞
m¼1

ðfμxðkÞkÞm−1

ðm − 1Þ!
Z

x;p1…pm

eiðp1þ���þpm−kÞ·x
�
δðp1Þ þ

fμxðkÞk
m

μxðp1Þ
p1

Θðp1Þ
�
μxðp2Þ
p2

Θðp2Þ…
μxðpmÞ
pm

ΘðpmÞ; ðA1Þ

where μxðqÞ≡ ðq̂ · x̂Þ and we have assumed no velocity bias and vorticity, ugðkÞ ¼ uðkÞ ¼ −ikΘðkÞ=k2. To find the RSD
kernels, we must expand δs in terms of linear fluctuations δlinðqÞ; as usual this is done through the PT expansion for the δ
and Θ fields, namely,

δðkÞ ¼
X∞
n¼1

Z
q1…qn

δDðk − q1 − � � � − qnÞFnðq1;…;qnÞδlinðq1Þ…δlinðqnÞ; ðA2Þ

ΘðkÞ ¼
X∞
n¼1

Z
q1…qn

δDðk − q1 − � � � − qnÞGnðq1;…;qnÞδlinðq1Þ…δlinðqnÞ: ðA3Þ

Using these in Eq. (A1) and collecting terms with a given power of δlin gives the RSD kernels Z̃n,

δsðkÞ ¼
X∞
n¼1

Z
q1…qn

Z̃nðk;q1;…;qnÞδlinðq1Þ…δlinðqnÞ; ðA4Þ

where

Z̃nðk;q1;…;qnÞ≡
Z
x
e−iðk−q1−���−qnÞ·x

Xn
m¼1

ðfμxðkÞkÞm−1

ðm − 1Þ!
Xn
n1¼1

…
Xn
nm¼1

n1þ���þnm¼n

�
Fn1 þ

fμxðkÞk
m

μxðqðn1ÞÞ
qðn1Þ

Gn1

�

×
μxðqðn2ÞÞ
qðn2Þ

Gn2…
μxðqðnmÞÞ
qðnmÞ

Gnm; ðA5Þ

where, e.g.,Fn1 depends on the first n1 momenta q1;…;qn1 ,
Gn2 depends on the next n2 momenta, etc., and qðn1Þ denotes
the partial sum over the first n1 momenta qðn1Þ ≡ q1þ
� � � þ qn1 , q

ðn2Þ denotes the partial sum over the next n2

momenta, and so on. Note that, if we put the observer at
infinity, we recover the plane-parallel approximation recur-
sion relations for the kernels. Indeed, then the LOS is fixed

[e.g., μxðkÞ → k̂ · ẑ] and the integral over x gives the usual
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momentum conserving delta function [as in Eqs. (A2)
and (A3)] expected from the translation invariance of the
plane-parallel case; thus Z̃n ¼ δDðk − q1 − � � � − qnÞZn,
with Zn as the usual RSD kernels in the plane-parallel
approximation [66].

It is worth considering how this situation looks in
configuration space. Replacing the dummy integration
variable x by x0 in Eq. (A5), we can write the Fourier
transform of Eq. (A4) as

δsðxÞ ¼
X∞
n¼1

Z
x0;q1…qn

eiðq1þ���þqnÞ·x0
�Xn

m¼1

ðfμx0 ðkÞkÞm−1

ðm − 1Þ!
Xn
n1¼1

…
Xn
nm¼1

n1þ���þnm¼n

�
Fn1 þ

fμx0 ðkÞk
m

μx0 ðqðn1ÞÞ
qðn1Þ

Gn1

�

×
μx0 ðqðn2ÞÞ
qðn2Þ

Gn2…
μx0 ðqðnmÞÞ
qðnmÞ

Gnm

�
k¼−i∇

ð2πÞ3δDðx − x0Þδlinðq1Þ…δlinðqnÞ: ðA6Þ

Now, the result of integrating over x0 is to take derivatives
of the plane wave and the object fg with respect to x0 and
evaluate in x0 ¼ x. When the gradient operator acts only on
the plane wave, it just corresponds to replacing k by q1 þ
� � � þ qn inside fg, i.e., it corresponds to the plane-parallel
kernels where the LOS is set to be x̂. If these are expanded
about a fixed direction, it generates the wide-angle correc-
tions. When at least one gradient operator acts on fg,
derivatives of the unit vectors inside μx0 generate inverse-
distance terms [see Eq. (13)], leading to the other set of
corrections to the plane-parallel results. This means we can
write

δsðxÞ ¼
X∞
n¼1

Z
q1…qn

eiðq1þ���þqnÞ·xZx̂
nðq1;…;qnÞ

× δlinðq1Þ…δlinðqnÞþ inverse-distance corrections;

ðA7Þ

where Zx̂
n denotes the plane-parallel RSD PT kernels where

the fixed LOS is replaced by x̂. This result was used in
[110] to calculate the impact of the LOS variation in long-
wavelength modes on the power spectrum covariance
matrix.
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