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Galaxy surveys provide one of the best ways to constrain the theory of gravity at cosmological scales.
They can be used to constrain the two gravitational potentials encoding time, Ψ, and spatial,Φ, distortions,
which are exactly equal at late time within general relativity. Hence, any small variation leading to a
nonzero anisotropic stress, i.e., a difference between these potentials, would be an indication for modified
gravity. Current analyses usually consider gravitational lensing and redshift-space distortions to constrain
the anisotropic stress, but these rely on certain assumptions like the validity of the weak equivalence
principle, and a specific time evolution of the functions encoding deviations from general relativity. In this
work, we propose a reparametrization of the gravitational lensing observable, together with the use of the
relativistic dipole of the correlation function of galaxies to directly measure the anisotropic stress
with a minimum amount of assumptions. We consider the future Legacy Survey of Space and Time of the
Vera C. Rubin Observatory and the future Square Kilometer Array, and show that combining gravitational
lensing and gravitational redshift with the proposed approach we will achieve model-independent
constraints on the anisotropic stress at the level of ∼20%.
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I. INTRODUCTION

Testing the laws of gravity at cosmological scales is one of
the main goals of current and future large-scale structure
surveys. In particular, one key test of gravity consists in
comparing the two gravitational potentials encoding dis-
tortions in the geometry of our Universe1: namely the time
distortion, Ψ, and the spatial distortion, Φ. In the ΛCDM
model, these two potentials are equal at late times.2 Most
dark energy models do preserve this equality, whereas
theories of gravity beyond general relativity (GR) generi-
cally induce a difference between Ψ and Φ, called aniso-
tropic stress [2,3]. Measuring the anisotropic stress provides

therefore a stringentwayof testing dark energy andmodified
gravity theories [3–5]. A detection of a nonzero anisotropic
stress is often referred to as a smoking gun for modified
gravity. In particular, it would allow us to distinguish
between interactions in the dark sector (that preserve the
equality between Φ and Ψ) and a modification of gravity.
At present, two methods have been used to measure the

anisotropic stress. The first one consists in combining
measurements of galaxy peculiar velocities obtained from
redshift-space distortions (RSD), with measurements of the
Weyl potential, ðΦþΨÞ=2, obtained from gravitational
lensing. Assuming that galaxies obey Euler’s equation,
RSD measurements can be translated into a measurement
of the time distortion, Ψ. Comparing this with the Weyl
potential allows one to measure the anisotropic stress,
which, at the precision of current surveys, is consistent with
zero [6–8]. This method is very neat and powerful but it
clearly fails if galaxies do not obey Euler’s equation, which
is the case if dark matter is affected by a fifth force (like for
example in coupled quintessence models [9]). As shown
in [10], this breaking of the equivalence principle invalid-
ates the method. It would indeed lead to a measurement of
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1We use the perturbed Friedmann metric: ds2 ¼ a2½−ð1þ

2ΨÞdτ2 þ ð1 − 2ΦÞdx2�, where τ denotes conformal time.
2Note that massive neutrinos generate a difference between

these two potentials at late time, but the amplitude of this
difference has been shown to be very small: ðΦþΨÞ=ð2ΨÞ −
1 ≃ 10−5 [1].
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an effective non-zero anisotropic stress from RSD and
lensing, even if Φ ¼ Ψ.
The second method to constrain the anisotropic stress

consists in looking at the speed of propagation of gravitational
waves (GWs). In scalar-tensor theories of gravity (Horndeski
theories [11]), one of the parameters that generates a non-zero
anisotropic stress also governs the speed of propagation of
GWs. Combining the constraints on this speed obtained
through the GW and electromagnetic observations of the
binary neutron stars system GW170817 [12], with the
consideration that dark energy perturbations in Horndeski
may become unstable in the presence of GWs [13] (which
may further limit the parameter space), leads to constraints on
the anisotropic stress of the order of a few percent [14]. This
elegant method, which combines GWs propagation with
large-scale structure, is however applicable only to a specific
class of modified gravity theories and is therefore not model-
independent. As before, it relies on the validity of the weak
equivalence principle in Horndeski theories. Moreover, it
assumes that the speed of GWs is independent of frequency
and of time, something that has not been validated
observationally.
In this paper, we propose an alternative method to

measure the anisotropic stress, which has the key advantage
of being model-independent. Our method combines direct
measurements of the time distortion, Ψ, which can be
detected via the effect of gravitational redshift, with
measurements of the Weyl potential from gravitational
lensing, to directly probe the relation between Ψ and Φ.
This method does not rely on a specific model of gravity,
nor on a particular behavior of dark matter: it uses the data
in a completely agnostic way to extract measurable
quantities and compare them. In particular, contrary to
measurements from RSD and weak lensing, this method is
also valid if the weak equivalence principle is violated, i.e.,
if dark matter obeys a fifth force.
Our analysis follows themethod presented in [15], where it

was shown that combining multipoles of the galaxy power
spectrum with the galaxy-galaxy lensing power spectrum
provides a direct model-independent determination of
η≡Φ=Ψ. Here we apply this method to the coming gen-
eration of surveys to determine the precisionwithwhich η can
be measured. Note that we use here the correlation function
and the angular power spectrum, instead of the power spec-
trum, to properly account for wide-angle effects [16,17]. Our
forecasts show that combiningmeasurements of gravitational
redshift from the Square Kilometer Arraywithmeasurements
of the Weyl potential from the Legacy Survey of Space
and Time of the Vera C. Rubin Observatory (LSST) will
allow us to constrain the anisotropic stress, through
2=ð1þ ηÞ ¼ 2=ð1þΦ=ΨÞ, with a precision of ∼20%.
The rest of the paper is organized as follow: in Sec. II we

describe the modeling considered for both the gravitational
lensing and gravitational redshift observables, as well as
how they are combined to constrain the anisotropic stress.

In Sec. III we present the specifications of the future galaxy
surveys considered and the methodology used to forecast
the constraints on the different parameters under study. We
then present the main results of the analysis in Sec. IV for
both observables and their combination, and we conclude
in Sec. V.

II. MODELING

We start by deriving the modeling used to express the
predictions for our observables in a model-independent
way, and thus directly test the anisotropic stress with a
minimum amount of assumptions. We first consider the
gravitational lensing observable related to the Weyl poten-
tial; then the gravitational redshift related to Ψ; and finally
the ratio related to the anisotropic stress.

A. Gravitational lensing: Φ+Ψ
The standard method to model the evolution of the two

gravitational potentials consists in relating them to the
matter density, allowing for a non-zero anisotropic stress
and a modification to Poisson’s equation. Here we develop
a different method, which, as we will show, allows us to
measure directly the evolution of ΦþΨ with redshift.
We start by reviewing howΦþΨ evolveswith redshift in

ΛCDM. We define the transfer function of any field, F, as

Fðk; zÞ ¼ TFðk; zÞΨinðkÞ; ð1Þ

where Ψin denotes the primordial gravitational potential
generated by inflation. In ΛCDM the transfer function of
Φþ Ψ can be related to that of the matter density through

TΦþΨðk; zÞ ¼ 2TΦðk; zÞ ¼ −3ΩmðzÞ
�
HðzÞ
k

�
2

Tδðk; zÞ;

ð2Þ

whereΩmðzÞ stands for the matter density of the Universe at
a given redshift z, H denotes the Hubble rate in conformal
time, and δ is the matter density fluctuations δ ¼ δρ=ρ̄. The
matter density transfer function is usually split into a linear
part and a boost factor, B, which accounts for the nonlinear
evolution of matter fluctuations at small scales

Tδðk; zÞ ¼ T lin
δ ðk; zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðk; zÞ

p
: ð3Þ

In ΛCDM, the growth of matter density fluctuations in
the linear regime is scale-independent at late times (once
radiation is negligible),3 and we can therefore relate the
transfer function at redshift z to a redshift z� through the
growth function D1ðzÞ

3The only scale-dependence within general relativity (GR) is
indeed due to massive neutrinos and it is very small (see
e.g., [18]).
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T lin
δ ðk; zÞ ¼ D1ðzÞ

D1ðz�Þ
T lin
δ ðk; z�Þ: ð4Þ

Inserting Eqs. (3) and (4) into (2) we find

TΦþΨðk; zÞ ¼
H2ðzÞΩmðzÞD1ðzÞ

H2ðz�ÞΩmðz�ÞD1ðz�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðk; zÞ

p
TΦþΨðk; z�Þ:

ð5Þ

Equation (5) tells us that, in ΛCDM, the evolution of Φþ
Ψ is governed by ΩmðzÞD1ðzÞ, i.e., that ΦþΨ follows
directly the evolution of the density.
In the case of modified gravity, however, the two

equalities present in Eq. (2) are generically modified: first
Φ and Ψ can be different from each other, and second Φ
may not be related to the density, δ, via Poisson’s equation.
Therefore, generically, the evolution of Φþ Ψ will differ
from the evolution of the density, governed by D1. To
account for this, without restricting ourselves to any
particular model of gravity, we replace ΩmðzÞD1ðzÞ in
Eq. (5) by an agnostic function Jðk; zÞ. This function
encodes the growth of ΦþΨ, and by treating it as a new
degree of freedom, that can be directly measured from the
data and that is independent from the growth function D1,
we effectively allow for any deviations from GR.
We define the redshift z� to be well in the matter era,

before the accelerated expansion of the Universe started.
We assume that, at that redshift, GR is recovered. In other
words, we expect structures to grow as in GR, when the
background evolution of the Universe behaves as in GR.
We therefore set Jðk; z�Þ ¼ Ωmðz�ÞD1ðz�Þ ¼ D1ðz�Þ, since
Ωmðz�Þ ¼ 1 in the matter era. With this, the transfer
function for Φþ Ψ evolves as

TΦþΨðk; zÞ ¼
H2ðzÞJðk; zÞ
H2ðz�ÞD1ðz�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðk; zÞ

p
TΦþΨðk; z�Þ: ð6Þ

Combining Eq. (6) with Eqs. (3) and (4), and using that
at z� GR is recovered, i.e.,

T lin
δ ðk; z�Þ ¼ −

1

3

�
k

Hðz�Þ
�
2

TΦþΨðk; z�Þ; ð7Þ

we can relate the transfer function of ΦþΨ to the density
transfer function at z� via

TΦþΨðk; zÞ ¼ −3
�
HðzÞ
k

�
2

Jðk; zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðk; zÞ

p T lin
δ ðk; z�Þ
D1ðz�Þ

: ð8Þ

Let us now determine how the function J can be
measured with gravitational lensing. Gravitational lensing
can be measured either through shear-shear correlations or
through density-shear correlations (the so-called galaxy-
galaxy lensing). In this paper we focus on the latter, since,
as wewill see, it allows us to probe directly the function J at

the redshift of the lenses. In addition, we include in our
analysis the galaxy-galaxy correlations since it allows us to
break the degeneracy between the galaxy bias and the
function J.
The harmonic power spectra of the galaxy-galaxy

lensing can be computed as

CΔκ
l ðzi;zjÞ¼

Z
dzniðzÞbiðzÞ

Z
dz0njðz0ÞCδκ

l ðz;z0Þ

¼−
A
π

Z
dzniðzÞbiðzÞ

Z
dz0njðz0Þ

Z
dk
k

�
k
k�

�
ns−1

×Tδðk;zÞjlðkχÞ
1

χ0

Z
χ0

0

dχ00
χ0−χ00

χ00
lðlþ1Þ

×TΦþΨðk;χ00Þjlðkχ00Þ: ð9Þ

Here Δ denotes the galaxy over-density, evaluated at the
effective redshift of the tomographic bin i

Δðzi;niÞ ¼ biδðzi;niÞ þ
1

H
∂χðV · niÞ; ð10Þ

where ni is the direction of the pixel i, V is the galaxy
peculiar velocity, bi is the linear bias, and ∂χ denotes a
derivative with respect to the comoving distance χ:κ
represents the convergence, evaluated in pixel j with
effective redshift zj. It is related to the Weyl potential by

κðzj;njÞ ¼
Z

χj

0

dχ
χj − χ

2χjχ
ΔΩðΦþ ΨÞðχ;njÞ; ð11Þ

where χj ≡ χðzjÞ and ΔΩ is the Laplace operator
on the sphere. In Eq. (9), ni and nj denote the
galaxy distribution function of the lenses and sources,
respectively, and jl stands for the spherical Bessel function
of order l. The parameters A, ns, and k� denote the
amplitude, spectral index, and pivot scale of the primordial
power spectrum defined through4 k3hΨinðkÞΨinðk0Þi ¼
ð2πÞ3Aðk=k�Þns−1δðkþ k0Þ. Note that in Eq. (9), we
have neglected the correlation between the convergence
and RSD [the second term in Eq. (10)], as is done, e.g.,
in [18], since those are subdominant for thick tomo-
graphic bins.
Using the Limber approximation and inserting Eqs. (3),

(4), and (8) we can express the harmonic power spectra as

CΔκ
l ðzi; zjÞ ¼

Z
dz niðzÞbiðzÞ

Z
dz0njðz0Þ

χ0 − χ

χχ0

×
3lðlþ 1Þ
2ðlþ 1=2Þ2H

2ðzÞ JðzÞ
D1ðzÞ

Pδδðkl; χÞ; ð12Þ

4Note that A is related to the amplitude As defined in Planck
through A ¼ 8π2As=9.
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where kl ≡ ðlþ 1=2Þ=χ. Here we have neglected the
k-dependence of the functions D1 and J. This is a common
approximation in large-scale structure analyses, see, e.g.,
[7], which is motivated by the fact that in the quasistatic
approximation, many models of modified gravity lead to a
scale-independent growth of structure [19–21]. However,
the methodology can be generalized to include the scale-
dependence in case of need. From Eq. (12), we see that J is
evaluated at the redshift of the lenses, whose distribution is
given by niðzÞ.
Writing now the density power spectrum as

Pδδðkl; χÞ ¼
�
D1ðzÞ
D1ðz�Þ

�
2

Plin
δδ ðkl; χ�ÞBðkl; χÞ; ð13Þ

we can rewrite Eq. (12) as

CΔκ
l ðzi; zjÞ ¼

3

2

Z
dz niðzÞH2ðzÞb̂iðzÞĴðzÞ

× Bðkl; χÞ
Plin
δδ ðkl; χ�Þ
σ28ðz�Þ

×
Z

dz0njðz0Þ
χ0ðz0Þ − χðzÞ
χðzÞχ0ðz0Þ ; ð14Þ

where we have defined

ĴðzÞ≡ JðzÞσ8ðzÞ
D1ðzÞ

¼ JðzÞσ8ðz�Þ
D1ðz�Þ

; ð15Þ

and

b̂iðzÞ≡ biðzÞσ8ðzÞ: ð16Þ

From Eq. (14), we see that galaxy-galaxy lensing is
affected by four distinct ingredients:
(1) The background expansion of the Universe, through

the Hubble function HðzÞ and the comoving dis-
tance χðzÞ.

(2) The density fluctuations at redshift z�, before accel-
eration started.

(3) The nonlinear boost factor B.
(4) The evolution of density and gravitational potential

at late times, through the two functions b̂ and Ĵ.
Ingredients 1 and 2 are tightly constrained by cosmic
microwave background (CMB) measurements. In the
following we therefore fix them, for simplicity, using the
latest Planck ΛCDM values for As, ns, Ωm;0, Ωb;0,
and h [22].5 But we note that the methodology described
in this work would allow for a combination of galaxy

survey data with CMB observations to constrain all
parameters together, including the cosmological and the
Ĵ and b̂ parameters. Ingredient 3 depends in principle on
the theory of gravity. However, the standard method to infer
the nonlinear boost is by generating cosmological simu-
lations, which require the choice of a specific modified
gravity model. Therefore, it is not possible to obtain a
general nonlinear boost factor for our parametrization. In
this work, we follow the approach considered in the Dark
Enery Survey analysis [8] and keep the standard halofit
nonlinear boost [23], while limiting the range of scales used
in the analysis to avoid entering deeply into the nonlinear
regime. We also consider a more stringent scale cut to
assess the impact of this choice of boost in our results,
showing that it is subdominant and constitutes, therefore,
an acceptable approximation. Finally, ingredient 4 is what
we want to measure in this work. In practice, we assume Ĵ
and b̂ to be free parameters with a constant value within
each tomographic bin, and we focus on constraining them.
As can be seen from Eq. (14), once we consider Ĵ and b̂

as free parameters with a constant amplitude in each
tomographic bin, their product is fully degenerate.
Therefore, as mentioned at the beginning of the section,
we do not consider galaxy-galaxy lensing measurements
alone, but rather their combination with galaxy clustering,
using the same photometrically-selected lenses. This is the
so-called 2 × 2 pt analysis.
The harmonic power spectra for galaxy clustering, using

the Limber approximation, is given by

CΔΔ
l ðzi; zjÞ ¼

Z
dz niðzÞnjðzÞ

HðzÞð1þ zÞ
χ2ðzÞ b̂iðzÞb̂jðzÞ

× Bðkl; χÞ
Plin
δδ ðkl; χ�Þ
σ28ðz�Þ

: ð17Þ

Combining this expression for the galaxy clustering
observable with the galaxy-galaxy lensing observable in
Eq. (14), we can break the degeneracy between Ĵ and b̂ and
constrain both sets of parameters at the same time.
This procedure allows us to measure the evolution of the

gravitational potentials, Φþ Ψ, in a model-independent
way. The only assumption underlying such an analysis is
that at high redshift z�, before acceleration started, we
recover GR. Note that this procedure is similar to the one
used in RSD measurements, where the density power
spectrum at z� is constrained by CMB measurements,
and RSD are used to measure b̂ and f̂ ≡ fσ8 in a
model-independent way in each redshift bin, see, e.g., [7].

B. Comparison with the standard μ −Σ parametrization

Before moving to the next observable, let us compare our
approach with the standard parametrization used in weak
lensing analyses. Modifications to GR are usually encoded
into two phenomenological functions, μ and η, that modify

5Note that here we assume that the background evolution is
consistent with ΛCDM predictions, since this has been so far
confirmed by observations. This assumption is common in large-
scale structure analyses, see, e.g., [7].
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Poisson’s equation and the relation between the two
gravitational potentials:

k2Ψ ¼ −4πGa2μðz; kÞδρ; ð18Þ

Φ ¼ ηðz; kÞΨ: ð19Þ

The sum of the gravitational potentials can then be written
as

k2ðΦþ ΨÞ ¼ −3H2ðzÞΩmðzÞΣðzÞδðk; zÞ; ð20Þ

where Σ ¼ μð1þ ηÞ=2. With this the galaxy-galaxy lensing
power spectra and the galaxy clustering power spectra
become

CΔκ
l ðzi; zjÞ ¼

3

2

Z
dz niðzÞH2ðzÞΩmðzÞbiðzÞΣðzÞ

× Bðkl; χÞPlin
δδ ðkl; χÞ

×
Z

dz0njðz0Þ
χ0ðz0Þ − χðzÞ
χðzÞχ0ðz0Þ ; ð21Þ

CΔΔ
l ðzi; zjÞ ¼

Z
dz niðzÞnjðzÞ

HðzÞð1þ zÞ
χ2ðzÞ biðzÞbjðzÞ

× Bðkl; χÞPlin
δδ ðkl; χÞ: ð22Þ

The galaxy-galaxy lensing power spectra depend directly
on the function ΣðzÞ. In addition, both the galaxy-galaxy
lensing power spectra and the clustering power spectra
depend on μ, since the evolution of δ, and consequently the
matter power spectrum at redshift z, are sensitive to μ.
Comparing Eq. (21) with Eq. (14) we see that

ĴðzÞ ¼ ΣðzÞΩmðzÞσ8ðzÞ: ð23Þ

In Table I, we list the set of free parameters in the standard
μ − Σ parametrization and in our parametrization. The
parameters in the first line are the standard cosmological
parameters that are best determined by the CMB, and
that are the same in both cases. In our forecasts, we will
keep them fixed for simplicity, but in practice, in both
approaches, one can combine lensing with CMB measure-
ments to constrain these parameters. In addition to these
standard parameters, the μ − Σ parametrization has three
free parameters per redshift bin (b, Σ, μ), whereas our
parametrization has two free parameters per redshift bin
(b̂, Ĵ). One could conclude that the μ − Σ parametrization is
more powerful since it allows us to measure one more
parameter at each redshift. This is however not the case,
since b, Σ, and μ are strongly degenerated in Eqs. (21) and
(22). To break the degeneracy it is necessary to add new
information, through RSD, which are sensitive to μ and b.
In our approach, adding RSD would add one new free
function f̂ðzÞ ¼ fðzÞσ8ðzÞ, that can directly be measured

from RSD and leads to the same number of free parameters
in both approaches.
From this we see that the first key property of our

approach is that it separates clearly the information that
can be measured with the 2 × 2 pt lensing measurements,
from the information that can be measured from RSD. The
2 × 2 pt data measure the evolution of ΦþΨ and the
evolution of the galaxy density, whereas RSD measure
the evolution of the velocity (and again the evolution of the
galaxy density). In the standard μ − Σ parametrization
this separation cannot be applied since the parameters b,
Σ, and μ can only be measured by combining lensing
with RSD.
The second specificity of our approach is to allow for a

direct measurement of the parameters Ĵ and b̂ in each
redshift bin. In contrast, in the μ − Σ approach, it is not
straightforward to measure μðzÞ in each redshift bin. The
reason for this is that μ enters in Eqs. (21) and (22) through
its impact on the matter power spectrum, Pδδðk; zÞ, which
depends on the whole time evolution of μðzÞ. In other
words, to constrain μðzÞ from the 2 × 2 pt data and RSD,
we need to solve the evolution equation for the matter
density δ, which reads

δ00ðk; aÞ þ
�
1þH0ðaÞ

HðaÞ
�
δ0ðk; aÞ

−
3

2

Ωm;0

a

�
H0

HðaÞ
�

2

μðaÞδðk; aÞ ¼ 0; ð24Þ

where a prime denotes derivatives with respect to ln a. This
means that to measure μ in the bin zi, it is not enough to
measure clustering at zi and weak lensing at ðzi; zjÞ. We
need instead measurements of these quantities in a variety
of redshifts larger than zi. Two methods have been used to
account for this fact. The simplest way is to assume a given
evolution for μ with a, for example, see [6,7]

μðaÞ ¼ 1þ μ0
ΩΛðaÞ
ΩΛ;0

; ð25Þ

where only μ0 is a free parameter, that is constrained from
the data. However, if μ does not evolve in this way, the
constraints on μ0 are not valid. Another possibility is to
parametrize μ and Σ in terms of their values in a number of

TABLE I. Comparison of the parameters used in the standard
μ − Σ approach and in our approach.

μ − Σ approach Our approach

As, ns, Ωb;0, Ωm;0, h As, ns, Ωb;0, Ωm;0, h
bðzÞ b̂ðzÞ ¼ bðzÞσ8ðzÞ
ΣðzÞ ĴðzÞ ¼ ΣðzÞΩmðzÞσ8ðzÞ
μðzÞ Adding RSD: f̂ðzÞ ¼ fðzÞσ8ðzÞ
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redshift nodes, and then interpolate between the nodes to
obtain continuous functions, that can be used to solve
Eq. (24), see [21]. This method does not assume any time
evolution, but it depends on the chosen interpolation
method, which introduces arbitrary correlations between
the nodes. For example, using a cubic spline tends to
suppress sharp changes in these functions [21]. In contrast,
in our approach, since no evolution equation needs to be
solved, no interpolation is needed: Ĵ can be measured
directly in each redshift bin. A theory prior on the evolution
of Ĵ with redshift can be introduced if we want, for
example, to reduce the number of free parameters, but this
is not required.
Finally, our approach has the advantage to be fully

model-independent: we directly measure Ĵ, i.e., the evo-
lution of Φþ Ψ, without any assumption on the theory of
gravity or on the behavior of dark matter. This is not the
case for the standard μ − Σ approach, which relies on the
validity of Eq. (24) to find δ for a given μ. As shown in [24],
if dark matter couples differently than baryonic matter to
gravity, or if dark matter is affected by a fifth (nongravita-
tional) force [10], this equation is modified and the
constraints on μ and Σ are not valid.
Measuring Ĵ is therefore much more direct and robust

than measuring Σ and μ. It is actually completely equivalent
to measuring f̂ ¼ fσ8 from RSD. These measurements can
indeed also be done in a completely model-independent
way, in each of the redshift bins of the survey. In contrast,
going from fσ8 to μ requires to solve the evolution
equation (24) for δ. In the next section, we will present
an example where measuring Ĵ is very useful and allows us
to measure η redshift bin by reshift bin, without having to
assume anything on the evolution of μ, and, as stated
previously, without having to assume a specific behavior
for dark matter. Note that from Table I, we expect the
relative constraints on Ĵ and f̂ to be of similar amplitude as
the relative constraints on Σ and μ.
To finish this section of comparison with other para-

metrizations, it is worth considering the recent analysis
presented in [25]. The author considers a template-fitting
approach to constrain the growth of matter perturbations
with cosmic shear analyses in a model-independent way,
which is similar to our goal. There is however an important
difference with respect to our approach, which is that in
[25], GR is assumed, and therefore Eq. (2) is used to relate
the evolution of Φþ Ψ to the evolution of the density. The
main goal of this method is therefore to measure the growth
of density, without being affected by the bias. Hence, the
free function that is fitted from the data is ΩmðzÞσ8ðzÞ. In
our case, on the other hand, we use lensing to measure
directly the evolution ofΦþΨ, i.e. ĴðzÞ, without assuming
GR. Note that because of that, we choose our reference
power spectrum at z ¼ z� (where we assume GR to be
recovered) instead of z ¼ 0, as is done in [25].
Furthermore, we assume the shape of the template power

spectrum to be given by CMB measurements, instead of
assuming a fiducial cosmology and accounting for it with
an Alcock-Paczyński parameter. We also differ in the fact
that we use mildly nonlinear scales with a GR nonlinear
boost factor. Finally, another relevant difference is that in
[25] the author considers the cosmic shear observable and,
because of this, he includes the BNT nulling technique
proposed in [26]. Such technique allows the author to
obtain localized cosmic shear kernels and therefore con-
strain the growth at different redshift bins. In our analysis,
we consider the galaxy-galaxy lensing observable.
Therefore, the agnostic Ĵ function only appears at the
level of the lenses, which are already localized.
Other recent model-independent analyses to test modi-

fied gravity that are worth mentioning are the Dark Energy
Survey Year 1 analysis splitting between growth and
geometry [27] and the Dark Energy Survey Year 3 analysis
binning σ8 as a function of redshift [8]. The former
considered a split of a subset of cosmological parameters,
such that one parameter was sensitive to the growth of
perturbations and the other one was sensitive to the
geometry of the Universe. Within ΛCDM, the two param-
eters should agree and provide the same value. In the Year 3
analysis, a successor of this method was considered by
introducing a set of amplitudes (one per redshift bin) that
scale the linear power spectrum. These translate into the
value of σ8 at redshift 0 based on the amplitude of structure
in a given redshift bin. These methods can be seen as
consistency tests of ΛCDM, where any deviation would
consist in an indication for beyond-ΛCDM physics.
Instead, our method focuses on directly measuring the
evolution of the gravitational potentials and the anisotropic
stress as a function of redshift in a model-independent way.

C. Gravitational redshift: Ψ
The method to measure directly the time distortionΨ has

been presented in detail in [28]. Here we simply summarize
the main points. Following the same steps as in Sec. II A,
we introduce a new function Iðk; zÞ to encode the evolution
of the gravitational potential Ψ such that

TΨðk; zÞ ¼
H2ðzÞIðk; zÞ
H2ðz�ÞD1ðz�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðk; zÞ

p
TΨðk; z�Þ; ð26Þ

where B is the boost defined in Eq. (3). In our forecasts, we
restrict the correlation function to separations larger than
dmin, chosen such that nonlinearities are negligible, i.e., that
the boost plays no role, see Sec. III B.
As shown in [28], the evolution ofΨ can be measured by

cross-correlating the over-density, Δ, of two populations of
galaxies, e.g. a bright and a faint population. Ψ contributes
to the galaxy over-density through the effect of gravita-
tional redshift, which shifts to the red the spectrum of
galaxies situated in a gravitational potential well. This
effect adds to the density and RSD in Eq. (10) and
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generates a contribution of the form ∂rΨ=H in Δ [29]. This
term has the particularity to produce asymmetries in the
distribution of galaxies [16]. Hence it was proposed to
measure it by fitting for a dipole in the cross-correlation
of bright and faint galaxies [16,30,31]. However, since
Doppler effects also contribute to such a dipole, one needs a
method to disentangle the two types of contributions. More
precisely, the dipole is sensitive to the following contri-
butions in Δ (that are often called relativistic effects)6

Δrelðz;nÞ ¼ 1

H
∂rΨþ 1

H
_V · n

þ
�
1 − 5sþ 5s − 2

Hr
−

_H
H2

þ fevol
�
V · n; ð27Þ

where a dot denotes derivative with respect to conformal
time, s is the magnification bias and fevol is the evolu-
tion bias.
In [28], it was shown that by combining measurements

of the monopole, quadrupole, and hexadecapole of the
correlation function, with a measurement of the dipole, one
can measure separately the evolution ofΨ and the evolution
of the velocity, in a model-independent way. More pre-
cisely it was shown that the quantity Î given by

ÎðzÞ≡ IðzÞσ8ðzÞ
D1ðzÞ

¼ IðzÞσ8ðz�Þ
D1ðz�Þ

ð28Þ

can be measured directly, redshift bin by redshift bin. Note
that as before, we neglect here the k-dependence of Î, since
it is a good approximation in the quasi-static limit.
The parameter Î is a new parameter, that adds to the ones

defined in Table I. If galaxies obey Euler’s equation, which
is the case if the weak equivalence principle for dark matter
and baryonic matter is valid, then Î can be related to f̂
through

Î ¼ 2f̂
3

�
H0

H
þ f̂0

f̂
þ 1

�
: ð29Þ

It is therefore possible to reconstruct the evolution of Ψ
from RSD, as has been shown in [2]. On the other hand, if
Euler’s equation is not valid, for example if dark matter is
sensitive to a fifth force, or if baryons and dark matter are
not coupled in the same way to gravity, then Eq. (29) is not
valid [10]. In this case, Î has to be considered as an
independent function, that cannot be inferred from RSD
measurements. The dipole is therefore an important new

observable, since it will allow us to measure Î directly,
without having to assume anything on the behavior of dark
matter. With current surveys, the dipole is unfortunately not
detectable [37]. Forecasts show however that the coming
generation of surveys, like DESI and SKA2, will be able to
measure it robustly [38–40].

D. Anisotropic stress

Now that we have derived the parametrization of the
gravitational lensing and gravitational redshifit observ-
ables, we can combine them to measure η ¼ Φ=Ψ. We have

ÎðzÞ
ĴðzÞ ¼

TΦþΨðk; z�Þ
TΨðk; z�Þ

TΨðk; zÞ
TΦþΨðk; zÞ

¼ 2Ψ
Φþ Ψ

¼ 2

1þ η
; ð30Þ

where in the first equality we use Eqs. (6) and (26). The
boost, Bðk; zÞ, cancels in the ratio since it affects in the
same way the evolution of Ψ and of Φþ Ψ [it encodes
indeed the nonlinear evolution of matter density—see
Eq. (3)]. Moreover, in the second equality we use that
ðΦþΨÞðz�Þ ¼ 2Ψðz�Þ, since GR is recovered at z�.
We note that we consider the ratio of Î over Ĵ, or

equivalently the ratio of Ψ over the Weyl potential, instead
of the inverse, because our constraints on Ψ are weaker, as
we will see in the following sections. The fact of having
weaker constraints allows Ψ to become compatible with a
null value, which would introduce numerical instabilities in
the inverse of Eq. (30).
Equation (30) is a novel estimator of the anisotropic

stress, η, which is fully model-independent. It is directly
built from measurements of the functions Ĵ and Î in the bins
of the surveys. If the ratio Î=Ĵ differs from 1, we can then
unambiguously conclude that gravity is modified. In
contrast, the standard μ − Σ approach does not allow us
to measure η in a model-independent way. In particular,
with the standard approach, we could detect an apparent
deviation from GR: η ≠ 1, even if gravity is not modified
andΨ ¼ Φ. As has been discussed in [10], this is due to the
fact that if dark matter is affected by a fifth force, RSD do
not provide a measurement of the true μ. As a consequence,
the observed η, which is inferred from a measurement of Σ
and μ, will not be the true η. Our method is therefore crucial
if we want to regard η ≠ 1 as a smoking gun for modified
gravity.

III. METHODOLOGY

In this section we present the methodology used to
forecast the constraints on the observables presented in
Sec. II. We first describe the galaxy surveys considered and
their settings, and then show the Fisher matrix forecast used
in this work.

6Note that Δrel contains other relativistic contributions, like
Shapiro time-delay, integrated Sachs-Wolfe, and gravitational
lensing [32–34], but these contributions are strongly subdomi-
nant and negligible at the scales and redshifts used in our analysis
[35,36].
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A. Gravitational lensing with LSST

In the following years we will have access to a huge
amount of exquisite photometric data from the future
Stage-IV galaxy surveys. Some examples are the Vera
C. Rubin Observatory that will carry out the Legacy Survey
of Space and Time (LSST,7 [41]), the Euclid satellite8 [42],
or the Nancy G. Roman Space Telescope9 [43]. In this work
we focus on LSST, whose main science objective from a
cosmological perspective is to probe dark energy and dark
matter. In order to achieve this, the baseline survey will
cover 18 000 square degrees of the Southern sky during
10 years to obtain accurate photometry in multiple optical
bands. Such a survey will allow us to obtain accurate
photometric redshifts and weak lensing shear measure-
ments for about 27 galaxies per arcmin2. This will enable
precise photometric galaxy clustering, cosmic shear, and
galaxy-galaxy lensing cosmological analyses, also called
3 × 2 pt analyses.
In more detail, we consider the survey settings provided

with the public version of CosmoSIS [44]. These consist in
five equipopulated tomographic bins for the sources and ten
equipopulated tomographic bins for the lenses with a total
of 27 galaxies per arcmin2, for both sources and lenses. We
represent the galaxy distributions in Fig. 1. Additionally,
we consider a linear galaxy bias model with a constant
fiducial set to b ¼ 2, but treated as a nuisance parameter in
each tomographic bin and marginalized over.10 We also
consider the nonlinear alignment model for intrinsic align-
ments [45,46] with a fiducial amplitude set to AIA ¼ 1 but
allowed to vary. We note that we limit our analysis to
multipoles between l ¼ 20 and l ¼ 2627 in the optimistic
scenario and between l ¼ 20 and l ¼ 750 in the pessi-
mistic scenario. In both cases we do not go too much into
the nonlinear regime, and therefore the linear modeling for
galaxy bias and intrinsic alignment is still a good approxi-
mation for our forecasts. Finally, we consider an ellipticity
total dispersion of σϵ ¼ 0.3.
It is important to mention that we assume GR is valid at

small scales where intrinsic alignments are important, that
is, we include the intrinsic alignment contribution using a
standard GR modeling, even when constraining Ĵ. The
main reason for this choice is the lack of intrinsic alignment
models for modified gravity theories. However, we mar-
ginalize over the amplitude of this effect to account for its
impact. We neglect some observational systematic uncer-
tainties, like a shear calibration bias, or biases in the mean
of our galaxy distributions. Moreover, we neglect some

contributions to the signal like the impact of magnification
or RSD for photometric galaxy clustering and galaxy-
galaxy lensing observables. This is also the approach
followed in [18], for example. Note that we do not expect
magnification to alter the measurement of b̂ and Ĵ at small
redshift, where its contribution to the signal is strongly
subdominant. Since, as we will see, η is only well measured
at small redshift with our estimator, our analysis should be
independent of this contamination. Also RSD are partially
washed out in thick tomographic bins and therefore a
subdominant contribution to the total signal. In any case,
this analysis focuses on determining whether a model-
independent measurement of the anisotropic stress can be
performed with future observations. Therefore, our first aim
is to check its feasibility in an optimistic scenario where the
main systematic uncertainties are under control. Obviously
this analysis will need to account for observational uncer-
tainties once real observations are available and to obtain
more precise predictions.

B. Gravitational redshift with SKA

Future Stage-IV galaxy surveys will also provide us with
precise spectroscopic data probing the galaxy clustering in
our Universe. An example of such a survey is the phase 2 of
the future Square Kilometer Array (SKA),11 with which we
will be able to observe close to a billion of galaxies between
redshifts z ¼ 0.1 and z ¼ 2.0. It is expected that this new
data will drastically improve our measurements of the
growth history, achieving subpercent measurements of
fðzÞσ8ðzÞ [47] using the even multipoles of the galaxy
clustering correlation function. Furthermore, by combining

FIG. 1. Number of galaxies as a function of redshift for the
different samples considered. The solid lines stand for the LSST
lenses, the dashed lines represent the LSST sources, and the bars
represent the SKA spectroscopic top-hat bins, that have been
adapted to the LSST lenses. The effective redshift for each
tomographic bin is represented with a vertical dotted line.

7https://www.lsst.org.
8https://www.euclid-ec.org.
9https://roman.gsfc.nasa.gov.
10We note that a realistic galaxy bias might have some redshift

dependence. However, since we marginalize over its value at each
redshift bin, we have verified that a different fiducial value for the
galaxy bias does not change the size of the final constraints. We
therefore keep b ¼ 2 as fiducial, for simplicity. 11https://www.skatelescope.org.
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the measurement of the even multipoles with the dipole we
will be able to measure the gravitational redshift with a
precision of 10–30% at late times (see [28]). In this work,
we use this measurement to build an estimator for the
anisotropic stress by comparing the functions ÎðzÞ and ĴðzÞ
of Eqs. (15) and (28), respectively. Importantly, we adapt
the redshift bins considered in [28] for ÎðzÞ, in order to
obtain constraints at the same effective redshifts than those
for ĴðzÞ. This can easily be done for SKA2, thanks to the
very precise determination of redshift. The new top-hat
galaxy distributions and the effective redshifts are shown
in Fig. 1.
We consider the number density and volume

specifications presented in [47] and follow the approach
used in [28] to split the populations of galaxies between
faint and bright such that we have the same number
of each luminosity type per redshift bin. For the fiducial
of the galaxy biases we use the exponential fitting
functions

bB ¼ cedz þ Δb
2

; ð31Þ

bF ¼ cedz −
Δb
2

; ð32Þ

for the bright and faint populations, respectively, where
c ¼ 0.554 and d ¼ 0.783, following [47]. As in [28], we
assume a difference between the two galaxy biases of
Δb ¼ 1. This is consistent with the Oð1Þ difference that
has been measured for BOSS in [37]. In our forecasts, we
then treat bB and bF as free parameters in each redshift bin
and marginalize over them. For the magnification bias, we
use the model developed in [24], and we neglect the
evolution bias for the two populations. Once data will be
available, both the evolution bias and the magnification
bias of the two populations will be directly measurable
from the average galaxy distribution. Therefore we keep
these values fixed in our forecasts.
Finally, we shall perform two forecasts by choosing

different values for the minimum separations between
galaxies. This dmin must be set at the scale on which the
linear regime is a good approximation. Following [48], for
an optimistic scenario, we choose dmin ¼ 20 Mpc=h, while
for the pessimistic case we set dmin ¼ 32 Mpc=h. In this
regime, the boost in Eq. (26) plays a negligible role and can
therefore be set to 1 in our forecasts. In addition, we set the
maximum separation such that it is consistent with the size
of our smallest redshift bin, dmax ¼ 120 Mpc=h, in all of
our bins.

C. Fisher matrix forecasts

Once we have our theoretical predictions for the
observables derived in Sec. II with the specifications

provided above, we can forecast the uncertainties on the
different parameters using a Fisher matrix formalism.
We summarize the parameters considered in our
analysis, together with their fiducial values, in Tables II
and III in the Appendix, but for simplicity our vector of
free parameters is given by

θ ¼
n
Ĵi; b̂i; AIA; Îj; f̂j; b̂B;j; b̂F;j

o
; ð33Þ

where i runs over the ten tomographic bins for LSST and j
runs over the seven bins for SKA2.
We recall that the Fisher matrix is defined as the

expectation value of the second derivative of the logarithm
of the likelihood with respect to the parameters of the
model:

Fαβ ¼
�
−
∂
2 lnðLÞ
∂θα∂θβ

�
: ð34Þ

For a Gaussian likelihood, and neglecting any depend-
ence of the covariance of the observables on the model
parameters, the Fisher matrix can be expressed as

Fαβ ¼
X
pq

∂μp
∂θα

ðC−1Þpq
∂μq
∂θβ

; ð35Þ

where μ is the mean of the data vector and C is the
covariance matrix of the data. These will correspond to the
galaxy-galaxy lensing and galaxy clustering harmonic
spectra for LSST, and to the correlation function multipoles
for SKA2. We consider a Gaussian covariance for the
former, meaning that we account for the cosmic variance
and shape/shot noise, but neglect non-Gaussian terms like
the supersample covariance, as was done in [18]. For
SKA2, we include shot noise and cosmic variance in the
variance of the multipoles (see Appendix C of [38]) and
account for cross-correlations between the different
combinations of luminosity pairs. We note that, because
of our ΛCDM fiducial, we use GR to compute these
covariances.
Once the Fisher matrix is computed, we estimate the

covariance matrix of the model parameters as the inverse of
the Fisher matrix:

Cαβ ¼ ðF−1Þαβ: ð36Þ

In practice, we use CosmoSIS to call the CAMB Boltzmann
solver [49,50] and compute the Fisher matrix for the Ĵ
parameters. We then use the same Boltzmann solver to
build the Fisher matrix for the Î parameters from the
correlation function multipoles. We note that our gravita-
tional lensing observable is also sensitive to b̂
and the amplitude of intrinsic alignments, while our
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gravitational redshift observable depends on the generic
growth function f̂ ¼ fσ8

12 and galaxy biases b̂B ¼ bBσ8
and b̂F ¼ bFσ8. These additional parameters are considered
nuisance parameters and we marginalize over them when
providing constraints on Ĵ or Î. We also remind the reader
that these observables depend on the cosmological param-
eters providing the spectrum of matter perturbations at
z ¼ z� but we consider the cosmology fixed.
In addition to the forecast constraints on Ĵ and Î,

sensitive toΦþ Ψ andΨ, respectively, we want to combine
them to constrain the anisotropic stress. Instead of building
a Jacobian transformation to move from one set of
parameters to another one, and to keep the nonlinearities
that may arise in the transformation, we generate synthetic
chains from the individual Fisher matrices. In more detail,
given a Fisher matrix for the Ĵ parameters and a Fisher
matrix for the Î parameters, we invert them to obtain the
covariances of the parameters. Then, for each one of them,
we generate a mock chain centered at our fiducial and with
random points drawn from a multidimensional Gaussian
distribution with the corresponding covariance. We finally
generate a third chain from the ratio of the other two at each
point, which provides the posterior on Î=Ĵ ¼ 2=ð1þ ηÞ. It
is important to mention that we only consider seven redshift
bins for Î, while we use ten redshift bins for Ĵ, as can be
seen in Fig. 1. The main reason for this choice is the lack of
constraining power on Î at higher redshifts. Therefore, we
further marginalize over the last three tomographic bins for
the gravitational lensing observable when it is combined
with the gravitational redshift.

IV. RESULTS

In this section we present the main results of the analysis.
We first focus on the gravitational lensing observable and
the constraints on ΦþΨ. We then present the results on Ψ
coming from the dipole of the correlation function. Finally,
we derive constraints on the anisotropic stress from the
combination of the two observables.

A. Gravitational lensing

In the top panel of Fig. 2 we present the 1σ forecast
uncertainties for Ĵ with respect to their fiducial value as a
function of redshift. We show the optimistic scenario in red,
corresponding to scale cuts lmax ¼ 2627, and the pessi-
mistic scenario in blue, corresponding to lmax ¼ 750. A
given offset has been added in the x axis for illustrative
purposes.

As can be seen in Fig. 2, there is a degradation of the
constraints on Ĵ as a function of redshift. This behavior is
essentially due to two effects. First, at high redshift, the
tomographic bins are wider, which implies that there is a
more significant smoothing of the galaxy clustering distri-
bution along the line-of-sight. Because of this, the amplitude
of the galaxy-galaxy lensing spectra decreases, leading to
worse constraints on Ĵ. Second, at high redshift, the lenses
are necessarily closer to the sources, which decreases the
lensing kernel, and in addition, the lenses are correlatedwith
a smaller number of bins, which decreases the number of
independent measurements of Ĵ at that redshift. Let us for
example consider the tomographic bin number two for the
lenses in Fig. 1, which is centered at redshift z ∼ 0.4. The
lensing efficiency will peak at roughly the double of this
redshift, implying that the sources in the third tomographic
bin, which is centered at redshift z ∼ 0.9, will provide a high
signal-to-noise measurement. In addition, this second bin is
also correlated (albeit less strongly) with the bins number
two, four, and five of the sources, providing four indepen-
dent measurements of Ĵ at z ∼ 0.4. On the other hand, if we
consider the high-redshift lenses, like tomographic bins
number seven or higher (effective redshifts higher than
z ∼ 1.2), there are no sources at the double of these effective
redshifts, where the signal would be the strongest. This
means that only the very low-redshift tail of the lenses
distributions will be close to half the effective redshift of the
sources. Therefore, this will lead to a decrease of the lensing
kernel and thus a decrease of the galaxy-galaxy lensing
signal. Furthermore, since the lenses are not correlated with
the sources at lower redshift, the lenses bin number seven is

FIG. 2. Forecast 1σ uncertainties for Ĵ (top panel) and Î (bottom
panel) with respect to their fiducial value for each tomographic
bin. The red (light gray) error bars correspond to the optimistic
scenario, while the blue (dark gray) error bars represent the
pessimistic settings described in the text.

12Note that we treat f̂ as a free function, with unknown time
evolution. In particular, we do not assume that f ¼ d lnD1

d ln a , since
this is only true if the continuity equation for dark matter is valid.
Since we want to remain agnostic about the behavior of dark
matter, we do not assume that this equation is valid.

TUTUSAUS, SOBRAL BLANCO, and BONVIN PHYS. REV. D 107, 083526 (2023)

083526-10



only correlated with the sources bin number four and five,
which provides only two independent measurements of Ĵ.
All together, these effects lead to worse constraints on Ĵ
at high redshift. We note that all tomographic bins have
the same number of galaxies with the same ellipticity
dispersion. Therefore, the shape and shot noise are the same
for all redshifts. Cosmic variance is instead a bit smaller at
high redshift, given the larger volume, but not enough to
compensate the effects mentioned above. However, even
accounting for the degradation as a function of redshift,
LSSTwill be able to constrain Ĵ as a function of redshift at
less than percent level, and therefore probe the Weyl
potential with very high precision.
Let us mention that we have validated our method to

measure Ĵ, by comparing it with the standard method,
assuming ΛCDM. For this we have proceeded in the
following way. First, we have verified that replacing the
standard ΛCDM harmonic power spectra by the ones
provided in Eqs. (14) and (17) with the Ĵ and b̂ values in
Eqs. (15) and (16), we recover the same constraints on the
cosmological parameters at the level of 0.1%.Wenote that in
this test we have fixed the values of Ĵ and b̂ and constrained
the cosmological parameters, with the goal of testing the
implementation of the new harmonic spectra against the
standardmethod. In a second step, we have assumed Ĵ and b̂
to be constant within each redshift bin and moved them out
of the integral. Their values have then been fixed according
to Eqs. (15) and (16) at the effective redshift of the
corresponding bin. Under this assumption, the recovered
constraints on the cosmological parameters degrade by a
factor between 1 and 3.5 compared to the constraints
obtained with the standard approach. Such a discrepancy
is expected, since by fixing the value of Ĵ and b̂ in each
redshift bin, we remove the information coming from the
evolution of these quantities inside the bins. Performing the
same test with twice the number of redshift bins, we have
found that the degradation reduces to a factor between 1 and
1.8, showing that as we increase the number of bins and the
approximation of constant Ĵ and b̂ is more valid, we recover
the standard constraints with our new implementation.
Besides validating our methodology, this test also shows

the level of degradation on the cosmological constraints
due to our requirement of model-independence. Since we
want to measure the evolution of the Weyl potential without
assuming a specific theory of gravity, we are limited by the
size of the tomographic bins. Contrary to standard methods,
where the evolution within a redshift bin is given by the
model, here we can only measure the value of the Weyl
potential at the effective redshift of the bins, therefore
losing part of the information.

B. Gravitational redshift

Let us now focus on the spectroscopic side of the
analysis with the dipole measurements. We present the

main results in the bottom panel of Fig. 2. As for Ĵ in the
top panel, we present the 1σ forecast uncertainty on Î with
respect to their fiducial value as a function of redshift. We
present both the optimistic (red) and pessimistic (blue)
scenarios, which correspond to dmin ¼ 20 Mpc=h and
dmin ¼ 32 Mpc=h, respectively. As for the gravitational
lensing observable, the uncertainties on Î increase as a
function of redshift. This is due to the fact that the signal
decreases with increasing redshift, given the decreasing
growth at higher redshifts. Moreover, shot-noise increases
quickly as a function of redshift, as can be seen in the drop
of the number of galaxies in Fig. 1.
Overall, SKA2 will be able to constrain Î as a function of

redshift at the level of ∼20%. These results are consistent
with the forecasts presented in [28], although different
redshift bins have been considered in this work. It is
important to note that the constraining power on Ĵ is much
stronger than on Î, but this is an expected result. The signal-
to-noise ratio (SNR) of the galaxy-galaxy lensing observ-
able is already of 148 with current observations [51], while
the expected SNR for gravitational redshift is much lower.
Using the bins defined in this analysis, the SNR can be
computed as

SNRΨ ¼
X
z

X
ij

ξΨ1 ðdi; zÞcov−1ðdi; dj; zÞξΨ1 ðdj; zÞ; ð37Þ

where ξΨ1 ðdi; zÞ is the gravitational redshift contribution to
the dipole, i.e., the contribution from the first term in
Eq. (27), evaluated at separation di and in the redshift bin z,
and covðdi; dj; zÞ stands for its covariance at separations di
and dj and redshift bin z. Summing from 20 to 120 Mpc=h,
we find a total SNR of 8. Note that the SNR of the dipole is
significantly larger, due to the Doppler effects, but these
terms do not contribute to the constraints on Î. Therefore, it
is not surprising that the constraints obtained with gravi-
tational lensing will be much more stringent. However, the
particularity of the dipole is that it allows us to directly
constrain Î and therefore directly probe Ψ in a model-
independent way, something that cannot be done with any
other observable at cosmological scales.
Finally, let us stress that the constraining power on Î

directly depends on the magnitude of the bias difference
between the bright and the faint population. In this work,
we assumed a bias difference of 1, consistent with what has
been measured for BOSS in [37]. If the bias difference turns
out to be smaller [see, e.g., the analysis of [52], which finds
a bias difference of orderOð0.5Þ], the constraints presented
in this work worsen by a factor of ∼2. However, the final
results still provide stringent constraints.

C. Anisotropic stress with the combination of probes

After computing the forecast constraints for both Ĵ and Î,
we can combine them and place constraints on the
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anisotropic stress η. Following the methodology described
in Sec. III and after marginalizing over the last three
tomographic bins for Ĵ, we generate a mock chain of
50 000 points for Ĵ and another one for Î. In each point we
compute the ratio presented in Eq. (30) and compute the
posterior at each redshift bin. We present in Fig. 3 the 1σ
uncertainties on 2=ð1þ ηÞ as a function of redshift for both
the optimistic (red) and pessimistic (blue) scenarios. Again,
an offset in the x axis has been included for illustrative
purposes.
As it was the case for Ĵ and Î, there is a degradation of

the constraining power as a function of redshift, which is
given by the same physical effects since we are computing
the ratio of the two quantities. We can appreciate a more
significant degradation compared to the Ĵ case, but this is
due to the fact that the uncertainties are driven by the
uncertainties on Î. Overall, the combination of LSST and
SKA2 will allow us to constrain the anisotropic stress,
through the relation 2=ð1þ ηÞ, in a model-independent
way as a function of redshift and at the level of ∼20% in the
optimistic scenario (∼30% in the pessimistic case). Note
again that if the bias difference is of order Oð0.5Þ, the final
constraints on η worsen by a factor of ∼2. Finally, let us
mention that since the uncertainties are essentially domi-
nated by the dipole, we do not expect a significant gain on
the constraints if we add cosmic shear into the analysis.

V. CONCLUSIONS

In this work we have addressed the question of how well
will future surveys constrain the laws of gravity. Given how
open this question is, one way to answer it is by comparing
the two gravitational potentials encoding the time distortion
and the spatial distortion, that isΨ andΦ, respectively. This
comparison is a key test of the validity of GR, since it
compares directly the two independent degrees of freedom

of the Universe’s geometry. In contrast, the growth of
structure is less direct: a deviation from the ΛCDM
prediction can indeed be generated not only by modified
gravity, but also by a fifth force acting on dark matter, or by
a dark energy component that is clustering. Because of this,
measuring η ≠ 1 is often regarded as the smoking gun of
modified gravity.
Many analyses exist in the literature constraining the

anisotropic stress, η, with current observations [6–8,14], or
forecasting the expected constraints with future surveys
[2,53,54]. However, these analyses all rely on the validity
of the weak equivalence principle. Hence, they are simply
not valid if dark matter obeys a fifth force. In this work we
have built a new estimator, which does not rely on the
behavior (or even on the existence) of dark matter, and we
have forecast the expected constraints from future galaxy
surveys.
Our estimator improves the way gravity is tested in two

ways. First, it relies on a novel parametrization that we
have developed for the galaxy-galaxy lensing observable,
which allows us to directly measure the evolution of the
Weyl potential, encoded in a free function Ĵ, in each
tomographic bin. We have shown that combining the
galaxy-galaxy lensing with the galaxy clustering of
the photometrically-detected galaxies allows us to break
the degeneracy between this new function and the galaxy
bias. We have then forecast the constraining capability of
LSST with a Fisher matrix formalism and determined the
uncertainties on Ĵ as a function of redshift (see Fig. 2). We
have observed an expected degradation of the constraining
power toward higher redshifts, but the overall constraints
are at less than percent level, showing that LSST will be
able to provide very precise model-independent con-
straints of the late-time growth of the Weyl potential.
This novel parametrization has the strong advantage of
being fully model-independent, contrary to the standard
μ − Σ parametrization, which relies on the validity of the
weak equivalence principle to measure μ and Σ from weak
lensing observables [10,24].
The second improvement with respect to standard

analyses is that our estimator is built from a direct
measurement of the evolution of Ψ (encoded in a new
function Î) from the dipole of galaxy clustering. Using the
Fisher matrix formalism, we have forecast the constraining
power of a future survey like SKA2 on Î as a function of
redshift (see Fig. 2). We have observed an expected
degradation as a function of redshift and, overall, signifi-
cantly weaker constraints compared to Ĵ. This is also
expected given the difficulty to measure the relativistic
dipole of the correlation function. Nevertheless, SKA2 will
be able to put constraints of the order of 20% on Î, therefore
directly constraining the gravitational potential Ψ. These
results are consistent with those presented in [28], although
a different redshift binning has been considered in this
work. This methodology has, again, the strong advantage

FIG. 3. Reconstruction of 2=ð1þ ηÞ as a function of redshift.
The dashed horizontal line represents the fiducial, while the
vertical error bars show the optimistic (red, light gray) and
pessimistic (blue, dark gray) forecast uncertainties.
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of being model-independent. Current measurements of Ψ
are instead performed through RSD, assuming that the
equivalence principle is valid. More precisely, Ψ is inferred
from the velocity, using Euler’s equation.
Finally, we have combined the constraints on Ĵ from

LSST and the constraints on Î from SKA2 to constrain the
anisotropic stress. More precisely, we have considered the
combination 2=ð1þ ηÞ and shown that these two future
galaxy surveys will be able to constrain it at the ∼20% level
in a direct and model-independent way. This level of
precision is similar to current constraints on η obtained
through the μ − Σ parametrization. The latest DES analysis
does indeed constrain μ0 with a precision of 20% and Σ0

with a precision of 5% [8], leading to a derived constraint
on η0 of the order of 25%. However, as explained before,
these constraints are not valid if dark matter obeys a fifth
force. Moreover, they assume a given time evolution for μ
and Σ, meaning that only η0, i.e., the value of η today can be
constrained with this method. If this time evolution is not
correct, then the constraints that are obtained are invalid. In
contrast, in our case, η is measured independently in each of
the redshift bins of the surveys.

To conclude, let us mention that our analysis has
considered a simple Fisher matrix formalism, accounting
for some astrophysical systematic uncertainties, like galaxy
bias or intrinsic alignments. However, an analysis using
real observations should go beyond this proof-of-concept
and account for observational systematic uncertainties, that
we have assumed here to be under control.
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APPENDIX

In this appendix we provide the fiducial values for all the
parameters considered in our analysis, including those that
have been fixed. The latter are presented in Table II, while
the former are shown in Table III.

TABLE II. List of fixed parameters considered in the Fisher analysis,
together with their fiducial values in the ΛCDM model.

Parameter Fiducial value

Ωm;0 0.3111
Ωb;0 0.0490
h 0.677
ns 0.9665
As 2.105 × 10−9

sB;1 sBðz ¼ 0.25Þ ¼ 0.3706
sB;2 sBðz ¼ 0.38Þ ¼ 0.4665
sB;3 sBðz ¼ 0.51Þ ¼ 0.5757
sB;4 sBðz ¼ 0.65Þ ¼ 0.6817
sB;5 sBðz ¼ 0.79Þ ¼ 0.7839
sB;6 sBðz ¼ 0.95Þ ¼ 0.8974
sB;7 sBðz ¼ 1.13Þ ¼ 1.0224
sF;1 sFðz ¼ 0.25Þ ¼ −0.1618
sF;2 sFðz ¼ 0.38Þ ¼ −0.1279
sF;3 sFðz ¼ 0.51Þ ¼ −0.1269
sF;4 sFðz ¼ 0.65Þ ¼ −0.1209
sF;5 sFðz ¼ 0.79Þ ¼ −0.1164
sF;6 sFðz ¼ 0.95Þ ¼ −0.1120
sF;7 sFðz ¼ 1.13Þ ¼ −0.1080
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TABLE III. List of free parameters considered with their fiducial values
in the ΛCDM model. All the parameters were varied in the Fisher
analysis.

Parameter Fiducial value

Ĵ1 Ĵðz ¼ 0.25Þ ¼ Ωm · σ8ðz ¼ 0.25Þ ¼ 0.3388
Ĵ2 Ĵðz ¼ 0.38Þ ¼ Ωm · σ8ðz ¼ 0.38Þ ¼ 0.3666
Ĵ3 Ĵðz ¼ 0.51Þ ¼ Ωm · σ8ðz ¼ 0.51Þ ¼ 0.3846
Ĵ4 Ĵðz ¼ 0.65Þ ¼ Ωm · σ8ðz ¼ 0.65Þ ¼ 0.3949
Ĵ5 Ĵðz ¼ 0.79Þ ¼ Ωm · σ8ðz ¼ 0.79Þ ¼ 0.3979
Ĵ6 Ĵðz ¼ 0.95Þ ¼ Ωm · σ8ðz ¼ 0.95Þ ¼ 0.3948
Ĵ7 Ĵðz ¼ 1.13Þ ¼ Ωm · σ8ðz ¼ 1.13Þ ¼ 0.3859
Ĵ8 Ĵðz ¼ 1.35Þ ¼ Ωm · σ8ðz ¼ 1.35Þ ¼ 0.3707
Ĵ9 Ĵðz ¼ 1.7Þ ¼ Ωm · σ8ðz ¼ 1.7Þ ¼ 0.3427
Ĵ10 Ĵðz ¼ 2.1Þ ¼ Ωm · σ8ðz ¼ 2.1Þ ¼ 0.3111
b̂1 b̂ðz ¼ 0.25Þ ¼ b · σ8ðz ¼ 0.25Þ ¼ 1.4462
b̂2 b̂ðz ¼ 0.38Þ ¼ b · σ8ðz ¼ 0.38Þ ¼ 1.3512
b̂3 b̂ðz ¼ 0.51Þ ¼ b · σ8ðz ¼ 0.51Þ ¼ 1.2644
b̂4 b̂ðz ¼ 0.65Þ ¼ b · σ8ðz ¼ 0.65Þ ¼ 1.1796
b̂5 b̂ðz ¼ 0.79Þ ¼ b · σ8ðz ¼ 0.79Þ ¼ 1.1035
b̂6 b̂ðz ¼ 0.95Þ ¼ b · σ8ðz ¼ 0.95Þ ¼ 1.0259
b̂7 b̂ðz ¼ 1.13Þ ¼ b · σ8ðz ¼ 1.13Þ ¼ 0.9492
b̂8 b̂ðz ¼ 1.35Þ ¼ b · σ8ðz ¼ 1.35Þ ¼ 0.8683
b̂9 b̂ðz ¼ 1.7Þ ¼ b · σ8ðz ¼ 1.7Þ ¼ 0.7631
b̂10 b̂ðz ¼ 2.1Þ ¼ b · σ8ðz ¼ 2.1Þ ¼ 0.6690
AIA 1.0
Î1 Îðz ¼ 0.25Þ ¼ Ωm · σ8ðz ¼ 0.25Þ ¼ 0.3388
Î2 Îðz ¼ 0.38Þ ¼ Ωm · σ8ðz ¼ 0.38Þ ¼ 0.3666
Î3 Îðz ¼ 0.51Þ ¼ Ωm · σ8ðz ¼ 0.51Þ ¼ 0.3846
Î4 Îðz ¼ 0.65Þ ¼ Ωm · σ8ðz ¼ 0.65Þ ¼ 0.3949
Î5 Îðz ¼ 0.79Þ ¼ Ωm · σ8ðz ¼ 0.79Þ ¼ 0.3979
Î6 Îðz ¼ 0.95Þ ¼ Ωm · σ8ðz ¼ 0.95Þ ¼ 0.3948
Î7 Îðz ¼ 1.13Þ ¼ Ωm · σ8ðz ¼ 1.13Þ ¼ 0.3859
f̂1 f̂ðz ¼ 0.25Þ ¼ f · σ8ðz ¼ 0.25Þ ¼ 0.4761
f̂2 f̂ðz ¼ 0.38Þ ¼ f · σ8ðz ¼ 0.38Þ ¼ 0.4826
f̂3 f̂ðz ¼ 0.51Þ ¼ f · σ8ðz ¼ 0.51Þ ¼ 0.4811
f̂4 f̂ðz ¼ 0.65Þ ¼ f · σ8ðz ¼ 0.65Þ ¼ 0.4733
f̂5 f̂ðz ¼ 0.79Þ ¼ f · σ8ðz ¼ 0.79Þ ¼ 0.4612
f̂6 f̂ðz ¼ 0.95Þ ¼ f · σ8ðz ¼ 0.95Þ ¼ 0.4444
f̂7 f̂ðz ¼ 1.13Þ ¼ f · σ8ðz ¼ 1.13Þ ¼ 0.4238
b̂B;1 b̂Bðz ¼ 0.25Þ ¼ bB · σ8ðz ¼ 0.25Þ ¼ 0.8486
b̂B;2 b̂Bðz ¼ 0.38Þ ¼ bB · σ8ðz ¼ 0.38Þ ¼ 0.8416
b̂B;3 b̂Bðz ¼ 0.51Þ ¼ bB · σ8ðz ¼ 0.51Þ ¼ 0.8380
b̂B;4 b̂Bðz ¼ 0.65Þ ¼ bB · σ8ðz ¼ 0.65Þ ¼ 0.8382
b̂B;5 b̂Bðz ¼ 0.79Þ ¼ bB · σ8ðz ¼ 0.79Þ ¼ 0.8430
b̂B;6 b̂Bðz ¼ 0.95Þ ¼ bB · σ8ðz ¼ 0.95Þ ¼ 0.8541
b̂B;7 b̂Bðz ¼ 1.13Þ ¼ bB · σ8ðz ¼ 1.13Þ ¼ 0.8739
b̂F;1 b̂Fðz ¼ 0.25Þ ¼ bF · σ8ðz ¼ 0.25Þ ¼ 0.1256
b̂F;2 b̂Fðz ¼ 0.38Þ ¼ bF · σ8ðz ¼ 0.38Þ ¼ 0.1661
b̂F;3 b̂Fðz ¼ 0.51Þ ¼ bF · σ8ðz ¼ 0.51Þ ¼ 0.2059
b̂F;4 b̂Fðz ¼ 0.65Þ ¼ bF · σ8ðz ¼ 0.65Þ ¼ 0.2486
b̂F;5 b̂Fðz ¼ 0.79Þ ¼ bF · σ8ðz ¼ 0.79Þ ¼ 0.2914
b̂F;6 b̂Fðz ¼ 0.95Þ ¼ bF · σ8ðz ¼ 0.95Þ ¼ 0.3413
b̂F;7 b̂Fðz ¼ 1.13Þ ¼ bF · σ8ðz ¼ 1.13Þ ¼ 0.3995
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