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Reliable analytical modeling of the nonlinear power spectrum (PS) of matter perturbations is among the
chief prerequisites for cosmological analyses from the largest sky surveys. This is especially true for the
models that extend the standard general-relativity paradigm by adding the fifth force, where numerical
simulations can be prohibitively expensive. Here we present a method for building accurate PS models
for two modified gravity (MG) variants: namely the Hu-Sawicki fðRÞ, and the normal branch of the
Dvali-Gabadadze-Porrati (nDGP) braneworld. We start by modifying the standard Halo Model (HM) with
respect to the baseline lambda-cold-dark-matter (ΛCDM) scenario, by using the HM components with
specific MG extensions. We find that our PðkÞHM retains 5% accuracy only up to mildly nonlinear scales
(k≲ 0.3 h=Mpc) when compared to PS from numerical simulations. At the same time, our HM
prescription much more accurately captures the ratio ϒðkÞ ¼ PðkÞMG=PðkÞΛCDM up to nonlinear scales.
We show that using HM-derived ϒðkÞ together with a viable nonlinear ΛCDM PðkÞ prescription (such as
HALOFIT), we render a much better and more accurate PS predictions in MG. The new approach yields
considerably improved performance, with modeled PðkÞMG being now accurate to within 5% all the way to
nonlinear scales of k ≲ 2.5–3 h=Mpc. The magnitude of deviations from GR as fostered by these MG
models is typically Oð10%Þ in these regimes. Therefore reaching 5% PS modeling is enough for
forecasting constraints on modern-era cosmological observables.
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I. INTRODUCTION

The standard model of cosmology, the lambda-cold-
dark-matter (ΛCDM), has been remarkably well tested
observationally in the last two decades. Presently, it is our
best approximation of the real Universe [1–5]. The precise
observations of the cosmic microwave background (CMB)
radiation [2,6], large-scale galaxy clustering [4,7–9], and
the abundance of massive galaxy clusters [10] among
others, form a long list where the standard cosmological
model predictions are successful.
So far, the bulk of these ΛCDM observational tests

concerns the linear regime, the large scales, and/or early
times. But it is the mildly nonlinear and fully nonlinear
density fluctuation regimes where the vast majority of the
modifications to ΛCDM are expected to deviate signifi-
cantly from the standard model predictions [11–16]. It is
also in this regime, stretching usually from hundreds down
to a few Megaparsecs, where the present and upcoming
cosmological surveys like DESI [17], LSST [18], and
Euclid [19] aim to measure various statistics concerning

the large-scale structure to a percent level accuracy. As a
result, with the influx of data from these surveys, the level
of the statistical errors can get so small that the measure-
ments start to be more sensitive to systematic effects. If
both the new level of accuracy of base-level predictions as
well as the control of the known systematics will be
successfully implemented, these new large-scale surveys
will yield new unprecedentedly accurate estimates and
constraints on cosmological parameters: like the DE
equation of state, the growth rate of structure, or parameters
quantifying possible departures from the standard general
relativity (GR)-based structure formation scenario.
In this context, one of the most useful and widely used

theoretical quantities is the power spectrum (PS) of density
fluctuations, PðkÞ. This statistic generally characterizes the
properties of large-scale structures across vast cosmological
epochs and scales. Not only it can be used as an end-goal
model prediction on its own, but it is also a basic quantity
that is used to model and forecast a number of other useful
LSS observables, including galaxy clustering measures,
cluster abundance, weak-lensing shear and convergence,
the amplitude of the bulk peculiar galaxy motions, and
many others [1,4,18,20–23].
Since the PS forms a basis for the predictions of many

cosmological LSS observational statistics, the accuracy,
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and scales to which we know the input PS limits our
abilities to forecast the derived observables. Thus,
obtaining robust estimates of the PS beyond the linear
theory regime (i.e., scales of k > 0.1 h=Mpc) became of
paramount importance to modern cosmology, and has been
a subject of extensive effort in recent years [24–27]. A
classical approach is to either directly use the results of a
number of N-body simulations of LSS evolution to predict
PS, or use the simulation results for calibration of more
or less approximate models [24–26,28,29]. Recently,
machine-learning-based-emulators are also employed for
computing nonlinear PS [e.g., [27,30]]. This approach
especially depends on the growing computational power.
In recent years, the progress in modeling the PS has been

truly significant. The resulting current state-of-the-art PS
models for ΛCDM are already, or close to, attaining
subpercent accuracy in the nonlinear regime, as required
for the success of the cosmological tests offered by the
incoming big survey data. However, this amazing progress
has been mostly limited to the ΛCDM alone. When it
comes to many interesting extensions and modifications of
the standard model, such as the whole family of beyond-
GR modified gravity (MG) scenarios, the current accuracy,
and versatility of PS modeling is still very much lacking.
The reasons for this are both higher theoretical complica-
tions of such models, and their increased levels of non-
linearity [16,31–35]. For MG models, N-body simulations
play an even more important role in fully assessing
the effect of the fifth force, and are crucial for disent-
angling pure MG effects from the standard GR-based
scenarios [36–38]. This is connected with the richer
phenomenology of such models [39–48]. Given the fact
that the MG simulations are usually many times more
expensive than the standard ΛCDM case [14,15], it
becomes computationally prohibitive to obtain simulation
libraries of the same volume and precision for MG, as is
possible for ΛCDM. However, such libraries are necessary
to be applied to the proven state-of-the-art emulating or
fitting methods to achieve the same precision, and success
in modeling MG effects, as we have for the case of ΛCDM.
In this work, we attempt to remedy the deficit of accurate

MG PS modeling. To circumnavigate the problem of
prohibitively expensive MG simulations, we explore a
different approach. Instead of trying to model the absolute
MG PS predictions, we take ΛCDM to always be our
baseline, and build a semianalytical model for the relative
MG effects on the ΛCDM PS. We build our model on the
basis of a more general Halo Model (HM) approach ([49],
reviewed by [e.g., [24,50]]). Next, we demonstrate how
various degrees of modeling freedom can be calibrated and
constrained already by a relatively small library of N-body
simulations, to achieve an unprecedented level of PS
modeling in the MG scenarios studied here.
There are many models that can be considered beyond-

GR structure formation scenarios. Most of the viable, and at

the same time cosmologically interesting ones usually
involve some extra couplings to the metric in the
Einstein-Hilbert action that manifests themselves as addi-
tional degrees of freedom (d.o.f.). The propagation (gra-
dient) of this d.o.f. induces an additional gravitational force
component, called as the fifth force, which acts on top of the
Newtonian gravitational force on the cosmological scales.
However, propagation of a significant fifth force both on
small galaxy scales, and in the strong field regime is tightly
constrained observationally [51–56]. Thus, only MG mod-
els that exhibit some kind of a fifth force screening
mechanism, which, as the name suggests, would screen
the fifth force in these observationally tested regimes are
viable MG candidates [41,46,57–59].
The clockwork of MG models and their involved screen-

ing mechanisms can differ in many ways. From our point of
view, however, we can significantly simplify the subject by
focusing just on phenomenological effective modifications
to the density fluctuations PS. As our test-case models, we
choose variants of two popular MG set-ups: namely fðRÞ
[44] and nDGP gravity [60], which will serve as a good
representative for their whole respective families. Further in
the text, we offer a more detailed description and defi-
nitions of these models.
Most of the works that have considered computing

the nonlinear PS in MG models either rely on simula-
tions [31,32], post-Friedmann (PPF) formalism [33], or
perturbation theory focusing on quasilinear scales [16,34].
In Ref. [61], the nonlinear PS is computed using the
HMcode [26] for a variety of extensions to the standard
cosmological model, including fðRÞ and nDGP. The level
of this prediction is however significantly limited by a
number of approximations. For example, a simplified
spherical collapse theoretical formalism is used there to
estimate DM halo properties. From another perspective,
MG-HALOFIT was proposed in [62] as an extension of
standard HALOFIT for fðRÞ gravity models, but [63] showed
that the former has limited applicability and accuracy.
The HM formalism has been used to model nonlinear

MG PS in [34,35,64–68], which is mainly based on the
theoretical spherical collapse model, and is explicitly
solved for each MG variant. In our approach, however,
we rely on the calibration of phenomenological compo-
nents of HM to N-body simulations. An additional strength
of our approach is that it is general enough to be quite
straightforwardly extended, not only to a wider part of the
model parameters space but also, in principle, to other
modified structure formation models.
This paper is organized as follows: In Sec. II, we

describe the MG models, numerical datasets, and simu-
lations. In Sec. III, we elaborate on the HM formalism and
describe the empirical halo properties: halo mass function
(Sec. III A), halo bias (Sec. III B) and halo density profile
(Sec. III C). In Sec. IV, we discuss the results obtained from
extending the standard HM predictions to the MG models
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considered in this work (Sec. IVA), and from our new
approach (Sec. IV B). In (Sec. IV C), we test our approach
on another suite of MG simulations, and the final Sec. V
includes our conclusions, discussion, and future work
prospects. Details of the Appendices are mentioned in
the respective subsections.

II. MODIFIED GRAVITY MODELS, NUMERICAL
DATA SETS AND TOOLS

As our main data for calibration of the nonlinear PS
amplitude, we take the Elephant (Extended LEnsing PHysics
using ANalytic ray Tracing) suite of N-body simulations
[32]. These simulations provide a good test bed to model
the impact of fðRÞ and nDGP physics on formation of the
large-scale structure.
In fðRÞ, the fifth force is manifested as a result of

additional degrees of freedom from the interaction between
an auxiliary scalar field (or scalaron) and matter. This
additional force appears as a nonlinear function of the Ricci
scalar, R in the Einstein-Hilbert action, hence the term
fðRÞ. We work with the Hu-Sawicki form of fðRÞ gravity,
where Chameleon screening screens the fifth force [69]. In
this screening, the scalaron becomes very massive in the
high curvature (and high matter density) regimes, and the
fifth force exponentially decays above the length scale
determined by the inverse of the mass of the scalaron. This
length scale is termed the Compton wavelength. As a result
of this decay, the scalar interaction diminishes above the
Compton wavelength, and GR is recovered [70].
In the nDGP model, gravity, unlike other standard forces,

mediates from4Dbrane to 5DMinkowski spacetime [60,71].
In this model, the scalar is identified as the brane-bending
modewhich describes the deformation of the 4D brane in the
5D bulk spacetime. The brane bending mode has a second-
order term in the equation of motion. On small scales, this
term dominates over the linear term. As a result, the coupling
between the scalar field and matter is suppressed, and the
solutions for metric perturbations approach GR. This is
referred to as the Vainshtein screening [72].
In Elephant, along with ΛCDM, two fðRÞ variants have

been employed, with their free parameter jfR0j (the strength
of the scalar field today), taken to be 10−6 and 10−5

(increasing order of deviation from ΛCDM) dubbed as F6
and F5, respectively. For nDGP gravity, we have two
variants with the model parameter rcH0 ¼ 5 and 1 (which is
the dimensionless crossing-over scale characterizing tran-
sition from 4D to 5D gravity), marked consequently as N5
and N1, respectively.
The simulations were run from zini ¼ 49 to zfin ¼ 0

employing the ECOSMOG code [14,73,74], each using
10243 N-body particles in a cubic box of a size
1024 Mpc=h. The mass of a single particle is
mp ¼ 7.798 × 1010M⊙=h, and the comoving force reso-
lution is ε ¼ 15 kpc=h. Each set of simulations has five

independent realizations, evolved from the same set of
initial conditions. The cosmological parameters of the
fiducial background model are given as Ωm ¼ 0.281 (frac-
tional matter density), Ωb ¼ 0.046 (fractional baryonic
density), ΩΛ ¼ 0.719 (fractional cosmological constant
density), Ων ¼ 0 (relativistic species density), h ¼ 0.697
(dimensionless Hubble constant), ns ¼ 0.971 (primordial
spectral index), and σ8 ¼ 0.842 (power spectrum normali-
zation). These parameters apply to background cosmolo-
gies in the simulations of all the gravity models. For further
processing, we take simulation snapshots saved at z ¼ 0,
0.3, 0.5, and 1.
As indicated above, the Elephant-suite will be our main

calibration dataset. To test the accuracy of our PS modeling
and thegeneral quality of extrapolation,we also use different
N-body data. For these additional tests, we take the MG
simulations for F5 and N1, described in [75]. These simu-
lations have background cosmological parameters different
from our parent Elephant simulations, with Ωm ¼ 0.3111,
Ωb ¼ 0.049, ΩΛ ¼ 0.6889, Ων ¼ 0, h ¼ 0.6766, ns ¼
0.9665, and σ8 ¼ 0.8245. This simulation set is run
using MG-COLA [13] in a 500 Mpc=h box. For each
model, we build an ensemble based on five independent
realizations.
Linear matter power spectra, PðkÞlin, used in this work

were calculated using a modified version of the CAMB

cosmological code [76], which includes a module imple-
menting both the fðRÞ and nDGP models. The simulation
power spectra, PðkÞsim, were computed using POWMES [77].
In what follows, by PðkÞ we will be denoting the fully
nonlinear matter power spectrum, unless indicated
otherwise.

III. Halo Model FORMALISM

As a baseline prediction and our starting point, we take
the Halo Model (HM) approach. It has been proposed as an
attempt to analytically model the variance of density
fluctuations into the nonlinear regime using the properties
and clustering of halos as main input parameters. HM
describes the statistics of the density field up to the mildly
nonlinear regimes (i.e., k≲ 0.5 h=Mpc). Despite its
inferior accuracy compared to heavy N-body simulations,
the HM has been successfully used for modeling observ-
ables and constraining cosmological parameters [24,49,78].
In HM, the main presumption is that all contributions to

the cosmic density field variance come from the matter
collapsed into halos. This allows for moderately accurate
modeling of the nonlinear two-point clustering statistics,
although HM can be used to compute the density field at
even higher levels of the n-point hierarchy [79].
Following HM, the total matter power spectrum PðkÞHM

can be described as a sum of two contributions:

PðkÞHM ¼ PðkÞ1h þ PðkÞ2h; ð1Þ
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where PðkÞ1h models the contribution from the matter
clustered inside halos (called the one-halo term) and PðkÞ2h
is the contribution from clustering of separate halos (the
two-halo term). In practice, the one-halo term dominates at
small scales (i.e., k≳ 1 h=Mpc) and saturates to a constant
value at larger scales, where the two-halo term becomes the
dominant component of the power spectrum.
These contributions are further defined as:

PðkÞ1h ¼
Z

∞

0

dMjũðkjMÞj2
�
M
ρ̄

�
2

nðMÞ ð2Þ

and

PðkÞ2h ¼ I2mðkÞPðkÞlin; ð3Þ

where,

ImðkÞ ¼
1

ρ̄

Z
∞

0

dMjũðkjMÞjMnðMÞbðMÞ ð4Þ

and Im → 1 for k → 0 in order to match the linear theory
predictions at large scales. The integrals in Eqs. (2) and (4)
should in principle cover all possible halo mass ranges, but
in practice, someMmin andMmax are introduced (these mass
limits are discussed in more details in the next subsections).
Here, ρ̄ corresponds to the mean density of the universe,

PðkÞlin is the linear theory matter power spectrum, nðMÞ is
the halo mass function, and bðMÞ is the linear halo bias.
The term jũðkjMÞj is the normalized Fourier transform of
the internal density profile of a halo of mass M, such that
ũðk → 0;MÞ → 1. The above HM building blocks are
intrinsically redshift-dependent functions, which, in prin-
ciple, allows one to obtain HM prediction at any redshift for
which the integrands are well defined.
All the components of the HM can be varied independ-

ently from each other, and each specific choice of fitting
functions, formulas, or tabulated data creates a unique
realization. Thus, HM is a general framework under which
one can create many different families of PS models.
Motivated by literature and our own studies for each
of our cosmological models (i.e., ΛCDM, and all MG
variants), we find an optimal combination of analytic
formulas and fitting functions to describe the input proper-
ties of halo mass function, halo bias, and halo concen-
trations. Below we provide a more detailed description of
the particular choices we make. For a quick summary and
look-up, we refer the reader to Table I which contains a
concise list and references of all the fitting functions for the
halo properties used in this work, and for each model.

A. Halo mass function

The halo mass function (HMF), nðMÞ, quantifies the
number of halos per unit mass per unit comoving volume.
The most commonly adopted theoretical formulation of the

HMF is via the extended Press–Schechter (EPS) formalism
[88,89], in which HMF is given by:

nðMÞ≡ dn
dM

¼ ρ

M2
FðσÞ

���� d ln σd lnM

����. ð5Þ

The halo multiplicity function, FðσÞ ¼ νFðνÞ denotes the
fraction of matter collapsed into halos, in a logarithmic bin
around the peak height, ν ¼ δcðzÞ=σðM; zÞ. Here, δcðzÞ is
the spherical collapse density threshold, and σðM; zÞ is the
linear variance in the density fluctuation field smoothed
using a top-hat filter. This scaling relation has been
modeled extensively in the literature and it has been
shown to be approximately universal across redshifts for
ΛCDM [80,83,90–92]. In our earlier work [81], we have
shown that after simple rescaling, the FðσÞ in both fðRÞ
and nDGP also exhibits a similar degree of universality as
in the ΛCDM-case.
Following our previous study, we will model MG HMF

as a fractional deviation, ΔMG from the ΛCDM fiducial
baseline, nðσMÞΛCDM. We have shown that such an
approach allows for achieving quite a good accuracy
(5–10%), which also holds for different background cos-
mologies. However, to obtain such precision, a careful
choice of the baseline ΛCDM HMF model is paramount.
Thus, for our baseline ΛCDM, we tested various HMF

models in the literature (e.g., [80,83,90–94]), as these
functions can in principle be extrapolated to desired halo
mass ranges. We found that the fitting function proposed in
Watson et al. 2013 [[80], hereafter W13] proved to be
optimal for HM power-spectrum forecasting. Therefore, we
used W13 for our ΛCDM HMF computations.
For completeness, we now recall the essential steps of

Ref. [81]. Here the target MG HMF is modeled as:

nðσMÞMG ¼ ΔMGðσMÞ · nðσMÞΛCDM; ð6Þ

where σM ≡ σðMÞ is simply the linear mass variance at the
Lagrangian top-hat halo mass scale, M.
For fðRÞ gravity models, the fractional deviation fit is

expressed as:

ΔMG ≡ ΔfðRÞ ¼ 1þ a exp

�
−
ðX − bÞ2

c2

�
; ð7Þ

X ≡ lnðσ−1Þ. Here, ða; b; cÞ are parameters of the fit that
were calibrated using simulations. They depend on the
variant of fðRÞ gravity model under consideration. See
Table I for the specific values that we use in this work.
For nDGP gravity models:

ΔMG ≡ ΔnDGP ¼ pþ q arctan ðs X þ rÞ: ð8Þ

Here, X is the rescaled mass density variance,
X ≡ lnðσ̃−1Þ, σ̃ ¼ σ=ΞðzÞ. Again, ðp; q; r; sÞ are the
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parameters of the fit, whose values are determined by the
variant of the nDGP gravity model.
The resolution of our simulations allowed us to probe

only intermediate- and large-mass halos to compute the
HMF. In this mass regime, HMF in MG increases with
respect to ΛCDM, as small-mass halos accrete matter and
merge faster to form larger structures. However, this
enhanced structure formation at large halo mass-end is

happening at the expense of the abundance of smaller halos
used up in this process [see, e.g., [81,95–97]]. Thus, we can
expect that there should be a simultaneous decrease in the
number of small-mass halos in the MG models when
compared to ΛCDM.
Equation (8) for nDGP allows the possibility of

ΔnDGP < 1 for small mass halos. However, our fit for
ΔfðRÞ is never below 1. To admit for low-mass halo

TABLE I. Compilation of the fitting functions used in this work for the halo properties in HM build-up, for both ΛCDM and MG
models.

Halo properties Fitting functions Notes

Halo mass function, HMF
ΛCDM: Watson et al. [80] fðσÞΛCDM ¼ A½ðβσÞα þ 1�e−γ=σ2 For MGð¼ fðRÞ; nDGPÞ,

A ¼ 0.282, α ¼ 2.163, β ¼ 1.406 and γ ¼ 1.210. fðσÞMG ¼ ΔMG × fðσÞΛCDM
fðRÞ: Gupta et al. [81] ΔfðRÞ ¼ 1þ a exp ½− ðX−bÞ2

c2 � Additional cutoff expression at
low-mass scales for fðRÞ [Eq. (9)]

For F5: a ¼ 0.230, b ¼ 0.100 and c ¼ 0.360
For F6: a ¼ 0.152, b ¼ −0.583 and c ¼ 0.375

X ≡ lnðσ−1Þ

nDGP: Gupta et al. [81] ΔnDGP ¼ pþ q arctan ðs X þ rÞ
For N1: p ¼ 1.35, q ¼ 0.258, r ¼ 5.12, s ¼ 4.05 ΞðzÞ: nDGP force enhancement

with respect to GR [82].For F6: p ¼ 1.06, q ¼ 0.0470, r ¼ 11.8, s ¼ 4.19

X ≡ lnðσ̃−1Þ, σ̃ ¼ σ=ΞðzÞ
Linear halo bias, bðMÞ
All models: Sheth et al. [83]

bðMÞ ¼ 1ffiffi
a

p
δcðzÞ ð

ffiffiffi
a

p ðaν2Þ þ ffiffiffi
a

p
bðaν2Þ1−c

− ðaν2Þc
ðaν2Þcþbð1−cÞð1−c=2ÞÞ

This expression has been proposed
for ΛCDM. We extrapolated

the relation for MG.
a ¼ 0.707, b ¼ 0.5 and c ¼ 0.6.

Concentration-mass relation, cðMÞ
ΛCDM: Ludlow et al. [84]

cðνÞΛCDM ¼ c0ð νν0Þ−γ1 ½1þ ð νν0Þ1=β�−βðγ2−γ1Þ For MGð¼ fðRÞ; nDGPÞ,
cðMÞMG ¼ ΔcðMÞ;MG × cðMÞΛCDMc0 ¼ 3.395 × ð1þ zÞ−0.215

β ¼ 0.307 × ð1þ zÞ0.540
γ1 ¼ 0.628 × ð1þ zÞ−0.047
γ2 ¼ 0.317 × ð1þ zÞ−0.893

ν0 ¼ ð4.135 − 0.564a−1 − 0.210a−2

þ 0.0557a−3 − 0.00348a−4Þ ×DðzÞ−1

fðRÞ: Mitchell et al. [85] yðxÞ ¼ 1
2
ð λ
ωs
ϕðx0Þ½1þ erfðαx0ffiffi

2
p Þ� þ γÞð1 − tan hðωt½xþ ξt�ÞÞ

y ¼ log10ðΔcðMÞ;fðRÞÞ
x0 ¼ ðx − ξsÞ=ωs

x ¼ log10ðM500=10p2Þ
p2 ¼ 1.5log10½

¯fRðzÞ
1þz � þ 21.64 [86]

λ ¼ 0.55� 0.18
ξs ¼ −0.27� 0.09 For M ≤ 1012M⊙=h,

cðMÞfðRÞ;nDGP ¼ cðMÞΛCDMωs ¼ 1.7� 0.4

α ¼ −6.5� 2.4
γ ¼ −0.07� 0.04
ωt ¼ 1.3� 1.0
ξt ¼ 0.1� 0.3

nDGP: Mitchell et al. [87] ΔcðMÞ;nDGP ¼ ½A − Blog10ðM200M⊙h−1Þ�ðH0rcÞ−0.71�0.05 þ 1

A ¼ ð0.35� 0.01ÞðH0rcÞ−0.71�0.05

B ¼ ð0.0302� 0.0008ÞðH0rcÞ−0.71�0.05
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deficiency also in the fðRÞ, we impose an artificial decrease
in fðRÞ HMF for M < 1011M⊙=h, when compared to
ΛCDM results. For low halo masses, we assume that ΔfðRÞ
is a linear function of lnðσ−1Þ, and is given by:

ΔfðRÞ → ðm lnðσ−1Þ þ nÞ × ΔfðRÞ. ð9Þ

We tested for different combinations of the ðm; nÞ param-
eters values. The combination ðm; nÞ ¼ ð0.06; 0.99Þ
turned-out to be optimal for our both fðRÞ variants.
Thus we use these values in this work. A note of caution
is in place here. There is no clear physical justification for
our particular choice of both m and n, other than that they
are providing optimal HM power spectrum predictions. An
interested reader can play around and search for a different
choice of ðm; nÞ. However, the overall impact of the
particular ðm; nÞ choice on the resulting HM remains small.

B. Halo bias

The relation between the clustering amplitude of the
underlying DM density field and halos is quantified in
terms of the linear halo bias relation, δhðMÞ ¼ bðMÞδ. In
the context of power spectra, it is convenient to consider the
following Fourier-space estimator of the halo bias:

b̂ðk;MÞ ¼ Phmðk;MÞ
PðkÞ . ð10Þ

Here, Phmðk;MÞ is the halo-matter cross power spec-
trum, and PðkÞ is the matter power spectrum. One can find
an optimal value of the linear bias by taking a limit, or an
average of this estimator at the smallest possible k’s. We
consider such a power-spectrum-based bias estimator to use
results from Elephant suite for testing and finding optimal
analytic bias formula for HM.
For this purpose, we tested various bðMÞ fitting func-

tions for ΛCDM [98–100]. Sheth et al. 2001 bðMÞ [[83],
hereafter S01] gave the best match to the simulations. Thus,
this will be our choice for the bðMÞ computations in
this work.
In the Appendix A, we show the performance of S01,

both in capturing the ratio of MG bðMÞ versus ΛCDM
(Fig. 5), and the absolute bðMÞ relation (Fig. 6). We find
that S01 gives reasonable predictions in both cases. Given
that bðMÞ impacts only the two-halo term, which by
construction matches the PðkÞlin on large scales, the choice
of bðMÞ does not impact the HM results to a great extent.

C. Halo density profile: Concentration-mass relation

The scale-free nature of structure formation in CDM
scenarios results in self-similar density profiles for indi-
vidual DM halos, which was first pointed out by Navarro,
Frenk, and White in [[101], hereafter NFW]. As a result,
DM density profiles are rescaled by a characteristic central

density, ρs, and radial scale, rs, (or mass M and concen-
tration cðMÞ, respectively). The cðMÞ relation is defined as
the ratio of the virial radius, Rv of the halo to rs, and
determines the density profile of NFW halos.
To obtain relatively unbiased and good-quality NFW fits,

the simulated halos need to be well resolved. The con-
vergence of the halo density profile depends on the
simulation’s force and mass resolution. Thus cðMÞ can
be reliably estimated only for a limited halo mass range,
usually for halo with masses corresponding to at least a
few ×103 particles [see, e.g., [102]]. The resolution of the
Elephant suite allow only for probing the cðM ≥ 1013M⊙=hÞ.
Because of this, we need to resort to the fitting functions for
cðMÞ here.
We use relations proposed in [85,87] to compute the

cðMÞ relation in fðRÞ and nDGP gravity models, respec-
tively. In these works, direct NFW fitting was used to
compute the halo density profiles, and functional forms
were derived for the ratio cðMÞMGð¼fðRÞ;nDGPÞ=cðMÞΛCDM
(refer to Table I for explicit expressions). The MG cðMÞ
can be therefore obtained as a product of this ratio times the
concentration-mass relation for ΛCDM, for which we use
the form proposed in [84]. Considering the ratio instead of
absolute MG cðMÞ would eliminate the leading-order
systematic uncertainties coming from the background
cosmology.
The authors in [85] proposed functional form for

logðcðMÞfðRÞ=cðMÞΛCDMÞ. When expressed as a function
of M500=10p2 , this ratio is independent of the background
scalar field and z. The parameter p2 defined in [86],
encapsulates these dependencies, and in turn allows differ-
ent variants of fðRÞ gravity model to be studied in a
unified way.
For the case of the nDGP gravity model, in Ref. [87], the

ratio cðMÞnDGP=cðMÞΛCDM is fitted as a decreasing func-
tion of M200. This fitting also captures the z dependence,
hence making the ratio only dependent on the nDGP
parameter, rcH0.
The halo mass range probed in both Mitchell et al.

[85,87] is confined to ≥ 1012M⊙=h. Therefore, we
restrict the use of their fitting functions to the calibrated
mass range, and artificially impose cðMÞfðRÞ, nDGP ¼
cðMÞΛCDM for M < 1012M⊙=h.

IV. RESULTS

In this section, we combine all the HM components to
give an analytical prediction for matter overdensity PS. As
a reference case to gauge our results against, we always
take the PS from Elephant simulations. At large scales, the
linear perturbation theory gives accurate and reliable
predictions both for ΛCDM and MG PS. Hence, we focus
here only on the scales corresponding to mildly and fully
nonlinear regimes. In practice, we will be interested in the
performance of our models for k ≥ 0.1h=Mpc.
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A. Halo Model predictions for modified gravity

We start by testing the standard set-up for HM, which
aims to yield a theoretical prediction for the PS amplitude
in a given cosmology. For ΛCDM alone, this approach has
at best limited accuracy, since the classical HM fails to
accurately capture PS already in the mildly nonlinear
regime, i.e., k≳ 0.2–0.3 h=Mpc [25,26,103,104]. Thus,
we do not expect that it will perform better in MG
cosmologies, which have even richer phenomenology.
However, it is still an illustrative exercise, since we will
be using this basic HM setup to obtain much more accurate
PS predictions for MG.
Using the inputs of the HMF, bðMÞ, and cðMÞ relation

in their MG versions discussed in the previous section,
we compute the resultant power spectra for a number of
redshifts. For this, we employ Eqs. (2)–(4), integrating
from Mmin ¼ 1M⊙=h to Mmax ¼ 1016M⊙=h. We choose a
sufficiently broad halo mass range so as to account for the
maximum possible halo masses that still have an impact on
the resulting PS.
For the integral in Eq. (4) to approach unity at large

scales, the bias needs to attain unity when integrated over
all the halo masses, i.e.,

1

ρ

Z
∞

0

bðMÞnðMÞdM ¼ 1. ð11Þ

In practice, this integral yields a value below unity, even
when the integration is taken over the maximum possible
halo mass range. Changing the high mass limit for the
integration does not impact the results to a great extent,
because on these scales, halos become exponentially rare
which makes their contribution to the total power negli-
gible. On the other hand, we expect a significant contri-
bution from the low-mass regime. However, owing to
resolution limits, the properties of low mass halos cannot
be properly calibrated using simulations.
Therefore, to add the contribution of the low-mass

halos to HM computations, we use the correction proposed
in [105,106]. This correction adds the contribution of
the missing halos to the two-halo term, in order to
recover PðkÞlin at large scales. The correction term is
simply yielded by:

A ¼ 1 −
1

ρ̄

Z
Mmax

Mmin

bðMÞnðMÞdM; ð12Þ

and it is used as an additive component in the two-halo
term:

C ¼ AũðkjMminÞ
Mmin

. ð13Þ

Here, ũðkjMminÞ is the normalized Fourier transform of the
density profile for the lowest resolved mass Mmin.

Equation (3) is then modified and the resultant two-halo
term is given by:

PðkÞ2h ¼ PðkÞlinðIm þ CÞ2. ð14Þ

One could instead replace the PðkÞ2h term with PðkÞlin,
as the former differs from the latter only for k ≥ 1 h=Mpc,
where already PðkÞ1h takes over as the dominant contribu-
tor. However, for completeness, we use the full above
expression for the two-halo term.
The results of such direct HM computations for our MG

models are illustrated in Fig. 1, where we compare PðkÞHM
(solid lines), as well as linear theory PðkÞlin (dotted lines),
with the Elephant simulations for all our models at z ¼ 0. The
shaded region corresponds to the uncertainty in the Elephant

results, which is the inverse of the square root of the
number of statistically independent modes contributing to
each k-bin, and the horizontal dashed lines correspond to
the 5% accuracy regime. The performance of HM in these
MGmodels is similar to the ΛCDM results and is not much
better than the actual linear theory. With respect to the
simulation prediction, PðkÞHM gives better than 5% accu-
racy for k ≤ 0.2–0.3 h=Mpc, and stays within 10% for
k ≤ 0.4–0.5 h=Mpc. An interesting exception is the F5
fðRÞ variant, where better than 2% accuracy is kept all the
way to k ∼ 0.2 h=Mpc.
In all the models, we also encounter an underprediction

with respect to the simulation results for k ≈ 0.5 h=Mpc.
This is a well-known problem of the HM formalism in
ΛCDM [26,104], and further propagates to the MG
scenarios (also seen for Galileon models in [66]).
Similar behavior is observed also for other redshifts that

FIG. 1. Comparison of the power spectrum from halo-model,
PðkÞHM (solid lines), linear theory, PðkÞlin (dotted lines) for
ΛCDM and the variants of MG models, and ΛCDM HALOFIT (red
dot-dashed line) with Elephant simulations PðkÞsim, for z ¼ 0.
The horizontal gray dashed lines correspond to the 5% accuracy
regime.
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our simulations probe, but we do not show them here for
brevity.
Our results clearly indicate that HM alone cannot

provide modeling accuracy that will be sufficient for the
percent level accuracy of future LSS surveys. On the other
hand, HALOFIT, which is widely used for ΛCDM PS
modeling can perform substantially better. We illustrate
this in addition to HM performance in the Fig. 1.
Considering the 5%-level accuracy for the comparison,
ΛCDM HM can only be used up to k ≤ 0.3 h=Mpc, while
with the HALOFITone can do much better reaching up to 5%
for k ≤ 1.5 h=Mpc. Thus, we can exploit this much better
HALOFIT performance, by using it as a fiducial ΛCDM
baseline, and model only MG-induce deviation form the
base-line by the means of HM.
However, noticing the above, the positive result here is

that HM can be actually employed to yield predictions for
MG power spectra with the same-level accuracy as for
ΛCDM. This is a somewhat surprising result because the
standard HM does not include any room for extra MG
physics (like the fifth-force and screening). Yet it seems
that self-consistent modifications of HMF, bðMÞ, and cðMÞ
are enough to obtain the usual ΛCDM HM-level predic-
tions also for different MG cosmologies. This is very
encouraging, and as we show below this can be used as a
strong advantage to build an even better and more accurate
PS model for MG.

B. An improved model for MG power spectrum

In the previous section, we have shown that when HM is
applied to model the PS amplitude, it offers limited
accuracy, and is comparable to what can be achieved for
the standard ΛCDM. In this section, we will demonstrate
that we can build a much more accurate PS model for MG.
This can be realized when we apply HM to estimate the
fractional departure from the ΛCDM baseline, rather than
trying to predict the absolute amplitude of PS alone.
Our starting point will be the generic ratio of the MG to

ΛCDM power spectra:

ϒðkÞ≡ PðkÞMG=PðkÞΛCDM: ð15Þ
Here, both numerator and denominator are general terms
for MG and ΛCDM PS respectively. By modeling this
ratio, rather than the MG PS itself, we can benefit from a
number of properties, namely: (i) the dependence on the
background cosmological parameters (such as Ωm, H0, or
σ8) should cancel out from the ratio to the leading order;
and (ii) the scale of significant departure from ΛCDM (i.e.,
fromϒ ¼ 1) is naturally determined in terms of the ΛCDM
baseline, rather than some arbitrary nonlinear amplitude
or scale.
In Fig. 2, we compare the ratios ϒðkÞ estimated from

Elephant simulations (solid line), linear theory (dotted line),
and HM (dashed line), for both fðRÞ (left panels), and

FIG. 2. The ratio ϒðkÞ≡ PðkÞMG=PðkÞΛCDM obtained from linear theory (dotted lines), Elephant simulation (solid lines) and the Halo
Model (dashed lines), at z ¼ 0 (top panels) and z ¼ 0.5 (bottom panels). The left panels correspond to fðRÞ gravity variants: F5 and F6,
and the right panels correspond to nDGP gravity variants: N1 and N5. Shaded regions are the standard deviations obtained for this ratio
across five realizations of the simulation box.
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nDGP (right panels), at z ¼ 0 (top panel) and z ¼ 0.5
(bottom panel). Naturally, both the simulation and HM
results for ϒðkÞ are expected to match the linear theory
prediction at large scales for both models. As we approach
smaller scales, the departure from linear predictions
increases (namely, linear theory runs away for fðRÞ and
stays constant for nDGP), and trends peculiar to each
model emerge. This is a well-known result, which high-
lights the fact that these family of MG models usually
exhibits an increased degree of nonlinearity of the density
field, owing to both the fifth force and their respective
screening mechanisms [16,31,38,44,57,107,108]. For fðRÞ
gravity models, PS approaches ΛCDM on the large-scales,
and we see a monotonic increase in the ratio with k
(although slower than what the linear theory would
predict). Whereas, for nDGP, ϒðkÞ enhancement is maxi-
mum at the intermediate scales, and this enhancement
decreases for large k.
A crucial observation from our study is that HM

prediction agrees qualitatively with the simulations. We
note that the agreement is far from perfect, especially
around the peaklike features, but the HM captures the
essential shape and scales of the PS ratios.
As mentioned in the previous section, one perennial

problem with the HM has been the transition region, where
both two- and one-halo terms have a similar magnitude, and
both contribute equivalently to the predicted signal. In
general, the HM underpredicts the strength of clustering in
this region, with the exact amount depending on redshift
and cosmology [26]. We also highlight a similar problem
with the HM-based MG predictions in Fig. 1 at
k ≈ 0.5 h=Mpc. These scales are also called the quasilinear
regime because the evolution of perturbations at these
scales is not exactly governed by linear perturbation theory.
For standard ΛCDM, the inaccuracies of the HM in this

transition regime are addressed by devising empirical
fitting functions. One of the earliest, yet successful exam-
ples was HALOFIT [25], which is motivated by the principles
of HM, and calibrated using N-body simulations. It was
later improved, in particular by [28] who updated its fitting
functions from higher resolution simulations and amelio-
rated the modeling for dark energy cosmologies. Methods
and prescriptions to predict the nonlinear PS in ΛCDM are
numerous, but in this work we will use HALOFIT as it is
sufficiently accurate for our purposes.
Having seen that the ratio ϒðkÞ between HM-derived PS

for MG and ΛCDM, ϒðkÞHM correctly captures the
simulation trends, we propose to use it to obtain the fully
nonlinear PS in MG. This is done by multiplyingϒHM with
an accurate model for the ΛCDM baseline PðkÞ. Therefore,
we characterize the beyond-ΛCDM PS (PðkÞMG) as:

PðkÞMG ¼ ϒðkÞHM × PðkÞΛCDM. ð16Þ

Here, ϒðkÞHM ¼ PðkÞMG;HM=PðkÞΛCDM;HM. Both the
numerator and the denominator terms are obtained using
inputs from Table I.
In this prescription, PðkÞMG and PðkÞΛCDM are different

from Eq. (15). Here, PðkÞMG is the main quantity of focus
that we compute in this work, and PðkÞΛCDM is the
nonlinear ΛCDM power spectrum, for which we take
the HALOFIT predictions using the parameters of a given
background cosmology.
The results of applying our proposed methodology are

illustrated in Fig. 3, where we plot PðkÞMG obtained using
ϒðkÞHM multiplied by the HALOFIT ΛCDM-baseline. The
top panels present the power spectra directly: PðkÞsim from
Elephant (dots), and PðkÞMG derived with Eq. (16) (solid
lines). In the bottom panels, we show departures of thus-
obtained PðkÞMG from PðkÞsim treated as reference.
These new results, when compared with the standard
HM predictions from Fig. 1, clearly perform much better.
The standard HM reaches 5% accuracy only up to
k ≤ 0.2–0.3 h=Mpc. Now, by using HM only for predicting
ϒðkÞHM, and combining it with HALOFIT ΛCDM-
baseline, we improve the scale at which modeling is
accurate within 5% by an order of magnitude, reaching
up to k ≤ 0.5–2.5 h=Mpc (depending on the model and
redshift). We note that the performance of PðkÞMG
generally worsens for higher redshifts, but still remains
significantly improved when compared to the standard HM.
More generally, the accuracy of PðkÞMG will depend on

the user input of baseline PðkÞΛCDM. As already mentioned,
other approaches are being developed to further improve the
limited accuracy of HALOFIT, especially for models departing
from the flat Planck-based ΛCDM. We tested one such
alternative way of deriving the nonlinear ΛCDM PS, that
goes into our PðkÞMG prediction (16): the so-called
HMcode [26,109]. The results, detailed in Appendix B,
indicate that both HALOFIT and HMcode give similar accuracy,
however with different trends at different scales and
redshifts.
Given the fact that we have calibrated our MG HM with

a limited-resolution Elephant simulation suite, it is encour-
aging that this allowed for already an order-of-magnitude
improvement of the scale at which we can obtain accurate
PS predictions. Obtaining accurate MG PS into the fully
nonlinear regime at k ≥ 1 h=Mpc with so straightforward
modifications to HM opens up an avenue for even better PS
predictions for the MG phenomenology. This could be
achieved by incorporating possible improvements to HM
that are better informed about the clustering and properties
of small halo mass regime in MG.

C. Testing nonlinear PðkÞMG beyond Elephant

In this subsection, we extend our work beyond the
Elephant simulations to test the performance of our new
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approach. For this purpose, we consider different N-body
simulation runs for the F5 and N1 models, performed using
MG-COLA [13], and described in [75]. The most important
factors for us are that these runs have a different back-
ground cosmology than Elephant (see Sec. II), and were run
using different codes. Unlike standard N-body approach,
these simulations employ the COLAmethod [110], that can
straightforwardly trade accuracy at small-scales in order to
gain computational speed without sacrificing accuracy at
large scales. On one hand, this approach is much faster than
the standard N-body, but the price to pay is the approx-
imations made, which do not allow us to use this suite of
simulations as the calibration data. Hence, we use these
simulations but only as a test bed.
Here, the HM ingredients were calculated using the same

methodology and setup as above, described in Sec. III and
summarized in Table I. The main difference with respect to
Sec. IV B was that different background cosmological
parameters were used in the linear power spectra that go
into the particular ingredients of the HM build-up, namely
HMF, bðMÞ and cðMÞ. Everything else, including the halo

mass integration ranges for the HM components, were the
same as before.
Using the HM outputs and ΛCDM HALOFIT predictions

for the background cosmology of this alternative simulation
suite, we computed PðkÞMG [using Eq. (16)]. A comparison
of our results with the simulation predictions is in Fig. 4,
for both N1 (left plot) and F5 (right plot). Given the small
box size of these simulations (L ¼ 500 Mpc=h), we obtain
a discrepancy > 5% with the simulation predictions on
large scales, for k < 0.1–0.2 h=Mpc. Now, contrary to the
Elephant results for N1, our new PS model performs better
than before. However, for F5, the performance of our
approach decreases with increasing redshift. Overall, we
see a similar performance of the new PðkÞMG in both the
simulations that we tested, with 5% accuracy from mildly
nonlinear to nonlinear scales (k ≤ 0.5–2.5 h=Mpc).
This test with a different simulation and cosmology

reassures us that our new approach is a valid technique to
compute the nonlinear PS in these MG scenarios, and can
be successfully extended to simulations and cosmologies
beyond our original data that was used for calibration and
fitting.

FIG. 3. Top panel: matter power spectra obtained from our new approach [PðkÞMG from Eq. (16)] for all the MG variants considered in
this work, at redshifts as indicated in the legends. Bottom panel: comparison of PðkÞMG, derived with our new method, with PðkÞsim. The
shaded region in all the plots corresponds to the uncertainty in the PðkÞsim, and the horizontal dotted lines shows a 5% accuracy regime.
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V. DISCUSSION AND CONCLUSION

In this work, we combined Halo Model (HM) predictions
with an accurate ΛCDM baseline for building an analytical
framework to compute the nonlinear power spectrum (PS)
in modified gravity (MG) scenarios, where structure for-
mation differs from that in ΛCDM. For calibration and
testing, we used the Elephant suite—a set of N-body
simulations, which incorporates standard ΛCDM and
two MG models: Hu-Sawicki fðRÞ and the normal branch
of the Dvali-Gabadadze-Porrati braneworld (nDGP). HM
has been extensively studied for ΛCDM [49,78], and we
further extended it to these MG cosmologies. This formal-
ism is advantageous as it is a quick and reliable tool to
obtain predictions for statistics of density fields well into
the regimes, where linear and perturbation theory fails to
reproduce simulation results.
The HM framework requires the input of three main halo

properties: halo mass function (HMF), which quantifies the
number density of halos; linear halo bias bðMÞ, describing
the relation between halos and the underlying DM density
field; and the concentration-mass relation cðMÞ, which
describes the internal distribution of mass in halos. For the
HM framework, we needed to compute these quantities
over large range of halo masses, that go much beyond the
range of our simulations. As a result, we relied on fitting
functions for the halo properties in these MG scenarios
(Table I).
Using these three inputs, we obtained the HM-based

predictions, PðkÞHM for these two MG models. We showed
that PðkÞHM is within 5–15% of the simulation results
across the k-ranges, from k ¼ 0.01 to k ¼ 1 h=Mpc.
However, MG signatures from these models that quantify
deviations from GR are typically in itself a factor of a few
dozen per cent. Hence, we cannot use HM predictions in its
standard form to complement the expected accuracy from
future LSS surveys in order to detect these MG signals.
Additionally, similar to the case of ΛCDM, HM also faces
the consistent problem of underprediction of power in the
transition regime for both fðRÞ and nDGP. These scales
correspond to k ≈ 0.5 h=Mpc.

To get a better PS model, we further investigated,
using HM, the relative ratio ϒðkÞHM ¼ PðkÞMG;HM=
PðkÞΛCDM;HM, instead of employing the absolute PS
amplitudes alone. From this, we obtained new analytical
PS by taking a product of ϒðkÞHM, with the nonlinear
prediction for ΛCDM, PðkÞΛCDM [Eq. (16)]. For the latter,
we used HALOFIT [25,28], as it has been a successful
approach for ΛCDM to circumvent the HM underpredic-
tion of PS in the intermediate scales, and is widely used to
analytically compute nonlinear ΛCDM PS. One could use
other approaches for the input nonlinear PðkÞΛCDM to
multiply our ratio ϒHMðkÞ with, and we tested one of
them: HMcode [26,109]. The test with HMcode is shown in
Appendix B, and we report that it gives comparable
accuracy as HALOFIT for our cosmology.
Using this approach, we significantly improved the

accuracy of PS modeling compared to standard HM pre-
diction. For HM, we obtained results within 5% accuracy
with the simulation predictions for k ≤ 0.2–0.3 h=Mpc.
With our new approach, we now matched simulations
within this accuracy for k between 0.5–2.5 h=Mpc, with
the performance of the method depending on the MG
model and redshift. The k-range probed in this work
corresponds to the mildly nonlinear and the fully nonlinear
regime: a range of scales crucial to constrain modern era
cosmological observables. The sensitivity of these observ-
ables to changes in the matter PS will be very important for
making powerful observational cosmological tests of the
theory of gravity, or dark energy.
The main advantage of our approach over using simu-

lations is that it is computationally inexpensive. The two
main inputs: HM and HALOFIT (or, e.g., HMcode) can be
flexibly applied to different background cosmologies,
whereas, in simulations, we need to perform a new run
for each new set of parameters. HM also gives the
flexibility of employing different combinations of HMF,
bðMÞ and cðMÞ that is best suited to probe a particular
cosmology, scale, halo mass range, or redshift.
To test the limits and accuracy of our approach, we

applied Eq. (16) to another suite of MG N-body simu-
lations, run with MG-COLA [13,75]. Using the same fitting

FIG. 4. Comparison of our PðkÞMG modeling, with simulation results from MG-COLA [13,75], for two MG variants: N1 (left) and F5
(right). The redshifts are as indicated in the legends. Dotted gray lines are the 5% accuracy regime. The shaded region is the simulation
error, which is the standard deviation obtained from five realizations at each redshift.
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functions as described for the Elephant simulations, we
computed halo properties for the MG-COLA cosmology,
and in turn PðkÞHM, ϒðkÞHM, and PðkÞMG. We compared
PðkÞMG with the PðkÞsim results, and obtained similar
accuracy as with the original data of Elephant. For both
MG models, PðkÞMG gives consistency with simulation
results within 5% for k between 0.5–2.5 h=Mpc. However,
for the case of F5, overall performance of our approach
decreases with z.
We need to appreciate that another promising solution

for analytical modeling of the MG PS is via the fast and
reliable emulation techniques [e.g [30,111,112]]. For MG
models, emulators have been proposed in, e.g., [113–117].
This approach is sophisticated and promising, however, is
still in its infancy, and has limitations. For instance,
predictions from emulators are confined to the parameter
space defined in the starting base grid of the calibrating
simulations. In addition, new extensions in emulators (e.g.,
new degrees of freedom, or additional screening mecha-
nisms in MG models) often requires one to substantially
adapt the base grid of simulations used to build the
emulator, which can in itself be computationally expensive.
On the other hand, HM potentially provides a simple,

physically-motivated semianalytical picture of the cluster-
ing of matter. We showed that HM, in its standard form, can
be qualitatively used to predict estimates for MG signatures
in cosmological observables which relate to matter pertur-
bations. Furthermore, using HM for modeling the PS ratio
ϒðkÞ, and combining it with a high-quality baselineΛCDM
predictions yields significantly better results. This method
is advantageous as contrary to MG scenarios, we have
much tighter constraints onΛCDM physics, and the field of
modeling ΛCDM PS is much more sophisticated and
advanced [25–28]. As a result, more precise ΛCDM results
will provide MG PS with similarly improved performance.
Here we present our results by incorporating the HALOFIT

and HMcode predictions for ΛCDM. These results in
themselves give a percent level of accuracy in both quasi-
linear and nonlinear regimes.
In order to further improve HM modeling in the MG

variants studied here, we need to probe deeper into the
nonlinear scales. For this, the behavior of halo density
profiles and HMF in both fðRÞ and nDGP at low halo
masses requires deeper investigation, as the full effect
of the respective screening mechanisms comes to play in
the nonlinear regime of gravitational collapse. As men-
tioned above, the accuracy of cðMÞ fitting functions for
both fðRÞ and nDGP has not been tested for Mhalo <
1012M⊙=h [85,87]. Additionally, we also extrapolated our
earlier HMF fits for these MG models [81] to small halo
mass scales, which are not resolved by our 7N-body
simulations (the limit being Mhalo ≲ 8 × 1012M⊙=h).
Both cðMÞ and HMF are important ingredients in modeling
the one-halo term, which is the dominant nonlinear
contributor in the HM approach. Such a study will require

a completely new set of high-resolution MG N-body
simulations, and we plan it as a future project.
We also note that in this work, we focus on modeling

only the dark matter PS. At our scales of interest (k between
0.1–2.5 h=Mpc), PS is not significantly influenced by
baryons, as baryonic suppression in PS is of the order
of a few percent for k < 1–5 h=Mpc [118–120].
However, [106,109,118] have shown that HM provides
the flexibility, which allows it to add additional parameters
that can incorporate baryonic effects from hydrodynamical
simulation. Accounting for such effects in our MG PS
modeling is a significant endeavor, and is well beyond the
scope of this work.
The data used here is publicly available on our website.1

We provide ϒðkÞHM for a wide range of z, from z ¼ 0 to
z ¼ 2 for each MG model considered in this work. A
description of the dataset is also enclosed in the directory.
Also, the data used to make the figures in this article is
available on request to the authors.
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APPENDIX A: COMPARISON OF THEORETICAL
AND SIMULATION HALO BIAS

Here we compare the simulation results for the linear
halo bias, bðMÞ, with the theoretical predictions from Sheth
et al. 2001 [[83], hereafter S01]. The formula proposed by
S01 is given by:

1https://data.cft.edu.pl/UPSILON_PK/UpsilonPk.tar.gz.
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bðMÞ ¼ 1ffiffiffi
a

p
δcðzÞ

ð ffiffiffi
a

p ðaν2Þ þ ffiffiffi
a

p
bðaν2Þ1−c

−
ðaν2Þc

ðaν2Þc þ bð1 − cÞð1 − c=2Þ ; ðA1Þ

with the parameters a ¼ 0.707, b ¼ 0.5 and c ¼ 0.6.
To apply the S01 expression to our MG variants, we used

PðkÞlin to compute σðM; zÞ, and then ν ¼ δcðzÞ=σðM; zÞ,
specific to each MG model. For that, we used standard
ΛCDM spherical collapse based δc values. We stay with the
ΛCDM δc baseline since we have found that using slightly
different values suggested for either fðRÞ [122], or for the
nDGP model [68] impacts the final HM results by less than
a subpercent.
The results of our substitution are shown in Fig. 5, where

we plot the bias ratios between MG and ΛCDM, as a
function of halo mass, M200. Here, we include the two

models most departing from ΛCDM: N1 (left column) and
F5 (right column). These variants illustrate the most
extreme behavior in bðMÞ for the two MG models we
work with. Points illustrate simulation results, with error
bars corresponding to the standard deviation from simu-
lations. For comparison, ratios of S01 predictions for MG
and ΛCDM are also shown, but they are extended outside
of the M200 ranges probed by our simulations, to show the
asymptotic behavior at small and large halo masses.
Depending on the redshift and the model, departures in
MG bðMÞ from ΛCDM can reach up to ∼10%. Contrary to
the HMF, MG-induced increase in the strength of gravity
lowers the bias, as a result of enhanced DM clustering.
Similar trends have also been reported in [68,119,123]. The
ratios predicted analytically from the S01 framework do not
match the simulation amplitudes exactly, but they still
qualitatively capture the trends.

FIG. 5. Ratios of halo bias, bðMÞ, between MG and ΛCDM for N1 (left plot), and F5 (right plot), across range of redshifts as indicated
in the legends. Solid lines are the analytical results from Sheth et al. [83], and the respective dots of the same color are from simulations.
Error bars illustrate the standard deviation across five realizations of the simulation boxes.

FIG. 6. Top panels: Linear halo bias, bðMÞ, as a function of halo mass, M200 for N1 (left column) and F5 (right column). The solid
lines correspond to theoretical Sheth et al. 2001 [[83], S01] predictions, and the respective dots of the same color are the simulation
results obtained using Eq. (10). Error bars correspond to the standard deviation across five realizations of the simulation box. Bottom
panels: Ratio between S01 and simulation linear halo bias predictions. Gray dotted lines are 5% accuracy regimes.
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Further, in Fig. 6, we plot the bðMÞ in these MG models
as a function ofM200. The top panels present absolute bðMÞ
values, while the bottom ones include the ratio between
S01 predictions and the simulation-based bias. Here, we
can clearly see that the analytical model matches the
simulation results within 5%–10%. This affirms our
approach in extending S01 to beyond ΛCDM, for the
fðRÞ and nDGP models we study.
As for the HM build-up, we need a bias prescription for a

much wider halo mass range than what our simulations
cover. This overall consistency between the analytical and
simulation results is sufficient for us, and thus we can use
the S01 modeling for bðMÞ also in our MG variants.

APPENDIX B: COMPARISON OF HALOFIT

AND HMcode RESULTS

As discussed in Sec. IV B, for our baseline PS modeling
in MG we multiply the HM-based ratio ϒðkÞ with HALOFIT

PS derived for ΛCDM. Here we test our approach for the

case where the ΛCDM PS is obtained from the HMcode [26]
instead. Similarly to HALOFIT, HMcode is also built on the
principles of HM, incorporating however additional cor-
rections in the standard HM build-up, owing to physical
constraints. The parameters of the corrections are based on
high-resolution simulated ΛCDM power spectra from the
emulator introduced in Ref. [124]. Here we use the latest
HMcode-2020 version2 [109].
We compute PðkÞMG by multiplying ϒðkÞHM with both

HALOFIT and HMcode inputs for PðkÞΛCDM. Then, in Fig. 7,
we compare both predictions with the Elephant simulation
results. Here we see a similar performance of both the
methods, with some exceptions at small scales and
high-z, where HMcode occasionally performs better.
Interestingly, at z ¼ 0, the HALOFIT framework seems to
lead to better results for a range of k-scales. We emphasize

FIG. 7. Comparison of PðkÞMG obtained from the input of PðkÞΛCDM;HMcode (solid lines) and PðkÞΛCDM;HALOFIT (dashed lines), with
the Elephant simulation results, for a range of redshifts as indicated in the legends. The error contours correspond to the uncertainty in the
simulation PS results, and the vertical gray dotted line is the 5% accuracy regime.

2https://github.com/alexander-mead/HMcode.
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however that as our simulations were done for one
particular set of cosmological parameters, these trends
between HALOFIT and HMcode-based predictions could
change for other background cosmologies. In any case,

as what we provide is the ratio ϒðkÞHM to be multiplied by
the ΛCDM PS prediction, one can employ any best-fit
PðkÞΛCDM for the latter to possibly improve the final
accuracy of PðkÞMG.
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