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The flattening rotation velocity vðrÞ → constant found by Vera Rubin and collaborators and very
apparent in the SPARC (Spitzer photometry & accurate rotation curves) galaxy–rotation data coincides
with Kepler’s law in one less dimension. Thus, it is naturally reproduced by elongated dark matter
distributions with the axis of prolateness perpendicular to the galactic plane. This theoretical understanding
is borne out by the detailed fits to the rotation data that we here report: for equal dark matter profile,
elongated distributions provide smaller χ2 than purely spherical ones. We also propose to use the geometric
mean of the individual halo ellipticities, as opposed to their arithmetic average, because the ratio of the
ellipsoid’s minor to major half-axes s ¼ c=a ∈ ð0;∞Þ corresponds to spherical haloes for s ¼ 1, so that the
usually reported average is skewed toward oblateness and fails to reveal the large majority of prolate haloes.
Several independently coded fitting exercises concur in yielding s < 1 for most of the database entries and
the oblate exceptions are understood and classified. This likely prolateness is of consequence for the
estimated dark matter density near Earth.
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I. INTRODUCTION: GALACTIC ROTATION

The rotation curveVðrÞ of a spiral galaxy is the average of
the rotational speed of stars and gas versus their radial
distance to the galactic center and is accessible by the
Doppler effect [1–3]. Spiral galaxies equilibrate the centrip-
etal acceleration of their distinct rotation with, presumably,
their gravitational field. Therefore, from their rotation curves
VðrÞ, we should be able to extract their mass distribution.
The first measured rotation curve, of M31, dates from

1939 [4]. Horace Babcock found higher values of the
rotational speed than expected from observations, implying
that the mass-to-light ratio ϒ ¼ M=L increased radially.
This was initially attributed to interstellar extinction or the
need to introduce new dynamic effects. Since the late 1950s
rotation curves have been measured with the Doppler effect
on the HI line (21 cm) [5,6]; for long, the discrepancy
between the visible mass, derived from photometry, and the
dynamical mass, derived from the rotation curve, was
ascribed to the presence of dwarf stars and intergalactic
dust and gas [7].
The work of Vera Rubin and Kent Ford in the late 1960s

and early 1970s was crucial to understand rotation curves.
Their improved accuracy led Vera Rubin [8] to discover the
general flattening VðrÞ → constant of the rotation curves at
large r, establishing the mass discrepancy as a general rule.
Since then, rotation curves have remained a current topic of
research to address the nature [9] and distribution of dark
matter [10].
The renowned observational mass discrepancy arises

from multiwavelength observations of galaxies, localizing

visible matter within a finite volume [11], in whose interior
the rotation curve should increase1 (V 0ðrÞ > 0), but outside
which it should decrease (V 0ðrÞ < 0). Outside a spherical
distribution, or any distribution at sufficient distance,
g ¼ Gm

r2 means that

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Gm=r

p
≠ constant ð1Þ

at variance with observations; instead of declining, mea-
sured rotation curves quite generically become independent
of radius V ∼ const (see Fig. 2 below).
Extinction by gas and dust cannot explain the mass

defect: although in the visible the apparent mass would be
lower, in the infrared it would increase as it is the region of
gas and dust emissions. Thus, we need to adopt one of two
hypotheses, either the existence of invisible dark matter, or
the failure of the theoretical tools requiring modified
gravitational or dynamical theories.
Among the solutions proposed to this problem, the

approach of [12] is of particular interest for this work: a
cylindrical source of gravitational field with mass per unit
length λ yields precisely

VðrÞ ¼
ffiffiffiffiffiffiffiffiffi
2Gλ

p
ð2Þ

1This is usually exemplified by a solid sphere of constant
density ρ ¼ ρ0Θðr − r0Þ, with gravitational field obtained from
Eq. (5), where the mass enclosed at radius r is m ¼ 4π

3
r3 for

r < r0 and m ¼ 4π
3
R3 for r > r0. Thus, the gravitational field g ∝

r linearly increases inside the sphere.
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(from the field in Eq. (6) below). While that constancy of V
extends to the largest r measured, because data covers in
the end only finite r, an exactly cylindrical/filamentary
contribution may not be needed, and a prolate dark matter
halo may suffice. In this work we report on statistical
estimates, with theory fits to the database, about the optimal
prolateness that observed galactic rotation curves require.
Figure 1 shows the main result of the article: the statistical
distribution of rotation curves does suggest prolate haloes.
That the analysis of galactic rotation curves can be

performed with Newtonian dynamics follows from typical
velocities ∼ 100 km=s, four orders of magnitude lower than
the speed of light, and gravitational potentials of order
of the Milky Way’s. With M ∼ 1012M⊙, R ∼ 30 kpc, Φ≈
GM
R ∼ 1011 m2=s2, and j Φc2 j ∼ 10−5 ≪ 1. Hence, all condi-
tions for the Newtonian limit are fulfilled and general
relativity is unnecessary. This allows to study the gravita-
tional field and the rotation curves within the Newtonian
framework or modifications thereof, with relativity bringing
about only corrections that are computable [13] but modest.
The total gravitational field is the linear superposition of

those of the different source components. If there are N
such components, circular orbital equilibrium reads

V2

r
¼ −

XN
i

grji; ð3Þ

where the radial component of the gravitational acceler-
ation field gr follows from either the gravitational potential
Φ as gr ¼ − ∂Φ

∂r or directly from the mass density ρ through
Gauss’ law, Z

∂Ω
g⃗dS⃗ ¼ −4πGm. ð4Þ

With m ¼ R
Ω ρdV interior to Ω. Choosing the boundary

surface ∂Ω as equipotential, we have of course

g ¼ −
4πGm

S
: ð5Þ

The modulus g and radial component gr of the gravitational
field coincide on the galactic plane under azimuthal sym-
metry around OZ. Thus, the expected rotation curve VðrÞ
depends on the parametrization of the gravitational poten-
tial or the mass density (these are connected through
Poisson’s equation ∇2Φ ¼ 4πGρ).
The puzzle of the constant rotation velocity has a natural

solution [12] that can arise either in the dark matter or in the
modified gravity scenarios, that of an elongated matter
source. Indeed, in the limit of a perfect cylindrical source of
linear mass density λ, the external field

g ¼ 2Gλ
r

ð6Þ

immediately yields VðrÞ ¼ constant. This can also be
achieved by modifying gravity so that, in effect, there is
one less dimension, such as inMOND—modified Newtonian
mechanics—(or, newly, in fractional gravity [14,15]).

A. Summary of findings

There have been recent attempts at fitting galactic
rotation curves with nonspherical distributions; their results
seem to be contradictory. While Zatrimaylov [16] seems to
concur with our observation that filamentary sources offer a
better fit, Loizeau and Farrar [10] seem to find that a disk-
shaped DM component could be at play, more in agreement
with vintage work by Blanco and Mercader [17].
In this work we try to clarify the situation with

systematic fits to as large a subset of the SPARC database
as is possible to obtain a positive number of degrees of
freedom in each situation, with several approaches. We first
examine traditional dark matter parametrizations (with
spherical geometry), MOND, and elongated geometries,
against that database of spiral rotation curves, with mixed
results, in which both spherical or cylindrical geometries
can describe the data with a modest but sufficient parameter
number to provide some flexibility. This probably explains
a part of earlier discrepancies. Spherical geometries how-
ever need mass models that are similar to the isothermal one
ρðrÞ ∝ r−2 whereas cylindrical geometries do not need this
restriction.

FIG. 1. Typical DM haloes fit to rotation-curve database are
clearly prolate, as indicated by the median ellipticity: shown are
two calculationswithin an angular expansion, (Secs. V B andV C)
and a nonspherical ellipsoidal model (Sec. VA) that could a priori
have been either prolate or oblate. A few outliers described below
induce the uncertainty on the averages. The prolateness is in
qualitative agreement with simulations (Sec. VI A) and is true for
generic dark matter profiles; however, if the exponent of the dark
matter profile α ¼ − log ρDM

d log r is near the isothermal value of 2
(horizontal line as a reminder), the shape cannot be decided, as
there is a degeneracy between this fine-tuned spherical profile and
the prolate shape. A curve detailing typical DM density in the
galactic plane is also shown.
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We then turn to a systematic multipolar expansion of the
gravitational potential, and to an alternative multipolar
expansion of the DM density. In both cases, with a fixed
profile as function of the distance that is not the typical
isothermal ρðrÞ ∼ 1=r2 or more complicated forms that
mimic this in some radial interval [18], but rather arbitrary
ones such as exponentials, step functions or their softened
Woods-Saxon profiles, for example, we find that the
rotation data prefers an elongated source. We characterize
this elongation by an ellipticity variable s ≔ ðc=aÞ ¼
ðb=aÞ that speaks of a rather prolate ellipsoidal distribution.
The distribution over the galaxy population in terms of

the ellipticity is best described in logarithmic scale, since
s ∈ ð0; 1Þ corresponds to a prolate halo (what we find),
s ¼ 1 to a spherical halo and s ∈ ð1;∞Þ to an oblate one:
the geometric mean is more reliable than the arithmetic one
to avoid biasing the average to more oblate distributions.
A preliminary brief summary of our results was pre-

sented to the EPS-HEP 2021 conference [19]. This manu-
script is the full documentation of the effort.

B. Dark matter radial profiles
and number of parameters

Each density parametrization has a number of degrees of
freedom, which is the sum of the number of free parameters
and “hidden parameters,” so called because they are
prefixed free parameters without a clear physical motiva-
tion. These parameters are irrelevant within one fixed
model, since the χ2 is obtained by fitting the remaining
parameters.
However, when comparing across models, the compari-

son needs to be fair: intrincate functional forms with
numbers set “by eyeball” that do not follow from a theory
computation are reasonably expected to better fit the data
than simpler parametrizations without those numbers. If the
two models would equally well describe the experimental
points, which of the two would be preferable? Most people
would agree that the simpler one (by Occam’s razor) would
be chosen. Our take on it is that each hidden parameter
carries a degree of arbitrariness, since its numerical value,
not derived from theory, has been selected by the inventor
of the parametrization to better describe the data. Thus, it
should be discounted from the number of degrees of
freedom, although it may not have been systematically
varied in the computer fit.
For example, Navarro-Frenck-White’s parametrization

(NFW) [20] in Eq. (8) is a specific case of Hernquist’s [21]
in Eq. (7) for α ¼ 1, β ¼ 1 and γ ¼ 2.

ρHðrÞ ¼
ρ0

ð rr0Þα½1þ ð rr0Þβ�γ
→ ð7Þ

ρNFWðrÞ ¼
ρ0

r
r0
ð1þ r

r0
Þ2 . ð8Þ

These three exponents are “hidden parameters,” as they
have no obvious physical motivation. The degrees of
freedom for the NFW parametrization would be 5: the
three prefixed exponents and the characteristic density and
radius ρ0 and r0. Note that the 1 that is adding in the
denominator is not a “hidden parameter.” If we replaced the
1 by 2, it could be reabsorbed by redefining the free
parameters as r0 → 2r0 and ρ0 → ρ0=8, yielding the start-
ing point with the 1 instead of the 2.
This number of parameters is used for the computation of

each χ2 per degree of freedom, and will be listed for each
dark matter parametrization below in Sec. II. The impact of
this choice is quite small: we will find that, given the large
number of experimental points, models with more param-
eters often yield better fits in spite of our penalizing the
number of degrees of freedom, because they can more
flexibly adapt to the data.

C. Use of observational data

To study the galactic rotation curves we use the SPARC
database [3]. It contains, for a set of 175 galaxies, rotation
curves measured from the Doppler effect in the HI and
Hα lines. Furthermore, in the SPARC database the indi-
vidual contributions to the rotational speed from the visible
bulge Vbulk, visible disk Vdisk and visible gas Vgas are all
estimated, based on surface photometry of galaxies at
3.6 μm. This allows to calculate the expected rotation
curve due to the total visible matter VvisðrÞ using

Vvis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVgasjVgas þϒdiskjVdiskjVdisk þϒbulkjVbulkjVbulk

q
:

ð9Þ

Therein, the criterion adopted by the SPARC collabo-
ration [1] for the mass-to-light ratiosϒ at 3.6 μm isϒbulk ¼
1.4ϒdisk and ϒdisk ¼ 0.5M⊙=L⊙, where M⊙=L⊙ is the
mass-to-light ratio for the Sun. These values come from
stellar population synthesis (SPS) models, and provide the
best fit for the Tully-Fisher relation [22,23]. We adopt their
extracted visible matter distributions.
A typical example rotation curve, that of UGC08699, is

shown in Fig. 2 together with the estimated contributions of
the different matter components. Of note is a strong
correlation between the variation of the distribution of
visible matter and the variation of the VðrÞ data. The large
values of VðrÞ at r < 5 kpc seem to be due to the dominant
bulge. The two maxima in the disc contribution caused by
the spiral arms produce an oscillation in the rotation curve
at 5–10 kpc. The gas is just important for r > 12 kpc,
where its contribution slightly counteracts the decrease of
that of the bulge and disc. Thus, the variations of the
rotation curves can be explained by the variations of the
distribution of visible matter (this is Sancisi’s rule [24]).
Still, it is insufficient to reproduce the overall level of VðrÞ
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beyond r ∼ 2 kpc, and dark matter or modified gravity is
called for.

D. Organization of the rest of the article

In the following Sec. II we explore the hypotheses that
attempt to explain the flattening of the rotation curve,
adopting 9 different models (three each for MOND
variants, for a spherical dark matter halo, and for non-
spherical halos) for which we calculate the expected
rotation curve. To compare them, we fit the maximum
possible subset from the SPARC database [3], obtaining the
χ2 per degree of freedom of each fit, and aggregating all
their information in a statistical analysis.
Then in Sec. III, fixing the density profile as function of

the variable r to a softened step (to gain sensitivity to the
halo shape that 1=r2 distributions do not have), we turn to a
systematic multipole analysis of the gravitational potential
and fit VðrÞ once more. Here we find distorted and even
cylindrical distributions to clearly provide better overall fits
than purely spherical ones.
A variation of that same analysis is provided in Sec. IV,

where we incorporate a multipole expansion into the DM
density function ρðr; θÞ instead of the potential (that is later
calculated by numerical integration). The procedure has
thus different systematics from the earlier fits in Sec. III
though with compatible results.
In Sec. V we turn to two independent extractions of the

DM halo ellipticity from the SPARC rotation curves. As
stated, we find that the quantity hlogðsÞi provides a more
convincing assessment, in a statistical sense, than sim-
ply hsi.

Section VI wraps the discussion up, in particular
comparing our observational data extraction to numerical
simulations; and an Appendix A 1 collects and classifies
the few galaxies among the fitted SPARC ones that
contradict our statement that prolateness is the preferred
explanation of rotation curves, by yielding instead an oblate
fit, and in a separate table, those that seem to have
observational issues or too much structure (intense oscil-
lations) likely not related to dark matter.

II. CLASSIFICATIONOFVARIOUSMODELS BY χ 2

In this section we then proceed to contrast traditional
approaches to Dark Matter at galactic scales and deformed
haloes against the database. Let us first describe each of the
models individually.

A. Modified Newtonian dynamics

MOND [25–27] hypothesises the failure of Newtonian
dynamics at low accelerations, of the order of a new
universal constant a0. In this regime, MONDian acceler-
ation would be a ¼ ffiffiffiffiffiffiffiffiffiffi

aNa0
p

, where aN is the Newtonian
one. The flattening of rotation curves then becomes a
consequence of this transition, designed ad-hoc to avoid
the need for a dark matter halo. Supposing a compact
spherical visible mass distribution of mass, the outside
gravitational field would change from aN ¼ g ∝ r−2 to
a ¼ V2=r ¼ ffiffiffiffiffiffiffiffiffiffi

aNa0
p ∝ r−1, and lowering that power makes

VðrÞ constant.
To soften the nonanalyticity caused by that prescription,

interpolating functions are used,

F ¼ ma μ

�
a
a0

�
; ð10Þ

where μðxÞ is an appropriate function behaving as μðxÞ ≈ x
at low-x yielding a ¼ ffiffiffiffiffiffiffiffiffiffi

aNa0
p

, but as μðxÞ ≈ 1 at high-x,
eliminating the correction a ¼ aN . Often used such func-
tions are the so-called “standard” and “simple” proposed
by Milgrom [26] and Famaey and Binney [28], respec-
tively. These are given by μStandardðxÞ ¼ xffiffiffiffiffiffiffiffi

1þx2
p and

μSimpleðxÞ ¼ x
1þx yielding

aStandard ¼
1

2

�
a2N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4N þ 4a2Na

2
0

q �1
2 ð11Þ

aSimple ¼
1

2

�
aN �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2N þ 4aNa0

q �
: ð12Þ

As Fig. 3 shows, the transition between the Newtonian
and MOND (low x) regimes is sharper in the “standard”
case, spreading to larger x values in the “simple” one.
The difference between the MONDian and Newtonian

frameworks are noticeable in Fig. 4, where we fit to
UGC08699 data. Visible matter, from Eq. (9), with

FIG. 2. Rotation curve VðrÞ of UGC08699 (circles with
uncertainty bar, red). The contributions from the bulge
VbulkðrÞ (dashed line, blue), the disk VdiskðrÞ (dashed-dotted
line, green) and the gas VgasðrÞ (dotted line, pink), as well as the
sum of them VvisðrÞ (solid black line with the highest value) to
VðrÞ are separately plotted. Observational data from the SPARC
database [3]. A clear mass deficit is visible and is typical of spiral
galaxies.
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Kepler’s law, yields the dotted curve that is in gross disagree-
ment for r > 3 kpc. Employing instead MOND Standard,
Eq. (11), and Simple, Eq. (12), yields acceptable fits, best for
a0 ¼ ð2.24� 0.05Þ × 10−10 m=s2 with χ2=NF ¼ 1.8 for
MOND Standard, and a0 ¼ ð1.63� 0.04Þ × 10−10 m=s2

with χ2=NF ¼ 0.97 for MOND Simple.
MOND in the relevant parameter range can only with

difficulty be challenged by solar-system physics. Earth’s
gravitational field would have decreased to the magnitude of
a0 at a distance d ∼ 13.4 a.u., so the severe consequences of
the transition from Newtonian to MONDian acceleration
could be seen around Pluto’s orbit, d ∼ 39.48 au; but there,
Earth’s influence respect to the Sun and other bodies is
negligible, e.g., ðaMOND

⊕ − a⊕Þ=a⊙ ∼ 10−5, five orders of
magnitude smaller than the Sun’s gravitational field. For the
Sun, the MOND’s acceleration correction only reaches 10%
(aMOND

⊙ ¼ 1.1a⊙), at d ≈ 2000 au, close to the hypothetical
Oort cloud.

The main problem that MOND faces is that the phenom-
enology of the cosmos at larger than galactic scales is
marginally reproduced at best: it has difficulties in repro-
ducing cosmicmicrowave background anisotropies [29], the
velocity dispersion and temperature profiles from galaxy
clusters [30], and some events such as the Bullet Cluster [31]
without introducing dark matter, thus losing its main attrac-
tion. This same observation applies to multiple attempts at
modifying gravity, e.g., via the Lanczos tensor [32].

B. Dark matter haloes

The rest of the models that we will fit are consistent with
the most widely held hypothesis that the flattening of VðrÞ
is due to a dark matter (DM) halo, invisible at basically any
wavelength. Depending on the type of DM and its self-
interactions, the formation of structure can be faster or
slower. Some simulations with light DM particles, such as
“fuzzy” DM, produce halos that are filamentary and
diffuse, and as the DM-particle mass increases, the halo
shapes become lumpy [33,34]. Hence, knowing the typical
shape of halos from galaxy data can be important to address
the mass (or equivalently, the Avogadro number and speed)
of DM particles.
From the SPARC velocity curves and their estimates for

the visible matter component, we can derive a dark
contribution to the rotation curve VDM that we in the
following use as pseudodata,

V2
Tot ¼ V2

DM þ V2
vis; ð13Þ

whereas when V2
vis > V2

Tot we will set VDM ¼ 0.

1. Spherical dark matter haloes (r ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
)

These have been usually assumed by analogy with other
astrophysical bodies, and have the gravitational field of
Eq. (5), with a mass internal to the spherical surface at r of
m ¼ 4π

R
r
0 r

02dr0ρðr0Þ, yielding

gðrÞ ¼ 4πG
r2

Z
r

0

r02dr0ρðr0Þ: ð14Þ

The rotation curve VðrÞ is then

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πG

Z
r

0

r02dr0
ρðr0Þ
r

s
: ð15Þ

To proceed, the radial profile ρðrÞ needs to be specified. We
will employ some of the most widely used ones in the
literature.

Navarro-Frenk-White parametrization.—Navarro et al.
[20] carried out N-body simulations and found that their
simulated halos follow an approximate density profile
given by

FIG. 4. We fit the rotation curve (circles with uncertainty bars)
of UGC08699 [3] using MOND standard (dashed-dotted, green)
and simple (dashed, pink) from the estimated rotation curve due
to visible matter (dotted, blue, corresponding to Newtonian
mechanics).

FIG. 3. Function μðxÞ for “simple” and “standard” expressions
in Eqs. (11) and (12).
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ρðrÞ ¼ ρ0
r
r0
ð1þ r

r0
Þ2 : ð16Þ

This parametrization has five degrees of freedom: two free
parameters ρ0 and r0, and three “hidden parameters,” which
are the power laws of the denominator. Because ρðrÞ
diverges at r → 0, exhibiting a “cusp” nucleus, it contra-
dicts observational data, which shows an almost constant
nucleus or “core.” This discrepancy is the so-called core-
cusp problem [35]. Several mechanisms such as supernovae
feedback or baryonic clumps and dynamical friction have
been proposed to solve the problem [36], though the topic
is still open.
Additionally, because ρðrÞ decreases slowly, as r−3 at

large radii, the total mass

M ¼ 4π

Z
∞

0

r02dr0
ρ0

r0
r0
ð1þ r0

r0
Þ2

¼ 4πρ0r30

�
1

1þ r0
r0

þ log

�
1þ r0

r0

��
r0→∞

r0¼0

→ ∞ ð17Þ

has a log divergence for r → ∞. This is usually solved by
introducing a cutoff in the density profile ρðrÞ →
ρðrÞΘðRcut − rÞ with a step function or a softening thereof,
imposed outside the visible disk to avoid distorting the
rotation curve while ensuring a finite total mass M. At
distances where Rcut could be noticeable, the interaction
with other galaxies becomes important and asking about
the mass of the individual halo stops being meaningful.2

The same divergence appears in other parametrization such
as the pseudoisothermal one (in Sec. II B 1 b below), for
example.
The rotational speed of this NFW profile can be

straightforwardly calculated using Eq. (15),

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0r30

r

�
log

�
1þ r

r0

�
−

r
r0

1þ r
r0

�s
ð18Þ

and is shown, for the case of M31, in Fig. 5.

Pseudo-isothermal parametrization.—This approach
requires DM self-interactions to be sufficiently strong for

the halo to thermalise, reaching a homogeneous equilib-
rium temperature. This can happen for heavy enough DM
only through gravitational interaction, and may require
additional, weak interactions for WIMPs.3 This results in an
isothermal sphere [43], whose density profile is

ρ ¼ ρ0
ðr=r0Þ2

. ð19Þ

Its rotation curve VðrÞ is then constant for any radius
VðrÞ ¼ const, as can be seen in Eq. (15) for Eq. (19).
However, because the observed rotation curves are not flat
but increase at small r, the denominator in Eq. (19) is
empirically modified, without altering the wanted behavior
at large radii. Thus,

ρðrÞ ¼ ρ0
½1þ ð rr0Þα�2=α

. ð20Þ

The most commonly used form of this profile incorporates
α ¼ 2, which is the so-called Pseudo-isothermal paramet-
rization [44]

ρðrÞ ¼ ρ0
1þ ð rr0Þ2

. ð21Þ

FIG. 5. We fit the rotation curve of M31 using the VðrÞ from the
NFW parametrization of Eq. (18). Observational data from
Carignan et al. [38].

2To illustrate the point, consider the halo of M31.We can guess
the M31 DM fraction from cosmological values ΩM ¼ ΩDM þ
Ωb ≈ 0.31 and ΩDM ≈ 0.26 [37] to be around ΩDM=ΩM ∼ 0.8.
Thus, from MM31 ¼ 1.5 × 1012M⊙ and with MDM ∼ 0.8MM31,
we can estimate Rcut from cutting off Eq. (17). The distribution
parameters are fit to the M31 rotation curve VðrÞ using Eq. (18),
becoming ρ0 ¼ ð2.6� 0.2Þ × 10−20 kg=m3, r0 ¼ 3.7� 0.1 kpc
with χ2=NF ¼ 5.2 (see Fig. 5). Thus, the estimated cutoff radius
is Rcut ≈ 373r0 ¼ 1373 kpc; as this is larger than the distance
between the Milky Way and M31 standing at ≈ 765 kpc, the
cutoff is beyond the validity of the concept of an isolated spiral
galaxy halo.

3The lack of direct DM detection sets strong bounds to
possible interactions [39]. WIMP cross sections on the nucleon
are by now lower than 10−43 cm2, making it a poor relaxation
mechanism. If we limit ourselves to a purely gravitational
interaction, structure formation delimits the mass somewhere
between 1 keV and 100 GeV, where the DM halos become
cuspy [40]. In the case of strongly interacting massive particles
(SIMP), the Earth and Uranus heat flows [41,42] exclude masses
from 150 MeV to 104 GeV, and set an upper limit on the cross
section for the self-annihilation for masses from 1 − 1010 GeV.
However, the constraints still allow a wide range of masses and
interactions providing thermal equilibrium.
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Upon integrating Eq. (15) with the density of Eq. (21), the
rotational speed obtained is

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0r20

�
1 −

r0
r
arctan

�
r
r0

��s
: ð22Þ

This mass distribution does not suffer from the core-cusp
problem, though it then disagrees with typical N-body
simulations. ρðrÞ is almost constant at low radii, showing a
core nucleus, and the second term from VðrÞ vanishes for
large r, VðrÞ becoming constant. Hence, an isothermal
distribution at large radii explains the flattened rotation
curves. This can be seen in Fig. 6, where the rotation curve
of NGC6503 has been fitted with Eq. (22).
This parametrization has three degrees of freedom: the

two free parameters ρ0 and r0, and the hidden param-
eter α ¼ 2.

Einasto profile.—Einasto et al. [45] proposed a density
profile inspired by Sersic’s law [46], consisting of an
exponential of a power law. It is usually written as

ρðrÞ ¼ ρ0e
−2
N½ð r

r0
ÞN−1�. ð23Þ

The physical meaning of the parameter N can be under-
stood from Fig. 7, where we plot the Einasto profile
normalized to one at its maximum, versus x ¼ r=r0: N
controls the slope of the mass distribution. For values
N < 1, the mass lies almost entirely within the character-
istic radius r0. This is the typical mass distribution for
visible matter. In fact, for N ¼ 1=4 we recover the de
Vaucouleurs’ law [47] which describes the surface bright-
ness of elliptical galaxies and bulges. For N > 1, the mass
fraction outside of r0 increases. This mass fraction would
play the role of DM and, therefore, the larger N adopted,

the larger contribution to the gravitational field the DM
provides.
The degrees of freedom of this density profile are three:

the dimensional parameters ρ0 and r0, and the power-law
index N.
We know no analytical expression for the rotational

speed and calculate it numerically. Typical rotation curves
for some values of N can be seen in the bottom plot of
Fig. 7. They all increase until they reach a peak, from which
they decay. For larger N, this falling becomes more abrupt,
but outside it, the slope of the curve is lower. Note that there
is no exact flattening for any value of N.

2. Cylindrical dark matter haloes (r ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
)

It is not far-fetched to consider asymmetric haloes,
particularly in view that visible matter is actually not
symmetrically distributed, but in spiral galaxies concen-
trated on a disk instead. It is therefore useful to explore
nonspherical halos if this would provide advantage in
explaining the data.
Further, galaxy surveys, such as 6dF [48] and SDSS [49],

find a large-scale anisotropic structure or “cosmic web,”
with walls, filaments, and voids. This structure has been

FIG. 6. We fit the rotation curve of NGC6503 using VðrÞ with
the pseudoisothermal parametrization of Eq. (22). Data from
SPARC [3].

FIG. 7. Top: Einasto profiles, normalized to 1 at their maxi-
mum, for different values of the parameter N of Eq. (23).
Bottom: corresponding rotation curves, with velocity normalized
using 4πGρ0r20 ¼ 1.
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reproduced in cosmological simulations [34,50], where
galaxies are connected by DM filaments that become
clumpier as the mass of the DM particle or the intensity
of their interaction increases. This suggests that theDMhalo
may have a filamentary contribution [12]. Therefore, their
DM halo may be a mixture of a cylindrical contribution
inherited from the filament, and a spherical contribution
from the DM clump seeding the galaxy formation.
We then explore the hypothesis that DM is distributed in

elongated structures down to galactic scales: in this section,
we consider three models with an exactly cylindrical halo,
while later we will produce interpolating parametrizations
between spherical and cylindrical geometries. Instead of the
spherical radial variable r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, for these

models we adopt cylindrical coordinates and the radial
distance is, instead, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ r⊥. Both take the

same value on the observable galactic plane where veloc-
ities are measured, of course, chosen as z ¼ 0.
The gravitational field of a cylindrical source of infinite

length is easily derived through Gauss’s law, Eq. (4), by
choosing a cylindrical surface of equation x2 þ y2 ¼ r2 and
S ¼ 2πrL, on which the gravitational field gðrÞ is constant,
as the contour for the integral,

gðrÞ ¼ −
4πGmðrÞ
2πrL

: ð24Þ

Therefore, the rotation curve VðrÞ becomes

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πG

Z
r

0

r0dr0ρðr0Þ
s

: ð25Þ

We are simplifying the discussion to the kinematic
situation in which the major axis of the dark matter
distribution is aligned with the axis orthogonal to the
galactic disk, so that the entire matter and dark-matter
distribution has cylindrical symmetry. If the galactic plane
was instead not perfectly perpendicular to that dark-matter
axis, precession around it would occur. Such motion is
described, in the case of a very eccentric dark-matter
ellipsoid (s ¼ c=a ≪ 1) in [12], and can be broken into
a vertical motion parallel to the dark-matter axis which is
near harmonic oscillation, and galactic in-plane motion as
described in this section. The two frequencies need not
match, so orbits are open.

Finite-width cylinder parametrization.—If the DM is dis-
tributed in a finite-width cylinder of constant density like
Eq. (26), the rotation curve is still constant outside the DM
halo, but inside it, the rotation curve increases linearly as in

Eq. (27); since the mass depends on the radius as M
πR2L ¼

mðrÞ
πr2L we have mðrÞ ¼ M r2

R2.

ρðrÞ ¼
	 M

πR2L If r < R

0 If r > R
ð26Þ

VðrÞ ¼
( ffiffiffiffiffiffiffiffiffi

2Gλ
p

r
R If r < Rffiffiffiffiffiffiffiffiffi

2Gλ
p

If r > R.
ð27Þ

The resulting VðrÞ perfectly captures the essence of
typical measured rotation curves, as shown in Fig. 8.
There are two degrees of freedom for the model fit: the

linear linear density λ and the cylinder radius R.

Woods-Saxon cylinder parametrization.—A drawback of
the finite-width cylinder parametrization is the density
discontinuity at r ¼ R, Eq. (26), and it is interesting to
introduce a “skin” function that provides a smoother
transition. A good choice for the “skin” function is the
one in the Wood-Saxon potential, used to describe soft
nuclear edges in nuclear physics [51],

ρðrÞ ¼ ρc
1þ e

r−R
a

: ð28Þ

This parametrization has three degrees of freedom: the
characteristics mass density and radius of the cylinder ρc
and R, and the “skin” parameter a.
The value of a rules the smoothness of the transition at

r ¼ R. For a → 0 the cylinder has no skin and we recover
the density profile of the finite-width cylinder, while
for a → ∞ the skin of the cylinder is infinite and ρ
becomes r-independent.
For this mass distribution the rotation curve VðrÞ in

Eq. (25) has an analytical expression as a function of
polylogarithms; however, it is cumbersome and we rather
calculate it numerically. As with the finite-width cylinder
parametrization, the rotation curve VðrÞ for finite a
becomes asymptotically constant as r → ∞. This can be
seen in Fig. 9, where we fit the rotation curve of NGC0300.

FIG. 8. We fit the rotation curve of NGC0300 using the VðrÞ of
a DM finite-width cylinder of constant density, Eq. (27). SPARC
data from [3].
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The fit is much better than that of the finite-width cylinder,
improving its χ2=NF ¼ 3.68 to χ2=NF ¼ 0.852 for the
Woods-Saxon cylinder.

Generalized logarithmic potential.—The gravitational
potential outside a dense filament is a simple logarithm.
A version thereof with more parameter freedom to improve
data fitting is treated in this subsection: we call this version
Generalized logarithmic potential because it is a generali-
zation of James Binney’s [52], who used it to describe the
gravitational field of flattened bodies (ironically, it is a
natural potential for elongated ones),

ΦðrÞ ¼ Φ0 log

�
Cþ

�
r
R

�
2α
�

ð29Þ

except that we allow a variable α instead of fixing it to 1.
This Generalized log potential is fully determined by

the characteristic radius R, the constant Φ0, the power law
α, and the parameter C. The latter establishes the value
Φð0Þ, and can be understood as a gauge freedom without
physical impact. In fact, we can rewrite the potential as
ΦðrÞ ¼ Φ0 log ½1þ 1

C ðrRÞ2α� þΦ0 logC, and redefine the
characteristic radius R02α ¼ R2α=C yielding

ΦðrÞ ¼ Φ0 log

�
1þ

�
r
R0

�
2α
�
þΦ0 logC: ð30Þ

Since the gravitational field and the mass density are

derived through g⃗ ¼ −∇⃗Φ and ∇2Φ ¼ 4πGρ, after defin-
ing the new characteristic radius R0, both the gravitational
field and mass density are independent of C. Thus, we can
take C ¼ 1 without loss of generality (Note that if C ¼ 0

the predicted rotation curve is VðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
2αΦ0

p
for any

radius r, since logðrÞ is the potential due to the straight
filament of Eq. (27); the finite value of C makes the

potential flexible enough to describe the growth of V at low
r). Thus, this potential is characterized by only three free
parameters: R, Φ0 and the power law α.
Poisson’s equation provides the mass density profile

ρðrÞ ¼ α2Φ0

πG
1

r2
r2α=R2α

ð1þ r2α=R2αÞ2 ð31Þ

that imposes some parameter restrictions due to the ρ > 0
positiveness condition, namely α > 0 and Φ0 > 0.
Figure 10 shows ρðrÞ for Φ0 ¼ 2πGR2 and different

values of α. For 0< α< 1 we find cusp halos (the plot has
the appearance of a narrow slit), for α ¼ 1 they became
softer and a core appears, while for α > 1 the core
disappears and the halo is shell-like. Curiously, this later
case has been observed in large-scale structure formation
simulations for warm, for hot and for fuzzy DM [33,34].
In fact, we can intuitively relate α to unknown micro-

scopic properties such as the mass of the DM particles or
the intensity of their interaction. An initial velocity
dispersion of the DM particles could be smaller than at
equilibrium, σV=σ

eq
V ≪ 1. Their interactions would widen

that dispersion: Less energetic particles populate small r
orbits, while more energetic ones will be found at large
radii. Therefore, ρðrÞ in principle conveys information
about the strength of the interaction, i.e., the DM particle
mass for the gravitational interaction, or its charge asso-
ciated to other interactions. Heavy (or strongly interacting)
DM particles concentrate at the galactic centre and generate
cusp halos, while light (or weakly interacting) DM particles
spread to larger radii, producing, in an extreme case, shell-
like halos. This means that 0< α< 1 corresponds to heavy
(or strongly interacting) DM particles, α > 1 to light (or
weakly interacting) DM particles, and α ≃ 1 provides the
transition between the two regimes.
The predicted rotation curve is given by

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αΦ0

r2α=R2α

1þ r2α=R2α

s
: ð32Þ

Note that at large radii r=R ≫ 1, VðrÞ → ffiffiffiffiffiffiffiffiffiffiffi
2αΦ0

p
becomes constant for fixed α. Normalized rotation curves
for some values of α can be seen in Fig. 11.

FIG. 9. We fit the rotation curve of NGC0300 using VðrÞ for
the Woods-Saxon cylinder parametrization, Eq. (28). SPARC
data from [3].

FIG. 10. Density plots of ρðrÞ in Eq. (31) for Φ0 ¼ 2πGR2 and
different values of α, showing a cusp (left), a core (middle), and a
shell-like (right) cylindrical haloes.
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C. Data and analysis

We now proceed to compare the nine model approaches
described so far, ordering them on the basis of their ability
to reproduce the observed rotation curves. For this purpose,
we perform a least-squares fit of each rotation curve of the
SPARC database [3], minimizing χ2 as a function of the
free parameters of the model,

χ2 ¼
XN
i¼1

½Vobs
i − V thðriÞ�2
ΔVobs 2

i
: ð33Þ

Therein, Vobs
i � ΔVobs

i is the experimental rotation curve
with its uncertainty, and V th the model prediction.
For the six models that involve dark matter (three with

spherical and three with cylindrical geometry) we employ
for Vobs the pseudo data VDM derived in Eq. (13), so that
only the dark matter contribution to the squared velocity is
fit. For the three models without DM (pure Newtonian
mechanics with the visible matter and MOND) we employ
the measured velocity Vobs ¼ VTot, without subtracting any
visible contribution (as is obviously necessary in the earlier

ones with DM). Also, for these models without DM we
compute V th from the estimated visible Vvis: V2

vis=r plays
the role of the Newtonian acceleration aN in Eqs. (11)
and (12).
However, since each model approach has a different

number of parameters, we calculate the number of degrees
of freedom (d.o.f.) for each of the galaxies, calculate
χ2=NF, with

NF ¼ Npoints − d.o.f. ð34Þ

being the difference between the number of points on a
given SPARC rotation curve and the number of free plus
hidden parameters of the tested model.
Because χ2=NF needs to be positive, we need NF > 0.

Because we want to test all the models against the same
sample of galaxies for a fair comparison, we only use those
galaxies whose observational rotation curves exceed 5
points, which is the largest number of parameters of any
of the examined models (saturated by the NFW para-
metrization). This reduces the sample of 175 rotation
curves to 164. Besides, we are forced to exclude the
rotation curve of UGC01281, since the estimated Vvis
becomes complex at small radii, reflecting some observa-
tional analysis issue, leaving a total of 164 rotation curves.
For each rotation curve VðrÞ of this subset and each of

the models, we compute the optimal χ2=NF over the model
parameter space. The minimization is carried out employ-
ing the well established CERN’s MINUIT algorithm as
implemented by standard Python libraries [53], and a pass
over the entire galaxy database runs in a few hours in a
standard departmental Linux cluster.
Each galaxy then yields a χ2=NF ranking of the nine

model approaches from 1, at the smallest χ2=NF, to the 9th
having the largest such (as summarized in Table I): the
lower the model ranking number, the better the overall fit.
In the case where a galaxy assigns two or more models
essentially the same χ2=NF (which is calculated to four
digits to minimize this possibility), the rank assigned to all
those with a degenerate value is the group’s average, e.g., if

FIG. 11. Shape of the rotation curves of the generalized
logarithmic potential for different values of α, where the velocity
has been normalized to VðRÞ ¼ 1=

ffiffiffi
2

p
.

TABLE I. Summary of the model approaches examined against the galaxy database: mass distribution, rotation
curve VðrÞ, number of degrees of freedom, number of free parameters, and whether the expected rotation curve VðrÞ
flattens out at large r.

Model Mass distribution VðrÞ d.o.f. NF:P: Flat VðrÞ
Newtonian Visible only Vvis 0 0 No
MOND Standard Visible only V2

vis=r in Eq. (11) 2 1 Yes
MOND Simple Visible only V2

vis=r in Eq. (12) 2 1 Yes
NFW DM Eq. (16) Eq. (18) 5 2 No
Pseudoisothermal DM Eq. (21) Eq. (22) 3 2 Yes
Einasto DM Eq. (23) Numerically 3 3 No
Finite-width cylinder DM Eq. (26) Eq. (27) 2 2 Yes
Woods-Saxon cylinder DM Eq. (28) Numerically 3 3 Yes
Generalized logarithmic potential DM Eq. (31) Eq. (32) 3 3 Yes
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two of them coincide on the smallest value of χ2=NF, they
both receive the rank ð1þ 2Þ=2 ¼ 1.5.
We show histograms of these rankings in Fig. 12, where

the height of the bars represents the number of galaxies that
assign the given ranking (along the OX axis) to the model
in the given plot. Further, in Table II we provide the
parameters of the ranking distributions over the galaxy
population, namely their means x̄, medians Med, standard
deviations σ, and median absolute deviations MAD.
The diversity in the measured rotation curves, not all of

which extend far enough to flatten out as seems to be the
norm, makes different model approaches better suited for
different galaxy subsets. Such dispersion can be exposed by
overall “agreement” vs “disagreement” tests (useful in
other contexts to understand the opinion of jurors or

committee members choosing among several options).
For example, ascertaining such agreement among different
galaxies we have performed Kendall’s W test [54]. This is
based on the matrix ri;j containing the rank assigned to
model i by each rotation curve j. The statistical criterion is
based on the number

W ¼ 12S
ðn3 − nÞ ; ð35Þ

where n ¼ 9 is the number of models to be compared.
The numerator S is constructed from the average rank
assigned to each model by each of the m ¼ 164 usable
rotation curves with sufficient measured data points,
Ri ¼ 1

m

P
m
j¼1 ri;j. This is then averaged over all the models

FIG. 12. Histograms of the distribution of model rankings for χ2=NF for each parametrization.
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R̄ ¼ 1
n

P
n
i¼1 Ri and a quadratic deviation constructed there-

with as S ¼ P
n
i¼1 ðRi − R̄Þ2.

Kendall’s W values range between 0 (for largest dis-
agreement among galaxies) to 1 (for full agreement: all
would favor the same model). We obtain W ¼ 0.013, and
after correcting for tied rank,W ¼ 0.014; because it is quite
small, a large “dispersion” in the rankings, visible in
Table II, is suggested. This amply justifies the further
work in this article.
In spite of this dispersion, we have some statistical

confidence that we may broadly order the models as in
Table II from a computation of the U test of Wilcoxon-
Mann-Whitney [55].
This is a nonparametric test that compares the medians

according to the following criterion: given two samples of
n1 and n2 elements, we order the total set giving each
element the rank rj;i (the rank in the total set of the element
i from the sample j), from which we calculate the
parameter

U2 ¼
Xn2
i¼1

ri;2 −
n2ðn2 þ 1Þ

2
. ð36Þ

We reject the null hypothesis that the median of sample 2
is smaller than the median of the sample 1, symbolically
H0∶ Med2 <Med1, if U2 < Cn1;n2;p; where Cn1;n2;p are
tabulated coefficients and p is the p-value.
Its application to the problem at hand is as follows: if the

p-value is p < 0.05, we accept the alternative hypothesis of
the median of the model i is bigger than the median of the
model j H1∶ Medj > Medi for a confidence level of 95%
(transitivity is self-evident, once model i drops below
model j, and j below k, i ranks below k).
A clear conclusion is that the worst model is the purely

Newtonian rotation curve based on visible matter, where
the computed p-values with respect to the other models are

all less than p < 2.2 × 10−16, rejecting the null hypothesis,
and making it significantly the worst. This is very strong
statistical evidence that visible matter is not sufficient to
explain the measured rotation curves.
However, we are unable to rank Navarro-Frenk-White’s

spherical parametrization versus a finite-width uniform
cylinder (p ¼ 0.053), but we can say that these provide
worse fits than MOND Standard (p ¼ 3.7 × 10−6 and
p ¼ 0.0056, respectively). In turn MOND Standard is
below MOND Simple (p ¼ 0.011), and this one in turn
concedes to the spherical pseudoisothermal parametrization
(p ¼ 0.00083). The Woods-Saxon cylinder lies above this
in fit quality (p ¼ 9.07 × 10−06), but below Einasto’s
spherical one (p ¼ 0.0065), which finally is trumped by
the generalized logarithmic potential (p ¼ 1.8 × 10−07), a
cylindrical parametrization.
With these tests completed, we obtain the classification

in Table II, and notice that spherical and cylindrical
parametrizations are interspersed.
We provide, in the Supplemental Material [56] to this

article, eight data files chipart1.dat through chi-
part8.dat that list, for each galaxy (along a column),
the χ2=d.o.f. with a row for each model (the last two
provide the physical model parameter α� Δα for the best
fit logarithmic potential model). The reader can find therein
that occasionally there are ties or close ties for certain
galaxy-model pairs. And even statistically speaking, after
running over all the fittable galaxy curves, as shown in
Table II, some of the models cannot be distinguished
pairwise. Only a coarse ordering appears, which is what
the table displays.
As an aside, given that the generalized logarithmic

potential seems to provide the best fit, it is interesting to
extract from the fitted galaxy sample the distribution of its
parameter α in Eq. (30) and its attending uncertainty. For
this extraction we add the mild requirement (that only
exclude two of the sampled galaxies, NGC4085 and

TABLE II. Measures of centrality and dispersion of the model ranking: we give the average with standard
deviation and the median with median absolute deviation of the position in which the galaxy fits prefer each of the
models. Clearly, purely Newtonian physics with visible matter only yields the worse overall fits. The (purely
spherical) Einasto and (purely cylindrical) logarithmic dark matter potentials yield the best fits, of comparable
quality to each other, with other spherical and cylindrical approaches, having less parameters, following in the
given order.

Ranking order Model x̄� σ Med�MAD

1 Generalized log potential (cylindrical) 2.4� 1.9 2� 1
2 Spherical Einasto 3.1� 1.6 3� 1
3 Woods-Saxon cylinder 3.7� 1.9 3� 1
4 Pseudoisothermal 4.5� 1.5 4� 1
5 MOND Simple 4.9� 2.1 6� 1
6 MOND Standard 5.4� 2.2 6� 1
7=8 Finite-width cylinder 5.8� 2.4 7� 1
7=8 Spherical NFW 6.5� 1.7 7� 1
9 Newtonian 8.6� 1.4 9� 0
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UGC06787) that Δα is computable and different from 0,
leaving a subset of 162 SPARC galaxies for the fit.
The distribution of α is shown in the histogram of

Fig. 13: not included there are those extreme values that can
be tagged as outliers. These are characterized in terms of
the ith quartile Qi and the interquartile range IQR by the
conditions

α< Q1 − 1.5 IQR ¼ −0.78
α > Q3 þ 1.5 IQR ¼ 3.3: ð37Þ

The resulting 162-galaxy population’s “central” value
for the variable ᾱ and its uncertainty Δα is obtained by
minimizing the statistical estimator

χ2 ¼
XN
i¼1

½αfiti − α�2
Δαfit 2i

: ð38Þ

The outcome is ᾱ� Δα ¼ 0.456� 0.003.
Comparing it with Fig. 10 we see that this small value of

α implies that the mass density of the cylindrical DM halo
would have a very pronounced peak at r ∼ 0 (a central
filament-like structure, analogous to the “cusp” of spherical
simulations), suggesting that the DM particles are heavy
or strongly interacting (see discussion above Fig. 10 in
Sec. II B 2 c).
As seen also in Fig. 12, we find that both cylindrical

geometries and spherical geometries can account for the
VðrÞ rotation curve, and that the deciding factor, for

relatively simple models, is the number of parameters that
allow a better χ2.
To gain closer understanding we wish to examine

intermediate geometries between the extreme spherical
and cylindrical one with varying prolateness, and even
allow the fits to eventually produce the opposite, oblate DM
distributions when necessary.
The systematic way to address this problem is to employ

a multipole expansion. This we describe in the next two
sections. In Sec. III we are going to directly expand the
potential shape and use the resulting coefficients, that are
expressible in terms of the underlying mass-density dis-
tribution. In Sec. IV we will instead expand the density and
compute the potential therefrom. The two methods have
different systematics, but yield similar results.

III. MULTIPOLE ANALYSIS OF THE
GRAVITATIONAL DM HALO POTENTIAL

In this section we perform a direct multipole expansion
of the potential; this is to avoid bias by choosing one
particular density distribution as function of the radial-like
scale. We will use it to fit the galactic rotation curves of
SPARC’s database assuming an ellipsoidal shape of the
haloes (see Fig. 14). Then, we will obtain the degree of
ellipticity that these objects present, with the notation of
Table III employed throughout.
The gravitational potential generated at point r by an

ellipsoidal density distribution can be obtained as an
integral over the density,

ΦðrÞ ¼ −G
Z

d3r0
ρðr0Þ
jr − r0j : ð39Þ

Because of the lack of spherical symmetry of the mass
distribution, the “outer” layers at jr0j > jrj contribute. To
systematically treat this deviation from sphericity, we will
deploy a multipole expansion in terms of Ym

l ðθ;ϕÞ [57]
demanding that the expansion coefficients encode the
residual symmetries of the ellipsoid. These are the axial

FIG. 13. Histogram of the distribution of the parameter α in
Eq. (30), for the generalized logarithmic potential (very similar to
that outside a cylindrical source of constant density for large r),
the one that best describes the galaxy database (Table II). We have
excluded a few extreme (outlier) values, not shown, from the fit.
The distribution is quite peaked, and yields α ¼ 0.456� 0.003.

FIG. 14. Variables used to describe typical elongated halo
geometries. Left: prolate ellipsoidal mass distribution (interpolat-
ing between spherical and cylindrical) with a the major and b, c
the minor semiaxes. Middle: ellipsoidal oblate mass distribution
with a the minor and b, c the major semiaxes. Right: cylindrical
distribution as the extreme case. The triaxiality is taken as zero as
in all the manuscript.
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symmetry around the OZ-axis (that fixes the second
multipole index as m ¼ 0) and the reflection-symmetry
on the galactic plane (that restricts l to be even). Thus,

ΦðrÞ ¼ −G
X

l even;m¼0

Plmðθ;ϕÞ
�
Il0ðrÞ
rlþ1

þ rlQl≥2;m¼0ðrÞ
�
.

ð40Þ

Here Ilm and Qlm represent the coefficients of the internal-
and external-layer contributions, respectively, obtained
upon integrating the density in the respective domain
over the corresponding Legendre polynomials Pl0ðθÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=ð2lþ 1Þp

Yl0ðθÞ,

Il0ðr > r0Þ ¼
Z

dΩ0
Z

r

0

dr0ðr0Þlþ2ρðr0ÞPlðθ0Þ ð41Þ

Ql0ðr < r0Þ ¼
Z

dΩ0
Z

∞

r
dr0ðr0Þ1−lρðr0ÞPlðθ0Þ: ð42Þ

(The upper integration limit in Ql0 is of course a maximum
R when implemented on a computer; the external, spherical
Q00 contributes an upper integration-limit dependent con-
stant (respect to the angles and inner radii) j to the potential
as per Gauss’s theorem.)
We extend the multipolar expansion to the monopolar

l ¼ 0, quadrupolar l ¼ 2, hexadecapolar l ¼ 4, and 64-
polar l ¼ 6 terms. We then obtain the rotation velocity from
the resulting potential in Eq. (40) as

V2 ¼ −r
∂ΦðrÞ
∂r

: ð43Þ

To examine the geometry with this analysis, independent
of that in Sec. II, we need to adopt any one of the
reasonable halo density profiles as function of the distance
scale. We have chosen two of the simplest models: the first
is simply a two-parameter step distribution

ρðr; θÞ ¼ ρ0ΘðRðθÞ − rÞ ð44Þ

with a constant inner density that suddenly drops to zero
outside of RðθÞ, which we take as the ellipsoid given by
Eq. (45) below

RðθÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θ
b2 þ cos2 θ

a2

q : ð45Þ

As a second parametrization, we have chosen a Woods-
Saxon density profile, a well studied function that is used in
several fields of physics to represent a core followed by a
decrease whose value decays away from the gravitational
source in a parametrically controlled way (it is also func-
tionally identical to the Fermi-Dirac distribution),

ρW−Sðr; θÞ ¼
ρ0

1þ eðr−RðθÞÞ=a0
: ð46Þ

Each of these two has been employed with each of the
first orders of the expansion in Eq. (40) up to l ¼ 6, and
then also with a purely cylindrical distribution to yield a
total of ten different parametrizations listed in Table IV.
Each galaxy j ¼ 1;…153 (those with acceptable rota-

tion curves with enough data points and known behavior
near r ¼ 0, see discarded galaxies in Table XIII, and
sufficiently many measured points to be usable for this
analysis) assigns each parametrization i ¼ 1;…; 10 a rank
Rij based on ordering the fit χ2 from smaller to larger
values. The rank can take values from 1 to 10, where 1
describes the best parametrization. We can obtain a global
rank for each approach calculating the mean value R̄i ¼
1
N

P
m
j Rij or the median of the individual galaxy ranks.

These mean and median are also listed in Table IV.
As the table shows, a purely cylindrical potential (and

thus, the entailed dark matter distribution) and those with
higher multipoles (distorting the spherical symmetry) seem
to perform better than those nearly spherical shapes.
The full histogram distribution from which the table is

extracted is also shown in Fig. 15. It is patent to the eye
that the best fitting angular distributions are those with a

TABLE III. Convention for the relative size of the characteristic
lengths a, b, c along the three principal axes of an ellipsoidal
halo. See Fig. 14.

Halo Axes relation

Prolate a > b ≃ c
Oblate a < b ≃ c
Triaxial a > b > c

TABLE IV. Angular-dependence parametrization, density pro-
file as function of the distance to the galactic center, number of fit
parameters, median value (with uncertainty), and mean value
(with standard deviation). (This analysis is based on 153 of the
175 galaxies; the excluded ones have less than 5 measured points
or notably poorer data quality.).

Angular shape Density profile NF:P: Median�MAD R̄i � σ

Cylinder Woods-Saxon 3 4.0� 2.0 4.1� 2.4
Cylinder Constant 2 4.0� 2.7 4.5� 3.2

l ¼ 0; 2; 4 Woods-Saxon 4 5.0� 2.2 4.8� 2.4
l ¼ 0; 2; 4 Constant 3 5.0� 2.7 5.4� 3.0

l ¼ 0; 2; 4; 6 Woods-Saxon 4 6.0� 2.3 5.4� 2.6
l ¼ 0; 2; 4; 6 Constant 3 6.0� 2.5 5.8� 2.9
l ¼ 0; 2 Woods-Saxon 4 6.0� 2.2 5.9� 2.5
l ¼ 0; 2 Constant 3 6.0� 2.3 5.9� 2.7
l ¼ 0 Constant 3 6.0� 2.4 5.7� 2.7

l ¼ 0 Woods-Saxon 4 9.0� 2.3 7.7� 2.6
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filamentary distribution of dark matter (cylindrical
distribution).
Figure 16 shows the shape of the typical theoretical

rotation curves corresponding to these histograms. On the
top plot we see that a significant contribution to a flat
rotation curve comes from the hexadecapolar multipole
term of the potential, l ¼ 4, which elevates the rotation
curve at larger radii. This must be the reason why the
l ¼ 0; 2; 4 parametrization provides better fits that the
l ¼ 0; 2 and l ¼ 0; 2; 4; 6 parametrizations, as seen in
Table IV. From l ¼ 4 to l ¼ 6 the difference is small

and the fit fluctuates, so not much is gained by the
additional multipole.
In galaxies where the rotation curve lies flat from the

center r ¼ 0 on, such as UGC03546 in Fig. 17 or those that
become constant at larger distances such as DDO064,
higher order multipoles will be needed to fit the rotation
curve. The worst fits are obtained with a spherical dis-
tribution of dark matter. We expect this to be a generic
feature of most DM density profiles excepting those that are
near the isothermal one, ρ ∝ 1=r2 (in this case, an
r-independent v falls of from Kepler’s 3rd law in orbital
equilibrium).

A. Comments on the fitting methodology

In the first place, the iminuit minimization of
χ2=Nd.o.f. occasionally becomes stuck in local minima;
as a corrective measure we have visually examined each
rotation curve fit and hand-restarted the minimizer to
explore other parameter regions.

FIG. 15. Histograms exposing the distribution of χ2=NF rank-
ings for each parametrization in Table IV (mapping out a
multipole expansion of the potential). The OY axis is the number
of galaxies that classify the calculation in each box in the
corresponding bin. Both spherically-symmetric models (l ¼ 0,
second row) are ranked in the worst tier (8, 9, or 10). On the other
hand, the dispersion difficults a successful extraction of the
higher l ¼ 6 multipoles, so we concentrate on l ¼ 0, 2 and
l ¼ 0; 2; 4. The cylindrical fits (first row) are rather good too.

FIG. 16. Separate contributions to the rotation curve VðrÞ in a
multipole analysis. They are added up in the top plot, while
separately shown on the bottom one. Identifiable in that bottom
plot from left to right, shown are the multipoles vl¼0 (green), vl¼2

(blue), vl¼6 (orange), and vl¼4 (yellow) using the Wood-Saxon
density profile with a prolate DM halo of semiaxes length
a ¼ 40 kpc, b ¼ c ¼ 10 kpc.
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Second, in rotation curves with very flat profiles, the
dark matter modeled in this section is not always enough to
explain the behavior of VðrÞ near the galactic center. This is
exemplified by the UGC03546 galaxy in Fig. 17 and may
have to do with the old core-cusp problem that we are not
numerically studying in this work.
Fits that use as a density profile the Wood-Saxon

function adapt better to the shape of the velocity profile
in the cases where the velocity increases with r and then
becomes constant at large r. As an example, see galaxy
DDO064 in Fig. 17.

IV. MULTIPOLE EXPANSION
OF THE DM DENSITY

In this section, to explore the systematics, instead of
directly performing a multipolar expansion of the potential,
we expand the dark matter density and afterwards calculate
the potential. The method followed is akin to the one

used in nuclear physics for the study of collective vibra-
tional shell models [58,59] where it is used to study
the deformation of certain nuclei and also heavy ion
collisions [60].
We start again from a Woods-Saxon density as in

Eq. (46)

ρW−Sðr; θ;ϕÞ ¼
ρ0

1þ eðr−Rðθ;ϕÞÞ=a0
; ð47Þ

the difference now being that instead of employing Eq. (45)
to compute the gravitational potential and then expanding
Φðr; θÞ, we now expand this density distribution itself.
The same procedure will be applied to the (two-

parameter) step density distribution in Eq. (44). We expand
this Rðθ;ϕÞ in terms of spherical harmonics, noticing that
withm ¼ 0 they are real, and the β coefficients are also real
numbers,

RðθÞ ¼ R0 ·

�
1þ

X∞
l¼1

βl0Yl0ðθÞ
�
: ð48Þ

We now apply the symmetry conditions of Sec. III, and the
only terms left will then be those with even l and m ¼ 0.
We will once more truncate the expansion including only
the monopolar, quadrupolar, and hexadecapolar terms,
leaving two β deformation parameters:

RðθÞ ¼ R0 · ½1þ β20Y20ðθÞ þ β40Y40ðθÞ�: ð49Þ

The first one, β20, is related to the elongation of the
ellipsoid of revolution that represents the shape of the
halo, as can be seen for a solid body (the limit in which
the Woods-Saxon edge is set to zero) for which it takes
the form

β20 ¼
ffiffiffiffiffiffiffiffi
16π

45

r
1 − s2

1þ s2
: ð50Þ

The ellipticity ratio s ¼ b=a ∈ ð0;∞Þ carries the informa-
tion on the quadrupole deformation of the halo. According
to Eq. (39) the gravitational potential is then calculable as

Φðr; θ;ϕÞ ¼ −G
Z

dΩ0
Z

∞

0

dr0
r02ρW−Sðr0; θ0;ϕ0Þ

jr − r0j ; ð51Þ

the denominator in this equation (that yields the static
Green function), is, in spherical coordinates,

jr− r0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 − 2rr0ðsθcϕsθ0cθ0 þ sθsϕsθ0sϕ0 þ cθcθ0 Þ

q
:

ð52Þ

To calculate the rotation curve, it suffices to consider the
motion in the plane θ ¼ π=2, and ϕ ¼ 0 can be taken given
the remaining cylindrical symmetry.

FIG. 17. Fit to the rotation curves VðrÞ for two galaxies with
different profiles using the multipole expansion of DM potential,
Eq. (40). SPARCdata from [3]. The dotted line (blue) is for theVBA
rotation curve, the solid green one is for the l ¼ 0 fit, the solid blue
line includes both l ¼ 0; 2, the yellow one is for the l ¼ 0; 2; 4 fit
and finally the orange line is for the l ¼ 0; 2; 4; 6 fit.
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For comparison with the spherical harmonic expansion
of the potential, we will employ in parallel an “unex-
panded” parametrization which is the one given in Eq. (51)
but with the halo edge as defined in the density profile
from Eq. (45).
We can expand Eq. (48) to higher orders, and have done

so for exploratory purposes. But for large values of higher β
coefficients, the surface of the halo can oscillate due to the
intricate shape of the Legendre polynomials. To avoid it we
need to impose a condition of convexity, best expressed in
Cartesian coordinates as z00ðxÞ < 0 (because the figure has
azimuthal symmetry, x ¼ r⊥ can be any direction in the XY
plane). This restriction binds the values that the parameters
βl0 can take as jβ20j ≤ 1, jβ40j ≤ 0.3, the same as higher

multipole orders. With these figures we have allowed,
as an exercise, somewhat larger values than those given a
perfectly convex body, as shown in Fig. 18. Shaving jβ20j to
be under 0.7, jβ40j to be below 0.2, and the higher ones to
be at most 0.1, eliminates the concavities of the resulting
figures if needed.
We can classify the shape of the resulting haloes in five

classes, as seen in the figure, which we have tagged as
oblate (O), prolate (P), spherical (S), teacuplike (T), and
amphoralike (A).
The fit with the most parameters is that with l ¼ 0; 2; 4

(that depends on ρ0, the central density, a0, the skin-
thickness parameter, R0, the halo width in the equatorial
plane, and the intensities β20ðsÞ and β40). The number of

FIG. 18. Shapes of the components of a halo that are obtained upon expanding the Woods-Saxon density profile in Eq. (47) for a halo
with a0 ¼ 6, R0 ¼ 20 (units in kpc). Clockwise from the top left we find prolate (P), spherical (S), oblate (O), amphora (A), and teacup
(T) shapes, all axisymmetric.

TABLE V. Goodness of fit in several approaches: two multipole expansions, an unexpanded ellipsoidal model and
a model with perfect cylindrical shape. Given are each model’s angular shape and density profile, the type of halo
edge, the number of fit parameters, and both the median and the mean values of χ2=d:o:f. with their respective
deviations: this roughly orders the models from top to bottom according to efficiency of the data description.

Angular shape Density profile Parametrization NF:P: Median�MAD Ri � σ

Cylinder Woods-Saxon R0 3 2.0� 1.3 2.8� 1.6
Cylinder Constant R0 2 2.0� 2.2 3.1� 2.5

Unexpanded Woods-Saxon Rðθ; a; bÞ 4 3.0� 2.0 3.9� 2.4

l ¼ 0; 2; 4 Woods-Saxon Rðθ; s; β40; R0Þ 5 5.0� 1.8 5.7� 2.2
l ¼ 0; 2 Constant Rðθ; s; R0Þ 3 5.0� 1.9 4.9� 2.2

Unexpanded Constant Rðθ; a; bÞ 3 6.0� 1.9 5.9� 2.2
l ¼ 0 Constant Rðθ; R0Þ 2 6.0� 1.9 5.9� 2.4

l ¼ 0; 2; 4 Constant Rðθ; s; β40; R0Þ 4 7.0� 2.0 6.9� 2.5

l ¼ 0 Woods-Saxon Rðθ; R0Þ 3 9.0� 1.4 8.3� 1.8

l ¼ 0; 2 Woods-Saxon Rðθ; s; R0Þ 4 9.0� 2.2 7.6� 2.6
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galaxies that have at least five data points so that a
χ2=d.o.f. makes sense is 157; the other 18 galaxies in
the SPARC file are discarded for this fit. We must also
discard a further four galaxies with unacceptable rotation
curves for this exercise: see the explanation in Table XIII).
Finally, we perform the fits over the remaining 153 galaxies
of SPARC’s database.
From the fit results within the allowed multipole param-

eter range, the ellipticity that we deduce from Eq. (50)
shows large variations, with values s ∈ ½0.16; 6.25�. We
also compare the fits obtained from multipole expan-
sion parametrizations with those of a purely cylindrically
shaped parametrization and an unexpanded ellipsoidal
parametrizations, using either of the hard density,
Eq. (47), or soft density, Eq. (44), profiles for the R defined
in Eq. (45).
In this section we study ten parametrizations; therefore

the ranking values range from 1 to 10, with 1 being
assigned to the best fit.
As Table V shows, a potential that is purely cylindrical

(as thus is the entailed dark matter distribution) and those
with higher multipoles (distorting the spherical symmetry)
perform better than those with nearly spherical shapes. In
particular, the unexpanded ellipsoidal parametrization
seems to provide good fits. We will strive to analyze the
ellipticity that is obtained from this parametrization in the
next Sec. V, to understand whether the good fits are indeed
due to elongated shapes.
The full histogram distribution from which the table is

extracted is also shown in Fig. 19. It is again noticeable that
the best fitting angular distributions are those with an
elongated distribution of dark matter (either cylindrical
distribution or those with higher order terms in the
expansion).
We notice that the quadrupolar and hexadecapolar para-

metrizations alternate in quality depending on whether the
hard step or the soft density profile is used, showing that
there is not very large sensitivity to terms above the
quadrupolar.
In Fig. 20 we see that a remarkable contribution to a flat

rotation curve comes however from the hexadecapolar
multipole term l ¼ 4, as it lowers the rotation curve at
the beginning of the flat region and, thus, the curve seems
to become constant. Still, the l ¼ 0; 2 parametrization is
similar to that with l ¼ 0; 2; 4, and differs only at the
beginning of the flat region.
Also seen is the spherical l ¼ 0 parametrization: it falls

with the characteristic 1=
ffiffiffi
r

p
after a certain radius R0.

Lastly, the unexpanded shape, when prolate, seems to yield
a rotation curve similar to that of the higher multipole
parametrizations.
In all, the expansions with l ¼ 0; 2 and l ¼ 0; 2; 4

provide similar fits, with l ¼ 0 slightly worst. The unex-
panded ellipsoid seems to be the most successful model in
this family.

In galaxies where the rotation curve is flat from the
outset at r ¼ 0, such as UGC03546 seen shortly in Fig. 17,
or those that become constant at larger radii such as
DDO064, higher order multipoles will be needed to fit
the rotation curve. The worst fits are obtained with a

FIG. 19. Histograms exposing the distribution of χ2=NF rank-
ings for each parametrization in Table V (mapping out a multi-
pole expansion of the density profile). TheOY axis is the number
of galaxies that classify the calculation in each box in the
corresponding bin. The behavior of the expansion parametriza-
tions is different for both density profiles, soft density profiles
(WS ¼ Woods-Saxon) work better for higher multipole orders
(l ¼ 0; 2; 4), whereas hard density profiles (CT ¼ constant den-
sity up to the edge) work better for l ¼ 0; 2. Nonetheless,
spherical shapes l ¼ 0 do not provide good fits in any of the
cases. On the other hand, unexpanded profiles that allow for an
ellipsoidal and/or spherical halo seem to give rather good fits,
topped however by the cylindrical-source fits (first row) that seem
to be best.
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spherical distribution of dark matter. As in the last section,
we expect this to be a generic feature of most DM density
profiles excepting those that are near the isothermal one.
From fits like those in Fig. 20 we can obtain the relation

between the major and minor axes using Eq. (50).
According to the values of β20 and β40 the fits will fall

in one of the five categories (P, O, S, T, A). The haloes that
we fit in the end, will range from spherical s ¼ c=a ¼ 1 to
very prolate haloes s ¼ c=a ¼ 0. Below, in Fig. 28 we will
see that for these models the trend is for the halo to become
prolate rather than spherical, although there will also be
some haloes that turn out oblate.
We finally note that many of the galaxies push the

parameters to the boundaries of their allowed interval.
Particularly those where VðrÞ is very flat (Rubin’s obser-
vation) push them to the most elongated shape allowed
s → 0.16, with β40 → −0.3 also at the limit of distortion
that we allow.

V. STATISTICAL EXTRACTION
OF THE HALO ELLIPTICITY

We now turn to the statistical characterization of the
ellipticity s over the sample of galaxies in SPARC.

A. Definite model: Exponential
ellipsoid parameterization

In this subsection we report a model-dependent extrac-
tion of the ellipticity from a simple, generic exponential
density distribution. We choose it to have its surfaces of
constant density be ellipsoids with revolution symmetry
[b ¼ c, that is, we do not consider triaxiality that does not
play a role in VðrÞ] satisfying

x2 þ y2

c2
þ z2

a2
¼ const ð53Þ

for which the ellipticity is trivial to assess. In cylindrical
coordinates, with r ¼ r⊥ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, an apt choice is then

ρðr; zÞ ¼ ρ0e−
1
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðb=cÞ2z2

p
: ð54Þ

Introducing once more the ellipticity parameter s ¼ c=a
and redefining R ≔ b we have

ρðr; zÞ ¼ ρ0e−
1
R

ffiffiffiffiffiffiffiffiffiffiffiffi
r2þs2z2

p
: ð55Þ

This density profile has four degrees of freedom: the
“hidden” power law of the argument of the exponential,
which is fixed to 1, and the three manifestly free parameters
ρ0, R and s.
There is no analytical expression for the gravitational

field of this density profile, and thus we calculate it
numerically from the general expression

gðxÞ ¼ −G
Z

d3x0ρðx0Þ x − x0
jx − x0j3 : ð56Þ

Since the spiral-galaxy rotation curve Vðr⊥Þ is measured
on the galactic plane, we only need the radial component
g⊥, which in spherical coordinates can be written as

FIG. 20. Top: contribution of the multipoles of ρðr; θÞ in
Eq. (49) to the rotation curve. Reading from bottom to top at
large radius they are (vl¼0 in green, vl¼0;2 for blue and vl¼0;2;4 the
yellow line). The dot-dashed (orange) line represents the un-
expanded parametrization to VðrÞ using the softer Wood-Saxon
density profile for a DM halo with semiaxes a ¼ 50, b ¼ c ¼ 8
in kpc (s ¼ 0.16 and β04 ¼ −0.3). Middle and bottom: fit to the
rotation curve for two problematic galaxies with VðrÞ profiles
different from the standard shape. The additional dashed-dotted
lowest line (blue) corresponds to the VBA visible matter rotation
curve. The few nonconforming galaxies of this type are the ones
that make the fitting procedure more difficult.
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grðrÞ ¼
Z

d3x0
−Gρðr0Þ · ðr − r0 sin θ0 cosϕ0Þ
ðr2 þ r02 − 2rr0 sin θ0 cosϕ0Þ3=2 . ð57Þ

Finally, we obtain the rotation curve through Eq. (3).
Adequately normalized ones are plotted in Fig. 21 for
different values of s. The dashed line at the bottom
corresponds to s ¼ 1: the source is spherically symmetric
and VðrÞ decreases for r=R > 5 as per Kepler’s 3rd law. As
we give s smaller values, VðrÞ becomes less slanted, and
when s ¼ 0 (the top curve) we see the characteristic
flattening of cylindrical sources. Thus, we have an appro-
priate interpolating model between cylindrical and spheri-
cal geometries as function of one parameter.
By fitting the same subset of rotation curves used in

Sec. II we can obtain the value of s as well as its 1 − σ
uncertainty. Minimization with iminuit becomes slow
due to the triple integration in Eq. (57). To reduce running
time it is convenient to use an adapted limit of integration
for the radial variable, r0 ∈ ½0; rþ 10R�. We are satisfied
with relative numerical errors below the 10% level that are
under the typical statistical uncertainty in the s ellipticity
parameter: δV reaches its maximum for s ¼ 0 (cylindrical
source) as δV ¼ 0.05 for r ¼ 10R and δV ¼ 0.09 for
r ¼ 20R, increasing with radius.
In Fig. 22 we show a histogram of log s, based on the

logarithmic scatterplot of Fig. 23 with the s values obtained
for each individual galaxy.
A supermajority of galaxy DM haloes is then prolate, and

lies below the horizontal bar (blue) at s ¼ 1 in the figure.
There are however 29 galaxies with s > 1 at 1 − σ level.
The resulting 164-galaxy population’s “central” value

for the ellipticity variable s and its uncertainty Δs, within
this exponential parametrization of the radial dependence,
is obtained by minimizing the statistical estimator

χ2 ¼
XN
i¼1

½sfiti − s�2
Δsfit 2i

: ð58Þ

This should not be applied blindly. Careful analysis shows
that a very few galaxies with very small uncertainty band in
their own ellipticity have a disproportionate effect on the
central value of the entire set. This may be a reason why
earlier literature found contradictory results.

FIG. 21. VðrÞ rotation curve for the ellipsoidal dark matter
distribution of Eq. (55). The extreme values are s ¼ 1 (dashed-
dotted line, red) corresponding to a spherical distribution, at the
bottom, and s ¼ 0 (dashed line, dark blue), the limit of a
cylindrical distribution, at the top. Also given are intermediate
values s ¼ 0.4 (dashes of alternating size, purple) and s ¼ 0.2
(dotted line, light blue).

FIG. 22. Histogram of the distribution of log c=a for the
exponential ellipsoid parametrization. It is clear that the data
suggests many very prolate DM haloes with negative log,
whereas those that come out oblate are not very much so, but
stay relatively near the spherical shape.

FIG. 23. (Pseudo-) data VDM after subtracting SPARC’s visible
matter component off the UGC02916 rotation curve. This galaxy
is an example where an oblate DM distribution is favored by the
fit, with an incredibly small χ2 that pulls the global fit of the entire
database. But notice the pronounced minimum at few kpc that
makes us doubt that the SPARC extraction of the visible matter
components, leaving this squared velocity to be explained by
dark matter, is totally reliable. Notice in particular that at large
radii VðrÞ flattens to a constant, as typical spiral galaxies do,
suggesting prolateness in the end. It is the small r part, very
impacted by the visible matter, that is driving the fit.
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For example, UGC02916 tends to prefer an oblate halo
and seems to yield an amazingly precise ellipticity of
s ¼ 2.63398ð1Þ. Due to such unbelievable goodness of fit,
this one galaxy almost by itself pulls the central ellipticity
to s̄� Δs ¼ 2.14901ð1Þ, on the oblate side as it is larger
than 1.
Closer examination of this one galaxy (see Fig. 24)

shows that at large r the behavior of VðrÞ is that of a typical
spiral galaxy with a prolate halo, and that the s > 1 value is
driven by the small-r dip, very suggestive of a poorly
controlled visible-matter distribution.
We have individually examined the minority of galaxies

that have positive s − 1 and suggest an oblateDMhalo.Most
of them have a rotation curve that is increasingwith distance
out to the farthest measured point, that is, measurements
have probably not extended far out enough to see the typical
settling into a flat rotation curve. A much smaller number of
others fall in alternative categories (large uncertainties, very
untypical behaviors such as a quick falling of VðrÞ as a step
function, etc.) and are classified in Appendix A 1.
This apparently outlier galaxy, UGC02916, belongs to

the first class of the categories there defined: its pseudodata
DM rotation component exhibits a pronounced oscillation
at small r. Excluding this one galaxy from the analysis we
immediately obtain an extremely prolate (and unreasonably
accurate) value for the distribution, s ¼ 0.05845ð2Þ. Pluc-
king off the next-to extreme galaxy, in this case a prolate
one, returns the central ellipticity to order s ≃ 0.3; this
instability of the global fit to a few galaxies is typical of
statistical samples with outliers, and the correct procedure
is to remove them.
Since there is some ambiguity in the point where the

remotion of outliers needs to stop (several conventions are
used in the literature), we have opted for iterating the
process of removing one value at a time with lower
uncertainty in s to obtain a sequence of central s values
for a decreasing number of galaxies sn.
We consider that the value computed is reliable when

two consecutive values of s are compatible at 1 − σ. This
first happens after removing 32 galaxies, leading to a
tentative result at 1σ of s ¼ 0.693� 0.027 that we have
plotted in Fig. 1.

It is in carrying out this exercise when we have realized
that the more revealing statistic estimator is the geometric
mean, or the logarithmic average, as discussed below in
Sec. VI A. Indeed, if the geometric mean of each galaxy’s
ellipticity is taken,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 · s2…snn

p
, it turns out to yield a very

prolate value, exp hlog si ¼ 0.026 which amounts to the
longer axis being 38 times larger than the shorter ones (on
average) However, the spread is large, with a confidence
interval for the variable log s that is log s ¼ −3.6� 4.7 or,
exponentiating, s ¼ ½0.0002; 2.783�. That is, there are some
DM haloes that are preferably fit to truly filamentary shapes
with s ≪ 1, while a few can be somewhat oblate, like a
thick pancake. On log average, it is clear that they tend to
strong prolateness.

B. Extraction from the multipole expansion
of the DM potential

In this subsection we quickly turn to the extraction of the
ellipticity s ¼ c=a from the multipole expansion of the
potential in Sec. III.
As is shown in Fig. 25, the behavior of the rotation

curve varies in function of the distortion of the halo shape.
In prolate haloes (violet line) VðrÞ ∼ constant when b ≤
r ≤ a and in oblate haloes (orange line) VðrÞ increases
when a ≤ r ≤ b. However, when r is taken outside
of the total distribution the rotation curve decreases
VðrÞ ∝ 1=

ffiffiffi
r

p
, that happens when: r > a in prolate types,

r > b ¼ c in the oblate ones and r > a ¼ b ¼ c in
spherical haloes.
We notice that only prolate haloes are apt to explain the

flat rotation curves that are seen in many galaxies. To
simulate the constant velocity profile we need at least the
contribution of the hexadecapolar term l ¼ 4 (the yellow
line in Fig. 16) to the rotation curve. The consequent
addition of a higher multipole term up to l ¼ 6 (the orange
line in Fig. 16) should soften the velocity profile at
moderate radii, as we can see in Fig. 25.
In Table VI we provide the outcome of the fits for the

ellipticity s ¼ b=a of the haloes for the galaxies in
SPARC’s database. Be reminded that l ¼ 0 corresponds
to spherical haloes, when taking higher orders, flattened or

FIG. 24. Ellipticity ratio s ¼ c=a from fitting an exponential ellipsoid parametrization to the subset of rotation curves from the SPARC
database selected in Sec. VA [3]. Most galaxies lie underneath the s ¼ 1 solid line (black), suggesting prolate haloes. The dotted line
(purple) is the median of the distribution, while the dashed line and the shadowed region (blue) denotes the geometric mean and its
confidence interval.
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elongated sources can be described (the quality of the respec-
tive fits was seen in Table IVand will not be repeated here).
It is clear from Table VI that the average (arithmetic

mean) is quite meaningless for this variable and any biases

on which galaxy is included or not can shift it from below
to above 1 (prolate to oblate). The median, on the second to
last column, is seen to consistently be below 1 (indicating
therefore a clear preference for prolate shapes except, of
course, the l ¼ 0 fit that cannot but be spherical).
This perspective is reinforced by binning the data in

25%, 50%, and 75% ellipticity s quartiles. In Table VII we
notice that the parametrizations that use a softened density
profile provide fits with a lower ellipticity than those that
use a hard profile. The table shows that the third quartile is
reached at 1 for the sharp density cutoff, and around 0.1 for
the softer DM profile of Woods-Saxon: a majority of
galaxies would qualify as having prolate DM haloes.
A few caveats certainly apply.
Many of the flat rotation curves (most galaxies in

SPARC are of this type, see Sec. V D below) are never
seen to turn downwards and start falling with r (even if they
would at all: perfectly filamentary sources predict perfectly
flat curves, although at the hundred kpc scale other
galactic-scale bodies compete as sources of gravity). In
those constant-V galaxies therefore, one cannot set a bound
on the length of the major semiaxis a from any fitting
procedure.
Using the database we can only wish to deduce the value

of the semiaxis along the x- and y-axes, b, (if possible) and
obtain an upper bound for the ellipticity, s, meaning that
they might be even more prolate than our results suggest.

FIG. 25. Ellipticity dependence of the DM rotation curve from the multipole expansion of the potential, Eq. (40), to the indicated
expansion orders: the smaller s (the more prolate the halo), the flatter the rotation curve. Solid black line: reference spherical halo (the
same in all plots). Dashed-dotted line (orange): oblate halo (it falls faster after reaching the peak rotation velocity). Dashed line (purple):
prolate halo (VðrÞ falls slower after its peak).

TABLE VI. Value of the ellipticity s of the haloes for each
parametrization in Sec. III. From left to right the columns
correspond to the angular-dependence parametrization, the soft
or hard density profile, the median value of s, and the arithmetic
mean of the s values. We give the one-sided uncertainty which is
very large because of a few very oblate haloes that distort the
arithmetic averaging. In consequence, the last column quotes the
geometric mean, that is seen to be well below 1 in all cases. In this
case, l ¼ 0 does have a residual sensitivity to the halo shape
through the ratio a=b on which R of Eq. (44) depends: the fit of
the matter density in Table VIII below is cleaner in this respect.

Multipole Density MEDþMAD s̄þσ elogðsÞ

l ¼ 0 WS 1.00þ60 30þ360 0.7
l ¼ 0; 2 WS 0.01þ0.1 0.09þ0.18 0.02
l ¼ 0; 2; 4 WS 0.01þ0.2 0.14þ0.70 0.02
l ¼ 0; 2; 4; 6 WS 0.01þ0.1 0.08þ0.15 0.02

l ¼ 0 CT 0.4þ0.6 0.7þ0.8 0.31
l ¼ 0; 2 CT 0.35þ1.2 1.1þ3.8 0.27
l ¼ 0; 2; 4 CT 0.37þ1.7 1.4þ7.1 0.27
l ¼ 0; 2; 4; 6 CT 0.30þ0.7 0.8þ1.6 0.27
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During the fit of such flat rotation curve, the length of the
semiaxis along the z-axis, a, will therefore hit the parameter
boundary and stay there. This is visible in Fig. 26 where we
see a large majority of fits requiring very large values for a,
and many clustering at the low-end of s near zero.
In other galaxies, saliently dwarf ones (see Sec. V D

below for a classification), VðrÞ has positive derivative all
the way to the end of the visible matter distribution and the
fit can often not determine the halo shape either, as the full
halo is not well probed.
In addition, the parametrizations with l ¼ 0; 2; 4 seem to

give more elongated halos than those with either l ¼ 0; 2 or
l ¼ 0; 2; 4; 6, in concordance with Fig. 16.

C. Extraction of s from the multipole expansion
of the DM density

In this subsection we obtain the ellipticity s ¼ c=a from
the multipole expansion of the density in Sec. IV.
As shown in Fig. 27, which is analogous to Fig. 25, the

behavior of the theoretical rotation curve depends on the

ellipticity of the halo-density shape. In prolate haloes
(violet line) VðrÞ ∼ constant when b ≤ r ≤ a and in oblate
haloes (orange line) VðrÞ increases when a ≤ r ≤ b. When
r finally clears the halo, the rotation curve must even-
tually decrease as the leading multipole’s VðrÞ ∝ 1=

ffiffiffi
r

p
,

which happens quickly when r > a (for prolate haloes) or
r > b ¼ c (for oblate ones). This expansion of the density
is seen to yield, order by order, a more stable (less
oscillatory) VðrÞ curve than the one in which the potential
is directly expanded (Fig. 25).
To explain rotation curves that become constant at large

distances, the figure shows the need for elongated haloes.
This translates into manifestly prolate haloes in the unex-
panded model and higher order multipoles with a specific

TABLE VII. Quartiles of the distribution for the ellipticity ratio
s ¼ c=a. It is clear that 75%, if not more, of the fit galaxies have a
DM halo that is best described as prolate, with s < 1.

Multipole Density 25% 50% 75%

l ¼ 0 WS 0.99 0.99 1.00
l ¼ 0; 2 WS 0.003 0.01 0.09
l ¼ 0; 2; 4 WS 0.01 0.01 0.08
l ¼ 0; 2; 4; 6 WS 0.01 0.01 0.09

l ¼ 0 CT 0.12 0.40 1.00
l ¼ 0; 2 CT 0.08 0.35 0.99
l ¼ 0; 2; 4 CT 0.09 0.37 0.99
l ¼ 0; 2; 4; 6 CT 0.09 0.30 0.99

FIG. 26. Scatter plot of the ellipticity of fit DM haloes (x axis)
for each galaxy (y axis) following the approach from Sec. III.
Most of the fits fall in the s ∈ ð0; 1Þ region which describes
haloes ranging from very prolate s ∼ 0 to spherical s ¼ 1.

FIG. 27. Behavior of the rotation curve for the DM component
upon expanding the DM density. The slowest falling dashed line
(violet) is for an elongated halo, the fastest falling dashed-dotted
(orange) corresponds to a flattened one and the black line is the
reference spherical halo.

TABLE VIII. Parameters of the statistical distribution of s for
the haloes in each parametrization of Sec. IV. From left to right,
the columns display the angular parametrization, the density
profile, the median and the average of s ¼ c=a with their one-
sided uncertainties, and finally the geometric mean, that is well
below 1 indicating the preference for prolateness.

Multipole Density MEDþMAD s̄þσ elogðsÞ

Unexpanded WS 0.01þ0.25 0.14þ1 <0.01
Unexpanded CT 0.05þ0.8 0.5þ3 0.05

l ¼ 0 WS 1 1 1
l ¼ 0; 2 WS 0.16þ0.6 0.5þ1 0.22
l ¼ 0; 2; 4 WS 0.16þ0.6 0.5þ1.2 0.24

l ¼ 0 CT 1 1 1
l ¼ 0; 2 CT 0.16þ0.9 0.7þ1.4 0.27
l ¼ 0; 2; 4 CT 0.2þ1 1þ1.7 0.40
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sign of β20 in the systematic expansion, whose leading
behavior already appears with l ¼ 0; 2 alone, l ¼ 4 and
higher bringing in incremental corrections.
In the “unexpanded” parametrization we again find that

the ellipticity can be arbitrarily small, as explained in
Sec. V B, due to those galaxies with ever-flattened rotation
curves pulling the fit toward zero as much as we may allow
it. This parametrization provides good fits, as seen in the
earlier Table V, most of them leading to very elongated
shapes (see Fig. 28). According to Tables VIII and IX,
the shape of the haloes tends to be very elongated, similar
to a thin cylinder. Most of the actual values seem to fall in
the s ∈ ð0; 1� interval. The quartile distribution given in
Table IX as well as the pictorial representation in Fig. 28
corroborate this.
Further, in Fig. 28 we see that this density-expansion

parametrization assigns to the ellipticity values in the s ∈
½0.16; 6.25� interval. In the case of l ¼ 0, the ellipticity
s ¼ 1 is of course that of a spherical source. But in the case
of a higher multipole contribution, the general trend is for
the ellipticity to be for a very prolate object. Many of the
fits hit the lowest interval bound s ¼ 0.16 that we allow
them to take.
The outcome of this analysis is that three quarters of the

sampled galaxies prefer prolate dark matter haloes, and
both median and geometric mean suggest typical elliptic-
ities s < 0.5 and even of order 0.2 or less, whereas the
arithmetic mean has too large an error to conclude any-
thing: this is expected as it is not the appropriate variable
for this analysis.

D. Correlating the galactic type
and the ellipticity

The SPARC database contains information about the
rotation curves for late type galaxies (that are expected to
contain larger quantities of dark matter [61] and are thus
ideal to probe it), of both spiral (S0, Sa, Sab, Sb, Sbc, Sc,

Scd, Sd) and dwarf4 types (Sdm, Sm, Im, BCD). The list of
galaxies of each class is provided in Appendix V D.
We have discussed in earlier subsections of this

Sec. V that we suspect many rotation curves to be
incomplete due to a lack of data external to the galaxy.
While in spiral galaxies the rotation curve flattens
indefinitely (we do not observe a Keplerian fall-off in
the rotation curve indicative that the entire halo would
be contained within some radius R), in dwarf galaxies
often we do not even reach that velocity plateau, and the
rotation curve actually grows to the maximum r pro-
vided by the data. This entails that, generally speaking,
dwarf galaxies seem to return worse fits than spiral
galaxies (see Table X).
For both dwarf and spiral galaxies it is clear in the

SPARC database that baryonic matter is insufficient to
account for the rotations curves. The velocity profile in
dwarf galaxies seems to be similar to that in spirals for
small r, but to be chopped off earlier, before VðrÞ
flattens, probably due to the smaller size of dwarf
galaxies even if they are believed to have a larger ratio
of dark matter to visible matter. It is a reasonable
hypothesis that currently the data is probing a smaller
part of the halo for dwarfs than for spirals. Be it as it
may be, dwarf galaxies have a variety of rotation-curve
shapes.
From Fig. 29 we see that both the dwarf and spiral galaxy

samples prefer a majority of prolate haloes, with sizeable
counts of nearly spherical ones, but only a few fits yield

FIG. 28. Ellipticity of the fit haloes (x axis) for each galaxy (y
axis) following the approach from Sec. IV. Most of the fits fall in
the interval s ∈ ð0; 1�, ranging from very prolate haloes s ∼ 0 to
spherical s ¼ 1. The two salient vertical accumulation lines are at
s ¼ 1 (where the fits with l ¼ 0 necessarily appear) and s ≃ 0.16
due to the lowest allowed s in some of the fits with constrained
parameters.

TABLE IX. Quartiles of the distribution of values obtained for
the ellipticity ratio s. From left to right, the columns show the
angular-dependence parametrization, the profile density and the
maximum value of s reached within each quartile of the s
distribution.

Angular shape Density profile 25% 50% 75%

No-exp WS 0.00 0.01 0.01
No-exp CT 0.01 0.05 0.20

l ¼ 0 WS 1.00 1.00 1.00
l ¼ 0; 2 WS 0.16 0.16 0.16
l ¼ 0; 2; 4 WS 0.16 0.16 0.16

l ¼ 0 CT 1.00 1.00 1.00
l ¼ 0; 2 CT 0.16 0.16 0.20
l ¼ 0; 2; 4 CT 0.16 0.19 0.98

4In addition, dwarf galaxies are expected to be dominated by
larger quantities of dark matter and are actively investigated in
indirect γ-ray searches of dark matter [62].
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oblate haloes in some parametrizations. Still, spirals seem
to have a lower s ellipticity parameter in most of the
models, indicating clearer prolateness of the halo.
As seen in Secs. III and IV, the proper value for the

ellipticity cannot be determined, but an upper bound can be
derived.

In most of our models, we see that for both, dwarfs and
spirals, that halo ellipticity quotient s ¼ c=a (often an
upper bound) falls in the interval s ∈ ð0; 1�. In many spirals
this is rather small, s ∈ ð0; 0.5�, whereas dwarfs are better
fit to have haloes with less elongated shapes, at least with
present data.

TABLE X. Goodness of fit (median�MAD of the χ2=d.o.f. distribution for the galaxy sample) and the ellipticity (median) for 98
spiral galaxies and 51 dwarf galaxies taking into account all parametrizations of Secs. III and IV.

What is
parametrized

Angular
expansion Density profile Parametrization Dwarf χ2D=d.o.f. Spiral χ2S=d.o.f. Ellipticity sD Ellipticity sS

Density Cylinder Woods-Saxon R ¼ R0 7.7� 4.9 3.0� 2.8 → 0 → 0
Density Cylinder Constant R ¼ R0 8.0� 4.3 3.0� 4.1 → 0 → 0

Density l ¼ 0 Woods-Saxon Rðθ; s; β40; R0Þ 9.0� 4.1 13.0� 3.1 1.00 1.00
l ¼ 0; 2 Woods-Saxon Rðθ; s; R0Þ 7.0� 3.0 11.0� 3.1 0.16 0.16
l ¼ 0; 2; 4 Woods-Saxon Rðθ; R0Þ 10.0� 3.1 11.0� 2.9 0.16 0.16

Density l ¼ 0 Constant Rðθ; s; β40; R0Þ 17.0� 3.0 17.0� 1.6 1.0 1.0
l ¼ 0; 2 Constant Rðθ; s; R0Þ 16.0� 3.6 16.0� 4.0 0.16 0.16
l ¼ 0; 2; 4 Constant Rðθ; R0Þ 14.0� 3.4 14.0� 3.8 0.32 0.18

Potential l ¼ 0 Woods-Saxon Rðθ; a; bÞ 11.0� 4.1 14.0� 2.9 0.99 0.99
l ¼ 0; 2 Woods-Saxon Rðθ; a; bÞ 6.0� 2.9 9.0� 2.7 0.01 0.01
l ¼ 0; 2; 4 Woods-Saxon Rðθ; a; bÞ 5.0� 3.2 7.0� 3.0 0.03 0.01
l ¼ 0; 2; 4; 6 Woods-Saxon Rðθ; a; bÞ 5.0� 3.5 8.0� 3.1 0.05 0.01

Potential l ¼ 0 Constant Rðθ; a; bÞ 11.0� 4.8 6.0� 4.0 0.96 0.31
l ¼ 0; 2 Constant Rðθ; a; bÞ 11.0� 4.2 6.5� 4.4 0.95 0.25
l ¼ 0; 2; 4 Constant Rðθ; a; bÞ 11.0� 4.8 5.0� 4.6 0.98 0.25
l ¼ 0; 2; 4; 6 Constant Rðθ; a; bÞ 10.0� 4.7 7.0� 4.6 0.91 0.25

Density No expansion Constant Rðθ; a; bÞ 12.0� 3.4 11.0� 3.9 0.04 0.05
No expansion Woods-Saxon Rðθ; a; bÞ 7.0� 4.1 6.0� 3.3 0.01 0.01

FIG. 29. Scatterplot of halo ellipticity fiting the SPARC database to the parametrizations in Secs. III and IV, breaking it by galactic
category. The top four rows in each plot correspond to dwarf galaxies, and the rest are spirals. Galaxies to the right of the thin vertical line
at s ¼ 1 yield oblate haloes, those to the left, prolate ones.
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VI. CONCLUDING DISCUSSION

We have reported fits to the galactic rotation curves
obtained from SPARC’s database [3] using several
approaches. Because of the different number of parameters
of each, a varying number of galaxies with few measured
data points have been left out in each, in line with prior
work [10]. In the analysis of Secs. III and IV we have left
out the galaxies specified in Table XIII of the Appendix
below, for the reasons explained there. In other analysis we
have, however, included them, to avoid introducing too
much overall bias.
From SPARC’s own analysis [1] we have taken the basic

data (distance to the galactic center r, total velocity v� e)
but also the separate square velocity contributions for each
component of visible matter. These comprise the bulge of
the galaxy, its disk, and gas cloud. We have adopted their
relation for the mass-to-light proportions ϒbulge ¼ 1.4ϒdisk

and ϒdisk ¼ 0.5M⊙=L⊙ [1,2] to be able to subtract the
baryonic contribution to the rotation curve.

VB;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
i;gas þϒbulgeV2

i;bulge þϒdiskV2
i;disk

q
ð59Þ

(with i labeling each galaxy) and our actual fits refer to the
rest, VDM, presumably due to the dark matter distribution,
with the total velocity as in

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
DM þ V2

B

q
: ð60Þ

Different approaches were contrasted against an adequately
defined χ2 function [53,63],

χ2 ¼
XN
i¼1

ðV th − VobsÞ2
e2obs

: ð61Þ

We normalized this per degree of freedom, χ2=ðN − kÞ by
dividing through the difference between the number N
of data points for each galaxy and the number of fit
parameters k.
Farrar and Loizeau also performed analogous fits to the

rotation curves in [10]; further models can be seen there.

Their generic conclusion is that the Einasto profile, or also
even an additional disk component, would provide a better
fit than traditional dark matter models or self-interacting
dark matter.
A main feature of our allowing the use of elongated

shapes is that the flatness of the rotation curves is more
natural, leaving much more freedom to the underlying dark
matter profiles as function of the distance, that do not need
to be perfectly isothermal and therefore the underlying
microscopic physics [64] is less constrained. Overall, we do
find that fits with prolate haloes are preferred for nonfine-
tuned radial dark matter density profiles (in those that
approach the precise ρ ∼ 1=r2 power-law form there is
quite some degeneracy in describing VðrÞ for large r and
the shape cannot reliably be extracted).

A. Comparison with large-scale numerical
simulations and other work

In the simulations reported by Allgood et al. and other
works [65–68], the dark matter halo distribution was found
to be slightly triaxial, and somewhat more prolate than
oblate, with a mean ellipticity compatible with our typical
values. However, those authors do not seem to stress the
point that a few of the galaxies that are very oblate are
actually pulling the fit toward oblateness, when a signifi-
cant majority of them is actually prolate, some being
extremely prolate, and this providing what should become
a textbook explanation for the flatness of rotation curves.
In fact, the procedure of quoting an arithmetic average of

the ellipticity a=c is obscuring the actual stand of the
galaxy population. A quick way to see it is that the average
of two numbers, 0.33333 and 3, the first of which is as
prolate as the second is oblate, becomes 1.666 > 1which is
clearly oblate. However this population of two galaxies
should be neutral and yield an average spherical shape, with
hsi ¼ ha=ci ¼ 1. Obviously, the correct averaging pro-
cedure for a variable distributed over ð0;∞Þ with neutral
point at s ¼ 1 is to work in a logarithmic scale.
Therefore we propose to average the natural logarithm

hlogðsÞi (this is equivalent to using the geometric mean
instead of the arithmetic mean of the distribution of s) over

TABLE XI. Average ellipticities of dark matter haloes extracted by various methods; and approximate average
values in the logarithmic scale that we advocate. If known for several halo masses, we quote s for the large haloes
that can host typical spiral galaxies.

Method s log s References

Weak lensing 0.66(0.07) −0.41ð0.11Þ [69]

Fit galactic VðrÞ −3.6ð4.7Þ This work (Sec. VA, uncleaned sample)

Fit galactic VðrÞ 0.14þ0.7 −1.4 This work (Sec. V B, curated sample)

Fit galactic VðrÞ 0.5þ1.2 −4 This work (Sec. V C, curated sample)

Simulations at z ¼ 0 ≃ 0.6 [65]
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the galaxy sample, and have obtained, for example in
Sec. VA,

ehlogðsÞi ¼ 0.026 ð62Þ
which is distinctly smaller than unity. This indicates a
rather prolate distribution of galaxies, though with a broad
shoulder of some oblate ones as indicated by a spread
[0.0002, 2.783].
A second, independently coded analysis based on a

spherical-harmonic expansion, yields amedian s ≃ 0.01þ0.20

for the l ¼ 0; 2; 4 parametrization in Sec. III and s ≃
0.16þ0.60 for the l ¼ 0; 2; 4 parametrization in Sec. IV.
Various other parametrizations seem to be broadly consistent
with these.
Table XI presents arithmetic and geometric averages of

these and other shape analysis, including one based on
weak lensing that we have located in the literature [69].
Apparently the lensing data is also suggestive of an average
prolate halo, and once more the authors seem to be using an
arithmetic average over s.
We quote, for the cosmological simulation entry, a

number of 0.6 that broadly describes what is reported in
Fig. 1 of that Ref. [65], at z ¼ 0. Those authors have also
extracted the dependence with the cosmological redshift z
and with the galaxy mass Mgalaxy. They see a clear
correlation sðMÞ that we cannot confirm at this point, as
shown in Fig. 30. However we have found a correlation
with the galaxy shape, with spiral ones having smaller s and
elliptical ones larger s (Sec. V D)

B. Final comments

Additionally to gravitational lensing and the rotation
curves, further confirmation of the shape of the halo may
come from studying observables outside the galactic plane,
such as stellar streams [70]. Broadly, in the presence of
such halo the movement perpendicular to the galactic

rotation axis, not too far from the galactic plane, is the
same as for a spherical distribution with changed param-
eters, and the vertical motion is that of an oscillator, with
the orbital plane precessing [12].
These results are of impact to the direct laboratory

detection programme. As shown in Fig. 31, as the defor-
mation of the halo toward prolateness increases, less dark
matter is to be found in the galactic disk. This entails that
estimates of dark matter therein are overestimated, typically
by a factor 2, which is affecting the extracted bounds on
dark matter-nucleon cross-sections.
We think we have exhaustively employed the information

at hand, but there is room for future improvements. For
example, one roadblock that we have found is that some
galaxies have rotation curves that are flat right out of r ¼ 0,
for example NGC5371 or NGC5907; in this cases, the usual
low-r growth of VðrÞ is not visible. This introduces model
distortions that affect our fits; basically only an infinitely thin
filament could fit that rotation curve. This probably happens
because the identification of the point r ¼ 0 in the galactic
plane has not been fully achieved by the observational
collaboration (since galaxies are most often seen at oblique
angles). To reduce this uncertainty in our fits, wewould need
“better” data, which is of course beyond our ability as it
depends on the observational program.
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FIG. 30. We fail to find a visible correlation between the
presumed dark-matter halo ellipticity and the visible galactic
mass (that, by the Tully-Fisher relation, is normally taken
proportional to the total mass).

FIG. 31. A prolate halo implies less dark matter in the galactic
plane: we show the ratio to a spherical shape, other things being
equal. This would mean that extractions of DM-nucleon cross-
sections in the laboratory are affected by a further factor larger
than 2.
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APPENDIX: CLASSIFICATION OF GALAXIES
WITHOUT STRAIGHTFORWARD

ROTATION CURVES

1. Galaxies with fits typically yielding
oblate haloes

In this appendix we first provide a classification of, and
list, the galaxies that are seemingly actually best fit by an
oblate shape than a prolate shape depending on the
analysis, as they form a distinct minority of the SPARC
database that reduces the force of the main result of the
article, so they need individual understanding.
We have found that the dark matter velocity component

VDM in Eq. (13) of some of these galaxies keeps growing at
large r. That means that the edge of their dark matter
distribution has not been reached and thus we cannot really
find out the shape of the DM halo. These galaxies are
assigned to class 3 in Table XII.
A few other galaxies have properties that make the fitting

with a prolate halo difficult, and are also listed in Table XII.

Those in class 1 are affected by large oscillations
in the VDM pseudodata at short distances r (see Fig. 24).
This happens because the estimated contribution from the
visible matter to the rotation curve is larger than the rotation
curve itself at some points; therefore we cannot really trust
the extraction of the pseudodata that has to be assigned to
dark matter.
The two galaxies in class 2 have very large data uncer-

tainty, so while they come out oblate they are not very
significant.
In turn, the data for the two galaxies in class 4 reaches

small distance only, r < 4a respect to the ellipsoid axis,
where the dependence of the rotation curve on s is smaller
(see Fig. 21).
Finally, there are two galaxies that we assign to a

class 5 that have quite an anomalous behavior unlike
other spirals, with a rotation curve that starts off at
20 kpc and after a quick decrease to VDM ∼ 0 stay there
for large distances (ironically, this behavior is closer to
what Kepler’s law would make us expect, though the
slope is too steep).
At least one of the galaxies analyzed, NGC2903,

simultaneously belongs to two categories, in this case 1
and 3, because in addition to a never-decreasing rotation
curve, it presents significant oscillations.
Having achieved some understanding of why a fraction

of the galaxy sample favors an oblate halo shape, we feel
confident that a good explanation for the flattening of VðrÞ

TABLE XII. List of galaxies that do not favor a prolate dark matter halo shape, assigned to specific behavior
classes as described in the text.

Class Galaxies

1 (Oscillating) UGC02916 NGC2903 NGC2955 NGC3877 NGC4051 NGC4138

2 (Uncertain) F561-1 UGC04305

3 (VDMðrÞ ever growing) F568-3 F571-8 IC4202 NGC0055 NGC2903 NGC3769 NGC4157 NGC4217
NGC4389 NGC5005 NGC5055 NGC6195 NGC7331 UGC02455

UGC06614 UGC06973 UGC07866 UGC09037

4 (small r) NGC3893 UGC05986

5 (VDMðrÞ ≃ 0 at large radii) PGC51017 UGC06628

TABLE XIII. List of galaxies that are rejected in Secs. III and IV, possibly due to deficiencies in the extraction of the part of the
rotation curve VDMðrÞ assignable to dark matter. They are broken into two specific behavior classes, one corresponding to the baryonic
matter alone overpredicting the rotation curve, let alone any dark matter (this seems to be sufficient reason to doubt the observational
measurements and put them on hold) and the second due to insufficient data near r ¼ 0 to have a fittable shape by something other than
an infinite filament or similar.

Class Galaxies

1 (VðrÞbaryons > VexpðrÞ near r ¼ 0 measurement error?) CamB, NGC4217, NGC4389, UGC02455,

2 (Not enough data around center of galaxy) D512-2, F565-V2, F567-2, F568-1, F574-1, F574-2, F579-V1, NGC6789,
PGC51017, UGC00191, UGC00634, UGC00891, UGC02023,
UGC05829, UGC05999, UGC07232, UGC08699, UGC09992,
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for the typical spiral galaxy, the majority behavior, can be
the prolateness of the dark matter distribution.

2. Galaxies rejected in Secs. III and IV on the grounds
of strongly distorted rotation curves and similar

In Secs. III and IV we have rejected some of the galaxies
from SPARC’s database and not included them in the

fits there due to questions about the data. The classi-
fication of those problems with VðrÞ is provided in
Table XIII. In this case we have left out two types of
galaxies as seen in the table: one due to the fact that the
experimental baryonic rotation curve falls above the total
rotation curve of the galaxy, and the other due to the
scarcity of data near r ¼ 0.

[1] F. Lelli, Stacy S. McGaugh, and James M. Schombert,
Astron. J. 152, 157 (2016).

[2] F. Lelli, Dissertation, University of Groningen, 2013,
https://research.rug.nl/files/14424281/thesis-lelli.pdf.

[3] SPARC Database, http://astroweb.cwru.edu/SPARC/.
[4] H.W. Babcock, Lick Obs. Bull. 498, 41 (1939).
[5] H. C. van de Hulst et al., Rev. Mod. Phys. 30, 913 (1958).
[6] L. M. J. S. Volders, Bull. Astron. Inst. Neth. 14, 323 (1959),

https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V.
[7] G. Bertone and D. Hooper, Rev. Mod. Phys. 90, 045002

(2018).
[8] V. C. Rubin et al., Astrophys. J. Lett. 225, L107 (1978).
[9] N. Bar, K. Blum, and C. Sun, Phys. Rev. D 105, 8 (2022).

[10] N. Loizeau and G. R. Farrar, Astrophys. J. Lett. 920, L10
(2021).

[11] C. Mihos et al., Astrophys. J. 762, 82 (2012).
[12] F. J. Llanes-Estrada, Universe 7, 346 (2021); This is an

independent rediscovery of a basic observation that a
handful of scientists have made but that has not permeated
the mainstream, see e.g., B. A. Slovick, arXiv:1009.1113.

[13] J. S. Jaracz, arXiv:2302.09720.
[14] G. U. Varieschi, Mon. Not. R. Astron. Soc. 503, 1915

(2021); G. Calcagni and G. U. Varieschi, J. High Energy
Phys. 08 (2022) 024.

[15] A. Giusti, Phys. Rev. D 101, 124029 (2020).
[16] K. Zatrimaylov, J. Cosmol. Astropart. Phys. 04 (2021) 056.
[17] C. Rodrigo-Blanco and J. Perez-Mercader, Astron. As-

trophys. 330, 474 (1998), https://adsabs.harvard.edu/full/
1998A%26A...330..474R; Carlos Rodrigo Blanco, Disser-
tation, Universidad Complutense de Madrid, 1999.

[18] M. Khelashvili, A. Rudakovskyi, and S. Hossenfelder,
arXiv:2207.14165.

[19] A. B. Quintana, F. J. Llanes-Estrada, and O. M. Carretero,
Proc. Sci. EPS-HEP2021 (2021) 137 [arXiv:2109.11153].

[20] J. F. Navarro, C. S. Frenk, and S. D. M. White, Mon. Not. R.
Astron. Soc. 275, 720 (1995).

[21] L. Hernquist, Astrophys. J. 356, 359 (1990).
[22] S. S. McGaugh and J. M. Schombert, Astron. J. 148, 77

(2014).
[23] R. B. Tully and J. R. Fisher, Astron. Astrophys. 54, 661

(1977), https://articles.adsabs.harvard.edu/full/1977A%26A
....54..661T.

[24] R. Sancisi, IAU Symp. 220, 233 (2004).
[25] M. Milgrom, Astrophys. J. 270, 365 (1983).
[26] M. Milgrom, Astrophys. J. 270, 371 (1983).
[27] M. Milgrom, Astrophys. J. 270, 384 (1983).

[28] B. Famaey and J. Binney, Mon. Not. R. Astron. Soc. 363,
603 (2005).

[29] S. Dodelson and M. Liguori, Phys. Rev. Lett. 97, 231301
(2006).

[30] A. Aguirre, J. Schaye, and E. Quataert, Astrophys. J. 561,
550 (2001).

[31] D. Clowe, A. Gonzalez, and M. Markevitch, Astrophys. J.
604, 596 (2004).

[32] R. G. Vishwakarma, Int. J. Mod. Phys. D 30, 2142006
(2021).

[33] J. Brandbyge and S. Hannestad, J. Cosmol. Astropart. Phys.
10 (2017) 015.

[34] P. Mocz et al., Phys. Rev. Lett. 123, 141301 (2019).
[35] W. J. G. de Block, Adv. Astron. 2010, 1 (2010).
[36] A. Del Popolo and F. Pace, Astrophys. Space Sci. 361, 162

(2016).
[37] T. M. C. Abbott et al., Astrophys. J. 872, L30 (2019).
[38] C. Carignan, L. Chemin, W. K. Huchtmeier, and F. J.

Lockman, Astrophys. J. Lett. 641, L109 (2006).
[39] J. Cooley, Phys. Dark Universe 4, 92 (2014).
[40] H. J. de Vega, P. Salucci, and N. G. Sanchez, New Astron.

17, 653 (2012).
[41] S. Mitra, Phys. Rev. D 70, 103517 (2004).
[42] G. D. Mack, J. F. Beacom, and G. Bertone, Phys. Rev. D 76,

043523 (2007).
[43] S. Weinberg, Cosmology (Oxford University Press, Oxford,

2008), ISBN 978-0-19-852682-7.
[44] J. N. Bahcall and R. M. Spheira, Astrophys. J. Suppl. Ser.

44, 73 (1980).
[45] J. Einasto and U. Haud, Astron. Astrophys. 223, 89 (1989),

https://adsabs.harvard.edu/full/1989A%26A...223...89E.
[46] J. L. Sersic, Bol. Asoc. Argent. Astron. La Plata Argent. 6,

41 (1963), http://sedici.unlp.edu.ar/bitstream/handle/10915/
73765/Bolet%C3%ADn_Completo.pdf?
sequence=1&isAllowed=y.

[47] G. de Vaucouleurs, Mon. Not. R. Astron. Soc. 113, 134
(1953).

[48] D. H. Jones et al., Mon. Not. R. Astron. Soc. 399, 683
(2009).

[49] S. Alam et al., Astrophys. J. Suppl. Ser. 219, 12 (2015).
[50] V. Springel et al., Nature (London) 435, 629 (2005).
[51] R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
[52] J. Binney and S. Tremaine, Galactic Dynamics (Princeton

University Press, Princeton, NJ, 1987).
[53] The description of iminuit for Python is credited to H.

Dembinski et al., 10.5281/zenodo.5068904(2021).

GALAXY ROTATION FAVORS PROLATE DARK MATTER HALOES PHYS. REV. D 107, 083524 (2023)

083524-29

https://doi.org/10.3847/0004-6256/152/6/157
https://research.rug.nl/files/14424281/thesis-lelli.pdf
https://research.rug.nl/files/14424281/thesis-lelli.pdf
https://research.rug.nl/files/14424281/thesis-lelli.pdf
https://research.rug.nl/files/14424281/thesis-lelli.pdf
http://astroweb.cwru.edu/SPARC/
http://astroweb.cwru.edu/SPARC/
http://astroweb.cwru.edu/SPARC/
https://doi.org/10.5479/ADS/bib/1939LicOB.19.41B
https://doi.org/10.1103/RevModPhys.30.913
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://articles.adsabs.harvard.edu/pdf/1959BAN....14..323V
https://doi.org/10.1103/RevModPhys.90.045002
https://doi.org/10.1103/RevModPhys.90.045002
https://doi.org/10.1086/182804
https://doi.org/10.1103/PhysRevD.105.083015
https://doi.org/10.3847/2041-8213/ac1bb7
https://doi.org/10.3847/2041-8213/ac1bb7
https://doi.org/10.1088/0004-637X/762/2/82
https://doi.org/10.3390/universe7090346
https://arXiv.org/abs/1009.1113
https://arXiv.org/abs/2302.09720
https://doi.org/10.1093/mnras/stab433
https://doi.org/10.1093/mnras/stab433
https://doi.org/10.1007/JHEP08(2022)024
https://doi.org/10.1007/JHEP08(2022)024
https://doi.org/10.1103/PhysRevD.101.124029
https://doi.org/10.1088/1475-7516/2021/04/056
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://adsabs.harvard.edu/full/1998A%26A...330..474R
https://arXiv.org/abs/2207.14165
https://doi.org/10.22323/1.398.0137
https://arXiv.org/abs/2109.11153
https://doi.org/10.1093/mnras/275.3.720
https://doi.org/10.1093/mnras/275.3.720
https://doi.org/10.1086/168845
https://doi.org/10.1088/0004-6256/148/5/77
https://doi.org/10.1088/0004-6256/148/5/77
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://articles.adsabs.harvard.edu/full/1977A%26A....54..661T
https://doi.org/10.1017/S0074180900183299
https://doi.org/10.1086/161130
https://doi.org/10.1086/161131
https://doi.org/10.1086/161132
https://doi.org/10.1111/j.1365-2966.2005.09474.x
https://doi.org/10.1111/j.1365-2966.2005.09474.x
https://doi.org/10.1103/PhysRevLett.97.231301
https://doi.org/10.1103/PhysRevLett.97.231301
https://doi.org/10.1086/323376
https://doi.org/10.1086/323376
https://doi.org/10.1086/381970
https://doi.org/10.1086/381970
https://doi.org/10.1142/S0218271821420062
https://doi.org/10.1142/S0218271821420062
https://doi.org/10.1088/1475-7516/2017/10/015
https://doi.org/10.1088/1475-7516/2017/10/015
https://doi.org/10.1103/PhysRevLett.123.141301
https://doi.org/10.1155/2010/789293
https://doi.org/10.1007/s10509-016-2742-z
https://doi.org/10.1007/s10509-016-2742-z
https://doi.org/10.3847/2041-8213/ab04fa
https://doi.org/10.1086/503869
https://doi.org/10.1016/j.dark.2014.10.005
https://doi.org/10.1016/j.newast.2012.04.001
https://doi.org/10.1016/j.newast.2012.04.001
https://doi.org/10.1103/PhysRevD.70.103517
https://doi.org/10.1103/PhysRevD.76.043523
https://doi.org/10.1103/PhysRevD.76.043523
https://doi.org/10.1086/190685
https://doi.org/10.1086/190685
https://adsabs.harvard.edu/full/1989A%26A...223...89E
https://adsabs.harvard.edu/full/1989A%26A...223...89E
https://adsabs.harvard.edu/full/1989A%26A...223...89E
https://adsabs.harvard.edu/full/1989A%26A...223...89E
https://adsabs.harvard.edu/full/1989A%26A...223...89E
https://adsabs.harvard.edu/full/1989A%26A...223...89E
https://adsabs.harvard.edu/full/1989A%26A...223...89E
https://adsabs.harvard.edu/full/1989A%26A...223...89E
https://adsabs.harvard.edu/full/1989A%26A...223...89E
http://sedici.unlp.edu.ar/bitstream/handle/10915/73765/Bolet%C3%ADn_Completo.pdf?sequence=1&isAllowed=y
http://sedici.unlp.edu.ar/bitstream/handle/10915/73765/Bolet%C3%ADn_Completo.pdf?sequence=1&isAllowed=y
http://sedici.unlp.edu.ar/bitstream/handle/10915/73765/Bolet%C3%ADn_Completo.pdf?sequence=1&isAllowed=y
http://sedici.unlp.edu.ar/bitstream/handle/10915/73765/Bolet%C3%ADn_Completo.pdf?sequence=1&isAllowed=y
http://sedici.unlp.edu.ar/bitstream/handle/10915/73765/Bolet%C3%ADn_Completo.pdf?sequence=1&isAllowed=y
http://sedici.unlp.edu.ar/bitstream/handle/10915/73765/Bolet%C3%ADn_Completo.pdf?sequence=1&isAllowed=y
http://sedici.unlp.edu.ar/bitstream/handle/10915/73765/Bolet%C3%ADn_Completo.pdf?sequence=1&isAllowed=y
https://doi.org/10.1093/mnras/113.2.134
https://doi.org/10.1093/mnras/113.2.134
https://doi.org/10.1111/j.1365-2966.2009.15338.x
https://doi.org/10.1111/j.1365-2966.2009.15338.x
https://doi.org/10.1088/0067-0049/219/1/12
https://doi.org/10.1038/nature03597
https://doi.org/10.1103/PhysRev.95.577
https://doi.org/10.5281/zenodo.5068904


[54] M. G. Kendall and B. B. Smith, Ann. Math. Stat. 10, 275
(1939).

[55] J. L. Hodges, Jr and E. L. Lehmann, Ann. Math. Stat. 27,
324 (1956).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevD.107.083524 for data files with the fit χ2

used in Sec. II C for public inspection, in plain text format.
[57] J. Binney and S. Tremaine, Galactic Dynamics (Princeton

University Press, Princeton, NJ, 2008), 2nd ed.
[58] S-G. Zou, Phys. Scr. 91, 063008 (2016).
[59] S. Frauendorf, Phys. Scr. 93, 043003 (2018).
[60] J. Jia, Phys. Rev. C 105, 014905 (2022).
[61] F. Combes, New Astron. Rev. 46, 755 (2002).
[62] N. Torini, in 4th Workshop on Science with the New

Generation of High Energy Gamma-Ray Experimental,
MAGIC (2007), pp. 61–68, 10.1142/9789812709653_0008.

[63] S. Sirca, Probability for Physicists, Graduate Texts in
Physics (Springer, Cham, Switzerland, 2018); see also

J. Gorgas and N. Cardiel, Estadística básica para estu-
diantes de ciencias (Universidad Complutense de Madrid,
Madrid, 2009).

[64] P. H. Chavanis, Phys. Rev. D 106, 043538 (2022).
[65] B. Allgood, R. A. Flores, J. R. Primack, A. V. Kravtsov,

R. H. Wechsler, A. Faltenbacher, and J. S. Bullock, Mon.
Not. R. Astron. Soc. 367, 1781 (2006).

[66] M. Bonamigo, G. Despali, M. Limousin, R. Angulo, C.
Giocoli, and G. Soucail, Mon. Not. R. Astron. Soc. 449,
3171 (2015).

[67] J. Vega-ferrero, G. Yepes, and S. Gottlöber, Mon. Not. R.
Astron. Soc. 467, 3226 (2017).

[68] D. Ceverino, J. Primack, and A. Dekel, Mon. Not. R.
Astron. Soc. 453, 408 (2015).

[69] H. Hoekstra, H. K. C. Yee, and M. D. Gladders, IAU Symp.
220, 439 (2004).

[70] A. Bonaca, M. Geha, A. H. W. Küpper, J. Diemand, K. V.
Johnston, and D.W. Hogg, Astrophys. J. 795, 94 (2014).

ADRIANA BARIEGO-QUINTANA et al. PHYS. REV. D 107, 083524 (2023)

083524-30

https://doi.org/10.1214/aoms/1177732186
https://doi.org/10.1214/aoms/1177732186
https://doi.org/10.1214/aoms/1177728261
https://doi.org/10.1214/aoms/1177728261
http://link.aps.org/supplemental/10.1103/PhysRevD.107.083524
http://link.aps.org/supplemental/10.1103/PhysRevD.107.083524
http://link.aps.org/supplemental/10.1103/PhysRevD.107.083524
http://link.aps.org/supplemental/10.1103/PhysRevD.107.083524
http://link.aps.org/supplemental/10.1103/PhysRevD.107.083524
http://link.aps.org/supplemental/10.1103/PhysRevD.107.083524
http://link.aps.org/supplemental/10.1103/PhysRevD.107.083524
https://doi.org/10.1088/0031-8949/91/6/063008
https://doi.org/10.1088/1402-4896/aaa2e9
https://doi.org/10.1103/PhysRevC.105.014905
https://doi.org/10.1016/S1387-6473(02)00244-0
https://doi.org/10.1142/9789812709653_0008
https://doi.org/10.1103/PhysRevD.106.043538
https://doi.org/10.1111/j.1365-2966.2006.10094.x
https://doi.org/10.1111/j.1365-2966.2006.10094.x
https://doi.org/10.1093/mnras/stv417
https://doi.org/10.1093/mnras/stv417
https://doi.org/10.1093/mnras/stx282
https://doi.org/10.1093/mnras/stx282
https://doi.org/10.1093/mnras/stv1603
https://doi.org/10.1093/mnras/stv1603
https://doi.org/10.1017/S0074180900183792
https://doi.org/10.1017/S0074180900183792
https://doi.org/10.1088/0004-637X/795/1/94

