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The hot big bang is often considered as the origin of all matter and radiation in the Universe. Primordial
nucleosynthesis provides strong evidence that the early Universe contained a hot plasma of photons and
baryons with a temperature T > MeV. However, the earliest probes of dark matter originate from much
later times around the epoch of structure formation. In this work we describe a scenario in which dark
matter (and possibly dark radiation) can be formed around or even after primordial nucleosynthesis in a
second big bang, which we dub the “dark big bang.” The latter occurs through a phase transition in the dark
sector that transforms dark vacuum energy into a hot dark plasma of particles; in this paper we focus on a
first-order phase transition for the dark big bang. The correct dark matter abundance can be set by dark
matter cannibalism or by pair annihilation within the dark sector followed by a thermal freeze-out.
Alternatively ultraheavy “dark-zilla” dark matter can originate directly from bubble collisions during the
dark big bang. We will show that the dark big bang is consistent with constraints from structure formation
and the cosmic microwave background if it occurred when the Universe was less than one month old,
corresponding to a temperature in the visible sector aboveOðkeVÞ. While the dark matter evades direct and
indirect detection, the dark big bang gives rise to striking gravity wave signatures to be tested at pulsar
timing array experiments. Furthermore, the dark big bang allows for realizations of self-interacting and/or
warm dark matter, which suggest exciting discovery potential in future small-scale structure observations.
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I. INTRODUCTION

According to the cosmological standard model, the very
early Universe went through an epoch of inflation [1]—a
rapid expansion of space driven by vacuum energy. The
origins of matter and radiation lie in the hot big bang which
terminates inflation and releases the vacuum energy into a
hot plasma of particles. The latter contains the photons,
leptons, and quarks of our visible Universe, and, in the
standard picture, also the dark matter—for instance in the
form of weakly interacting massive particles (WIMPs).
However, there is no genuine reason for a common origin
of visible and dark matter beyond simplicity. In fact, while
the presence of photons and baryons at very early stages is
well established by the successful theory of primordial
nucleosynthesis (BBN; see, e.g., [2–4]), there exist no
probes of dark matter prior to the time when observable

scales reentered the horizon (at keV temperatures of the
Universe) and the impact of dark matter on the first
structures started to manifest. Furthermore—despite
excessive experimental searches over decades—no direct
nongravitational interactions between visible and dark
matter have been detected (see, e.g., [5,6]).
In this light, we will present an alternative cosmological

scenario in which the visible and the dark (matter) sector
are completely decoupled (other than through gravity).1

The hot big bang only induces visible radiation and matter
but no dark matter at all. However, while the dark sector is
cold at first, it contains a small amount of vacuum energy
that is initially highly subdominant compared to the
radiation density of the Universe. Because vacuum energy
does not redshift, the dark vacuum contribution can
become significant at a later stage of the Universe,
although it never dominates the energy density of the
Universe. When the dark vacuum finally decays in a dark
phase transition, it can induce significant amounts of dark
matter and possibly dark radiation. Due to the analogy with
the hot big bang—which transfers the inflationary vacuum
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1Variants of the our dark big bang scenario with small
couplings between the two sectors would be interesting to
investigate in the future.
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energy into visible particles—we call this process the dark
big bang [7]. In previous work we pointed out the idea of
the dark big bang in [7], and in this paper we explore the
scenario in more detail. The dark big bang scenario is
compared to a standard hot big bang cosmology in Fig. 1.
We have been particularly interested in answering the

following question: what is the latest time at which the dark
big bang could take place in the history of the Universe?
Clearly, for purely gravitational couplings between the dark
and visible sectors, the dark big bang can occur after BBN
without spoiling the light element abundances. But another
key issue is that the dark matter must pick up the right
adiabatic perturbations required for structure formation.
Indeed, we will show that the leading constraints on the
time of the dark big bang arise from structure formation and
allow for a dark big bang as late as OðmonthÞ after the hot
big bang (corresponding to a redshift of z ≃ 3 × 106). We
note, however, that the dark big bang cannot be pushed to
an epoch as late as matter-radiation equality at z ¼ 3500 (as
preferred by early dark energy solutions to the Hubble
tension [8,9]) without spoiling Lyman-α and cosmic micro-
wave background (CMB) observations.2

While many of our findings will be applicable to any
type of dark big bang phase transition, we will focus on the
case where the dark big bang is associated with a first-order
phase transition. Several dark matter realizations connected
to a first-order phase transition have previously been
discussed in the literature which include the formation of

heavy dark matter by bubble collisions [12–16] or bubble
expansion [17,18], asymmetric dark matter [19–22], Q-ball
dark matter [23,24], Fermi ball dark matter [25–27], quark
nugget dark matter [28–35], filtered dark matter [36,37],
highly interactive dark matter [38], and primordial black
hole dark matter [39–47].3 Our dark big bang proposal
differs from these complementary ideas because we are
considering the false vacuum decay into a dark particle
plasma within a decoupled previously cold dark sector
(such that the dark big bang is the dark sector analog of the
hot big bang).
Specifically, we will introduce a dark sector scalar field

that initially populates a metastable minimum in its poten-
tial. Later, during the radiation-dominated epoch of the
Universe, the dark scalar tunnels into the true minimum [48]
and initiates the dark big bang: bubbles of true vacuum form
at random nucleation sites, expand, collide, and produce
dark matter and dark radiation.
We will investigate the dark matter production by the

bubble collisions themselves [12,15] and by thermal proc-
esses in the dark plasma emerging from the dark big bang.
Both production modes will be shown to be capable of
inducing the correct dark matter relic density observed in
our Universe today. Viable dark matter from the dark big
bang can span an enormous mass range of ∼20 orders of
magnitude: while the bubble collisions can successfully
generate ultraheavy dark-zilla dark matter with a mass as
large as mχ ∼ 1012 GeV, thermal scattering and freeze-out
in the dark plasma can provide realizations of dark WIMP
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FIG. 1. Typical temperature evolution of energy densities in a standard hot big bang cosmology (left panel) and in the dark big bang
scenario studied in this work (right panel). The curves for dark matter indicate the energy density carried by dark matter particles (in the
left panel, an illustrative curve where dark matter particles are initially relativistic with energy density ∝ T4 and finally nonrelativistic,
∝ T3). In hot big bang cosmology all matter and radiation is produced in the hot big bang. In the dark big bang scenario the hot big bang
only produces the visible matter and radiation, while the dark big bang induces the dark matter and (possibly) dark radiation.

2We note, however, that it is possible to generate a fraction
of the dark matter density shortly before matter-radiation
equality [10,11].

3In some of the listed references the primordial black holes
only account for a fraction of the dark matter.
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dark matter or dark cannibal dark matter as light as
mχ ∼ keV.
The dark matter from the dark big bang evades direct and

indirect detection experiments because it only gravitation-
ally couples to ordinary matter. However, we will show that
realizations of warm dark matter, or self-interacting dark
matter naturally arise. Furthermore, the dark radiation
produced in the dark big bang can increase the effective
neutrino number Neff in the early Universe. Hence, exciting
signatures of the dark big bang can arise in the small-scale
structure of the Universe (see, e.g., [49–52]).
Besides the dark matter signatures, the dark big bang

induces significant amounts of gravitational radiation by
the collision of true-vacuum bubbles during the phase
transition [28,53–55]. The particularly intriguing case of a
dark big bang around or after BBN would imply a peak
frequency of the gravitational wave spectrum in the
nHZ or sub-nHz-regime. We will show that ongoing
(North American [56], European [57], Parkes [58], and
International Pulsar Timing Arrays [59]) and upcoming
(Square Kilometre Array [60]) gravitational wave
searches by pulsar timing arrays exhibit a striking poten-
tial to discover the dark big bang phase transition.
We leave to future work variations of the discussed

scenario: generalization to phase transitions that are not
first-order as well as the possibility of including small
couplings between the dark and the visible sector that could
give rise to interesting signatures in a variety of datasets.
This work is organized as follows: in Sec. II we describe

the cosmological evolution and the initial conditions of the
dark big bang scenario. Furthermore, we use observational
data to constrain the strength of the dark big bang. In Sec. III
we investigate the dark matter perturbations. We will show
that—if the dark big bang occurs when the Universe is less
than a month old—the dark matter receives the desired
adiabatic perturbations to support structure formation, while
unwanted isocurvature and peaked perturbations are absent
(or occur only on unobservably small scales). Then, in
Sec. IV we introduce an explicit dark big bang model
realization and study the false vacuum decay rate that
determines the time of the dark big bang. In Sec. V we
investigate the dark matter production by the dark big bang
and discuss a number of scenarios which can reproduce the
observed dark matter density. In Sec. VI, we calculate
the gravitational wave signal of the dark big bang and show
the discovery potential of gravitational wave searches with
pulsar timing arrays. Finally, Sec. VII contains our summary
and conclusions.

II. A DARK BIG BANG IN THE EARLY UNIVERSE

We consider a dark sector containing a real scalar field ϕ
and a stable particle χ. In the following ϕ will be the field
which triggers the dark big bang phase transition, while χ
will play the role of the dark matter. Optionally, additional
massless (or very light) degrees of freedom ξi coupling to

ϕ; χ may be present in the dark sector playing the role of
dark radiation. However, we assume that all dark sector
fields are decoupled from ordinary matter other than
through gravity. The potential VðϕÞ of the scalar ϕ is
chosen to feature two nondegenerate minima. We denote the
potential difference, field distance and barrier height
between the minima by ΔV, Δϕ, and Vb, respectively
(see Fig. 2).

A. Cosmological evolution of the dark sector

Turning to the early Universe, we consider a standard
cosmology with inflation ending in a hot big bang
(¼ reheating) which creates a thermal plasma of Standard
Model (SM) particles. The reheating temperature TR
depends on the details of the underlying inflation model,
but a lower bound TR > 2 MeV is set by BBN [61,62]. We
assume that reheating to dark sector particles is suppressed
such that the energy density of the Universe ρtot is (strongly)
dominated by the SM radiation bath. The dark sector does
never reach thermal equilibrium with the visible sector
throughout the cosmological evolution. We note that,
throughout the paper, wewill use the terminology “radiation
domination” to mean domination by the visible sector
radiation plasma (as opposed to the dark radiation in the
dark sector).
At the beginning of the radiation-dominated epoch after

inflation we thus have

ρtot ≃ ρr ¼
π2

30
geffðTÞT4; ð1Þ

where ρr denotes the radiation energy density (of the visible
sector) and T, geff the temperature and the number of
relativistic degrees of freedom in the visible sector.

FIG. 2. Potential of the scalar field ϕ featuring two nongenerate
minima separated by a barrier of height Vb. The potential and
field difference between minima are denoted by ΔV and Δϕ,
respectively. Initially, ϕ is trapped in the higher-energy minimum.
It later tunnels into the lower minimum, thereby producing the
dark matter of the Universe.
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However, we take ϕ to populate the higher metastable
minimum after inflation throughout the entire (observable)
Universe—an assumption we will motivate in Sec. II C.
The energy density of the dark sector ρDS is initially given
by the vacuum energy of ϕ,

ρDS ≃ ρϕ ¼ ΔV: ð2Þ

We neglected the initial dark radiation contribution to ρDS
following our earlier assumption that the hot big bang only
(or dominantly) heats the visible sector. While initially also
ρϕ ≪ ρr (otherwise ϕ would be the inflaton), the ratio
increases because radiation energy redshifts as a−4 with the
scale factor a, whereas ρϕ remains constant as long as ϕ
populates the false vacuum. Consequently, the dark sector
vacuum energy can become significant at a later stage of the
Universe. It should, however, never dominate the energy
content in order not to spoil the cosmological evolution (see
Sec. II B).4

Later ϕ tunnels into its lower minimum triggering a first-
order phase transition which we dub the “dark big bang.”5

Bubbles of true vacuum form at random nucleation sites
and expand into the sea of false vacuum.
Since the dark sector is cold prior to the dark big bang,

and since ϕ does not couple to the visible sector, the
potential VðϕÞ is not affected by thermal corrections prior
to the phase transition. This distinguishes the dark big bang
scenario from complementary approaches in the literature
which consider a first-order phase transition in a thermal-
ized dark sector (see, e.g., [69–72]).6 We can, hence, apply
the formalism for quantum tunneling in vacuum. The
bubble nucleation rate per volume is determined by [48]

Γ ¼ Ae−S; ð3Þ

where S denotes the Euclidean action of the bounce solution
interpolating between the two minima in the potential. The
prefactor A incorporates quantum fluctuations about the
classical action [75]. It can be approximated by

A ≃m4

�
S
2π

�
2

; ð4Þ

where m stands for the mass of the tunneling scalar field
evaluated in the false vacuum. Due to the absence of
temperature effects on the tunneling rate Γ is a time-
independent quantity.
Because of the exponential suppression of the tunneling

rate, the false vacuum can easily be very long lived. The
mean lifetime of the Universe in the false vacuum t� is
determined by ΓV4ðt�Þ ¼ 1 [76,77]. Here V4ðtÞ stands for
the spacetime volume of the past light cone at the time t (at
a random position in space). The product ΓV4 thus
measures the mean number of bubble nucleation sites in
the past light cone. Assuming that the energy density of ϕ is
still subdominant to the SM radiation bath at the phase
transition, we can (approximately) employ the expansion
history of a radiation-dominated Universe to find [7]

t� ≃
�
105

8πΓ

�
1=4

≃ 1.4 × Γ−1=4

× ðtime of the phase transitionÞ: ð5Þ

The temperature of the SM plasma at the time t� of the
phase transition is given by7

T� ≃
�
45

2π2

�
1=4

�
M2

P

geffðT�Þt2�

�
1=4

≃ 0.2 kev

�
3.4

geffðT�Þ
�

1=4
�
yr
t�

�
1=2

: ð6Þ

Throughout the paper, we will take the subscript � to
indicate that a quantity is evaluated at the time of the dark
big bang phase transition.
We can also estimate the duration of the phase transition

β−1 by considering how fast the number of bubble
nucleation sites in the past light cone increases with time
(evaluated at the mean transition time) [7],

β ¼ 1

ΓV4

dðΓV4Þ
dt

����
t¼t�

¼
_V4

V4

����
t¼t�

¼ 4

t�
¼ 8H�; ð7Þ

where we employed that the tunneling rate is time inde-
pendent and introduced the Hubble rate at the dark big bang
H�. We comment that in most of the literature on first-order
phase transitions one finds the definition β ¼ _Γ=Γ. This
definition, however, implicitly relies on the assumption that
the tunneling field ϕ couples to the surrounding plasma. In
the presence of such couplings the tunneling rate becomes

4If the false vacuum dominates the energy density prior to its
decay, then the Universe would typically still be dominated by the
dark sector energy density around the epoch of last scattering that
is excluded by CMB constraints. An exception is the case where
the false vacuum energy density is converted into a cosmic fluid
which redshifts faster than radiation. However, this case is
strongly constrained by requiring the observed adiabatic fluctua-
tions of radiation and matter and will not be considered in this
work.

5One could also imagine the case of many dark big bangs if the
dark sector undergoes a series of first-order phase transitions
instead of just one related to the ideas of chain inflation [63–67]
and chain early dark energy [68].

6The case of quantum tunneling in a cold dark sector is briefly
discussed in [73,74].

7Notice that the temperature of the dark sector is generically
different from T� since both sectors are never in equilibrium. The
temperature of the SM plasma only affects the dark sector by
setting the expansion rate of the Universe.
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time dependent and one usually has _Γ=Γ ≫ _V4=V4 such
that Eq. (7) would indeed yield β ≃ _Γ=Γ. If ϕ is decoupled
from the thermal plasma—as in the scenario we described—
then the tunneling rate is time independent and the duration
of the phase transition is controlled by the Hubble expan-
sion rate.
Similar as the hot big bang creates a hot plasma of visible

sector particles, the dark big bang heats up the dark sector.
During the phase transition, the expanding bubble walls
carry the energy previously contained in the false vacuum.
Once the bubbles collide, the energy is released into the
formation of dark sector particles and gravity waves

ρDS ¼
�
ρϕ for t < t�
ρDR þ ρχ þ ρGW for t ≥ t�

; ð8Þ

with ρϕ ¼ ΔV, and we require continuity at t�. Here we
assumed that the entire false vacuum energy is released in
the phase transition, i.e., we neglected any backreaction of
the produced dark sector particles on the potential of the
tunneling field.8 Furthermore, we took the phase transition
as instantaneous thus neglecting the time interval in which
the energy is (partly) stored in the bubble walls. The error
we introduce by this approximation (which we will only use
in the context of energy densities) is relatively small since
the phase transition only lasts a fraction of a Hubble time as
shown in Eq. (7). After the transition, the dark sector energy
density is shared among dark radiation (DR), dark matter
particles (χ), and gravity waves9 (GW):
(1) The dark radiation plasma is comprised of light dark

sector degrees of freedom (if present). These typi-
cally reach thermal equilibrium among themselves
(but not with the SM bath) quickly after the dark big
bang [12]. The dark radiation density redshifts as
ρDS ∝ a−4 with the scale factor of the Universe.

(2) Dark matter particles χ are generated nonthermally
by the bubble collisions [12,15] and/or thermally by
scattering processes in the dark radiation plasma.
While thermal production ceases for mχ ≫ TDS,
heavier dark matter particles can still efficiently be
generated by the colliding bubbles due to their
Lorentz boost. In Sec. V we will discuss a variety
of dark matter candidates in more detail. After dark
matter number changing processes are frozen out,

ρχ ∝ a−3 (ρχ ∝ a−4) in the nonrelativistic (highly
relativistic) regime.

(3) The energy density transferred into gravity waves
at the phase transition can be estimated as (see,
e.g., [78])

ρGW;� ∼ 3

�
H�
β

�
2 ρ2ϕ
ρrðT�Þ

≃ 0.05
ρϕ

ρrðT�Þ
ρϕ: ð9Þ

Since the Universe should not be vacuum domi-
nated at the transition, i.e., ρϕ

ρrðT�Þ < 1, gravity waves

make up less than 5% of the dark sector energy
density after the transition. The gravity wave
energy density redshifts as ρGW ∝ a−4.

We have implicitly assumed that there is always some light
degree of freedom available in the dark sector to which the
bubble walls can efficiently decay. If this is not the case,
then the colliding bubble condensate can potentially be
long-lived and a description in terms of an effective fluid
dominated by kinetic energy and small-scale anisotropic
stress may arise [79]. We exclude such a scenario of
inefficient particle production since it appears to be incon-
sistent with the generation of all dark matter in the phase
transition (which is our definition of the dark big bang).
In the presence of light dark sector degrees of freedom,

which reach a thermal equilibrium state quickly after the
dark big bang, we can assign a dark sector temperature TDS
to the resulting dark plasma. Furthermore, we can define the
“dark reheating temperature” TDS;� as the dark plasma
temperature right after the dark big bang. Since gravitational
waves are subdominant (see above), we can approximate

ρϕ ≃
π2

30
gDSðTDS;�ÞT4

DS;�; ð10Þ

where gDS counts the number of light dark sector degrees of
freedom. If mχ < TDS;�, then the dark matter particle χ
contributes to the relativistic degrees of freedom. In the
opposite regime of dark matter particles with mχ > TDS;�,
the dark matter is typically subdominant to dark radiation
right after the dark big bang (since heavy particles are
energetically difficult to produce), such that gDSðTDS;�Þ is
well approximated by the number of dark radiation species.
Note that TDS;� is generically different from the visible
sector temperature T� since the two sectors are decoupled
from each other.

B. Strength of the dark big bang

The strength of the dark big bang can be measured by the
parameter α, which is defined as [80]

α ¼ ρϕ
ρr;�

; ð11Þ

8The potential VðϕÞ typically exhibits a dependence on the
temperature TDS of the dark sector particles generated in the
phase transition. Therefore, a nonvanishing energy density may
remain in the (thermal) potential after the phase transition. This
contribution is, however, typically negligible in our dark big bang
scenario unless the dark sector particles couple strongly to the
tunneling field.

9For convenience, we count gravity waves as part of the dark
sector energy density such that the total dark sector energy
density is preserved at the phase transition.
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where we introduced ρr;� ¼ ρrðT�Þ, i.e., the radiation
density of the visible sector just after the dark big bang.
The larger the α that is chosen, the more energy density
participates in the phase transition and, hence, the stronger
the dark big bang.
The value of α also determines the ratio of dark-to-

visible-sector temperature right after the dark big bang,

TDS;�
T�

¼ α1=4
�

geffðT�Þ
gDSðTDS;�Þ

�
1=4

; ð12Þ

where we employed Eq. (10).
We first derive a lower limit on α. For this purpose, we

require that the dark big bang accounts for the entire dark
matter density ρDM;0 in today’s Universe. This translates to
a constraint on the vacuum energy liberated in the phase
transition,

ρϕ ≥
ρDM;0

a3�
; ð13Þ

where a� denotes the scale factor at the dark big bang. The
limit above is saturated if all vacuum energy is immediately
transferred to decoupled nonrelativistic dark matter. If
additional dark radiation was produced in the phase
transition, if the dark matter was initially relativistic, or
if dark matter number changing reactions were active for
some time, then this would only make the constraint
stronger. Imposing Eq. (13) leads to the following lower
bound on α:

α ≥
ρDM;0

a3�ρr;�
¼ 4

3

ρDM;0

s0T�
¼ 5.8 × 10−4

�
keV
T�

�
; ð14Þ

where we expressed the radiation density in terms of the
visible-sector entropy density at the dark big bang s� ¼
ð4=3Þρr;�=T� and applied entropy conservation s�a3� ¼ s0.
In the last step we plugged in the observed dark matter
density ρDM;0 ¼ 1.26 keV cm−3 as well as today’s entropy
density s0 ¼ 2890 cm−3 [81].
In the remainder of Sec. II B, we will find the maximal

strength of the dark big bang; i.e., we will obtain an upper
limit on α. The presence of extra energy density in the form
of ρDS increases the Hubble expansion rate H. This so-
called speed-up effect can cause weak interactions to freeze
out at higher temperature. As a consequence a larger
neutron-to-proton ratio arises at the beginning of BBN,
which causes an increase of the 4He-fraction as compared to
standard cosmology [82]. In addition, the speed-up effect
also impacts the CMB by reducing the power in its damping
tail (see, e.g., [83]). Hence, the measured light element
abundances (in particular 4He) and the small-scale CMB
power spectrum can be used to set upper limits on the extra
energy density that are typically presented as constraints on
the effective number of extra neutrino species ΔNeff ,

ΔNeffðTÞ ≃ 3
ρDSðTÞ − ρDM;0a3ðTÞ

ρνðTÞ
; ð15Þ

where ρν is the energy density in the three active neutrino
species, and ρDM;0a3 is the dark matter energy density of Λ
cold dark matter (ΛCDM) (which needs to be subtracted in
the above expression such that ΔNeffðTÞ ¼ 0 for a dark
sector containing only the cold dark matter relic). Notice
that ΔNeff is in general temperature dependent since ρDS
and ρν may redshift differently.
The Planck collaboration has obtained ΔNeff < 0.3 at

95% confidence level (C.L.) by combining CMB and
baryon acoustic oscillations (BAO) data [81]. However,
if local measurements of the Hubble parameter H0 [84] are
also included, then the fit yields ΔNeff ¼ 0.22� 0.15 [81],
which suggests

ΔNeff < 0.5; ð16Þ

at 95% C.L. A small positive ΔNeff is preferred since it
somewhat eases the Hubble tension—the discrepancy
between local and CMB measurement of H0. In the
following we shall employ the more conservative (weaker)
constraint Eq. (16) that translates to the following bound on
the dark radiation density in the present Universe (the
bound is on the sum of dark radiation plus an additional
possible gravitational wave component):

ρDR;0 ¼ ΔNeff
7

4

π2

30
T4
ν;0 ⇒ ρDR;0;max ¼ 29.6 meVcm−3;

ð17Þ
where we used Tν;0 ¼ 1.95 K. In contrast to the CMB limit
above, the BBN constraints exhibit a stronger model
dependence. This is because the induced element abundan-
ces are sensitive to ΔNeff at the time of BBN. The latter
does, however, map to very different values of ρDR;0
depending on whether the dark big bang occurred prior
to or after BBN (which determines how much the dark
sector energy density has redshifted by today). Luckily, we
can ignore this subtlety, since the BBN constraints are either
comparable to or weaker than the CMB limit.10 Hence it is
sufficient to apply Eq. (17) in the following.
The maximal dark sector energy density today is given by

ρDS;0;max ¼ ρDM;0 þ ρDR;0;max with ρDR;0;max from Eq. (17).
But in order to derive the maximal dark sector energy
density at the dark big bang ρDS;�;max we also need to
account for redshifting. In order to maximize ρDS;�, we
assume the largest possible redshift between the dark big
bang and today. While ρDR ∝ a−4 in the entire post-dark-
big-bang evolution, structure formation requires the dark

10CMB constraints are superior to BBN constraints ifΔNeffðTÞ
increases or remains constant between the BBN and the CMB
epoch. This condition is satisfied in the dark big bang scenario.
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matter to behave as a cold relic at temperatures of the
Universe below a few keV (see Sec. III D) corresponding to
scale factors a > anr ∼ 10−7, where anr is the value of the
scale factor at the time the dark matter particles must
become nonrelativistic. Hence, we arrive at

ρϕ;max ¼ ρDS;�;max

¼ ρDR;0;max
1

a4�
þ ρDM;0

maxðanr; a�Þ
a4�

≃
ρDR;0
a4�

: ð18Þ

In the last step we neglected the contribution proportional to
the dark matter density. We will show in Sec. III C that
structure formation also imposes a constraint a� ≲ 10−7 on
the scale factor of the dark big bang. Therefore,
ρDM;0maxðanr; a�Þ ≪ ρDR;0, which justifies the omission
of the subleading term.
We can now combine Eqs. (17) and (18) to obtain an

upper limit on the strength of the dark big bang,

α <
ρDR;0
ρr;�a4�

¼
�
2π2

45

�
1=3 4g1=3eff ðT�ÞρDR;0

3s4=30

< 0.079

�
geffðT�Þ

10

�
1=3

; ð19Þ

Eqs. (14) and (19) define the minimal and maximal strength
of the dark big bang.
We depict the allowed range of α as a function of the

visible sector temperature at the dark big bang in Fig. 3. For
a late dark big bang around or after the BBN epoch
(T� ≲ 10 MeV) we find

6 × 10−8 < α < 0.08 ðfor T� ≲ 10 MeVÞ: ð20Þ

As shown above and in Fig. 3, the lower bound is from the
requirement of producing enough dark matter, while the
upper bound is from constraints on ΔNeff from the CMB.

Since TDS;� ∼ α1=4T� [cf. Eq. (12)], the dark sector
temperature at the dark big bang is usually lower than
the visible sector temperature.11 For a late dark big bang
around or after BBN the difference is, however, at most two
orders of magnitude. If, on the other hand, the dark big
bang occurs long before BBN (T� ≫ MeV), then the lower
bound on α becomes considerably weaker, and a stronger
suppression of TDS;�=T� may arise.

C. Comment on initial conditions and the inflation scale

The scenario we described begins with the observable
Universe being trapped in themetastableminimumofϕ. This
situation is realized through inflation that blows up an initial
patch of dark false vacuum to contain the entire observable
Universe.12However, in order not to destabilize the dark false
vacuum already during inflation through fluctuations caused
by theGibbons-Hawking temperatureTGH ∼HI [85], where
HI is the Hubble constant during inflation, a constraint on
the scale of inflation arises. Specifically we need to require
that T4

GH does not exceed the barrier heightVb protecting the
metastable minimum [86]. The potential barrier itself is
bounded by Vb ≲ ΔV since the false vacuum would other-
wise become stable within the lifetime of the Universe.13

From Eq. (19) it, furthermore, follows that ðΔVÞ1=4 ≲ T�.
Stability of the false vacuum during inflation thus requires at
least HI ≲ T�, which translates to an inflation scale,

V1=4
I ≲ 108 GeV ×

ffiffiffiffiffiffiffiffiffiffi
T�
MeV

r
: ð21Þ

If we consider a phase transition around BBN as an example,
then Eq. (21) would impose a small inflation scale V1=4

I ≲
108 GeV (while an earlier dark big bang would allow for a
somewhat larger inflation scale). Such low-scale inflation has
recently become popular due to the trans-Planckian censor-
ship conjecture [87], which postulates that inflation with
V1=4
I > 109 GeV cannot arise in a consistent quantum theory

of gravity [88]. Therefore, low-scale inflation constitutes a
simple andwell-motivatedhistory supporting a dark big bang
cosmology.

10�4 10�3 10�2 10�1 1 10 102 103
10�9

10�6

10�3

1

T [MeV]

Lyman�
CMB ΔNeff
Dark Matter

FIG. 3. Allowed strength α of the dark big bang phase transition
as a function of the (visible sector) temperature. The colored
regions are excluded by Ly-α constraints on structure formation,
CMB bounds on ΔNeff and underproduction of dark matter,
respectively. At higher temperatures (beyond those shown in the
picture), the dark-matter bound (red) continues to become
weaker, while the ΔNeff bound (blue) changes only slightly.

11Since the dark sector energy density can make up at most
∼10% of the total energy density at the dark big bang (see our
constraints on α above) it follows that TDS;� is almost always
smaller than T� [cf. Eq. (12)]. An exception occurs if (i) the dark
sector density saturates its upper limit and (ii) the dark sector
contains much fewer degrees of freedom compared to the visible
sector. In this extreme case TDS;� can be up to a factor of 2 larger
than T�.

12The simplest possibility is that there were random false and
true vacuum patches before inflation of which one false vacuum
patch was blown up to contain the entire observable Universe.

13The lifetime of the false vacuum increases exponentially with
the barrier height Vb.
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However, an inflation scale constrained by the upper limit
in Eq. (21) is far from the only possibility to set the right
initial conditions for a dark big bang. In fact, for a larger
inflation scale some patches of the Universe may still fall
into the false vacuum after inflation once the Hubble scale
drops below V1=4

b . Patches of true and false vacuums would
be separated by domain walls in this case. Successful dark
matter production could then be realized from the annihi-
lation of the domain walls [89,90], which would play the
role of the dark big bang.
Alternatively, even if ϕ is displaced from its false vacuum

during inflation, then thermal corrections may push the
entire Universe into the dark false vacuum after the hot big
bang. While we assumed that the hot big bang dominantly
heats the visible sector (which does not couple to ϕ) even
very subdominant dark radiation plasma can initially stabi-
lize the dark false vacuum (see, e.g., [10,69,71,91]). Yet
another possibility consistent with high-scale inflation
invokes a second dark sector scalar field, coupled to ϕ,
that leads to a change in the tunneling rate over time. For
example, the evolution of the second scalar field can allow
for a dynamical barrier height that is initially large—thus
strongly stabilizing ϕ in the dark false vacuum during
inflation—but subsequently decreases to allow for the false
vacuum to decay within the age of the Universe (similar to
the time-changing tunneling rate proposed in double field
inflation [92,93] and new early dark energy [94]).
We conclude that many plausible cosmological histories

exist in which the Universe is (or patches of the Universe
are) trapped in the false vacuum during the early radiation-
dominated epoch. The realization of a dark big bang thus
emerges as a very natural possibility.

III. CONSTRAINTS FROM STRUCTURE
FORMATION AND THE CMB

In this section we will investigate the evolution of
perturbations in the dark sector. Specifically,wewill examine
isocurvature, bubble-induced, and adiabatic perturbations.
We will first argue that potentially dangerous isocurvature
perturbations, which are seeded during inflation, are quickly
redshifted away and do not impact the late-time evolution of
the Universe. Then, we will impose that perturbations
induced by the bubble collisions during the phase transition
occur on sufficiently small scales such that they do not spoil
CMB and large scale structure observations. Finally, we will
require that—on cosmologically observable scales—the
dark matter fluid picks up and sustains the right adiabatic
perturbations to support successful structure formation. This
will allowus to constrain the time of the dark big bang and the
phase space properties of dark matter.

A. Isocurvature perturbations

Since the origin of radiation, baryons (hot big bang) and
dark matter (dark big bang) are different in our scenario,

one might worry that dark matter receives dangerous
isocurvature perturbations, which are strongly constrained
by observation. A possible source of isocurvature pertur-
bations are fluctuations of the tunneling field,

δϕ ¼ ϕ − ϕ̄; ð22Þ

where ϕ̂ denotes the mean field value. Such fluctuations
can be generated randomly by quantum jumps of ϕ during
inflation (see, e.g., [95]). Because δϕ is uncorrelated with
the inflaton fluctuation, it amounts to a potentially danger-
ous isocurvature perturbation [96–98], which is inherited
by the dark matter component at the dark big bang.
However, we will argue that isocurvature perturbations
are (virtually) never a problem because δϕ is extremely tiny
by the time of the dark big bang.
Depending on the mass of the tunneling field m in the

false vacuum, we can distinguish two cases:
(1) m > HI , and
(2) m≲HI ,

where HI is the Hubble constant during inflation (as
above). In case 1 quantum fluctuations of ϕ during
inflation are subject to a strong suppression such that
isocurvature perturbations are never generated. In case 2,
the tunneling field acquires a spectrum of perturbations
during inflation [99]

δϕk ∼
H
2π

; ð23Þ

where we introduced the Fourier modes of the field
fluctuation δϕk. The subsequent evolution of δϕk follows
from the equation of motion (see, e.g., [100]),14

δ̈ϕk þ 3H _δϕk þm2δϕk þ
k2

a2
δϕk ¼ 0: ð24Þ

Once a scale has exited the horizon during inflation, the last
term on the left-hand side becomes negligible (until horizon
reentry). In the superhorizon regime, δϕk thus obeys the
homogeneous Klein-Gordon equation and behaves as a
classical scalar field in an expanding Universe.
During the slow-roll regime of inflation, the first term on

the left-hand side of Eq. (24) is negligible so that the
solution to the equation becomes (see, e.g., [101])

δϕk ∝ exp

�
−

m2

3H2
I
Nk

�
ðduring inflationÞ; ð25Þ

14We assume that the minimum of ϕ during and after inflation

coincide. If this is not the case, then an additional term ∝ _̂ϕwould
be present in the equation of motion during the radiation-
dominated stage. Such a term would, however, typically redshift
away quickly and, thus, not change the conclusions of this
section.
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where Nk denotes the number of e-folds after the horizon
exit of the scale k. Here Nk ∼ 30–60 for the scales we
observe in the CMB and in large scale structure. We can
now distinguish two subcases: if m ∼HI, then the pertur-
bation δϕk on observable scales is washed out during
inflation, due to the strong exponential suppression of δϕk
on the right-hand side of Eq. (25). Thus isocurvature
perturbations (on relevant scales) do not survive the infla-
tionary epoch in this case.
On the other hand, if m ≪ HI , then the perturbation δϕk

is frozen during inflation. In the subsequent radiation-
dominated epoch δϕk remains approximately constant until
H ∼m. But once the Hubble rate drops below the mass, δϕ
commences oscillations around δϕ ¼ 0, which are damped
by the Hubble friction [102]. In the oscillatory regime, the
mean squared field value hδϕ2

ki—which sets the isocurva-
ture perturbation in the density ρϕ—redshifts as

hδϕ2
ki ∝

1

a3
: ð26Þ

This is in contrast to the mean energy density ρ̂ϕ that
remains constant (since vacuum energy does not redshift).
Therefore, once the oscillations set in, the isocurvature
perturbation quickly redshifts away. In the absence of any
small couplings, the dark big bang scenario typically
features m ∼ ðΔVÞ1=4 ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

H�MP
p

≫ H� such that the
oscillation stage continues for a significant time period.
By the time of the dark big bang, hδϕ2

ki is so tiny that it
induces no measurable perturbation in the dark matter
component. Unless for extreme parameter choices, we can
thus safely neglect isocurvature perturbations from infla-
tion. This conclusion holds independent of the initial
conditions leading to a metastable false vacuum in the
early Universe (see Sec. II C).

B. Perturbations from bubble collisions

Another source of perturbations in the dark matter
plasma are the bubble collisions. These induce nonlinear-
ities whose physical size is controlled by the radius of the
colliding bubbles Rb (see, e.g., [68,79]). Since bubbles
approximately expand at the speed of light we can estimate
Rb by the typical distance between the nucleation sites,

Rb ≃ Γ−1=4: ð27Þ

This approximation neglects the expansion of the Universe
between bubble nucleation and bubble collision. The
corresponding error is, however, negligible since the phase
transition completes within a fraction of a Hubble time
[cf. Eq. (7)]. The comoving scale kb corresponding to the
size Rb at the time of the dark big bang reads

kb ≃
π

Rb=a�
≃

2

Mpc

�
10−5

a�

�
; ð28Þ

where we used Eqs. (5), (27), and the time-scale-factor
relation of radiation domination in order to express Rb in
terms of the scale factor of the dark big bang a�.
The bubble collision, hence, induces a feature in the

spectrum of dark matter perturbations that is peaked at kb.
The absence of such a feature in the CMB and in the matter
power spectrum allows us to constrain the time of the dark
big bang. Specifically, we need to require that kb falls
outside the range of scales which are accessible either by
CMB [81] observations or by measurements of the Lyman-α
(Ly-α) absorption in distant quasars (see, e.g., [103–105]),

kCMB ≃ ð10−4 − 0.5Þ Mpc−1;

kLy−α ≃ ð0.1 − 10Þ hMpc−1: ð29Þ

We note that Ly-α data cover a regime of scales in which
cosmological perturbations are already affected by non-
linear evolution. The resulting mixing of scales would
somewhat wash out the peak in the matter power spectrum
at the scale of the colliding bubbles. Nevertheless, due to the
prominence of the feature, Ly-α data exclude kb in the range
of kLy−α indicated above.
The strongest constraint on the dark big bang is set by the

largest k (smallest observable scale). While kCMB is limited
by the angular resolution of the instruments, the upper limit
on kLy−α is imposed by the contamination induced by metal
lines and by the effective Jeans scales below which pressure
gradients wipe out small scale fluctuations in the baryons.
From kb > 10 hMpc−1 we obtain the following constraint
on the scale factor of the dark big bang,

a� < 3 × 10−6: ð30Þ

In order not to spoil Ly-α observations by the anisotropies
generated through bubble collisions, the dark big bang
should, hence, have happened at most six years after the hot
big bang. This corresponds to a temperature and redshift15

T� > 80 eV; z� > 3 × 105: ð31Þ

Here we can already see that a dark big bang first-order
phase transition cannot take place as late as the epoch of
matter-radiation equality at z ¼ 3500 (or as late as the
epoch of early dark energy shortly before matter-radiation
equality). We will, however, see in the next section that a
tighter constraint can be derived by requiring the right
adiabatic dark matter perturbations.

15This bound holds for a dark big bang phase transition with a
constant Γ. It can be circumvented in some scenarios with a time-
dependent Γ [92,94].
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So far, we have approximated the time of the true-vacuum
bubble nucleation by t�. This appears justified since most
bubbles are generated in a narrow time window of order β−1

around t�. However, we need to take into account that a large
number of bubbles was nucleated in our past Universe.
Therefore, one might worry about statistical outliers: some
rare bubbles that appeared significantly before t�. These
early produced bubbles would have had substantially more
time to grow compared to the average bubbles nucleated
around t�. Even a single such “big bubble” could potentially
have disastrous effects by generating a large-scale anisotropy
in the Universe [106–110]. This issue was originally raised
in the context of a phase transition at the end of inflation and
is referred to as the “big bubble problem.” Luckily, it turns
out that big bubbles do not pose a threat in the dark big bang
scenario. This can be understood by considering the radius
Rbig of a big bubble emitted at the time tbig,

RbigðtÞ ¼ aðtÞ
Z

t

tbig

dt0

aðt0Þ ; ð32Þ

wherewe assumed the bubble to expand at the speed of light.
We will now consider a big bubble nucleated (i) during
radiation domination (but significantly before t�) and
(ii) during inflation.
If the big bubble was nucleated during radiation domi-

nation, then we can set aðtÞ ∝ t1=2, in which case Eq. (32)
immediately implies RbigðtÞ ≤ 2t.16 At the time t�, the big
bubble would collide with average bubbles of size
Rb ∼ Γ−1=4. By then the big bubble has grown to a size
Rbigðt�Þ ≤ 3Γ−1=4, where we used Eq. (5). Hence, we see
that the big bubble size at collision is at most anOð1Þ factor
larger than the average bubble size. Hence, big bubbles
generated during radiation domination do not considerably
alter the bound in Eq. (30).
The situation is somewhat different for big bubbles of the

dark phase transition that are already nucleated during
inflation. Due to the superluminal expansion, such bubbles
can grow exponentially during inflation Rbig ∝ eNbig , where
Nbig denotes the number of e-folds before the end of
inflation when the big bubble was emitted. Luckily, how-
ever, the probability that even a single bubble was nucleated
within our observable Universe during inflation is extremely
low in the dark big bang scenario. In [110] the number of
big bubbles (generated during inflation) emerging on the
last scattering surface was estimated as Nbig ∼ 104 × Γ=H4

I ,
where HI is the Hubble scale during inflation. While this
estimate was performed for a (visible sector) phase tran-
sition at the end of inflation in [110] it should also apply to
the dark big bang phase transition. Since Γ ∼ 102H4� in the

dark big bang scenario [cf. Eq. (5)], we see that big bubble
formation during inflation is completely negligible if the
Hubble scale of the dark big bang is two or more orders of
magnitude smaller than the Hubble scale during inflation.
This is a very mild constraint since we usually expect the
inflation scale to be many orders of magnitude larger than
the dark big bang energy scale. We can conclude that—
unless in some pathological cases—big bubble formation is
never a problem in the dark big bang scenario.

C. Adiabatic perturbations

The evasion of unwanted isocurvature/peaked perturba-
tions does not suffice for a successful cosmological
scenario. We also need to require that dark matter produced
by the dark big bang obtains the adiabatic perturbations
which are the seed for structure formation. Since the dark
sector is decoupled from the SM radiation bath, it might
seem that dark matter does not receive any adiabatic
fluctuations at all. However, we will show that even in
the absence of direct couplings between dark and visible
matter, gravity will imprint the fluctuations in the radiation
bath onto dark matter at the dark big bang.
We first consider the density fluctuation of the SM

radiation bath δρr ¼ ρr − ρ̂r and the fluctuation in the
Hubble scale δH ¼ H − Ĥ neglecting the impact of the
dark sector. Quantities with a bar refer to the mean
quantities (averaged over all patches in the Universe).
Our assumption is justified during the radiation-dominated
epoch, where ρDS is subdominant. The evolution equations
(in the comoving gauge) are thus [111]

δ_ρr ¼ −4ρrδH − 3Hδρr;

δ _H ¼ −2HδH −
1

6
δρ −

∇2δP
12ρr

: ð33Þ

In the superhorizon regime the pressure gradient term (last
term on the right-hand side) can be neglected. The
fluctuations quickly reach their asymptotic solutions that,
in terms of Fourier modes, are expressed as [111]

δρr;k
ρr

¼ 4

9

�
k
aH

�
2

Rk;
δHk

H
¼ −

1

9

�
k
aH

�
2

Rk; ð34Þ

where Rk is constant and measures the perturbation in the
spatial curvature of comoving hypersurfaces [112].
Now we turn to the perturbations in the dark matter

component. At the phase transition, the bubble collisions
generate fluctuations that are imprinted onto the dark matter
density ρχ. However, these are strongly peaked at the
comoving length scale 1=kb, which must be small enough
not to spoil CMB and Ly-α observations (see Sec. III B). As
long as we are only interested in larger cosmological scales
(namely those accessible in the CMB and Ly-α), we can
“integrate out” the peaked perturbations [113].

16The bound RbigðtÞ ≤ 2t ¼ H−1 also trivially follows from the
argument that physical scales cannot exit the horizon during a
stage of subluminal expansion.
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Let us also point out that ρϕ is effectively smooth at the
time of the dark big bang. This is because isocurvature
perturbations of ρϕ—if they are generated during inflation—
do usually not survive until t� (see Sec. III A). Furthermore,
ρϕ does not pick up the adiabatic perturbations of the
radiation bath since vacuum energy does not support its own
perturbation. Hence, dark matter cannot inherit any pertur-
bations from ϕ. It may, therefore, naively seem as if dark
matter was produced as an effectively smooth fluid by the
dark big bang. However, this is not the case. Wewill argue in
the following that the radiation bath imprints its fluctuation
onto the dark matter by modulating the time of the dark
big bang.
When the dark false vacuum decays, the Universe is still

dominated by the radiation bath that exhibits adiabatic
perturbations. As is well known from cosmological pertur-
bation theory, adiabatic perturbations have the property that
local quantities like energy density and pressure at some
spacetime point in the perturbed Universe are the same as
those in the background Universe at a slightly different time
(see, e.g., [114]). Hence,

δρr ¼ ρrðtþ δtÞ − ρrðtÞ ¼ _ρrδt; ð35Þ

where we note that δt depends on the space coordinate.
Adiabatic perturbations thus imply that some patches of the
Universe are ahead and others behind in the evolution with
the time difference,

δt ¼ δρr
_ρr

¼ −
δρr
4Hρr

: ð36Þ

As a consequence, different regions of the Universe will
undergo the dark big bang phase transition at slightly
different times (see [115]). The earlier the dark matter is
produced, the more time it has to redshift (i.e., reduce its
energy density). Therefore, a positive δtðt�Þ≡ δt� causes a
local underdensity in the dark matter fluid. We can derive
the perturbed dark matter density at the dark big bang by
taking into account the redshift between t� − δt� and t�,

ρχ;� ¼ ρ̂χ;� exp

�
−3

Z
t�

t�−δt
dtð1þ wÞH

�
; ð37Þ

wherew denotes the dark matter equation-of-state parameter
(which can be time dependent). In the limiting cases of a
highly relativistic and a decoupled nonrelativistic species
we can set w ¼ 1=3 and w ¼ 0, respectively. Expanding
Eq. (37) in δt yields

δρχ;�
ρχ;�

¼ −3ð1þ wÞH�δt� ¼
3ð1þ wÞ

4

δρr;�
ρr;�

; ð38Þ

where we employed Eq. (36) in the second step. Hence,
we find

δρχ;�
_ρχ;�

¼ δρr;�
_ρr;�

; ð39Þ

which is precisely the condition for an adiabatic pertur-
bation. We can conclude that the radiation bath imprints its
adiabatic perturbation onto the dark matter at the dark
big bang.
The dark matter perturbation will remain adiabatic

subsequently, which can be shown by considering the
evolution equation of the dark matter perturbation during
the radiation-dominated epoch,

δ_ρχ ¼ −6ð1þ wÞρχδH − 3ð1þ wÞHδρχ : ð40Þ

The solution to the above equation can be written as

δρχ
ρχ

¼ δρχ;�
ρχ;�

þ 3ð1þ wÞ
4

�
δρr
ρr

−
δρr;�
ρr;�

�
; ð41Þ

where we can neglect the (tiny) backreaction of the dark
matter fluctuation onto δH, δρr, and employed the solutions
from Eq. (34). Plugging Eq. (38) into Eq. (41) yields

δρχ
ρχ

¼ 3ð1þ wÞ
4

δρr
ρr

⇔
δρχ
_ρχ

¼ δρr
_ρr

; ð42Þ

which proves that the dark matter perturbation remains
adiabatic.
Let us make an interesting side remark: we have shown

that the dark big bang directly imprints the desired adiabatic
perturbation onto the dark matter. However, even if this
were not the case and dark matter were produced as an
entirely smooth fluid, it would quickly pick up the pertur-
bations of the radiation bath through gravitational inter-
actions. This immediately follows from Eq. (41) after taking
into account that the first term inside the parentheses on the
right-hand side of the equation grows in time as δρr=ρr ∝ t
(and dominates over the second term as time goes on). As a
consequence the dark matter fluctuation would asymptoti-
cally approach the solution in Eq. (42) even if δρχ;� were
zero. As we have seen, this gravitational transmission of
fluctuations is not relevant for the dark big bang scenario,
where adiabatic dark matter perturbations are generated
immediately at the dark big bang. But it plays an important
role for other dark matter candidates, for instance for axion
dark matter.
In Fig. 4 we depict the evolution of the radiation

perturbation and the dark matter perturbation in the dark
big bang scenario.17 For illustration we picked a comoving
scale of k ¼ 0.08 Mpc−1. The dark matter perturbation
vanishes before the dark big bang (at a� ¼ 10−6 in the
Fig. 4), but is immediately generated at a� due to the

17The evolution of perturbations after horizon entry was taken
from [116].
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fluctuation of the false vacuum decay time inflicted by the
radiation perturbation [cf. Eq. (36)]. Notice that in reality
the fluctuation is not generated instantaneously but over
the (very short) duration of the dark big bang that we
neglected in the Fig. 4. At a > a� the perturbation δρχ=ρχ
is indistinguishable from the one in ΛCDM, which is also
shown in the Fig. 4.
However, it is crucial that dark matter exists and exhibits

the correct adiabatic perturbations at the time when
observable scales enter the horizon. As can be seen in
Fig. 4, the evolutions of δρχ=ρχ and δρr=ρr decouple at
horizon entry, when acoustic oscillations in the radiation
plasma set in and free streaming/diffusion start to affect δρr.
Therefore, if dark matter is only produced after a horizon
entry of a scale k, then the fluctuation δρχ imprinted onto
the dark matter by the radiation bath does not reflect the in-
horizon evolution of δρχ predicted in ΛCDM at that scale.
The dark big bang will thus induce differences in the
perturbation spectrum compared to ΛCDM. In the case of a
late dark big bang these occur on observable scales (which
are already inside the horizon at the dark big bang) and,
therefore, potentially upset structure formation.
In order to constrain the perturbations in the dark big

bang scenario, it is convenient to again employ Ly-α
observations of distant quasars that can be used as a
tracer of cosmological fluctuations on scales kLy−α≃
ð0.1 − 10Þ hMpc−1. We would, in principle, need to derive
the full linear matter power spectrum in the dark big bang
scenario including the case of a late dark big bang. Then,
since perturbations in the Ly-α regime are already affected
by nonlinear evolution, we would need to map the matter
power spectrum of the dark big bang scenario onto the flux
power spectrum of the quasars—which involves a com-
plicated dependence on cosmological and astrophysical
parameters.

We decided for a more economic pathway to obtain an
approximate bound, where we recast existing constraints
from warm dark matter (WDM) simulations. Specifically
we can employ the fact that a late dark big bang suppresses
the matter power spectrum at scales k > a�H� that are
already inside the horizon at t�. This is because the dark
matter perturbation generated at the dark big bang reflects
the perturbation in the dominant radiation component that
does not grow after the horizon entry—in contrast to the
dark matter perturbation of ΛCDM (see Fig. 4). WDM
scenarios also induce a suppression of small-scale power—
albeit for a different physical reason. In the case of WDM,
the suppression results from the free streaming of dark
matter particles out of small-scale structures. The largest
scale affected by free streaming is the present value of the
particle horizon of warm particles that is denoted as the free-
streaming horizon λFSH (see, e.g., [117]). WDM suppresses
the matter power spectrum at k > λ−1FSH. Therefore, we
expect that the upper limit on the free-streaming horizon
λFSH;max derived in WDM simulations can (approximately)
be reinterpreted as the maximal horizon size at t� in the dark
big bang scenario. Hence, in the following, we will require

a�H� > λ−1FSH;max: ð43Þ

Typically, WDM bounds are presented in terms of the
mass mMWD rather than λFSH (see, e.g., [105,118–120]).
However, one can easily translate between the two using the
map provided for instance in [121]. At present, the tightest
lower limit18 (with minimal assumptions on the thermal
history of the Universe) imposes mWDM > 1.9 keV [119],
which corresponds to [121]

λFSH;max ¼ 0.16 Mpc: ð44Þ

After plugging Eq. (44) into Eq. (43) and expressing H� in
terms of a�, we obtain,

a� < 3.4 × 10−7: ð45Þ

Thus, the necessity of adiabatic dark matter perturbations
that are sufficiently similar to those in ΛCDM requires the
dark big bang to occur at

t� < 32.5 days: ð46Þ

We note that this bound is only approximate since the dark
big bang scenario does not give rise to the precise shape of
the power spectrum suppression of WDM. We leave a more
in-depth analysis for future studies and, in the following,
simply impose Eq. (46). We can also translate Eq. (46) to a

radiation

dark matter
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FIG. 4. Radiation and dark matter perturbations in the dark big
bang scenario. A dark big bang at a ¼ 10−6 is assumed. The dark
matter fluid immediately picks up the perturbation of the
radiation bath at the dark big bang. Therefore, after the dark
big bang, the dark matter perturbation is indistinguishable from
the perturbation in ΛCDM (indicated by the dashed line).

18In order to be conservative we refrain from using the tighter
limit mWDM > 3.1 keV derived in [120] because the same
analysis would also exclude ΛCDM at 95% C.L.
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minimal (visible-sector) temperature of the Universe at the
dark big bang,

T� > 0.68 keV: ð47Þ

D. Warm dark matter constraints

In the previous section we required the dark big bang to
occur early enough to pick up the desired dark matter
perturbation on observable scales. However, the constraint
of Eq. (46) can only be saturated if dark matter behaves as a
cold relic immediately after the dark big bang. If, on the
other hand, dark matter is born relativistic, its free stream-
ing erases primordial inhomogeneities at scales below the
free-streaming horizon λFSH. This provides a complemen-
tary mechanism of power suppression that can operate in
the dark big bang scenario. Not only must we ensure that
the right dark matter perturbation is generated, we also need
to require that it persists and is not washed out by the free
streaming.
Since free streaming can only occur after the dark big

bang, we define the free-streaming horizon in the dark big
bang scenario in the following way (see, e.g., [117]):

λFSH ¼
Z

t0

t�
dt

hvχðtÞi
aðtÞ ¼

Z
1

a�
da

hvχðaÞi
a2H

; ð48Þ

where t0 stands for the present time and hvχðtÞi for the
time-dependent average dark matter velocity. We define
v� ¼ hvχðt�Þi. Now we distinguish two cases:
(1) dark matter is produced nonrelativistically (v� ≪ 1),

and
(2) dark matter is produced relativistically (v� ≃ 1).

In case 1 we can employ that the velocity redshifts linearly
with the scale factor. Therefore, the free-streaming horizon
becomes

λFSH ≃ v�a�

Z
1

a�
da

1

a3H

≃
ffiffiffi
2

p
a�v�

a2eqHeq
log

�
4aeq
a�

�
ðnonrelativisticÞ: ð49Þ

In order to arrive at the above expression, we employed that
the integral in Eq. (48) is insensitive to the late-time
evolution of the Universe. Therefore we approximated

the Hubble rate as H ¼ Heq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3eq=ð2a3Þ þ a4eq=ð2a4Þ

q
,

where a subscript “eq” indicates that a quantity is evaluated
at matter-radiation equality. Furthermore, we used
a� ≪ aeq ≪ 1.
In case 2, the dark matter velocity remains approximately

constant while being relativistic and redshifts linearly with
the scale factor once it becomes nonrelativistic. We denote
the scale factor of the nonrelativistic transition by anr and

approximate hvχðaÞi ≃ 1 for a < anr and hvχðaÞi ≃ anr=a
for a > anr. This allows us to derive the free-streaming
horizon for the case of relativistic dark matter production

λFSH ≃
Z

anr

a�
da

1

a2H
þ
Z

1

anr

da
anr
a3H

≃
ffiffiffi
2

p
anr

a2eqHeq

�
1−

a�
anr

þ log

�
4aeq
anr

��
ðrelativisticÞ: ð50Þ

As noted in Sec. III C, the wave number λ−1FSH represents the
value of k at which the matter power spectrum becomes
suppressed compared toΛCDM. This suppression can again
be constrained by Ly-α observations. We can directly
compare the predicted free-streaming horizon in Eq. (49)
(nonrelativistic dark matter production) or Eq. (50) (rela-
tivistic dark matter production) with the maximal λFSH
imposed by WDM simulations [119] [cf. Eq. (44)].
Requiring λFSH < λFSH;max yields a bound on a� in the case
of nonrelativistic dark matter production and on anr in the
case of relativistic dark matter production,

a� log
�
0.0012
a�

�
< 3.5 × 10−6

�
0.1
v�

�

× ðnonrelativistic productionÞ; ð51Þ

anr < 3.0 × 10−8 ðrelativistic productionÞ; ð52Þ

where we neglected the dependence on a� in the relativistic
case that affects the bound only at the percent level.
We find that in the case of nonrelativistic dark matter

production with v� < 0.1, the dominant constraint on a�
comes from the requirement that observable scales are
inside the horizon at the dark big bang. Thus once we
impose Eq. (45), the free-streaming constraint is automati-
cally satisfied. In the opposite regime of highly relativistic
dark matter production, free streaming sets the leading
constraint on the scale factor and we need to impose
Eq. (52). In this case, we find that dark matter needs to
become nonrelativistic at

tnr < 0.3 days ⇔ Tnr > 7.8 keV ðrelativistic productionÞ:
ð53Þ

Here Tnr denotes the (visible sector) temperature of the
Universe at which the dark matter becomes nonrelativistic.
We can summarize the results of the previous and this

section by saying that the dark big bang must induce dark
matter that is nonrelativistic at a time t ¼ OðdayÞ—either
by producing nonrelativistic dark matter right away, or by
producing relativistic dark matter that has redshifted to
nonrelativistic velocities by this time.
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IV. A MODEL REALIZATION OF THE DARK
BIG BANG

In this section, we construct a model realization of the
dark big bang. We write down a Lagrangian for the dark
sector tunneling and dark matter fields. Then we compute
the tunneling rate for this Lagrangian. We leave detailed
models for the dark matter to the next section, Sec. V.

A. The dark sector

The dark sector is comprised of the tunneling scalar ϕ
and the dark matter particle χ. The phenomenology
described in this section hardly depends on whether χ
is identified with a scalar, a fermion, or a vector particle.
For concreteness we take χ to be a real scalar in most parts
of this work. Optionally, additional light/massless dark
radiation degrees of freedom ξi may be present. The dark
sector Lagrangian can thus be written as19

LDS ¼ 1

2
∂μϕ∂

μϕþ 1

2
∂μχ∂

μχ − VðϕÞ − yϕ2χ2

−
m2

χ

2
χ2 − κχ4ðþLDRÞ; ð54Þ

where we included only even powers of χ in order to
ensure dark matter stability. This can be realized through a
simple Z2 symmetry under which χ is odd [122,123]. The
Lagrangian part LDR stands for terms involving the dark
radiation field(s). We have put this term in brackets since
we will consider cases with and without dark radiation
(for the latter LDR is absent).
The potential of the scalar ϕ is taken to be of generic

quartic form,

VðϕÞ ¼ m2

2
ϕ2 − μϕ3 þ λϕ4 þ ΔV: ð55Þ

In the following we assume μ >
ffiffiffiffiffi
2λ

p
m. For this choice the

potential possesses a metastable minimum at ϕ ¼ 0 with
energy density ΔV. We pick ΔV such that the energy
density vanishes in the true minimum of the potential that is
located at ϕmin ¼ Δϕ. We thus have

Δϕ ¼ 3μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9μ2 − 16λm2

p
8λ

;

ΔV ¼

�
3μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9μ2 − 16λm2

p �
2
�
3μ2 þ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9μ2 − 16λm2

p
− 8λm2

�

2048λ3
: ð56Þ

The mass of the scalar in the false vacuum is given by m,
while the mass in the true vacuum is

m2
ϕ ¼ V 00ðΔϕÞ ¼ 9μ2 þ 3μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9μ2 − 16λm2

p
8λ

− 2m2: ð57Þ

The particle χ also receives a mass shift between the false
and true vacuum due to the coupling term yϕ2χ2. The
examples we will discuss in this work, however, feature
m2

χ ≫ yðΔϕÞ2 such that the dark matter mass shift can be
ignored. Furthermore, we assume that the mass of the dark
radiation (if present) generated in the true vacuum is
negligible against the dark sector temperature such that
it does not affect the cosmological evolution.

B. Tunneling rate

The tunneling rate from the false into the true vacuum
reads [48,75] [cf. Eqs. (3) and (4)],

Γ ≃m4

�
S
2π

�
2

e−S; ð58Þ

where the Euclidean action S has to be determined by
solving the differential equation of the bounce. An
analytic solution exists in the thin-wall regime of vacuum
tunneling—which is approached for a small energy differ-
ence ΔV ≪ Vb between minima [48]. However, while the
thin-wall approximation is frequently used in the literature
for its simplicity, it hardly ever applies to realistic
tunneling phenomena. This is because in the thin-wall
regime the lifetime of the false vacuum is typically so
suppressed that tunneling practically never occurs during
the lifetime of the Universe.
Luckily, for the case of a quartic tunneling potential

as considered in this work, an accurate numerical
approximation of S beyond the thin-wall regime has been
derived [124],

19We neglect a possible cubic term ∝ ϕχ2 that is irrelevant for
the following discussion.
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S ≃
π2μ6

24λðμ2 − 2λm2Þ3
�
A1

4λm2

μ2
þ A2

�
4λm2

μ2

�
2

þ A3

�
4λm2

μ2

�
3
�
; ð59Þ

with A1 ¼ 13.832, A2 ¼ −10.819, and A3 ¼ 2.0765. The
term in square brackets accounts for the deviation from
the thin wall approximation and was obtained by a fit to
the exact numerical bounce solution. If the dark big
bang occurs between BBN and matter-radiation equality
Γ−1=4 ≃ 1 s − 104 yr this corresponds to a bounce action
in the range S ≃ 190–250.
The tunneling potential also determines the radius R0 of

the true vacuum bubbles at nucleation [48,125],

R0 ≃
mðΔϕÞ2
2ΔV

: ð60Þ

Hence, R0 is set by the typical energy scale of the tunneling
potential. The above expression for R0 strictly holds in the
thin-wall approximation. Corrections to the thin-wall
approximation change R0 by an Oð1Þ factor. We neglect
this subtlety since a rough estimate of R0 is sufficient for
our purposes.

V. DARK MATTER CANDIDATES FROM
THE DARK BIG BANG

In this section we will study dark matter production from
the dark big bang. While it is impossible to cover all
properties and evolutions of the dark matter component, we
will aim at reflecting a range of interesting cases. For this
purpose we will study several example scenarios in which
the dark matter abundance of the Universe is successfully
reproduced. Other dark matter realizations in connection
with a first-order phase transitions have been discussed, for
instance, in [12–17,19–37].
We note that particle production by a phase transition is a

complicated process. In the first step, the energy of the false
vacuum is converted to the kinetic energy of the bubble
walls. Then, upon collision, particles are either produced
directly or via radiation of classical scalar waves that
subsequently decay into particles [12].
We will first turn to the case of light dark matter particles

with mass mχ ≲ ðΔVÞ1=4 and unsuppressed couplings to
the tunneling field. The light particles are efficiently
produced by the bubble collisions and typically reach a
thermal state characterized by its temperature TDS soon
after the phase transition. The dark temperature is given by
TDS ∼ ðΔVÞ1=4 up to Oð1Þ factors. In this scenario, the
details of the phase transition do not enter the calculation of
the final dark matter density since dark matter annihilation
and scattering reactions quickly establish a thermal spec-
trum and wash out any characteristics of the state emerging
from the bubble collisions.

In Sec. V B we will then turn to the opposite case of
heavy dark matter [mχ ≫ ðΔVÞ1=4] production. The heavy
dark matter particles emerging from the bubble collisions
feature a nonthermal spectrum. Due to the small number
density of the dark matter particles, number changing
reactions are typically inefficient and the dark matter
number remains frozen after the dark big bang. This case
is conceptually more involved since the final dark matter
density is set by the microscopic details of particle
formation by the bubble collisions.

A. Light dark matter

In this section we consider dark matter particles χ with
mass below the energy scale of the dark big bang,
mχ ≲ ðΔVÞ1=4. We will focus on the simplest case, in
which χ enters a thermal equilibrium state shortly after the
dark big bang. Since the evolution of the dark matter
density depends on whether or not dark radiation degrees of
freedom (coupled to the dark matter) also exist in the dark
sector, we will discuss both possibilities separately. We will
see that in both cases the relic density is set by a thermal
freeze-out. However, differences emerge since χ runs
through a period of cannibalism [126] in the absence of
a dark radiation bath (or if the dark radiation is only
extremely weakly coupled to dark matter), while χ under-
goes standard pair annihilations in the presence of a dark
radiation bath—analogous to WIMPs [127–129].
Previous papers have studied versions of cannibal

dark matter [126,130] and dark sector WIMP dark
matter [131,132] under the assumption of the existence
of a thermal bath in the dark sector (for instance from
asymmetric reheating after inflation [133–135]). In our
work, on the other hand, the dark big bang sets the initial
conditions for the dark matter. As we will show, the
specifics of the tunneling field set the phase transition
parameters, which then allow for the explicit calculation of
the initial dark matter density and temperature. Further, as
an example, we will present complete scenarios with
specific benchmark points for the parameters of the
tunneling field and resulting dark matter properties (see
Tables I and II below). Our study of the production and
evolution of the dark cannibals and dark WIMPs in the
context of a dark big bang follows.

1. Dark cannibals

We first consider a minimal scenario in which the dark
sector only contains the tunneling field ϕ and the light
dark matter scalar χ. We take mχ < mϕ. The Lagrangian is
given by Eq. (54) without the LDR term (since we do not
introduce any dark radiation fields for now). We dub the
dark matter particles “dark cannibals” in this scenario since
they cannibalize themselves for some period of the cos-
mological evolution as we will describe below.
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We argued in Sec. II A that ϕ remains trapped in the false
vacuum during the early radiation-dominated epoch. The
dark sector remains cold until the moment when the dark
big bang phase transition generates a hot plasma of χ and ϕ
particles. Since particle number changing reactions are very
efficient shortly after the phase transition (unless for highly
suppressed couplings λ; κ ≲ 10−10), the details of particle

production by the bubble collisions can be ignored. Instead,
a thermal equilibrium spectrum is quickly established. The
dark reheating temperature TDS;� (¼ the dark plasma tem-
perature right after the dark big bang) can be estimated as
[cf. Eq. (10)],

TDS;� ≃
�

30

π2gDSðTDS;�Þ
ΔV

�
1=4

; ð61Þ

where gDS counts the number of relativistic degrees of
freedom in the dark sector that includes χ and, possibly, ϕ.
Because typically mϕ ∼ ðΔVÞ1=4 ∼ TDS;�, ϕ is often semi-
relativistic after the dark big bang—thus contributing a
fractional degree to gDS.
We emphasize that TDS;� is generically different from the

visible sector temperature at the dark big bang T�. While
TDS;� is set by the energy scale of the phase transition, T�
depends on the time of the phase transition and, hence, the
tunneling rate [cf. Eqs. (5) and (6)]. Since dark and visible
sectors are decoupled, the two temperatures evolve inde-
pendently. The entropies of visible and dark sector are
separately conserved. Therefore, it is convenient to intro-
duce the ratio of dark-to-visible entropy ξ

ξ ¼ sDS
s

¼ gDSðTDS;�ÞT3
DS;�

geffðT�ÞT3�
; ð62Þ

with T� and TDS;� given by Eqs. (6) and (61), respectively.
The entropy ratio ξ is conserved during the post-dark-big-
bang evolution of the Universe.
Shortly after the dark big bang interconversion reaction,

ϕϕ ↔ χχ are typically still active and both species contrib-
ute significantly to the energy density. However, once
TDS ≪ mϕ the production of ϕ gets strongly Boltzmann
suppressed. The existing ϕ particles quickly annihilate/
decay away leaving all the dark sector energy density in χ.
At this stage—in the absence of any other light degrees of
freedom—χ can no longer undergo pair-annihilations.
However—given a quartic coupling κ ≳ 10−5—χχχχ ↔
χχ processes as shown in Fig. 5 still keep χ in thermal
equilibrium for some time. Related scenarios—albeit with-
out a dark big bang origin of χ—have previously been
discussed in [136–139].
The number density of χ can be estimated as [140]

nχðTDSÞ ≃
m2

χTDS

2π2
eμ=TDSK2

�
mχ

TDS

�
; ð63Þ

where K2 denotes the modified Bessel function of the
second kind. In thermal equilibrium the chemical potential
μχ vanishes, i.e., the equilibrium density is given by
nχ;eqðTDSÞ ¼ nχðTDS; μχ ¼ 0Þ. The expression (63) was
derived by approximating the Bose-Einstein phase space
distribution by a Maxwell-Boltzmann distribution. The

TABLE II. Parameter examples for a dark big bang inducing
dark WIMP dark matter. Input and derived parameters are as
defined in Table I, and y0 is the dark matter/dark radiation
coupling of Eq. (79).

Benchmark BP1 BP2

Input parameters

mχ [keV] 10 500
m [keV] 25.5 23455
μ [keV] 39.6 36683
y0 × 107 0.011 0.82
λ 1 1

Derived parameters

mϕ [keV] 37.1 34710
ðΔVÞ1=4 [keV] 13.2 12438

Phase transition

t� [s] 824 0.0018
T� [MeV] 0.040 20
TDS;� [MeV] 0.015 13.8
α 0.01 0.04

Dark matter

hσχχ→ξξvi [cm3 s−1] 1.0 × 10−26 2.5 × 10−26

Tnr [keV] 20.8 594
TFO [keV] 2.6 61.7
Ωχh2 0.120 0.120
ΔNeff 0.10 0.30

TABLE I. Parameter example for a dark big bang inducing dark
cannibal dark matter. Heremχ is the dark matter mass, parameters
m, μ, λ of the tunneling potential are as defined in Eq. (55), the
mass of the tunneling field in the true vacuum mϕ is given in
Eq. (57), and κ is the quartic self-coupling of the cannibal dark
matter [see Eq. (54)].

Input parameters Phase transition

mχ [keV] 250 t� [s] 0.012
m [keV] 512 T� [MeV] 8.0
μ [keV] 802 TDS;� [MeV] 0.37
κ 0.0001 α 3.9 × 10−7

λ 1 Dark matter

Derived parameters mχ=TDS;FO 1.3

mϕ [keV] 761 Ωχh2 0.120

ðΔVÞ1=4 [keV] 273 σ=mχ [cm2=g] 0.2
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corresponding error on nχ;eq is at most 20% (and quickly
approaches zero for TDS < mχ). Once the ϕ particles have
decayed away the dark sector entropy is entirely carried
by χ. The entropy density can be approximated as20

sDS ≃
�
mχ

TDS

K3ðmχ

TDS
Þ

K2ðmχ

TDS
Þ −

μχ
TDS

�
nχ : ð64Þ

A peculiarity occurs if the number changing reactions are
still active once χ particles become nonrelativistic. In the
nonrelativistic regime during thermal equilibrium (μχ ≃ 0)
the dark entropy density approaches

sDS ⟶
TDS≪mχ m5=2

χ T1=2
DS

ð2πÞ3=2 e−mχ=TDS : ð65Þ

Since the total dark entropy ∝ sDSa3 needs to be conserved,
TDS decreases only logarithmically with the scale factor of
the Universe, TDS ∝ 1= logðaÞ. This is in contrast to the
visible sector, whose entropy is always dominated by
relativistic degrees of freedom,

s ¼ 2π2

45
geffðTÞT3: ð66Þ

Consequently, the visible sector temperature decreases as
T ∝ 1=a. This implies that TDS=T increases once χ enters
the nonrelativistic regime (assuming it is still in thermal
equilibrium at that time). Depending on the specific param-
eter choice the dark sector may even become hotter than the
visible sector for some time. This can be understood by the
χχχχ → χχ reactions of Fig. 5 that convert nonrelativistic
χ particles into fewer relativistic χ particles. The excess
kinetic energy is then quickly distributed among the bath of
χ particles to keep it warm. In [126] this phenomenon
was dubbed cannibalism since the dark matter particles

cannibalize their rest mass for staying warm. We shall thus
refer to the χ particles as “dark cannibals” in this section. Let
us note, however, that the cannibalism stage does not imply a
realization of warm (or even hot) dark matter since it occurs
when the dark cannibals are already nonrelativistic.
Once the rate for χχχχ ↔ χχ reactions drops below the

Hubble rate of expansion, χ freezes out of thermal
equilibrium, and the total number of dark cannibals in
the Universe remains fixed. In order to derive the evolution
of the number density nχ we need to solve the Boltzmann
equation [139]

dnχ
dt

þ 3Hnχ ¼ 2ðΓχχ→χχχχ − Γχχχχ→χχÞ: ð67Þ

In the nonrelativistic regime, the rate of 4 → 2 and 2 → 4
processes is given as

Γχχχχ→χχ ¼ e2μ=TDSΓχχ→χχχχ ¼ hσχχχχ→χχv3in4χ ; ð68Þ

where the thermally averaged annihilation cross section for
the model under consideration [cf. (54)] reads21 [139]

hσχχχχ→χχv3i ¼
27

ffiffiffi
3

p
κ4

πm8
χ

: ð69Þ

Notice the factor v3 in the definition of the thermally
averaged cross section which occurs due to the four
particles in the initial state. This is in contrast to two-
particle annihilation processes (occurring, e.g., in standard
WIMP scenarios) for which the thermally averaged cross
section is defined with a single power of the velocity v.
Furthermore, we point out that hσχχχχ→χχv3i does not carry
a temperature dependence. This is because σχχχχ→χχv3 turns
out to be velocity independent.
It is convenient to define the dark cannibal abundance as

Yχ ¼
nχ
s
; ð70Þ

where s again stands for the visible sector entropy. Entropy
conservation implies that the quantity Yχ is conserved after
the freeze-out of χ.22 We can then rewrite the Boltzmann

FIG. 5. Feynman diagram for χχχχ ↔ χχ reactions.

20In order to arrive at this expression we have again approxi-
mated the Bose-Einstein phase space distribution by a Maxwell-
Boltzmann distribution. The corresponding error on s is < 10%
in the relativistic regime and quickly approaches zero in the
nonrelativistic regime.

21We are assuming that the cross section is dominated by
processes mediated by the quartic coupling LDS ⊃ κχ4 as shown
in Fig. 5. An additional contribution to the cross section emerges
from processes with ϕ in the intermediate state. However, around
the time when χ freezes out from equilibrium, ϕ can be integrated
out in the Lagrangian (54). In the resulting effective Lagrangian,
there then appears an additional quartic term ∼y2ðhϕi=mϕÞ2χ4,
which we neglected. Even if this additional term were non-
negligible it can be absorbed by a redefinition of κ. Hence,
Eq. (69) would still hold if one replaces κ by the redefined κ.

22Notice that it is just a matter of convention that we used s and
not the dark sector entropy sDS in the definition of Yχ .
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equation in terms of Yχ , and use Eq. (68) to express the
reaction rates in terms of the annihilation cross section,

dYχ

dT
¼ 2hσχχχχ→χχv3is3

TH

�
1þ T

3g
dg
dT

�
ðY4

χ − Y2
χY2

χ;eqÞ; ð71Þ

where we also converted the time derivative into a temper-
ature derivative by using Eq. (66) and dðsa3Þ=dt ¼ 0. In
order to solve the above equation we first need to express the
dark sector temperature and the chemical potential in terms
of the visible sector temperature. Using Eqs. (62)–(64), (66),
and (70), we obtain

TDS ¼
mχ

F−1
�

4π4geff ðTÞT3Yχ

45m3
χ

eξ=Yχ

� ;

μχ
TDS

¼ mχ

TDS

K3

	
mχ

TDS




K2

	
mχ

TDS


 −
ξ

Yχ
; ð72Þ

where F−1 is the inverse function of

F ðxÞ ¼ K2ðxÞ
x

exp
�
xK3ðxÞ
K2ðxÞ

�
: ð73Þ

While there is no analytic expression for F−1, one can easily
obtain F−1 by inverting Eq. (73) numerically. From Yχ;eq ¼
e−μs=TDSYχ it follows that

Yχ;eq ¼ exp

0
B@−

mχ

TDS

K3

	
mχ

TDS




K2

	
mχ

TDS


þ ξ

Yχ

1
CAYχ : ð74Þ

Now we plug TDS from Eq. (72) into the above expression
and insert the resulting Yχ;eq into (71). In this way we obtain
the Boltzmann equation for Yχ in terms of a single variable
T. The evolution of Yχ can then be obtained by solving the
Boltzmann equation numerically.
A further simplification occurs for TDS ≪ mχ. In this

limit one can approximate the Bessel functions K2;3ðxÞ →ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2xÞp

e−x and obtain the following analytic expression
for the equilibrium abundance (see [139]),

Yχ;eq ⟶
TDS≪mχ

exp
�

ξ

Yχ
− 1 −

m2
χ

2πT2

×
�

45

2π2geffðTÞYχ
e1−ξ=Yχ

�
2=3

�
Yχ : ð75Þ

However, in this paper we refrain from using Eq. (75) in
the Boltzmann equation. While the final relic abundance
can be accurately predicted using Eq. (75) in the case of a
nonrelativistic freeze-out, a significant error arises for a

semirelativistic freeze-out for which 1≲mχ=TDS;FO ≲ 3.
Here, TDS;FO denotes the dark sector freeze-out temper-
ature that can be defined by the condition Yχ;eqðTDS;FOÞ ¼
Yχ;∞. Hence in this paper we do not use the nonrelativistic
approximation of Eq. (75).
Instead, we build on the previous literature by plugging

the full expression Eq. (74) into the Boltzmann equation to
obtain an accurate prediction for Yχ;∞ in both the non-
relativistic as well as in the semirelativistic freeze-out
regime (this has been shown for an analogous case of
WIMP dark matter in [141]).
Once we have derived Yχ;∞, the dark cannibal relic

density can be calculated,

Ωχh2 ¼
mχsðT0ÞYχ;∞

3ðH0=hÞ2M2
P
¼ 275Yχ;∞

�
mχ

keV

�
: ð76Þ

We now consider three benchmark cases with a dark
cannibal mass mχ ¼ 250 keV and self-coupling κ ¼ 0.001,
0.0001, 0.00003. The remaining input parameters are taken
from Table I. All three cases feature a dark big bang at a
visible sector temperature of T� ¼ 8 MeV, which heats the
dark sector to a temperature TDS;� ¼ 0.4 MeV. The sub-
sequent temperature-evolution of the dark cannibal abun-
dance Yχ obtained by solving the Boltzmann equation (71)
is shown in Fig. 6 (left panel). It can be seen that Yχ

decreases as the Universe cools down until χχχχ → χχ
reactions freeze out of equilibrium. After the freeze-out Yχ

quickly becomes constant and reaches the final relic
abundance Yχ;∞. As expected, comparison of the three
benchmark cases reveals that the freeze-out occurs the later
the larger κ (since a large self-coupling is needed to keep χ
in thermal equilibrium). Consequently, the dark cannibal
relic density scales inversely with κ.
In the right panel of Fig. 6 the evolution of the temperature

ratio TDS=T is shown. Shortly after the dark big bang (on the
right side of the Fig. 6) when χ is still relativistic the ratio
TDS=T remains approximately constant. But once χ enters
the nonrelativistic regime (at T ∼ 5 MeV in the Fig. 6) the
dark sector temperature increases relative to the visible
sector temperature. This is the described epoch in which
χ cannibalizes its rest mass in order to keep the dark
temperature nearly constant. The increase of TDS=T is
clearly visible for the benchmark case with κ ¼ 0.001,
visible but less pronounced for κ ¼ 0.0001 and not visible
at all for κ ¼ 0.00003. This is because the cannibalistic
epoch only occurs if χ is still in thermal equilibrium when it
becomes nonrelativistic. This condition is satisfied for the
two cases with larger κ, while for κ ¼ 0.00003 the freeze-out
occurs right at the transition between the relativistic and the
nonrelativistic regime (TDS;FO ≃mχ). After the freeze-out
TDS=T drops quickly in all three benchmarks. This is
because the temperature of a decoupled nonrelativistic
species decreases as TDS ∝ 1=a2 with the scale factor while
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T ∝ 1=a for the visible sector (which contains relativistic
degrees of freedom).
In the following we focus on the benchmark case with

κ ¼ 0.0001 for which we also provide the phase transition
parameters and dark matter properties in Table I. For this
benchmark point the dark cannibal relic density Ωχh2

exactly matches the observed dark matter density of
ΩDMh2 ¼ 0.120� 0.001 [81]. This shows that dark canni-
bals arising from a dark big bang constitute an excellent
candidate for the dark matter of the Universe. Another
interesting observation concerns the cross section for dark
matter self-scattering χχ → χχ, which is given as

σ ¼ 9κ2

2πm2
χ
: ð77Þ

For the benchmark point of Table I we obtain
σ=mχ ¼ 0.2 cm2=g. But more generally—if the dark can-
nibals are light—they can play the role of self-interacting
dark matter [49]. For instance, for mχ ≲MeV we find

σ=mχ ≳ 10−3 cm2=g; ð78Þ

if we impose the dark cannibal scenario (i.e., if we impose
that χχχχ → χχ reactions are active after the dark big bang).
The most sensitive probes of dark matter self-

interactions currently arise from the gravitational lensing
of density profiles in galaxy clusters. Observation based on
this technique place the cross section upper limit in the
range ðσ=mχÞmax ¼ 0.2–0.4 cm2=g and suggest a very mild
preference for a nonzero cross section of σ=mχ ≃
0.1–0.2 cm2=g [142,143] albeit with some systematic

uncertainties.23 Excitingly, future searches for dark matter
self-interactions will thus test a significant part of the dark
cannibal parameter space.24 If the cross section is as large as
in the benchmark point a discovery of dark matter self-
interactions with the next generation of observations and
analysis tools could be just around the corner.

2. Dark WIMPs

In this section we again consider a dark sector including
the tunneling field ϕ and the dark matter field χ with mass
mχ ≲ ðΔVÞ1=4. But in addition, we introduce massless (or
very light) dark radiation ξ. In the presence of dark
radiation ξ, the evolution of dark matter particles χ will
resemble that of an ordinary thermal WIMP, which is why
we call χ a dark WIMP in this scenario. The particle nature
of ξ is not particularly important.25 Therefore, we make the
simplest choice of a single real scalar degree of freedom ξ.
In order to keep the discussion minimal, we furthermore
impose a Z2 symmetry on ξ (in addition to the Z2 symmetry
on χ) such that the Lagrangian only contains even powers
of ξ, χ. The full Lagrangian is again given by Eq. (54), this
time including the LDR term with

κ=0.001

κ=0.0001

κ=0.00003
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FIG. 6. Evolution of the dark cannibal abundance Yχ (left panel) and the dark sector temperature TDS (right panel) after the dark big
bang as a function of the visible sector temperature T. The blue line in both panels corresponds to the parameter choice of Table I. The
green dashed and orange dot-dashed lines refer to a larger and smaller choice of the dark cannibal self-coupling κ as indicated in the plot
legend (while the remaining input parameters were again taken from Table I). As can be seen, for larger κ the dark cannibals can
maintain thermal equilibrium longer and deplete their abundance more efficiently. Therefore, the dark cannibal relic abundance Yχ;∞
scales inversely with κ.

23See also [144] for a recent review on astrophysical probes of
dark matter self-interactions.

24See [72] for another realization of self-interacting dark
matter from a first-order phase transition.

25From a theoretical point of view it would be more natural to
consider light/massless fermionic dark radiation since fermion
masses are protected by chiral symmetry in contrast to scalar
masses. However, the phenomenology we describe in this section
is insensitive to the particle nature of ξ and, therefore, we made
the simplest choice of a real scalar ξ.
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LDR ⊃ y0χ2ξ2: ð79Þ

An additional dark radiation self-coupling and an inter-
action term involving the tunneling field are typically
present but do not affect the following discussion (as long
as we can treat ξ as effectively massless).
Let us now turn to the cosmological evolution. As

described in Sec. VA 1 the dark big bang heats the initially
cold dark sector to the temperature TDS;� determined by
Eq. (61). The resulting hot dark sector plasma contains χ
and ξ in thermal equilibrium. In the presence of dark
radiation ξ, the dark matter number changing reactions are
dominantly pair annihilations χχ ↔ ξξ, while χχχχ ↔ χχ
processes play no role (unless y0 ≪ κ). Once the pair-
annihilation rate drops below the Hubble rate of expansion,
χ freezes out and the total number of dark WIMPs in the
Universe remains fixed. Related scenarios of dark matter
undergoing a freeze-out in a decoupled dark sector have
been discussed in [131,132,145–148].
The entropies of dark and visible sector are separately

conserved. However, in contrast to the dark cannibal
scenario, the dark sector contains relativistic degrees of
freedom during the entire post-dark-big-bang evolution that
dominate sDS. As a consequence the ratio of dark-to-visible
temperature remains fixed up to changes in the number of
degrees of freedom,

TDS

T
¼

�
geffðTÞ
geffðT�Þ

�
1=3

�
gDSðTDS;�Þ
gDSðTDSÞ

�
1=3 TDS;�

T�
; ð80Þ

where T� and TDS;� are obtained from Eqs. (6) and (61),
respectively.
The Boltzmann equation is conveniently expressed in

terms of the dark WIMP abundance Yχ ¼ nχ=s. One
obtains

dYχ

dT
¼ hσχχ→ξξvis

TH

�
1þ T

3geff

dgeff
dT

�
ðY2

χ − Y2
χ;eqÞ; ð81Þ

where hσχχ→ξξvi denotes the thermally averaged dark
WIMP annihilation cross section. For the interaction term
in Eq. (79) the cross section is [123,149]

hσχχ→ξξvi ¼
ðy0Þ2
4πm2

χ
; ð82Þ

in the nonrelativistic regime.
While Eq. (81) looks identical to the Boltzmann equation

of a standard thermal WIMP, an important difference is that
the equilibrium number density of χ is set by the dark rather
than the visible sector temperature. Specifically, we have

Yχ;eq ¼
m2

χTDS

2π2s
K2

�
mχ

TDS

�
; ð83Þ

where we again approximated the Bose-Einstein phase
space distribution by a Maxwell-Boltzmann distribution.
After plugging Eq. (83) into Eq. (81) and eliminating TDS
via Eq. (80) we obtain the Boltzmann equation for Yχ in
terms of a single variable T. This equation can be solved
numerically. In the nonrelativistic regime the dark WIMP
energy density is given by ρχ ¼ mχYχs. The final relic
density Ωχh2 is obtained via Eq. (76).
In Fig. 7 we depict the temperature evolution of ρχ for

the two parameter examples given in Table II [see Eqs. (54)
and (79) for the definition of the model Lagrangian]. In both
cases, the dark WIMPs are produced relativistically and
their energy density redshifts as ρχ ∝ T4

DS ∝ T4 immedi-
ately after the dark big bang. Once the dark WIMPs enter
the nonrelativistic regime ρχ decreases exponentially due to
the Boltzmann suppression factor ρχ ∝ e−mχ=TDS. This scal-
ing continues as long as χ remains in thermal equilibrium
with the dark radiation plasma. Later—roughly when the
dark WIMP annihilation rate matches the Hubble rate of
expansion, nχhσχχ→ξξvi ∼H—the dark WIMPs freeze out
and Yχ quickly approaches a final constant value Yχ;∞. The
energy density scales as ρχ ∝ T3

DS ∝ T3 after freeze-out. For
comparison, we also show the dark matter energy density of
ΛCDM in Fig. 7. As can be seen both dark WIMP scenarios
successfully reproduce the correct dark matter density of
ΛCDM in the late Universe.
The thermal freeze-out of dark WIMPs bears resem-

blance to the case of ordinary WIMPs. In both cases the
final relic density scales inversely with the annihilation
cross section. However, since the dark WIMPs reside in a
colder dark sector, there occurs an additional dependence on
the temperature ratio TDS=T ∼ α1=4. We find the following
approximate scaling relation, Ωχ ∝ α1=4=hσχχ→ξξvi, i.e.,
there occurs an extra factor α1=4 compared to the case of
ordinary WIMPs. Since α < 1 [cf. Eq. (19)] this extra factor
reduces the annihilation cross section required to reproduce
the observed dark matter density for dark WIMPs compared
to ordinary WIMPs. Since α cannot be too suppressed due
to the lower limit in Eq. (14), the required dark WIMP
annihilation cross section, however, still falls into the same
ball park as for ordinary WIMPs. This can directly be
verified for the two benchmark points in Table II, which
both reproduce the observed dark matter density with an
annihilation cross section hσχχ→ξξvi in the pb range.
As discussed in Sec. II B the dark sector energy density

can affect BBN and the CMB through its impact on the
Hubble expansion rate which is conveniently expressed in
terms of an extra contribution ΔNeff to the effective
neutrino number [as defined in Eq. (15)]. In addition to
the dark WIMPs, the dark sector contains the massless (or
very light) dark radiation degree of freedom ξ. We can
approximate the excess energy density (¼ the extra energy
density as compared to ΛCDM) after the dark big bang as
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ρDS − ρDM;0a3 ≃
π2

30
gDSðTDS;�ÞT4

DS;�: ð84Þ

In the regime, where the dark WIMPs are relativistic, χ
and ξ both contribute to the excess energy density and we
can neglect ρDM;0a3 in the above expression (in the
relativistic regime ρχ ≫ ρDM;0a3). In the nonrelativistic
regime ρχ ¼ ρDM;0a3 such that the excess energy density
matches the dark radiation density. We can, hence, express
the excess energy density in both regimes by the energy
density in the relativistic degrees of freedom [which
justifies Eq. (84)]. By plugging Eq. (84) into Eq. (15)
we obtain the (temperature-dependent) effective number of
extra neutrino species [7,150],

ΔNeff ¼ 0.63 ×

�
α

0.1

��
10

geffðT�Þ
�

1=3
�
gDSðTDS;�Þ
gDSðTDSÞ

�
1=3

;

ð85Þ

where we used Eq. (80) to express TDS=T in terms of α. As
can be seen, ΔNeff remains constant or slightly increases
[through the mild dependence on gDSðTDSÞ] as the Universe
cools down after the dark big bang. Therefore, the CMB
yields the most sensitive probe of the extra energy density
predicted in the dark WIMP scenario. The present CMB
limitΔNeff < 0.5 [cf. Eq. (16)] imposes a maximal strength
of the dark big bang α≲ 0.1 (see Sec. II B).
Equation (85) highlights another important distinction

between dark WIMPs and ordinary WIMPs. Dark WIMPs

can always be made compatible with ΔNeff constraints: if
the dark sector is sufficiently cold (i.e., α sufficiently
small) they only contribute a small fraction of a degree of
freedom to ΔNeff . Ordinary WIMPs, on the other hand,
share the temperature of the SM radiation bath. They
contribute ΔNeff ≳ 1 to the effective neutrino number as
long as they are relativistic. Therefore, contrary to dark
WIMPs, ordinary WIMPs are tightly constrained by BBN.
In particular, because the observed 4He fraction is incon-
sistent with a full additional neutrino species at BBN (see,
e.g., [4,151]), ordinary WIMPs need to be nonrelativistic
at the time of BBN. In contrast, dark WIMPs can evade
BBN bounds if α is sufficiently small. They only need to
become cold before washing out structures by their free
streaming (see Sec. III D), i.e., at temperatures (dark
sector temperatures) of T > 7.8 keV (Td ≳ keV).26 As a
consequence, dark WIMP dark matter can be realized for
significantly lower masses compared to standard WIMP
dark matter. Approximately, we have

mχ ≳
�
MeV ðWIMPsÞ
keV ðdark WIMPsÞ : ð86Þ

Let us now turn to the prospects of revealing the dark
WIMP scenario in future observations. In contrast to
ordinary WIMPs, dark WIMPs in a decoupled dark sector
do not yield any direct or indirect dark matter detection
signals. However, the prediction of a fractional contribution
to ΔNeff renders the dark WIMP scenario very exciting
from an observational point of view. For the two dark
WIMP benchmark examples of Table II with α ¼ Oð0.01Þ
all present cosmological constraints are satisfied. But the
resulting ΔNeff falls in the sensitivity window of next-
generation CMB experiments like CMB-S4 [152] and
Simons Observatory [153]. Intriguingly, the same param-
eter space that is testable through ΔNeff predicts a strong
gravitational wave signal in reach for future observatories
(as we will show in Sec. VI). Hence, dark WIMPs from a
dark big bang offer the thrilling opportunity of a simulta-
neous, correlated CMB and gravitational wave signal.

B. Heavy dark-zilla dark matter

We now turn to the opposite regime mχ ≫ ðΔVÞ1=4. In
fact, we will mostly focus on ultraheavy dark matter
particles with masses mχ ≫ 1010 GeV, which we dub
“dark-zillas” (since they represent a dark sector version
of WIMP-zillas [14])
While it may naively seem that the production of

ultraheavy particles in the dark big bang phase transition
is kinematically forbidden, such an argument misses the
Lorentz boost of the colliding bubble walls [12]. Since we

Dark Big Bang
Dark WIMP (BP1)
Dark WIMP (BP2)
CDM
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FIG. 7. Evolution of the dark WIMP energy density after the
dark big bang as a function of the visible sector temperature T.
The two benchmark cases of Table II are depicted. For com-
parison, the dark matter energy density in ΛCDM is also shown.

26The dark sector temperature can be up to about one order
of magnitude smaller than the visible sector temperature
[cf. Eq. (14)].
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are considering a decoupled dark sector, the bubbles are not
slowed down by pressure when they expand (this scenario
goes under the name of “runaway bubbles” in the liter-
ature). The Lorentz factor γw of the colliding bubble walls
can be estimated as [12]

γw ≃
Rb

R0

≃ 2
ΔV

mðΔϕÞ2
MPffiffiffiffiffiffiffiffiffiffiffiffiffi

g�ðT�Þ
p

T2�
; ð87Þ

where Rb again denotes the bubble radius at collision which
roughly corresponds to the typical distance between bubble
nucleation sites Rb ∼ Γ−1=4. In the second step we took the
bubble nucleation radius R0 from Eq. (60) and used Eqs. (5)
and (6) to express Rb in terms of the temperature of the SM
plasma at the dark big bang. The Lorentz factor can take
enormous values. For instance for a dark big bang around
the time of BBN we find γw ∼ 1020. The dark big bang can
(in principle) generate particles with mass up tomχ ∼ γwmϕ,
which opens the intriguing possibility of producing ultra-
heavy dark matter. We will see, however, that the efficiency
of high-energy particle emission depends on the elasticity of
the bubble collisions and on the nature of the final state
particles [15].
Since—contrary to the case of light dark matter dis-

cussed in Sec. VA—the production of heavy dark matter
critically depends on the particle nature, we will consider
the complementary cases of real scalar dark matter and of
Majorana fermionic dark matter. In both cases we assume
that one (or several) dark radiation degree(s) of freedom is
(are) also present in the theory which can efficiently be
produced in the bubble collisions.27 The Lagrangians read

LDS ¼
1

2
∂μϕ∂

μϕ−VðϕÞþLDR

þ
8<
:

1
2
∂μχ∂

μχ − yϕ2χ2 −m2
χ

2
χ2− κχ4 ðreal scalarÞ

i
2
χ̂=∂χ − yϕχ̂χ −mχ

2
χ̂χ ðMaj fermionÞ

;

ð88Þ

where the potential of the tunneling field VðϕÞ was defined
in Eq. (55), and LDR stands for the Lagrangian terms of
the dark radiation field(s). Notice that the Lagrangian for
the real scalar case agrees with the one considered in the
previous sections [cf. Eq. (54)]. It was restated merely for
convenience. The hierarchy mχ ≫ mϕ—which we will
assume in this section—is not stable against radiative

corrections (due to diagrams with χ running in the loop).
While this signals a potential fine-tuning issue, the SM
already suffers from an analogous hierarchy problem. We
shall, therefore, assume that the same (unknown) mecha-
nism that protects the electroweak scale against large
radiative corrections stabilizes the hierarchy mχ ≫ mϕ.
In order to assess the dark matter production by bubble

collisions, it is convenient to treat the colliding vacuum
bubbles as a classical external field configuration which
acts as a source term for the quantum states to which it
couples [12]. In [15], the evolution of the scalar field
configuration during a first-order phase transition has been
modeled for two idealized cases describing the colliding
bubble condensate:
(1) Perfectly elastic collisions: the bubble walls are

reflected upon collision, before the vacuum pressure
makes them approach and collide again—a process
that repeats many times with particle production
occurring in each step. This case is realized for
ΔV ≪ Vb such that the bubble collisions can tem-
porarily restore a region of the false vacuum phase
between the bubble walls.

(2) Totally inelastic collisions: the bubble walls merge
upon collision and efficiently transfer their energy to
scalar waves/particles. This case is realized for
ΔV ≫ Vb such that ϕ remains in the attraction of
the true minimum during the collision.

These two scenarios provide useful limiting cases with the
true particle production expected to fall between them. The
mean number of dark matter particles Nχ produced per unit
area A in the bubble collisions is given as [15]

Nχ

A
¼ 1

2π2

Zϵmax

ϵmin

dϵfðϵÞ
Z

dΠ2jM̂ðϕ → χχÞj2; ð89Þ

where jM̂ðϕ → χχÞj2 is the squared amplitude (spin-
averaged squared amplitude in case of fermionic χ) for
the decay ϕ → χχ,28 while Π2 stands for the relativistically
invariant two-body phase space element. The first integral
runs over the available invariant masses squared ϵ, where
ϵmin and ϵmax are the minimal and maximal ϵ imposed by
kinematics for producing particles χ,

ϵmin ¼ 4m2
χ ; ϵmax ¼ γ2wm2

ϕ: ð90Þ
Notice that

ffiffiffi
ϵ

p
corresponds to the summed energy of the

two outgoing particles.
The function fðϵÞ encodes the efficiency of particle

production as a function of energy which depends on the
details of the bubble collisions. For the limiting cases of
perfectly elastic and totally inelastic collisions the follow-
ing analytic expressions have been obtained in [15],

27If such a light degree of freedom would be absent, then this
would lead to a complicated cosmology since the production of
heavy dark matter particles χ is typically too inefficient to absorb
all the energy stored in the bubble walls. As a consequence long-
lived remnants of the colliding bubble condensate would emerge
from the dark big bang which would evolve in a nontrivial way. In
this work, we refrain from considering such a more involved case.

28Here we assume that χ is pair produced as suggested by dark
matter stability.
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fðϵÞ ¼

8>>><
>>>:

16ðΔϕÞ2
ϵ2

log

�
2ϵmax−ϵþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2max−ϵϵmax

p
ϵ

�
ðelasticÞ

4ðΔϕÞ2
ϵ2

�
ðϵ−m2

ϕÞ2
m4

ϕ
þ m2

ϕ

ϵmax

�
−1

log

�
2ϵmaxþϵþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2maxþϵϵmax

p
ϵ

�
ðinelasticÞ

: ð91Þ

In the next step, the matrix elements ϕ → χχ for the dark
matter pair-production need to be derived. We obtain29

Z
dΠ2jM̄ðϕ→ χχÞj2¼

8>><
>>:

y2ðΔϕÞ2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4m2

χ

ϵ

q
ðreal scalarÞ

y2

2πϵ

�
1− 4m2

χ

ϵ

�
3=2

ðMaj fermionÞ
:

ð92Þ

Notice the additional factor ϵ in the fermionic case. We can
now determine Nχ=A by plugging Eqs. (91) and (92) into
Eq. (89). In the integral, one can see that the extra factor of ϵ
in the case of fermions in Eq. (92) is responsible for the fact
that heavy fermions are produced much more efficiently
than heavy scalars in a first-order phase transition [15].
The number of dark-zillas produced at the walls of the

colliding bubbles can be translated to the dark-zilla number
density immediately after the dark big bang,

nχðT�Þ ≃
Nχ

A
3

2Rb
∼
Nχ

A
3Γ1=4

2
∼
Nχ

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
geffðT�Þ

p
T2�

MP
; ð93Þ

where Rb again stands for the bubble radius at collision.
In the last two steps we employed Eqs. (5), (6), and (27) in
order to express Rb in terms of T�.
The dark-zilla energy density can be written as

ρχ ¼ nχhEχi; ð94Þ

where hEχi denotes the mean dark-zilla energy. Immediately
after the dark big bang one has

hEχi� ¼
R
ϵmax
ϵmin

dϵ
ffiffiffi
ϵ

p
fðϵÞ R dΠ2jM̂ðϕ → χχÞj2R

ϵmax
ϵmin

dϵfðϵÞ R dΠ2jM̂ðϕ → χχÞj2 : ð95Þ

Due to the large Lorentz boost of the colliding bubble walls,
the produced dark-zillas can be very energetic.
Validity of the described formalism of particle produc-

tion in the phase transition requires ρχ;� < ρϕ. If ρχ;�
derived from the above expressions exceeds ρϕ this signals
an inconsistency since the total energy density released into

particles at the dark big bang can obviously not be larger
than ρϕ by means of energy conservation. What physically
happens if ρχ;� approaches ρϕ is that particle production in
the phase transitions becomes so efficient that it backreacts
on the field configuration of the vacuum bubbles [15].
Since this backreaction is not accounted for in the described
formalism (where the bubble walls are treated as an external
source), we can no longer trust the calculation in the regime
where ρχ;� approaches ρϕ. In the following we will thus
impose ρχ;� < ρϕ such that the formalism can safely be
applied.
We will, furthermore, assume that the fraction of vacuum

energy that is not transferred to dark-zillas is converted into
dark radiation; i.e., we set

ρDR;� ¼ ρϕ − ρχ;�: ð96Þ

This assumption is plausible since light degrees of freedom
are efficiently produced by the dark big bang and should
thus be the dominant final state. The dark radiation particles
ξ will quickly thermalize by self-scattering and form a dark
plasma characterized by the dark sector temperature TDS.
After the dark big bang, the total number of dark-zillas

in the Universe is (typically) conserved, and, hence, the
number density scales as nχ ∝ a−3. This is because—for a
fixed ρχ—the dark-zilla number density is inversely
proportional to their (ultraheavy) mass, nχ ∝ 1=mχ .
Hence, the rate at which dark-zillas find an interaction
partner to undergo pair annihilation is negligibly small.
The relic abundance of dark-zillas is thus simply given by

Yχ;∞ ≃
nχ;�
s�

∼
Nχ

A
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

geffðT�Þ
p

MPT�
; ð97Þ

where s� denotes the visible sector entropy at the time of
the dark big bang. Finally, the dark-zilla relic density is
obtained via Eq. (76).
In Fig. 8 we depict Yχ;∞ for a typical dark big bang phase

transition at the GeV scale. There occur four subcases in
which χ is either identified with a real scalar or a Majorana
fermion and in which we assume perfectly elastic or totally
inelastic bubble collisions, respectively. Also shown is the
required Yχ;∞ to reproduce the observed dark matter density.
It can be seen that the production of heavy χ is more
efficient (i) for fermionic χ and (ii) for elastic bubble

29Notice that one must include a factor of 1=2 in the phase-
space integral due to the occurrence of two identical particles in
the final state.
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collisions. The reason that heavy fermions are produced
more efficiently lies in the additional factor of ϵ in their
matrix element compared to the scalar case [cf. Eq. (92)].
Similarly, the spectral function fðϵÞ is larger by a factor
ϵ2=m4

ϕ for elastic bubble collisions compared to inelastic
ones [cf. Eq. (91)]. As a consequence, among the four
subcases, only Majorana fermion final states produced by
elastic bubble collisions reach a sufficiently large relic
abundance to account for all dark matter in the Universe.
We will, therefore, focus on this case in the following.
We do note other possibilities however: In this section

we only consider heavy real scalar and heavy Majorana
fermion final states. Among those, only the Majorana
fermions are sufficiently produced by bubble collisions to
account for the dark matter. We note, however, that Dirac
fermions and vector bosons also constitute viable dark-
zilla dark matter candidates. We refrain from considering
these additional cases in this work since they would give
rise to a similar phenomenology as for the Majorana
fermionic dark-zillas.
If we identify the dark-zillas with Majorana fermions

from elastic collisions, the high-energy Fourier modes of the
colliding bubbles contribute substantially to particle for-
mation. This leads to the nearly constant Yχ;∞ as a function
ofmχ , which we observe in Fig. 8 (unlessmχ approaches the
maximal available energy

ffiffiffiffiffiffiffiffiffi
ϵmax

p ¼ γmϕ, where an addi-
tional suppression sets in). Since Ωχ ∝ mχYχ;∞, the dark-

zilla relic density even grows with mχ . Figure 8 suggests
dark-zillas as heavy as mχ ∼ 1013 GeV can account for all
dark matter in the Universe—a remarkable observation
given the phase transition occurred at an energy scale as
low as T� ¼ 1 GeV. In contrast to many other dark matter
production mechanisms, a first-order phase transition is thus
able to efficiently produce high-mass particles.
As we already noted, the dark-zillas may carry sub-

stantial amounts of kinetic energy immediately after the
dark big bang. In order to constitute a viable dark matter
candidate, they need to lose their kinetic energy quickly
enough such that their free streaming does not spoil
structure formation.
The dark-zillas may lose their kinetic energy through

(i) collisions of the dark-zillas with dark radiation particles
ξ and (ii) redshifting as the Universe expands. The
collision rate of dark-zillas can be estimated as Γcollision ∼
hσχξ→χξvinξ ∼ T3

d=m
2
χ for dimensional grounds, while the

redshifting is controlled by the Hubble rate H ∼ T2=MP.
Because dark-zillas need to be ultraheavy to account for
the dark matter of the Universe (see above), we typically
find H ≫ Γcollision. For instance, for the phase transition
from Fig. 8, we find Γcollision=H ≲ 10−8 if we impose the
correct dark matter relic density.30 Assuming, therefore,
that redshifting is the dominant process, we can approxi-
mate the temperature of the Universe Tnr at which the
dark-zillas become nonrelativistic,

Tnr ≃
�
geffðT�Þ
geffðTÞ

�
1=3 a�

anr
T�≃

�
geffðT�Þ
geffðTÞ

�
1=3 mχ

hEχi�
T�; ð98Þ

where we employed entropy conservation in the first step
and the redshifting of hEχi ∝ 1=a in the second step (for as
long as χ is relativistic). The mean dark-zilla energy at the
dark big bang hEχi� can be obtained from Eq. (95). As an
estimate of the constraint from structure formation, we
can apply the WDM bound derived in Eq. (53), which
requires Tnr > 7.8 keV.
In Table III we present a parameter example of dark-zilla

dark matter produced in a dark big bang around the GeV
scale. The dark-zillas are chosen to be Majorana fermions
[see Eq. (88) for the model Lagrangian] and exhibit a large
mass of mχ ¼ 2.4 × 1011 GeV. While only a subdominant
fraction ρχ;� ∼ 10−3 × ρϕ of the vacuum energy released in
the dark big bang is transferred to dark-zillas (the remaining
99.9% going into dark radiation) the dark-zillas can
account for all dark matter in the Universe. This result
holds under the caveat that the dark-zilla production in the
phase transition is reasonably approximated by treating the

scalar (elastic) scalar (inelastic)

fermion (elastic) fermion (inelatic)

100 105 108 1011 1014 1017
10�60

10�50

10�40

10�30

10�20

10�10

dark matter

FIG. 8. Relic abundance of heavy dark-zillas produced by the
bubble collisions in a dark big bang first-order phase transition as
a function of their mass (input parameters: T� ¼ 1 GeV,
mϕ ¼ 2 GeV, Δϕ ¼ 0.5 GeV, y ¼ 0.01, γw ¼ 1017). The blue
(orange) lines refer to real scalar (Majorana fermion) dark-zillas
produced by perfectly elastic (solid lines) or totally inelastic
(dashed lines) bubble collisions. For comparison, the relic
abundance which corresponds to the observed dark matter density
is also shown (gray short-dashed line).

30We refer the reader to [18] for a more comprehensive
discussion of redshifting vs scattering of heavy dark matter
particles.
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bubble collisions as elastic.31 The dark-zillas fulfil the
structure formation constraint since they become non-
relativistic at a temperature Tnr ¼ 61 keV.
While we selected a benchmark point in which the dark-

zillas play the role of cold dark matter, we note that the
temperature of the nonrelativistic transition varies vastly
within the dark-zilla parameter space. Especially, there also
exist parameter combinations in which the heavy dark-zillas
only become nonrelativistic at keV temperatures and,
therefore, act as WDM. Their phase-space distribution
would be rather unique and very distinct from other
WDM candidates (like sterile neutrinos or thermal relics)
since their energy spectrum is determined by the bubble

dynamics during the phase transition. While the matter
power spectrum of warm dark-zillas would exhibit a small-
scale cutoff similar to thermal WDM, the shape of the cutoff
is (mildly) sensitive to the dark matter phase-space distri-
bution (see, e.g., [121,154]). It would be interesting to
explore the corresponding impact on the small-scale struc-
ture through hydrodynamic simulations. Intriguingly, if
future small-scale structure observations could test the
phase-space distribution of warm dark-zillas, this could
yield a direct experimental probe of their origin in a dark big
bang phase transition.
In addition to any potential WDM signal, the dark-zilla

scenario induces a nonvanishing ΔNeff . The main contri-
bution to ΔNeff , however, does not come from the dark-
zillas themselves, but rather from the dark radiation degree
(s) of freedom that are dominantly produced by the dark big
bang. Since the dark radiation (typically) thermalizes, we
can employ Eq. (85) to determine ΔNeff . For the parameter
example of Table III we obtain ΔNeff ¼ 0.10—a value
which is in reach for future CMB missions.
In contrast to the dark radiation, the dark-zillas themselves

will be more difficult to detect experimentally. An interesting
possibility, however, occurs if the symmetry which stabilizes
the dark-zillas is very weakly broken (for instance through
quantum gravity effects). In this case the dark-zillas could
decay into SM states with an extremely large lifetime (larger
than the age of the Universe). Even such a highly suppressed
decay could give rise to spectacular dark-zilla signatures in
the spectrum of ultrahigh energy cosmic rays, neutrinos, or
gamma rays (see, e.g., [155–162]).
The dark radiation and/or dark-zilla signatures will be

accompanied by the gravitational wave signal generated
during the first-order phase transition. As we will show in
the next section, substantial dark-zillas parameter space is
within reach for future gravitational wave detectors.

VI. GRAVITATIONAL WAVES FROM
THE DARK BIG BANG

First-order phase transitions can generate strong gravi-
tational radiation [28,53] by the collisions of true vacuum
bubbles [54,55] as well as sound waves [163–165] and
magnetohydrodynamic turbulence in the surrounding
plasma induced by the expanding bubbles [166–168]. In
the dark big bang scenario—because the tunneling field ϕ is
decoupled from ordinary matter and radiation—the vacuum
energy is entirely transferred to the expanding bubbles,
while interactions with the surrounding SM plasma play no
role. Therefore, only the bubble collisions contribute to the
gravitational wave signal from the dark big bang. We refer
the reader to [35,69–71,74,144,150,169–180] for some
previous work on the gravitational radiation from dark
phase transitions.
For simple dimensional grounds, the total energy density

emitted during the phase transition in the form of

TABLE III. Parameter example for dark-zilla dark matter
induced by a dark big bang. The dark-zilla is taken to be a
Majorana fermion. The vacuum bubbles nucleated in the phase
transition are assumed to collide perfectly elastically. Input
and derived parameters are as defined in Table I, and the coupling
y between the tunneling and dark matter fields is defined in
Eq. (88).

Input parameters

mχ [GeV] 2.4 × 1011

m [GeV] 0.76
μ [GeV] 1.19
y 0.02
λ 1

Derived parameters

mϕ [GeV] 1.14
ðΔVÞ1=4 [GeV] 0.41

Phase transition

t� [μs] 1.4
T� [GeV] 0.46
TDS;� [GeV] 0.54
α 0.03

Dark matter

ρχ;�=ρDR;� 0.001
hEχi�=mχ 1.9 × 104

Tnr [keV] 61
Ωχh2 0.120
ΔNeff 0.10

31Strictly elastic bubble collisions occur in the thin-wall regime
of vacuum tunneling. The benchmark point resides at the border
of the thin-wall regime such that an inelastic component is
expected in the bubble collisions. Precise predictions of Ωχ
would, therefore, require dedicated simulations in order to trace
the field configuration of the colliding bubbles that source the
dark-zillas. Since such simulations go beyond the scope of this
paper, we only state the result for the idealized totally elastic case
in this work.
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gravitational waves can be approximated by Eq. (9). The
frequency spectrum of the gravitational waves, on the other
hand, has to be derived from simulations of the colliding
bubble condensate. Such simulations rely on simplified
modeling of the vacuum bubbles. In the common envelope
approximation [54,55,181], the stress-energy is assumed to
be located in a thin shell at the bubble wall and to disappear
upon collision. Gravitational radiation emerges from the
uncollided envelope of the spherical bubbles, while the
interaction region is ignored. The envelope approximation is
expected to apply to totally elastic bubble collisions in which
ϕ becomes trapped temporarily in the false vacuum within
the bubble collision region [182]. This occurs in the thin-
wall regime of vacuum tunneling, i.e., when the energy
density difference between the true and the false vacuum is
small compared to the barrier separating the two [12,15,39].
In the opposite thick-wall regime, the tunneling field does,
however, not get trapped and rather undergoes oscillations
around the true vacuum within the bubble overlap region.
Correspondingly, the shear stress after collision does not
vanish—violating the basic assumptions of the envelope
approximation. Simulations of bubble collisions in the thick-
wall regime have been performed for instance in [183]. The
resulting gravitational wave spectrum is found to deviate
from the one predicted in the envelope approximation (see
also [184]). However, differences mostly affect the infrared
and ultraviolet tails of the spectrum, while the peak
amplitude and frequency turn out to be similar in the two
types of simulations. Therefore, in order to perform simple
estimates of the dark big bang parameters that generate an
observable gravitational wave signal, it is sufficient to
employ the envelope approximation.
The frequency spectrum of the emitted gravitational

waves in the envelope approximation normalized to the
critical density reads [54,55,181]

ΩGWh2ðfÞ ¼ 2.7 × 10−6
�

10

geffðT�Þ
�

1=3
�
H�
β

�
2

×

�
α

1þ α

�
2 3.8ðf=fpeakÞ2.8
1þ 2.8ðf=fpeakÞ3.8

; ð99Þ

where the first two terms on the right-hand side account for
the redshift from the time of the dark big bang until today.
Furthermore, we have assumed that the bubbles propagate
at the speed of light and that the surrounding plasma does
not inflict any friction on the expanding bubble walls. This
is justified due to the decoupling of the dark and the visible
sector.
The expected gravitational wave spectrum corresponds

to a (smoothly) broken power law with a maximum at the
redshifted peak frequency fpeak. The latter is determined as

fpeak ¼ a�fpeak;�

¼ 1.1 nHz

�
fpeak;�
H�

��
geffðT�Þ

10

�
1=6

�
T�

10 MeV

�
;

fpeak;� ≃ 0.2β; ð100Þ

where fpeak;� is the peak frequency at emission (i.e., at the
dark big bang), which is extracted from simulations [181].
The sharp broken power-law form distinguishes the gravi-
tational wave spectrum of first-order phase transitions from
the much smoother spectrum expected from astrophysical
sources including mergers of supermassive black hole
binaries.
Since the dark big bang must occur during radiation

domination (see Fig. 3), we can set α ≪ 1. Furthermore, the
duration of the phase transition β−1 is fixed to be 1=8 of a
Hubble time [cf. Eq. (7)]. This allows us to simplify the
expressions in Eqs. (99) and (100). We arrive at the
following gravitational wave spectrum and peak frequency
for a dark big bang phase transition,

ΩGWh2ðfÞ ≃ 4.2 × 10−8α2
�

10

geffðT�Þ
�

1=3

×
3.8ðf=fpeakÞ2.8

1þ 2.8ðf=fpeakÞ3.8
;

fpeak ≃ 1.8 nHz

�
geffðT�Þ

10

�
1=6

�
T�

10 MeV

�
: ð101Þ

In this work we are mainly focusing on dark big bangs
around or after the time of BBN. As evident from Eq. (101)
the corresponding gravitational wave spectrum is expected
to peak around nHz frequencies. Experimentally, the nHz-
band is covered by pulsar timing array (PTA) experiments
that aim at detecting gravitational-wave-induced variations
in the arrival time of the pulses emitted by millisecond
pulsars. Currently, among the most sensitive PTA experi-
ments searching for gravitational waves are the North
American Nanohertz Observatory for Gravitational Waves
(NANOGrav) [56], the European Pulsar Timing Array
(EPTA) [57], the Parkes Pulsar Timing Array (PPTA) [58],
and the Indian Pulsar Timing Array [185]. These join
their efforts as the International Pulsar Timing Array
(IPTA) [59].
Intriguingly, NANOGrav has recently found evidence for

a stochastic common-spectrum process in its 12.5-year
dataset that affects pulsar timing residuals—a signal which
was later confirmed by PPTA and EPTA. While stochastic
gravitational waves provide a plausible explanation for the
signal, proof of the characteristic quadrupolar Hellings-
Downs correlations [186] is, however, still withstanding. In
the near future, sensitivity improvements are expected from
the joined IPTA project. Furthermore, the Square Kilometre
Array (SKA) [60] is currently constructed and will join the
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search for gravitational waves towards the end of this
decade.
The gravitational wave signal from the dark big bang is

entirely determined by the strength α and the temperature T�
of the dark big bang [cf. Eq. (101)]. In Fig. 9 (left panel) we
depict the sensitivity reach of IPTA and SKA in terms of
these two parameters.32 It can be seen that the PTA
experiments will cover a substantial part of the parameter
space in which the dark big bang can account for all dark
matter. The parameter examples of dark WIMP and dark-
zilla dark matter induced by a dark big bang around or after
the time of BBN, which we studied in Sec. V—indicated by
the points in the figure—are fully within reach for the
upcoming gravitational wave searches. Since these also
exhibit a measurableΔNeff ¼ 0.1–0.3 (see Tables II and III)
this raises the exciting prospect of a correlated gravitational
wave and CMB signal. Dark cannibal scenarios, on the
other hand, tend to give a weaker gravitational wave signal
since the dark matter is not accompanied by dark radiation
in this case (and α is correspondingly lower, cf. Table I). We
remind the reader, however, that dark cannibals give rise to
complementary experimental probes—for instance related
to the shape of dark matter halos—due to their sizeable self-
interaction cross section.
In the right panel of Fig. 9 we depict the gravitational

wave spectrum for the dark WIMP and dark-zilla bench-
mark points together with the IPTA and SKA sensitivities.

In this panel we also indicate the frequency and amplitude
of the tentative NANOGrav gravitational wave signal (the
PPTA and EPTA signals are very similar). The tentative
NANOGrav signal would be consistent with the dark
WIMP-induced spectrum (purple curve in the Fig. 9).
Hence—as we already pointed out in [7]—the dark big
bang provides an attractive explanation for the NANOGrav
observation.
We can conclude that PTAs provide a powerful tool to

discover the gravitational radiation induced by the dark big
bang. In the most optimistic case, first hints of a dark big
bang have already been observed in the NANOGrav, PPTA,
and EPTA data and the Hellings-Downs correlations are
soon to be established.

VII. CONCLUSION

We have introduced an alternative cosmology in which
the hot big bang only produces the visible matter and
radiation, while the origins of dark matter lie in a dark big
bang—a first-order phase transition in the dark sector. The
dark big bang was found to be consistent with all
cosmological constraints. In particular, we proved that
the dark matter from the dark big bang exhibits the right
adiabatic perturbations required for successful structure
formation. These fluctuations are imprinted onto the dark
matter precisely at the dark big bang due to small
differences in the time of the dark big bang in different
patches of the Universe which are caused by the perturba-
tions in the (dominant) radiation plasma.

FIG. 9. Left panel: projected sensitivity of the IPTA and SKA pulsar timing arrays to a gravitational wave signal from the dark big
bang (colored regions). The hatched regions at the bottom and the top of the figure are excluded by a too low dark matter density or by a
too largeΔNeff . The parameter examples of dark cannibal (DC), dark WIMP (DW1 and DW2) and dark-zilla (DZ) dark matter studied in
Sec. V (Tables I–III) are indicated by the points in the figure. Right panel: gravitational wave spectrum for the dark WIMP and dark-zilla
parameter examples (indicated by the points in the left panel). Also shown are the projected sensitivities of IPTA and SKA as well as the
approximate amplitude and frequency of the tentative NANOGrav signal.

32The sensitivity reach was derived by requiring that
ΩGWh2ðfÞ induced by the dark big bang crosses the experimental
sensitivity curves in the f − ΩGWh2 plane provided in [187].
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Dark matter from the dark big bang can exhibit some
peculiar properties: it may be generated rather late in the
Universe—several days after the onset of primordial nucleo-
synthesis—without spoiling the light element abundances.
Furthermore, its possible mass range is enormous. We have
identified successful scenarios of dark WIMP and dark
cannibal dark matter with mass as low as mχ ∼ 10 keV,
where the correct relic density occurs through a thermal
freeze-out in the dark plasma. In contrast, the collisions of
true vacuum bubbles during the phase transition can
produce viable dark-zilla dark matter as heavy as
mχ ∼ 1012 GeV—even for a dark big bang at the MeV
scale. Such huge masses are possible because the expanding
bubble walls do not experience any friction and, therefore,
typically reach gigantic Lorentz boosts before they collide
—a direct consequence of the decoupling of the visible and
the dark sector.
While conventional direct and indirect dark matter

searches are doomed to fail in the dark big bang scenario,
there nevertheless occur exciting experimental signatures. In
particular, the dark big bang naturally allows for realizations
of warm and/or self-interacting dark matter that can be
probed through its imprints on dark matter halos and
structures in the Universe. While the light dark matter
candidates exhibit a (redshifted) thermal spectrum, the phase
space distribution of the ultraheavy dark-zillas is set by the
bubble collisions during the phase transition. Intriguingly, if
future warm dark matter searches are able to access the dark
matter phase space distribution, a direct test of the dark big
bang origin of the dark matter could become feasible.
The dark matter from the dark big bang is often

accompanied by a dark radiation density that manifests
as an extra contribution ΔNeff to the effective neutrino
number measured in the CMB. For instance, the dark
WIMP and dark-zilla benchmark scenarios studied in this
work (see Sec. V) give rise to ΔNeff ¼ 0.1–0.3. This range
of ΔNeff is fully within reach for upcoming CMB experi-
ments like CMB-S4 [152] and Simons Observatory [153].
The dark big bang phase transition generates strong

gravitational radiation. We derived the gravitational wave
frequency spectrum of the dark big bang within the standard
envelope approximation. Then, we investigated the sensi-
tivity of ongoing and upcoming pulsar timing array experi-
ments to the gravitational wave signal from the dark big
bang. We found that already the ongoing IPTA run [59]
(which combines several individual PTA experiments) has

an exciting discovery potential for dark big bangs that occur
around or after BBN. Intriguingly, a tentative gravitational
wave signal by the NANOGrav experiment [56] (included in
the IPTA network) could already be interpreted as the first
sign of the dark big bang [7]. The upcoming SKA [60] will
further drastically increase the sensitivity of experimental
searches for the dark big bang. In addition, there are ongoing
efforts to lower the frequency threshold of PTAs [188],
which would allow the measurement of the peak in the
gravitational wave spectrum for dark big bang phase
transitions that occur long after BBN. Excitingly, the
strength of the gravitational wave signal from the phase
transition simultaneously determines the dark big bang
contribution to ΔNeff . This raises the fascinating prospect
of correlated gravitational wave and CMB signals of the dark
big bang which can be probed at the most sensitive near-
future laboratories.
In the future, it will be interesting to generalize our

results to different variants of dark big bang scenarios in
several ways. First, one can generalize the dark big bang
beyond a first-order phase transition. While the gravita-
tional wave production described in this paper requires the
bubble collisions of a first-order phase transition, other
parts of our analysis—including aspects of structure for-
mation as well as of the dark matter phenomenology—
would hold for more general dark-big-bang-type scenarios.
Furthermore, variations of the discussed scenario including
small couplings between the dark and the visible sector
could give rise to exciting signatures in cosmic rays (see
Sec. V B), dark matter searches, as well as in the CMB
and BBN.
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[178] M. Lewicki, O. Pujolàs, and V. Vaskonen, Eur. Phys. J. C

81, 857 (2021).
[179] M. Reichert, F. Sannino, Z.-W. Wang, and C. Zhang, J.

High Energy Phys. 01 (2022) 003.
[180] R. Jinno, B. Shakya, and J. van de Vis, arXiv:2211.06405.
[181] S. J. Huber and T. Konstandin, J. Cosmol. Astropart. Phys.

09 (2008) 022.
[182] R. Jinno, T. Konstandin, and M. Takimoto, J. Cosmol.

Astropart. Phys. 09 (2019) 035.
[183] D. Cutting, E. G. Escartin, M. Hindmarsh, and D. J. Weir,

Phys. Rev. D 103, 023531 (2021).
[184] M. Lewicki and V. Vaskonen, Eur. Phys. J. C 83, 109

(2023).
[185] P. Tarafdar et al., Pub. Astron. Soc. Aust. 39, e053 (2022).
[186] R. w. Hellings and G. s. Downs, Astrophys. J. Lett. 265,

L39 (1983).
[187] K. Schmitz, J. High Energy Phys. 01 (2021) 097.
[188] W. DeRocco and J. A. Dror, arXiv:2212.09751.

DARK MATTER AND GRAVITATIONAL WAVES FROM A DARK … PHYS. REV. D 107, 083522 (2023)

083522-31

https://doi.org/10.1142/S0217751X1730023X
https://doi.org/10.1007/JHEP08(2019)050
https://doi.org/10.1007/JHEP08(2019)050
https://doi.org/10.1016/0550-3213(91)90438-4
https://doi.org/10.1103/PhysRevD.80.043505
https://doi.org/10.1103/PhysRevD.80.043505
https://doi.org/10.1088/1475-7516/2021/01/024
https://doi.org/10.1093/mnras/stab3241
https://doi.org/10.1093/mnras/stab3241
https://arXiv.org/abs/2207.10638
https://doi.org/10.1103/PhysRevD.79.023519
https://arXiv.org/abs/0912.2346
https://doi.org/10.1103/PhysRevD.85.063510
https://doi.org/10.1103/PhysRevD.89.115017
https://doi.org/10.1103/PhysRevD.50.3637
https://doi.org/10.1016/j.physletb.2021.136238
https://doi.org/10.1016/j.physletb.2021.136238
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2020/11/E02
https://arXiv.org/abs/1907.04473
https://doi.org/10.1088/1475-7516/2021/03/101
https://doi.org/10.1088/1475-7516/2021/03/101
https://doi.org/10.1016/0550-3213(92)90438-H
https://doi.org/10.1016/S0927-6505(98)00028-0
https://doi.org/10.1103/PhysRevLett.79.4302
https://doi.org/10.1103/PhysRevLett.79.4302
https://doi.org/10.1016/j.astropartphys.2008.02.005
https://doi.org/10.1016/j.astropartphys.2008.02.005
https://doi.org/10.1103/PhysRevD.88.015004
https://doi.org/10.1088/1475-7516/2013/11/054
https://doi.org/10.1088/1475-7516/2013/11/054
https://doi.org/10.1103/PhysRevD.98.015030
https://doi.org/10.1103/PhysRevLett.112.041301
https://doi.org/10.1103/PhysRevD.92.123009
https://doi.org/10.1103/PhysRevD.96.103520
https://doi.org/10.1103/PhysRevD.101.089902
https://doi.org/10.1103/PhysRevD.101.089902
https://doi.org/10.1103/PhysRevD.66.024030
https://doi.org/10.1103/PhysRevD.66.024030
https://doi.org/10.1103/PhysRevD.66.103505
https://doi.org/10.1103/PhysRevD.66.103505
https://doi.org/10.1088/1475-7516/2009/12/024
https://doi.org/10.1088/1475-7516/2009/12/024
https://doi.org/10.1103/PhysRevLett.115.181101
https://doi.org/10.1103/PhysRevD.96.075045
https://doi.org/10.1103/PhysRevD.96.075045
https://doi.org/10.1007/JHEP05(2019)190
https://doi.org/10.1007/JHEP05(2019)190
https://doi.org/10.1103/PhysRevD.100.055025
https://doi.org/10.1103/PhysRevD.100.055025
https://doi.org/10.1007/s11433-021-1724-6
https://doi.org/10.21468/SciPostPhys.10.2.047
https://doi.org/10.21468/SciPostPhys.10.2.047
https://doi.org/10.1007/JHEP05(2021)154
https://doi.org/10.1103/PhysRevD.104.035005
https://doi.org/10.1103/PhysRevD.104.063501
https://doi.org/10.1103/PhysRevD.104.063501
https://doi.org/10.1140/epjc/s10052-021-09669-6
https://doi.org/10.1140/epjc/s10052-021-09669-6
https://doi.org/10.1007/JHEP01(2022)003
https://doi.org/10.1007/JHEP01(2022)003
https://arXiv.org/abs/2211.06405
https://doi.org/10.1088/1475-7516/2008/09/022
https://doi.org/10.1088/1475-7516/2008/09/022
https://doi.org/10.1088/1475-7516/2019/09/035
https://doi.org/10.1088/1475-7516/2019/09/035
https://doi.org/10.1103/PhysRevD.103.023531
https://doi.org/10.1140/epjc/s10052-023-11241-3
https://doi.org/10.1140/epjc/s10052-023-11241-3
https://doi.org/10.1017/pasa.2022.46
https://doi.org/10.1086/183954
https://doi.org/10.1086/183954
https://doi.org/10.1007/JHEP01(2021)097
https://arXiv.org/abs/2212.09751

