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We present a mechanism for generating ultralight dark photon dark matter in the early Universe via a
dilatonlike scalar field coupled to the dark photon’s kinetic term. Energy is initially stored in the condensate
of the dilaton, which resonantly produces dark photons when it begins oscillating in the early Universe.
While similar scenarios with axion–dark-photon couplings require large coupling coefficients to fully
populate the dark photon, the dilatonic coupling features a unique regime: When the dark photon’s mass is
half that of the dilaton, dark photons are copiously produced even when the dilaton undergoes small-
amplitude oscillations. Scenarios consistent with the cosmic microwave background allow for ultralight
vector dark matter with mass as light as 10−20 eV.
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I. INTRODUCTION

Ultralight, massive dark photons (i.e., spin-1 vector
bosons) are a curious candidate for the dark matter (DM)
in our Universe. Like scalar fuzzy DM [1–4], ultralight dark
photons exhibit wavelike properties on macroscopic scales,
λ≲ 10 pc, for masses mγ0 ≳ 10−21 eV [5,6]. Halos sup-
ported by dark photons can therefore feature vector solitonic
cores [5] reminiscent of those in scalar fuzzyDMmodels [1].
However, these vector solitons are distinguished due to their
intrinsic spins [7,8]. The vectorlike nature of the condensate
also allows for distinctive higher energy solitonic configu-
rations similar to Proca stars with radially directed vec-
tor fields [5]. Furthermore, stable starlike solutions are
possible when self-interactions of the dark photons are
included [9,10]. Vector dark matter’s predictions for
small-scale structure also differ considerably from its scalar
cousin due to the nature of its production mechanisms,
which typically result in a highly peaked power spectrum on
small scales [11–15]. Such a peaked spectrum leads to rich

small-scale structure, with significant energy density stored
in boson stars [8,16].
Recent studies on dynamical heating of ultrafaint dwarf

galaxies via coherent fluctuations in fuzzy dark matter
put pressure on the very low mass end of the mass
spectrum, requiringmfdm > 10−19 eV [17]. Slightly weaker
limits are expected to apply to the vector scenario due to the
reduced interference of the multiple polarization states [8].
Reference [18] argues that a generic bound mfdm >
10−18 eV applies when dark matter is produced by a causal
process after inflation. While scalar [19–22] and vec-
tor [23,24] masses in the range 10−13–10−11 eV are con-
strained by solar-mass black hole superradiance bounds
(and lighter masses could be probed by supermassive black
holes [22]), these can be evaded by self-interactions of the
vector field [15], leaving a wide range of masses viable.
Production of dark photon DM in the ultralight particle

mass range is a longstanding problem. Early models
that produced dark photons from a misalignment mecha-
nism analogous to that of scalar dark matter production [25]
were later shown to require nonminimal couplings to
the Ricci scalar [26–28] that can lead to violations of
unitarity at relatively low energy scales in longitudinal
graviton-photon scattering [15]. Massive dark photons
minimally coupled to Einstein gravity (but otherwise
decoupled from other matter fields) are produced during
slow-roll inflation, but their abundance matches the one of
DM only if mγ0 ≳ 10−5 eV [11,29–31]. Finally, an oscillat-
ing Higgs [32] or an oscillating, misaligned axion [15,33]
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allow for the resonant production of ultralight dark photons
with the correct DM abundance. While these resonant
vector DM production models are based on well-motivated
theories, they pose questions about naturalness and choices
of couplings. In particular, the dimensionless coupling
constants should respect a hierarchy in the case of the
oscillating Higgs [32], and in the axion models, large
couplings between the axion and the Chern-Simons term,
FF̃, of the vector field are exacerbated by the small gauge
couplings that are required [15,33].
In this work, we identify a new variant of the resonant

mechanism for generating dark photon DM that does not
require unnaturally large couplings. In addition to the
dark photon, we consider a scalar (or “dilaton”) ϕ kineti-
cally coupled to the dark photon via an interaction
L ⊃ WðϕÞFμνFμν=4. This form of interaction was studied
in Refs. [34,35], where ϕ played the role of the inflaton.
During slow-roll inflation, ultralight dark photons can be
produced with the right DM abundance provided that the
effective dependence of the coupling on the Friedmann-
Lemaître-Robertson-Walker (FLRW) scale factor is
WðϕðaÞÞ ∝ a−n for n close to 4. Reference [36] considered
a spectator ϕ whose evolution during inflation produces
large-wavelength dark photons. In this work, we instead
consider ϕ to be a light spectator field during inflation
whose postinflationary oscillations (rather than its infla-
tionary dynamics) give rise to the resonant production of
vector DM.
When the dilaton oscillates with large amplitude

[ϕ=M ≫ 1, where M is the mass scale associated with
the coupling function WðϕÞ], dark photons are efficiently
produced via broad resonance, closely resembling models
that feature a coupling to an axion [15,33]. Typically, such
parametric resonances become inefficient for small oscil-
lation amplitudes ϕ=M < 1, below which

WðϕÞ ≈ 1þ ϕ=M þO½ðϕ=MÞ2�: ð1Þ

As such, large couplings are required to completely deplete
the dilaton (or axion) condensate into the vector. However,
the dilatonic coupling exhibits a unique regime. When the
vector mass is half the dilaton mass, mγ0 ¼ mϕ=2, a low-
momentum instability becomes efficient at late times, i.e.,
under small amplitude oscillations ϕ < M. We show this
explicitly for the benchmark model WðϕÞ ¼ eϕ=M, but our
main results depend only on the small-amplitude behavior
being of the form Eq. (1). With M ≈ 1017 GeV, the model
successfully realizes ultralight vector DM scenarios
(mγ0 ∼ 10−21 eV) consistent with cosmic microwave back-
ground (CMB) bounds on isocurvature perturbations and
the scale of inflation. Unlike existing resonance mecha-
nisms [15,33], this mechanism therefore does not require a
large coupling between the dark photon and the scalar,
instead requiring a specific tuning between the masses of
the scalar and dark photon.

In the remainder of this paper, we detail the governing
equations for a massive vector coupled to a dilaton (Sec. II),
study the resonant production of dark photons due to an
oscillating dilaton (Sec. III), and present the resulting relic
abundance of dark photon dark matter and viable parameter
space given various cosmological constraints (Sec. IV). We
conclude in Sect. V. Throughout, we work with an FLRW
metric of the form

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð2Þ

with aðtÞ the scale factor. We use natural units in which
ℏ ¼ c ¼ 1 and the reduced Planck mass mPl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
.

Greek spacetime indices are contracted via the Einstein
summation convention, while repeated Latin spatial indices
are contracted with the Kronecker delta function (regard-
less of their placement). Dots denote derivatives with
respect to cosmic time t, and the Hubble rate is H ≡ _a=a.

II. MODEL AND DYNAMICS

We consider a dilatonlike scalar ϕ coupled to a vector Aμ

via the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

Pl

2
R −

1

2
∂μϕ∂

μϕ −
1

2
m2

ϕϕ
2

−
WðϕÞ
4

FμνFμν −
1

2
m2

γ0AμAμ

�
; ð3Þ

where Fμν ¼ ∂μAν − ∂νAμ and R is the Ricci scalar. The
modulation of the dark photon kinetic term byWðϕÞ can be
interpreted as a ϕ dependence of the dark Uð1Þ coupling
strength. The dark photon mass term could arise through
the Stueckelberg or Higgs mechanisms. In general, mγ0

could be a function of ϕ, but its ϕ dependence need not
coincide with the one of the dark photon gauge coupling.
For simplicity, throughout this work, we treat mγ0 as a
constant Stueckelberg/Proca mass term.
The Euler-Lagrange equations for Eq. (3) are

0 ¼ −∇μ∇μϕþm2
ϕϕþW0ðϕÞ

4
FμνFμν ð4aÞ

0 ¼ −∇μ½WðϕÞFμν� þm2
γ0A

ν: ð4bÞ

Equation (4b) implies that

∇μAμ ¼ 0; ð5Þ

which coincides with the Lorenz gauge choice (for gauge
theories) but is instead here a constraint imposed by
consistency of the equations of motion. In FLRW space-
time, Eq. (2) and Eqs. (4a) and (4b) reduce to
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0 ¼ ϕ̈þ 3H _ϕ −
1

a2
∂i∂iϕþm2

ϕϕþW0ðϕÞ
4

FμνFμν ð6aÞ

0 ¼ Ä0 þ 3H _A0 þ 3 _HA0 −
1

a2
∂j∂jA0 þ

2H
a2

∂iAi

þ m2
γ0

WðϕÞA0 −
1

a2
∂iWðϕÞ
WðϕÞ ð∂iA0 − _AiÞ ð6bÞ

0 ¼ Äi þH _Ai −
1

a2
∂j∂jAi þ 2H∂iA0 þ

m2
γ0

WðϕÞAi

−
∂
μWðϕÞ
WðϕÞ Fμi: ð6cÞ

We expand the vector in Fourier modes as

A0ðt;xÞ ¼
Z

d3k
ð2πÞ3 e

ik·xA0ðt;kÞ ð7Þ

Ajðt;xÞ ¼
X

λ∈f�;kg

Z
d3k
ð2πÞ3 e

ik·xAλðt;kÞϵλjðkÞ; ð8Þ

where the polarization vectors satisfy

ϵλmðkÞ�ϵλ0mðkÞ ¼ δλλ
0

ikmϵ�mðkÞ ¼ 0

ϵλmðkÞ ¼ ϵλmð−kÞ� ikmϵ
k
mðkÞ ¼ k

iεlmnkmϵ�n ðkÞ ¼ �ϵ�l ðkÞ iεlmnkmϵ
k
nðkÞ ¼ 0; ð9Þ

and we likewise expand the dilaton into

ϕðt;xÞ ¼ ϕ̄ðtÞ þ
Z

d3k
ð2πÞ3 e

ik·xδϕðt;kÞ: ð10Þ

To linear order in spatial fluctuations, Eq. (6c) then
decomposes into

0 ¼ Ä� þ
�
H þ

_̄W
W̄

�
_A� þ

�
k2

a2
þm2

γ0

W̄

�
A� ð11aÞ

0 ¼ Äk þ
�
H þ

_̄W
W̄

�
_Ak þ

�
k2

a2
þm2

γ0

W̄

�
Ak

þ
� _̄W
W̄

− 2H

�
kA0; ð11bÞ

using the shorthand W̄ ¼ Wðϕ̄Þ. The Lorenz constraint
Eq. (5) sets

kAk=a2 ¼ _A0 þ 3HA0; ð12Þ

which combines with Eq. (6b) to give

0 ¼ Ä0 þ 5H _A0 þ
�
k2

a2
þm2

γ0

W̄
þ 3 _H þ 6H2

�
A0: ð13Þ

Note that the third-order differential equation yielded by
substituting Eq. (12) for Ak in Eq. (11b) is proportional to

the time derivative of Eq. (13) plus 3H þ _̄W=W̄ times
Eq. (13); i.e., the system is self-consistent.
The dynamics of the transverse modes and A0 are most

conveniently studied in terms of the rescaled fields

A� ≡
ffiffiffiffiffiffiffi
aW̄

p
A� ð14aÞ

A0 ≡ a5=2A0; ð14bÞ

for which Eqs. (11a) and (13) respectively reduce to

Ä� ¼ −
�
k2

a2
þm2

γ0

W̄
−
∂
2
t

ffiffiffiffiffi
W̄

p
ffiffiffiffiffi
W̄

p −
H _̄W
2W̄

−
_H
2
−
H2

4

�
A� ð15aÞ

Ä0 ¼ −
�
k2

a2
þm2

γ0

W̄
þ

_H
2
−
H2

4

�
A0: ð15bÞ

In general, WðϕÞ → 1 at late times (as ϕ decays with
expansion), and A� and

ffiffiffi
a

p
A� then coincide, but an

instability analysis is more straightforward in terms of
the former. In addition, Eq. (12) sets

Ak ¼
1ffiffiffi
a

p
k

�
_A0 þ

H
2
A0

�
; ð16Þ

i.e., one can study the (relatively simpler) dynamics of
Eq. (15b) in place of the longitudinal mode.

III. STABILITY ANALYSIS

To characterize the (in)stability of vector modes in an
oscillating dilaton background, we first consider the limiting
case ofMinkowski spacetime.We then apply these results to
FLRW spacetime, relying on the fact that (for the parameter
space of interest) the relevant dynamics occur on timescales
much shorter than the instantaneous Hubble rate.

A. Small-amplitude broad resonance
in Minkowski spacetime

In Minkowski (i.e., nonexpanding) spacetime, the homo-
geneous component of the dilaton evolves according to

̈ϕ̄þm2
ϕϕ̄ ¼ 0; ð17Þ

solved by ϕ̄ðtÞ ¼ ϕ0 cosðmϕtÞ under the initial condition

ϕ̄ðtÞ → ϕ0 and _̄ϕðtÞ → 0 for t ≪ 1=mϕ. For concreteness,
we set

WðϕÞ ¼ eϕ=M; ð18Þ
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for which Eqs. (15a) and (15b) (after substituting a ¼ 1 and
H ¼ 0) are

Ä� ¼ −
�
k2 þ m2

γ0

eϕ̄=M
−

̈ϕ̄
2M

−
� _̄ϕ

2M

�2�
A� ð19aÞ

Ä0 ¼ −
�
k2 þ m2

γ0

eϕ̄=M

�
A0: ð19bÞ

Because ϕ̄ðtÞ is periodic, Eqs. (19a) and (19b) describe
harmonic oscillators with periodic frequencies. By the
Floquet theorem [37,38], their solutions are of the form
PþðtÞeμt þ P−ðtÞe−μt, where μ is the Floquet exponent and
P�ðtÞ ¼ P�ðtþ TÞ, with T being the period of the back-
ground. Modes for which ℜðμÞ ≠ 0 are unstable and grow
exponentially with time. We next study the structure of
parametric instabilities in these equations.
For massless dark photons, unstable solutions are present

only for sizeable oscillation amplitudes, ϕ0 ≳M. While
massive dark photons also experience these large-
amplitude instabilities (provided the mass is not too large,

i.e.,mγ0 ≲ _̄W=W̄ ∼mϕ), the presence of the mass term gives
rise to a novel low-momentum (k ≪ mϕ) instability in the
small-amplitude (ϕ0 ≪ M) regime when mγ0=mϕ ¼ 1=2.
To see how this instability arises, we first note that in this
limit and to leading order in ϕ0=M, Eqs. (19a) and (19b)
tend to the Mathieu equation

0 ¼ d2X
dz2

þ ½p − 2q cosð2zÞ�XðzÞ; ð20Þ

where

z ¼ mϕt

2
ð21aÞ

p ¼
�
2k
mϕ

�
2

þ
�
2mγ0

mϕ

�
2

ð21bÞ

q ¼ 2ϕ0

M

m2
γ0

m2
ϕ

×

�
1 X ¼ A0

1 −m2
ϕ=ð2m2

γ0 Þ X ¼ A�:
ð21cÞ

The solution to the Mathieu equation [37], P̃þðtÞeμ̃z þ
P̃−ðzÞe−μ̃z, is unstable for small q provided that p ¼ n2

for integer n. For instance, the case n ¼ 1, corresponding
to mγ0 ¼ mϕ=2 for modes k ≪ mϕ, gives rise to an
unstable solution in the limit of small q (and therefore
of small amplitude). The Floquet exponent of the Mathieu
equation in this regime is known analytically to be
limq→0ℜðμ̃n¼1Þ ≈ jqj=2 [37], yielding1

ℜðμÞ ≈ mϕ

8

ϕ0

M
ð22Þ

for the solutions to Eqs. (19a) and (19b) when ϕ0 ≪ M
and k ≪ mϕ.
Figure 1 depicts the Floquet exponents for the transverse

[Eq. (19a)] and longitudinal [Eq. (19b)] components as a
function of the vector’s wave number and the dilaton’s
oscillation amplitude. In addition to the broad instability
bands for large momenta and amplitudes, Fig. 1 exhibits the
above-described band at small k=mϕ extending down to
ϕ0=M → 0. We note that the unstable band does not extend
to arbitrarily small amplitudes if mγ0 is not precisely equal
to mϕ=2. In particular, the width of the instability band in k
in the small-q limit is jpn¼1 − 1j ¼ jqj [37]. Quantifying
the mass tuning as

δ≡
�
mγ0

mϕ

�
2

−
1

4
; ð23Þ

the width of the instability band is

����
�

k
mϕ

�
2

þ δ

����≲ ϕ0

8M
: ð24Þ

The low-momentum instability band vanishes for ϕ0=M <
8δ (though if δ < 0, a narrow instability band persists to
arbitrarily small ϕ0=M over wave numbers satisfying
jδj − ϕ0=8M ≲ ðk=mϕÞ2 ≲ jδj þ ϕ0=8M). Below we esti-
mate the level of mass tuning this implies for viable dark
photon dark matter scenarios.

B. Parametric resonance in FLRW

The above results for the resonant instabilities in
Minkowski spacetime can be extended to the expanding
Universe by accounting for the redshifting of physical
momenta k=a and of the dilaton’s oscillation amplitude.
Specifically, in an FLRW spacetime, the dilaton begins to
oscillate when HðtiÞ ≈mϕ with an initial amplitude ϕ0;i

that subsequently redshifts as2

ϕ0ðtÞ ≈ 1.5ϕ0;i

�
aðtÞ
ai

�
−3=2

ð25Þ

in the radiation-dominated era. The corresponding time
dependence of the coefficients in the equations of motion
Eqs. (19a) and (19b), which nominally brings them away
from the form of the Mathieu equation Eq. (20), is
negligible when the dilaton’s oscillation rate is much faster

1Note that for n ¼ 1, the Mathieu resonance parameters q
[Eq. (21c)] for A� and A0 have opposite signs but the same
magnitude (and therefore the same Floquet exponent).

2More precisely, the solution to Eq. (6a) for the homogeneous
mode ϕ̄ðtÞ in a radiation background is Γð5=4Þϕ0;iJ1=4ðmϕtÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffi

mϕt=24
p

, where Jν is the order-ν Bessel function. The asymptotic
oscillation amplitude is 23=2Γð5=4Þϕ0;i=ða=aiÞ3=2

ffiffiffi
π

p
.
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than the expansion rate (which, in the radiation-dominated
era, evolves as H ∝ 1=a2). [Likewise, the terms propor-
tional to the Hubble rate in Eqs. (15a) and (15b) are also
negligible in this limit.] That is, at sufficiently late times,
the dilaton’s oscillation amplitude and each mode’s
physical wave number are effectively constant over each
oscillation. The Minkowski-space Floquet exponent
Eq. (22) therefore captures the instantaneous growth rate
in FLRW spacetime to good approximation upon replacing
the constant ϕ0 with the (slowly) decaying amplitude
Eq. (25).
Depleting the dilaton’s energy (so that the majority of the

dark matter comprises dark photons) requires parametric
resonance to be efficient [38], i.e., that the exponential
growth rate is significantly greater than the Hubble rate
(ℜðμÞ=H ≫ 1) for a sufficiently long duration. Crucially,
the expansion rate decays faster with expansion than the
dilaton’s oscillation amplitude [Eq. (25)] in the radiation-
dominated era—namely, the exponential growth rate
Eq. (22) relative to the expansion rate is

ℜ½μðtÞ�
H

¼ 1

8

3ϕ0;i

2M

�
aðtÞ
ai

�
1=2

: ð26Þ

Hence, the efficiency (i.e., per e-fold of expansion) of
resonance grows with the expansion of the Universe.
Accordingly, ℜ½μðtÞ�=H is approximately equal to the
quantity plotted in Fig. 1 times

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðtÞ=ai

p
· 3ϕ0;i=2M.

Furthermore, the comoving width of the instability band

also grows with time, bounded above by ðk=mϕÞ2 ≤
ϕ0;i=8M · ða=aiÞ1=2 [via Eq. (24)] and below by the
comoving horizon scale mϕ=ða=aiÞ (corresponding to
the gray lines in Fig. 1).
Eq. (26) shows that, even if the initial oscillation

amplitude is small, after the Universe expands by a factor
∝ðϕ0;i=MÞ−2, the rate of particle production becomes
efficient. More precisely, production of the vector com-
pletes soon after its energy density becomes comparable to
the dilaton’s. Via Eq. (25), ρϕ ≈m2

ϕϕ
2
0;i=ða=aiÞ3. Since the

vector is produced well after ai with a comoving wave
number of order mϕ, it is nonrelativistic at production; its
energy density is then approximately

ρAðtÞ ≈
m2

γ0

2ða=aiÞ3W̄
X
λ

hAλðt;xÞ2i; ð27Þ

where

hAλðt;xÞ2i¼
Z

d lnk
k3

2π2
hjAλðti;kÞj2ie2

R
t

ti
dt0ℜ½μðtÞ�

: ð28Þ

Before production, Aλ is in the vacuum state [39,40],

hjAλðti; kÞj2i ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=aÞ2 þm2

γ0

q : ð29Þ

FIG. 1. Real part of the Floquet exponent μk for the solutions of the equations of motion describing the transverse [Eq. (19a)] and
longitudinal [Eq. (19b)] sectors. Both panels fix mϕ ¼ 2mγ0 , for which a region with ℜðμkÞ > 0 extends to arbitrarily small ϕ0=M and
k=mϕ (depicted in the inset panels). Results are scaled by ϕ0=M to facilitate interpreting results in FLRW spacetime (see the main text
for details). Note that the horizontal axis corresponds to the physical wave number k=a in FLRW spacetime. Gray lines depict the
trajectory of the physical horizon HðtÞ ¼ mϕ=½aðtÞ=ai�2 for three different initial amplitudes ϕ0;i ¼ M,

ffiffiffi
5

p
M, and 5M, roughly

indicating the low–wave-number cutoff for resonance in the radiation era as a function of time.
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Setting the growth rate to that from Eq. (26) in Eq. (27),
taking the integral over wave number to be dominated by
modes with k ∼mϕ, and noting that W̄ ≈ 1 at late times,

ρAðtÞ ≈
m2

γ0m
2
ϕ

ða=aiÞ3
exp

�
3ϕ0;i

4M

�
a
ai

�
1=2

�
: ð30Þ

The dilaton and vector have comparable energy density at a
scale factor

a⋆
ai

≡
�
3ϕ0;i

4M

�
−2

ln

�
m2

ϕ

m2
γ0

ϕ2
0;i

m2
ϕ

�2

: ð31Þ

For ϕ0;i=M ¼ 1 and mγ0 ¼ 10−18 eV (choosing ϕ0;i to
match the relic abundance of dark matter—see Sec. IV),
a⋆=ai ≈ 7.1 × 104, decreasing only by a factor of 2.3
for mγ0 ¼ 10−6 eV.
The above results apply only while modes remain in the

small-amplitude resonance band. While the instability
extends to arbitrarily small amplitudes when the vector’s
mass is precisely half the dilaton’s, resonance will termi-
nate early if the mass ratio is not so precisely tuned.
Concretely, the n ¼ 1 band must have nonzero width in
k at sufficiently small jqj ∝ ϕ0=M. Requiring that low-
momentum modes do not leave the instability region by the
time resonance becomes efficient—namely, that Eq. (24)
remains satisfied for some range of k until the Universe
expands by a⋆=a—we arrive at

jδj < 3ϕ0;i

16Mða⋆=aiÞ3=2
≲ 10−7

�
ϕ0;i

2M

�
4

ð32Þ

for masses mγ0 ∼ 10−18 eV.
While other narrow-band resonances exist (e.g., if mγ0 is

slightly smaller than 2mϕ or for other mass ratios
mγ0 ¼ nmϕ=2), they are centered at nonzero k (in contrast
to the low-momentum n ¼ 1 band) and shrink in width as
the dilaton’s amplitude decays. The redshifting of momenta
in FLRW spacetime therefore prevents any mode from
growing large enough to deplete the dilaton background of
its energy density in such cases.

IV. DARK MATTER ABUNDANCE

We now determine the parameter space for which dark
photons make up all of the dark matter. The dark matter
must have been produced sufficiently long before scales
observable in the CMB become dynamical, so production
takes place deep in the radiation-dominated era. The dilaton
begins oscillating when H ≈mϕ; at this stage, it contains a
negligible fraction of the total energy of the Universe (else
the matter-dominated era begins too early). Once the
dilaton transfers a substantial fraction of its energy to
the dark photons, the subsequent evolution is nonlinear—in

particular, the excited vector field modes rapidly backreact
on the dilaton background. We assume for simplicity that
most of the dilaton energy is transferred into the dark
photons3 so that the dilaton makes a negligible contribution
to the dark matter abundance. If the dark photons are
nonrelativistic when produced,4 their abundance today is
simply

Ωγ0h2

0.12
≈
�

mγ0

10−17 eV

�
1=2

�
ϕ0;i

1016 GeV

�
2

; ð33Þ

taking g⋆ ¼ 10.75 effective number of relativistic degrees
of freedom in the plasma at the time of production.
CMB observations place two further constraints on

parameter space. First, ensuring that the dark matter was
produced before scales observed in the CMB reenter the
horizon imposes a lower limit on the vector mass in the
mγ0 ¼ mϕ=2, small-amplitude regime because the Universe
expands by a substantial amount before resonance becomes
efficient. Namely, using conservation of entropy and
Eq. (31), the redshift of production z⋆ ¼ a0=a⋆ − 1 satisfies

z⋆ þ 1

1.9 × 105
¼

�
ϕ0;i

M

�
2
�

mγ0

10−17 eV

�
1=2

ð34Þ

(dropping additional logarithmic dependence on mϕ and
ϕ0;i). Since the redshift of matter-radiation equality is
≈3400 [51], for masses mγ0 ≲ 10−17 eV, dark photons are
not produced early enough if ϕ0;i=M < 1. However, lighter
masses can be accommodated by a modest increase in
amplitude ϕ0;i=M ∝ m−1=4

γ0 .
Second, in this scenario, the vacuum expectation value of

the dilaton arises fromquantum fluctuations during inflation.
The value ofϕ0;i varies across causally disconnected Hubble
patches and generates an isocurvature perturbation after the
decay into dark photons. The power of the isocurvature
perturbation from inflation is PS ¼ H2

I =ðπϕ0;iÞ2, where HI

is the Hubble scale during inflation. Assuming Ωγ0 ¼ ΩDM,

3Classical lattice simulations demonstrate efficient depletion of
an oscillating dilaton into massless dark photons [12,14,41,42] in
the strong coupling regime. Furthermore, in similar models with
an axial coupling rather than a dilatonic one, most of the energy is
transferred to the dark photons, regardless of whether they are
massless [13,43–50] or not [15]. Determining whether the same
conclusion holds in the small-amplitude regime would require
dedicated numerical simulations.

4As discussed previously, in the small-amplitude regime with
mγ0 ¼ mϕ=2, the dark photons are necessarily nonrelativistic at
production, since a⋆=ai ≫ 1 via Eq. (31). In the broad resonance
regime (for any mγ0 ≲mϕ and sufficiently large ϕ0;i=M > 1), the
dark photons are instead mildly relativistic at production, leading
to a corresponding dilution in their abundance since they redshift
more rapidly than matter until they become nonrelativistic. In this
case, the predictions should be analogous to dark photons
resonantly produced by axions [15].
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CMB constraints on isocurvature perturbations [52] bound
the Hubble scale during inflation to be below

HI < 3 × 1011 GeV

�
mγ0

10−17 eV

�
−1=4

: ð35Þ

V. DISCUSSION AND CONCLUSIONS

We have demonstrated that a massive vector field
kinetically coupled to an oscillating scalar field exhibits
a novel nonlinear decay channel. Namely, in addition to a
strong-coupling regime reminiscent of axion–dark-photon
models [15,33], an oscillating dilaton twice as heavy as its
coupled dark photon induces substantial vector production
even for small oscillation amplitudes. This effect allows for
the efficient production of dark photon dark matter without
invoking large couplings, naturally giving rise to dark
photon dark matter over a wide range of masses. Efficient
parametric resonance in the small-coupling regime requires
a finely tuned mass ratio mγ0=mϕ ¼ 1=2—as severe as one
part in 107 for order-unity couplings—barring a UV model
that gives rise to both the dark photon and dilaton’s masses
and explains the coincidence.
In Sec. IV, we showed that requiring consistency with the

CMB jointly constrains the vector mass and coupling
strength, but only modestly large couplings are required to
achieve ultralight masses ∼10−20 to 10−18 eV. To go beyond
these estimates (e.g., to characterize the relic abundance of
dark photons and dilatons as a function of the particle masses
and initial field amplitudes and to compute the resulting
spectra of dark photons) requires 3þ 1D numerical simu-
lations. Preliminary simulations confirm the numerical and
parametric estimates ofSecs. III B and IV, butwe leave amore
thorough investigation of these questions to future work.
The rapid growth of vector modes and nonlinear dynam-

ics at the end of the production phase would source a
gravitational wave background, providing a possible probe
of the model. Though a quantitative prediction would again
require dedicated numerical study, the signals are likely to
resemble those from dark photons resonantly produced by a
rolling axion [49,50,53–55]. However, the signal amplitude
is unlikely to be promisingly large. Stochastic backgrounds
are parametrically suppressed by both the fraction of
Universe’s net energy density contained by the source
and the gravitational-wave wavelength relative to the
horizon size at production [56]. In this scenario, the vector
and dilaton are massive relics whose abundance is
∝ a⋆=aeq, i.e., the ratio of the scale factors at production
and matter-radiation equality. One might then expect the
long delay from oscillation (ai) to production (a⋆) to
enhance the resulting signals, but gravitational wave
emission occurs at fixed comoving scales ∼mϕ that are
a⋆=ai times farther inside the horizon at production. These
two effects turn out to cancel each other, and even highly
efficient gravitational wave production is unlikely to

exceed present-day abundances of ΩGW;0 ∼ 10−15 (see,
e.g., Ref. [57]).
Here, we specifically invoke a dilatonic coupling to

achieve dark matter predominantly comprising dark pho-
tons. In principle, the dilaton could instead be the darkmatter
and simply happen to have such a coupling with parameter
values that fail to achieve efficient conversion to dark
photons before the CMB forms. For the same reason that
resonance could become efficient at sufficiently late times
in the radiation era even for small couplings [as discussed
after Eq. (26)], in this alternative scenario, substantial dark
photon production will never occur: As the Universe
transitions to matter domination, the Hubble rate instead
decays as a−3=2 just like the dilaton, and the growth rate per
Hubble time asymptotes to a constant. In other words, if the
dilaton has not efficiently produced dark photons by the time
the CMB forms, then it never will. (The marginal regime—
resonance becoming efficient as CMB modes enter the
horizon—would likely be incompatible with the cold,
collisionless dark matter required by CMB observations.)5

While we have not assumed any particular origin for the
mass of the dark photon, in the case where the mass arises
from the Higgs mechanism, the production of vortices
challenges the viability of dark photon dark matter [58].
Moreover, as noted by [15,59,60], Stueckelberg masses are
restricted to mγ0 ≳meV in string theory, implying that
smaller masses must arise from the Higgs mechanism.
To our knowledge, all proposed production mechanisms
for light dark photon dark matter are afflicted by vortex
formation constraints. However, it is possible that the small-
amplitude regimewe point out could evade such issues: The
long delay between dilaton oscillations and dark photon
production could ensure the vector’s energy density never
exceeds the critical value for vortex formation. We defer a
full exploration of the parameter dependence of vortex
formation constraints, along with the phenomenology of
kinetic mixing with the Standard Model photon and sub-
sequent plasma effects, to future work.6

Throughout this work, we assumed that the dark photon
mass is ϕ independent. This dependence, like the form of
the kinetic coupling WðϕÞ, is ultimately determined by the
UV physics. Providing a UV completion of the theory is
beyond the scope of this work, but it is conceivable that
both the kinetic and mass terms attain a ϕ dependence,
coming from, e.g., radiative corrections. [In fact, the small-
amplitude resonance is present if the coupling function
WðϕÞ multiplies the mass term rather than the kinetic term
of the vector since the pertinent terms in the equation of

5We thank an anonymous referee for pointing out this
interesting feature of the model.

6A kinetic mixing term would nominally induce resonant
production of Standard Model photons (depending on, e.g., its
plasma mass) as well, but the kinetic mixing parameter must be
(much) smaller than 10−6 to 10−10 (depending on the dark photon
mass) [61], greatly suppressing this effect.
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motion have the same form.] Such interactions, as well as
dark photon self-interactions, could have consequences for
the efficiency of dark photon production and the viable
parameter space for dark photon dark matter. We leave the
investigation of such effects for future work.
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