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We find several missing one-loop-order contributions in previous considerations about secondary
gravitational waves induced at nonlinear order in cosmological perturbations. We consider a consistent
perturbative expansion to third order in cosmological perturbations, including higher-order interactions and
iterative solutions ignored in the previous literature. Tensor fluctuations induced by the source with two
scalar and one tensor perturbations are correlated with the first-order tensor fluctuation and thus give a
one-loop order correction to the tensor-power spectrum. The missing loop correction is scale invariant
and negative in the superhorizon region, which secondarily reduces the initial primordial tensor-power
spectrum prior to the horizon reentry. Such an IR behavior is very different from the autospectrum
of second-order induced tensor modes discussed in the previous literature and can be important for the
actual gravitational wave measurements. For a sharp peak of scalar fluctuations with Aζ ¼ 10−2 at
k� ¼ 105 h=Mpc motivated by the LIGO/Virgo events, we show that the tensor-power spectrum at the
cosmic microwave background scale reduces by at most 35%. Hence, the polarization B mode might not be
seen because of the reduction of the original tensor spectrum due to the secondary effect of primordial black
hole formation.
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I. INTRODUCTION

The direct detections of gravitational waves (GWs) from
the binary black hole/neutron star mergers break new
ground in physical cosmology [1,2], marking a new era
of the multimessenger astronomy by combining GWs,
electromagnetic and neutrino observations [3]. The inter-
action between GWs and matter is weak. Hence, GWs
propagate almost freely through the Universe and carry
unique astrophysical and cosmological information. The
primordial gravitational waves (PGWs) produced in the
very early Universe are generally predicted by various early
cosmology scenarios [4–9]. Currently, the B-mode polari-
zation of cosmic microwave background (CMB) radiation
is a promising channel to detect PGWs [10], which may
enable us to test the origin of the Universe soon.
In recent years, the secondary GWs induced by the

nonlinear coupling of scalar perturbations have been attract-
ing great attention. Those are regarded as a reasonable tool
to detect a type of ultracompact objects that may exist in
the early Universe—primordial black holes (PBHs) [11–22],

and to probe the properties of the small-scale primordial
curvature perturbations [23–35]. Overdense regions in the
early Universe may stop expanding and collapse to form
PBHs [36–38]. Sufficiently large density fluctuations for
PBH formation can be realized in various inflationary
models, e.g., the ultraslow-roll phase [39–47], the extra
fields [21,48–54], the non-Gaussianity [55–60], and para-
metric resonance or tachyonic instability [61–67]. Those
enhanced small-scale scalar perturbations also induce sizable
GWs via nonlinear couplings, which can exceed the sensi-
tivities of several upcoming GW observations, such as
LISA [68], DECIGO [69], Taiji [70], and TianQin [71].
We often consider the evolution or generation of tensor

fluctuations in the classical field theory with the stochastic
initial conditions set by inflation. As a result, we predict
the power spectrum of GWs that is related to the observ-
ables such as the CMB power spectrum or GW energy
density. Previous secondary GW studies mainly focus on
the autopower spectrum of second-order scalar-induced
gravitational waves (SIGWs), which is a part of the
classical stochastic one-loop correction to the primordial
tensor-power spectrum. Subleading-order SIGWs, i.e., two-
loop corrections, were also investigated in the previous
literature [72–74], which should be subdominant as far as
the perturbative expansion is convergent. Another possible
extension at one-loop order is to include the linear vector
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and tensor perturbations in the second-order source.
References [75,76] considered the autospectrum of the
second-order tensor modes sourced by scalar and tensor
perturbations. This class of secondary GWs should also be
subdominant unless the internal tensor propagator is more
enhanced than the scalar propagators at some scales. So far,
so good. Is there any other source of the secondary GWs?
This paper points out several missing one-loop contri-

butions in previous considerations about SIGWs, i.e., the
cross-power spectrum of the first- and third-order tensor
fluctuations. The tensor fluctuation induced by the source
with two scalar and one tensor perturbations is third order
in cosmological perturbations, i.e., a subdominant compo-
nent at the field level. However, the cross-power spectrum
of the first- and third-order tensor fluctuations is also one
loop, whose order in the perturbative expansion is equiv-
alent to that of the induced power spectrum. Indeed, the
iterative solutions and the higher-order interactions are
consistently considered in the theory of large-scale struc-
ture, where we consider similar classical stochastic loop
calculations [77]. Then, there is no reason to ignore those
effects in studies of GWs. Interestingly, Ref. [73] has
already included the iterative solutions for two-loop cal-
culations of induced GWs. However, they only considered
the scalar fluctuations for initial conditions, so the one-loop
correction from the cross term of first- and third order
was absent.
We consider all possible sources up to third order (see

Table I, and also Figs. 1 and 2). We will show that the IR
behavior of the new correction is very different from that of
the autospectrum discussed in the previous literature and
can be important for the actual gravitational wave mea-
surements. A recent work [22] also reported the one-loop
quantum corrections to PGWs by an excited spectator field,
using the in-in formalism during inflation. Their consistent
loop calculation showed that superhorizon PGWs are

amplified or suppressed by the loop effect. Inspiringly,
these astonishing results show the possibility of probing the
extremely small-scale phenomena during inflation with
large-scale GWobservations. In this paper, we consider the
classical counterpart of their scale-invariant corrections. We
will show a similar effect in a classical setup in universes
dominated by radiation or dust.
The paper is organized as follows. In Sec. II, we extend

cosmological perturbation theory to third order by includ-
ing the linear tensor fluctuations to the nonlinear source.
Then, we derive a generic form for the missing one-loop
correction to secondary GWs, i.e., the cross-power spec-

trum Pð13Þ
h . In Sec. III, we calculate Pð13Þ

h in the cases of
both radiation-dominated (RD) and matter-dominated
(MD) eras with a delta-function-like scalar source. Their
IR behaviors are also investigated in detail. In Sec. IV, we
elaborate on the influence on the tensor-to-scalar ratio from

Pð13Þ
h in terms of the collaborative multifrequency GW

(a) (b) (c)

(d) (e)

(f) (g) (h) (i)

FIG. 1. Nine typical one-loop contributions to the tensor-power
spectrum. The internal wavy and solid lines represent tensor
and scalar propagators, respectively. The standard second-order

SIGW Pð22Þ
h is included in diagram (a). Diagrams (b) and (c) were

studied in Ref. [75], which are subdominant unless the tensor
propagator is more enhanced than the scalar one. (d) is the new
graph considered in this paper. We ignore (e), (h), and (i) since we
only focus on the enhancement of the scalar propagator. The
tadpole (g) is zero, and (f) is also negligible in the IR region. Note
that we ignored vectors for simplicity.

(a1) (a2) (d)

FIG. 2. Detailed structures of diagrams (a) and (d) shown in
Fig. 1. We draw the diagrams following Ref. [78], while the
direction of time is implicit for simplicity. The cross circle
represents the contraction between two linear fields (i.e., their
power spectra), which is also regarded as an “external source” in
this system. The red lines are Green functions. The diagrams (a1)
and (d) contribute to Pð13Þ, while (a2) is the induced GWs Pð22Þ.

TABLE I. Possible source terms at third order, including tensor
and scalar perturbations. The first line corresponds to the Born
approximation, and the first iterative source is shown in the
second to the fifth line. h and ϕ represent the tensor and scalar
perturbations, respectively. ϕ implies either the curvature per-
turbationΨ or gravitational potentialΦ. A product of ϕ and h in a
subscript implies the source of the corresponding second-order
perturbations (e.g., hϕh means hð2Þ sourced by hð1Þϕð1Þ). The
underlined terms are correlated with linear tensor modes. (a) to
(i) indicate the corresponding diagrams in Fig. 1 (note that Green
functions are implicit).

Born approximation ϕϕϕ ðdÞhϕϕ hhϕ ðeÞhhh
1st iteration ϕhϕϕ ðbÞϕhϕh ϕhhh

ðfÞhϕϕϕ hϕϕh
ðb;hÞhϕhh

ϕϕϕϕ
ðaÞϕϕϕh ϕϕhh

ðgÞhhϕϕ hhϕh ðc;iÞhhhh
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experiments for PBH detection. Finally, we summarize the
results in Sec. V.

II. BASIC EQUATIONS AND SOURCES FOR
CLASSICAL ONE-LOOP CORRECTION

In this section, we first derive the evolution equation for
tensor fluctuations in the presence of two scalars and one
tensor. Then, we integrate the equation of motion using the
Green function method. In the standard SIGW calculation,
one only expands the source to the second order in scalar
perturbations, but we go beyond the expansion, including
additional first-order tensor fluctuations.
First, we perturb the metric tensor around the spatially

flat Friedmann-Lemaître-Robertson-Walker metric to the
nonlinear order in scalar perturbations and tensor fluctua-
tions. In the conformal Newtonian gauge, the metric takes
the form of

ds2 ¼ −a2ð1þ 2ΦÞdτ2 þ a2ð1 − 2ΨÞðδij þ hijÞdxidxj;
ð1Þ

and the tensor fluctuation is expanded into

hij ¼ hð1Þij þ 1

2
hð2Þij þ 1

6
hð3Þij þ � � � ; ð2Þ

where the superscript in parentheses implies the order in
cosmological perturbations, and we dropped vector pertur-
bations for simplicity. Indeed, this paper considers a delta-
function-like sharp peak for scalar initial conditions, which
should not induce the second-order vector perturbations
from momentum conservation. So, we ignore the vector

perturbations up to second order safely [32,79]. hð1Þij is the

linear tensor mode initially set by inflation, hð2Þij is the
induced tensor mode discussed in the previous literature,

and hð3Þij is the new contribution sourced at third order in

cosmological perturbations. Note that hð3Þij from the scalar
fluctuations was considered in Ref. [73] for two-loop-order

autopower spectrum of hð3Þij . The transverse-traceless con-
dition is not unique when expanding the metric tensor to

nonlinear orders [80]. We impose the conditions for hðnÞij in

Eq. (1), i.e., ∂ihðnÞij ¼ hðnÞii ¼ 0, where the Latin indices are
raised and lowered by the background spatial metric δij

and δij. The Fourier integral of the tensor perturbation is
written as

hðnÞij ðτ; xÞ ¼
Z

d3k
ð2πÞ3

X
λ¼þ;×

eλijðk̂ÞhðnÞλk ðτÞeik·x; ð3Þ

with two orthonormal polarization bases defined as

eðþÞ
ij ðk̂Þ ¼ 1ffiffiffi

2
p ½eiðk̂Þejðk̂Þ − ēiðk̂Þējðk̂Þ�; ð4Þ

eð×Þij ðk̂Þ ¼ 1ffiffiffi
2

p ½eiðk̂Þējðk̂Þ þ ēiðk̂Þejðk̂Þ�; ð5Þ

where eiðk̂Þ and ēiðk̂Þ are a set of orthonormal vectors
perpendicular to k, and k̂≡ k=jkj. We define the dimen-
sionless power spectrum of the tensor fluctuations as

hhðnÞλk hðmÞλ0
k0 i ¼ δλλ0 ð2πÞ3δ3ðkþ k0Þ 2π

2

k3
PðnmÞ

h;λ : ð6Þ

Hereafter, we omit the polarization index when we do not
have to specify a polarization component.
We go beyond the Born approximation in this paper,

so the scalar fluctuations should be included up to second
order:

Φ ¼ Φð1Þ þ 1

2
Φð2Þ; ð7Þ

Ψ ¼ Ψð1Þ þ 1

2
Ψð2Þ: ð8Þ

Φð2Þ and Ψð2Þ are the first iterative corrections relevant to
the one-loop order contribution in the end. These terms
contribute to the diagrams (a), (b), (f), and (h) in Fig. 1. The
same contributions were also considered in Ref. [22] in the
context of the one-loop inflationary power spectrum. We
assume that anisotropic stress is negligible at linear order,
so the gravitational potential and curvature perturbation are
equivalent. Hereafter, we denote

Φð1Þ ¼ Ψð1Þ ¼ ϕ; ð9Þ

for notational simplicity.
Expanding the Einstein equation and projecting it onto

the polarization plane, one finds

hðnÞij
00 þ 2HhðnÞij

0 −∇2hðnÞij ¼ T lm
ij S

ðnÞ
lm ; ð10Þ

whereH≡ a0=a ¼ aH is the comoving Hubble parameter,
and the prime denotes the derivative with respect to the
conformal time τ. T lm

ij is the projection operator onto the
transverse-traceless plane. In Fourier space, we recast
Eq. (10) into

hðnÞk
00 þ 2HhðnÞk

0 þ k2hðnÞk ¼ SðnÞk ; ð11Þ

where we define

SðnÞk ≡ eijðk̂ÞSðnÞij;k: ð12Þ
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Given a source term, one can integrate Eq. (11) using the
Green function:

hðnÞk ðxÞ ¼
Z

x
dx̃

aðx̃Þ
aðxÞ kG

h
kðx; x̃Þ

SðnÞk ðx̃Þ
k2

; ð13Þ

where x≡ kτ. Gh
k is the Green function for tensor modes

which takes the following form in the RD universe:

kGh
k;RDðx; x̃Þ ¼ sin ðx − x̃Þ; ð14Þ

where k≡ jkj. In the MD universe, we have

kGh
k;MDðx; x̃Þ ¼ xx̃½y1ðxÞj1ðx̃Þ − j1ðxÞy1ðx̃Þ�; ð15Þ

where j1ðxÞ and y1ðxÞ are the spherical Bessel functions of
the first and second kind, respectively.

Possible terms in Sð3Þlm are summarized in Table I, and
terms correlated with first-order tensor fluctuations are
underlined. We will consider the cross-power spectrum
between the first- and third-order tensor modes so we do
not have to evaluate the most general forms. The operator
products that appear in the final spectrum are, up to the
transfer functions and Green functions, written as

hhð1Þk0 h
ð3Þ
k i0 ∼

Z
d3pd3q
ð2πÞ6 hhk0hk−p−qϕpϕqi0; ð16Þ

where the prime on the bracket implies that we drop a delta
function with respect to the external momenta. The rhs of
Eq. (16) reduces to

hhk0hki0
Z

d3p
ð2πÞ3 hϕpϕ−pi0: ð17Þ

Thus, tensor fluctuation decouples from the loop, and the
integral structure is simplified. Therefore, we justify the
following replacement in the source:

Z
d3pd3q
ð2πÞ6 hk−p−qϕpϕq → hk

Z
d3p
ð2πÞ3 ϕpϕ−p: ð18Þ

Finally, cross-correlating the third-order tensor fluctuation
with the linear one, we obtain

Pð13Þ
h ðτ; kÞ ¼ Pð11Þ

h ðkÞ
Z

du
u
Ihðu; xÞPð11Þ

ϕ ðkuÞ; ð19Þ

where we use Eq. (18) and defined u≡ p=k. Pð11Þ
h and

Pð11Þ
ϕ are the initial linear power spectra of tensor and scalar

perturbations, respectively. All details about the source are
included in the kernel function:

Ihðu; xÞ ¼ ThðxÞ
Z

x
dx̃

aðx̃Þ
aðxÞ kG

h
kðx; x̃Þfhðu; x̃Þ; ð20Þ

where Th is the linear transfer function for tensor fluctua-
tions, and fhðu; xÞ can be found from the concrete
calculation of the source function discussed below.

A. Born approximation

The first relevant correction is the Born approximation
for the third-order source. Dropping other irrelevant terms,
the third-order source from the triple product of the pure
first-order perturbations is given as

Sð3Þhϕϕ;ij ≡ hð1Þij

�
16ϕ∇2ϕþ 8ð1þ 3ωÞ

3ð1þ ωÞ ð∇ϕÞ2 − 32∇ϕ∇ϕ0

3Hð1þ ωÞ −
16ð∇ϕ0Þ2

3H2ð1þ ωÞ
�
− 24ϕð3ϕ0hð1Þij

0 þ 2ϕ∇2hð1Þij Þ

−
16∂kϕ

H2ð1þ ωÞ
h
ðH∂jϕþ ∂jϕ

0Þhð1Þki
0 þ ðH∂iϕþ ∂iϕ

0Þhð1Þkj
0iþ 24ϕ∂kϕð∂jhð1Þki þ ∂ih

ð1Þ
kj − ∂kh

ð1Þ
ij Þ; ð21Þ

where we simplified the source, using the equations of motion for ϕ and hð1Þij . Under the premise of Eq. (18), we find

Sð3Þhϕϕ;k ¼ −
Z

d3p
ð2πÞ3

�
8ð5þ 3ωÞ
3ð1þ ωÞ p2hkϕpϕ−p þ

32

3ð1þ ωÞHp2ðhkϕ0
pϕ−p þ h0kϕpϕ−pÞ

þ 16

3ð1þ ωÞH2
p2ðhkϕ0

pϕ
0
−p þ 2h0kϕ

0
pϕ−pÞ þ 72h0kϕ

0
pϕ−p − 48k2hkϕpϕ−p

�
: ð22Þ
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Then, we get

fh;hϕϕðu; xÞ≡ −
�
8ð5þ 3ωÞ
3ð1þ ωÞ u2ThðxÞTϕðuxÞTϕðuxÞþ

8ð1þ 3ωÞ2
3ð1þ ωÞ u2x2T 0

hðxÞT 0
ϕðuxÞTϕðuxÞ

− 48ThðxÞTϕðuxÞTϕðuxÞ þ 72T 0
hðxÞT 0

ϕðuxÞTϕðuxÞþ
4ð1þ 3ωÞ2
3ð1þ ωÞ u2x2ThðxÞT 0

ϕðuxÞT 0
ϕðuxÞ

þ 16ð1þ 3ωÞ
3ð1þ ωÞ u2x½ThðxÞT 0

ϕðuxÞTϕðuxÞþT 0
hðxÞTϕðuxÞTϕðuxÞ�

�
; ð23Þ

where we used the conformal Hubble parameter, written as

H ¼ 2

ð1þ 3ωÞτ : ð24Þ

Note that the prime denotes the derivative with respect to x
hereafter. Th and Tϕ are transfer functions for the linear
tensor and scalar modes, respectively. Following the similar
treatments in Refs. [15,81], one can find the analytical
solution of the kernel function Ih;hϕϕðu; xÞ.

B. First iterative solution

In addition to the Born approximation, we need to
account for the first iterative solution for the one-loop-
order correction to the cross-power spectrum. We summa-
rized possible sources in Table I, but it is found that only
ϕϕϕh is the relevant contribution in our case. ϕhϕh, hhϕϕ,
and hϕϕϕ are potentially comparable to ϕϕϕh. However,
these terms contribute in the subhorizon region where
the induced GWs dominate, as discussed in Appendix A.
As discussed in the next section, we may ignore those
contributions when we are interested in the IR region. We
also safely ignore hhh, hhhh, hϕhh since they are not
amplified by scalar fluctuations.
The source terms from ϕ and second-order scalar

induced by ϕ and h are written as

Sð3Þϕϕϕh;ij
¼ 8

H2ð1þ ωÞ ½ðH∂iϕþ ∂iϕ
0ÞðH∂jΦð2Þ þ ∂jΨð2Þ0Þ

þ ði ↔ jÞ� − 12½ðΦð2Þ þΨð2ÞÞ∂i∂jϕ
þ ϕ∂i∂jðΦð2Þ þΨð2ÞÞ þ ∂iϕ∂jΨð2Þ þ ∂jϕ∂iΨð2Þ�:

ð25Þ

The difference of Φð2Þ and Ψð2Þ arises from Oðϕ2;ϕ∂hÞ.
Hence, we can take Φð2Þ ¼ Ψð2Þ and drop derivative terms
like ∂h in the following calculation for the IR region. The
equation of motion for Ψð2Þ is given as

Ψð2Þ00 þ 3Hð1þ ωÞΨð2Þ0 − ω∇2Ψð2Þ ¼ −2ωhð1Þij ∂i∂jϕ:

ð26Þ

We immediately find Ψð2Þ ¼ 0 for the matter era where
ω ¼ 0. During the radiation era, we get [19]

Ψð2Þ
kþpðτÞ ¼

1ffiffiffi
2

p sin2θ cos 2φIϕ;RDðu; v; xÞϕ0
ph0k; ð27Þ

where h0k and ϕ0
p are the initial value at the superhorizon

scale, and

Iϕ;RDðu; v; xÞ ¼
Z

x
dx̃

x̃2

x2
kGs

kðvx; vx̃Þ
u2

v
2

3
Thðx̃ÞTϕðux̃Þ:

ð28Þ
Note that we defined v≡ jpþ kj=k, and ðθ;φÞ are the
spherical coordinates of p with respect to ẑkk, and the
Green function for scalar perturbations is

kGs
kðx; x̃Þ ¼

xx̃ffiffiffi
3

p
�
j1

�
x̃ffiffiffi
3

p
�
y1

�
xffiffiffi
3

p
�
− ðx ↔ x̃Þ

�
: ð29Þ

Substituting Eq. (27) into Eq. (25), we find the first iterative
solution. The rest of the calculation is the same as the Born
approximation, so we find

fh;ϕϕϕh
ðu; v; xÞ ¼

Z
dθ sin5θ

3

2
u2 ×

h
3TϕIϕ;RD

þ xðT 0
ϕIϕ;RD þ TϕI0ϕ;RDÞ þ x2T 0

ϕI
0
ϕ;RD

i
:

ð30Þ

III. IR BEHAVIOR OF THE ONE-LOOP
CORRECTION

In the previous section, we obtained the new one-loop
contribution:

Pð13Þ
h ðτ; kÞ ¼ Pð11Þ

h ðkÞ
Z

du
u
ðIh;hϕϕ þ Ih;ϕϕϕh

ÞPð11Þ
ϕ ðkuÞ;

ð31Þ

where the kernels Ih;hϕϕ and Ih;ϕϕϕh
are defined through

Eq. (20), with the source integrals fh;hϕϕ and fh;ϕϕϕh
given

by Eqs. (23) and (30), respectively.
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Equation (31) implies that the new one-loop contributions

are roughly written asPð13Þ
h ∼ Pð11Þ

h Pð11Þ
ϕ . In comparison, the

SIGW autopower spectrum is Pð22Þ
h ∼ ðPð11Þ

ϕ Þ2. Therefore,
one may naively expect that the new contributions are

suppressed by a factor of Pð13Þ
h =Pð22Þ

h ∼ Pð11Þ
h =Pð11Þ

ϕ , which
should be the subdominant of secondary GWs. Is that true?
Equation (18) suggests that the new third-order correction
is not a production of GWs from zero but a modulation of
primordial tensor fluctuations due to couplings between
tensor and scalar. The physical origin differs from the GW
production, so the property is not necessarily the same.
Indeed, we will show that the new contribution can be
dominant in the IR region.

In this section, we concretely compute Pð13Þ
h for a simple

but phenomenologically interesting delta-function-like sca-
lar power spectrum. We often consider the delta-function-
like spectrum for the SIGW counterpart of PBH formation
scenarios, and the SIGWs from the source have peaks near

the sharp peak of scalar fluctuations. In the IR region, Pð22Þ
h

is suppressed as SIGWs are causally generated from
physical processes. Here, we will show that the IR behavior
of the new correction is very different from that of the

autopower spectrum of the SIGWs [82], and Pð13Þ
h can be

dominant for large-scale tensor fluctuations. In the follow-
ing, we consider universes dominated by radiation and
dust separately and compare their behaviors with the
standard SIGWs.

A. Radiation-dominated era

During the RD era, ω ¼ 1=3, and the transfer functions
are given as

TϕðxÞ ¼
9

x2

�
sinðx= ffiffiffi

3
p Þ

x=
ffiffiffi
3

p − cos

�
xffiffiffi
3

p
��

; ð32Þ

ThðxÞ ¼ j0ðxÞ ¼
sin x
x

: ð33Þ

The source functions are the sum of

fh;hϕϕ ¼ Th½ð48 − 12u2ÞTϕTϕ − 8u2xT 0
ϕTϕ − 4u2x2T 0

ϕT
0
ϕ� − T 0

hð8u2x2T 0
ϕTϕ þ 8u2xTϕTϕ þ 72T 0

ϕTϕÞ; ð34Þ

fh;ϕϕϕh
¼

Z
dθ sin5θ

3

2
u2 × ½3TϕIϕ;RD þ xðT 0

ϕIϕ;RD þ TϕI0ϕ;RDÞ þ x2T 0
ϕI

0
ϕ;RD�; ð35Þ

where the arguments are suppressed for notational sim-
plicity, while Tϕ and Th are functions of ux and x,
respectively. We consider the delta-function-like source
amplified at k ¼ k�, i.e.,

Pδ
ζðkÞ ¼ Aζδðln k − ln k�Þ; ð36Þ

where Aζ is the overall amplitude. The relationship between
the superhorizon comoving curvature perturbation ζ and
Newtonian potential ϕ is

ϕk ¼
3þ 3ω

5þ 3ω
ζk: ð37Þ

Combining Eqs. (19), (20), and (32) to (37), we reach the

final result of Pð13Þ
h ðk; τÞ. Equation (35) contains two layers

of Green function integrals, whose analytical result is
tedious. However, we can simplify the expressions in the
IR region since the solution of Eq. (26) is written as

Ψð2Þ
p ðτÞ ∼ τϕ0

pðτÞ for the superhorizon tensor modes.
The final expression has a factorized form:

1

6
Pð13Þ

h ðk; τÞ≡ F ðk�; k; τÞPð11Þ
h ðkÞ; ð38Þ

where the prefactor F for kτ < 1 scales as

F ðk�; k; τÞjkτ<1 ≃ Aζ

�
2 − 2.4 logðk�τÞ þO

�
k
k�

��
: ð39Þ

Thus,F is k independent for k=k� ≪ 1modes, and the one-

loop correction Pð13Þ
h has the same scaling as the linear

power spectrum Pð11Þ
h on the superhorizon scales. The

above scale dependence arises from Eq. (34) and Eq. (35),
but their signs are opposite. They are partly canceled by
each other, and the total contribution is dominated by
Eq. (34). As a result, the new one-loop order correction
decreases the primordial spectrum. We show the analytical
expression from the dominated source hϕϕ in Appendix B.
Since F is linear with respect to Pδ

ζ, we can straightfor-
wardly generalize Eq. (39) for an arbitrary scalar spectrum.
As we have

PζðkÞ ¼
Z

d ln k�Pζðk�Þδðln k − ln k�Þ; ð40Þ

we find

F ðk; τÞ ¼ 1

Aζ

Z
d ln k�Pζðk�ÞF ðk�; k; τÞ: ð41Þ

The τ dependence of Eq. (39) implies that the scalar peak

at k ¼ k� contributes to Pð13Þ
h at any time after the horizon
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reentry of the scalar peak. This is because we ignored the
shear viscosity in the radiation fluid for simplicity. With
this approximation, sound waves propagate forever. In
the real Universe, photons are coupled to electrons via
Compton scattering, which introduces acoustic dissipation.
Then, the inhomogeneity inside the diffusion scale is
smeared. As a result, the gravitational potential and
curvature perturbations are erased. The photon-diffusion
scale is given by [83]

kD ∼ 2.34 × 10−5Θ2.7ð1 − Yp=2Þ1=2Ω1=2
b z3=2 h=Mpc

∼ 4.9 × 10−6z3=2 h=Mpc; ð42Þ

with a normalized CMB temperature Θ2.7 ¼ TCMB=2.7 ¼
1.01, the primordial helium mass fraction Yp ¼ 0.23,
and the baryon energy-density fraction Ωb ¼ 0.0486.
Then, the scalar fluctuations with k > kD are exponentially
suppressed because of the diffusion effect. Solving
k� ¼ kDðzðτDÞÞ for τD, we find the final amplitude at
τ ¼ τD, that is, F ðk�; k; τDÞ. The source vanishes for
τ > τD, so the superhorizon tensor fluctuations should
not vary anymore. Since the loop momentum in Eq. (19)
is independent of the external momentum k, momentum
conservation does not introduce any additional factor.
In contrast, the Heaviside step function appears due to

momentum conservation in Pð22Þ
h [15,81].

Let us consider a specific case with k� ∼ 105 h=Mpc as a
reference scale for PBH formation during the RD era,

corresponding to tens of solar masses which may account
for LIGO/Virgo GW detection events [84,85]. The con-
formal time when k� ∼ 105 h=Mpc enters the diffusion
scale is estimated to be τD ∼ 0.04 Mpc=h. Then we find
yD ≡ k�τD ∼ 4 × 103. In the left panel of Fig. 3, we plot

jPð13Þ
h j=3, where the coefficient 1=6 comes from the metric

decomposition (1) and a factor of 2 appears in the cross
term. Brown, red, and blue solid lines in the left panel of
Fig. 3 denote different times yð≡k�τÞ ¼ 4 × 101; 4 × 102,
and 4 × 103, respectively, and we normalize the total power

spectrum by the linear power spectrum Pð11Þ
h . We find that

the one-loop correction Pð13Þ
h results in a negative constant

on the superhorizon scales, which suppresses the scale-
invariant primordial tensor-power spectrum. With obser-
vationally allowable curvature perturbations [27,86] (also
see Fig. 5), Aζ < 10−2 at k� ∼ 105 hMpc−1, we find that
the initial tensor-power spectrum loses the amplitude by at
most 35%. After the horizon reentry, the tensor modes
evolve as if they are the linear tensor modes described by the
red dashed curve in the right panel of Fig. 3. We emphasize

that Pð13Þ
h displays a distinct IR behavior from that of Pð22Þ

h
due to the decoupling of the first-order tensor and scalar
fluctuations in Eq. (18). The universal IR scaling of secon-
dary GWs discussed in Ref. [82] applies to a bilinear source,
which does not lead to such a decoupling in our paper.
As discussed in Ref. [22], the suppression of the

primordial tensor mode may result from the effective mass

FIG. 3. Left: the absolute value of the one-loop correction 1
3
jPð13Þ

h j shown in Eq. (31) as a function of k=k� during the RD era. The

vertical axis is normalized by the primordial tensor spectrum Pð11Þ
h . Brown, red, and blue solid lines denote different times:

y≡ k�τ ¼ 4 × 101; 4 × 102, and 4 × 103, respectively. The damping feature for k=k� ≳ y−1 implies the horizon entry. Right: a

comparison between the amplitudes of the one-loop corrections jPð13Þ
h j and the standard second-order SIGWs Pð22Þ

h during the RD era,
which are shown by the red dashed and the cyan solid curves, respectively. The parameters are taken as yD ¼ 4 × 103, Aζ ¼ 10−2, and

Pð11Þ
h ¼ 10−10.
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of the tensor fluctuation introduced by the one-loop
correction in the effective action. When integrating out
the scalar perturbations, we may write the equation of
motion of the tensor fluctuations as follows:

h00kðτÞ þ 2Hh0kðτÞ þ ðk2 þm2
effÞhkðτÞ ¼ 0; ð43Þ

and m2
eff is found to be positive in our case. This mass term

introduces a decaying solution even for kτ ≪ 1, as far as
τ2m2

eff ≳ 1. The evolution of superhorizon tensor fluctua-
tions in the separate Universe perspective is also discussed
in Ref. [87]. We also show the comparison of our new result

jPð13Þ
h j=3 and the standard second-order SIGWs Pð22Þ

h in the
right panel of Fig. 3. Here, the dimensionless time variable
yD is taken as 4 × 103, and the amplitudes of the scalar and
the primordial tensor spectra are chosen as Aζ ¼ 10−2 and

Pð11Þ
h ¼ 10−10, respectively. Pð13Þ

h overwhelms Pð22Þ
h in the

IR region, so the one-loop correction to the tensor spectrum

on the superhorizon scale is dominated by Pð13Þ
h .

B. Early matter-dominated era

After inflation, the oscillation of massive fields effec-
tively acts as pressureless dust. Hence, there may be an

early MD period. The second-order SIGWs Pð22Þ
h during

this era have been studied in Refs. [12,15,75,88–92]. Since
the gravitational potential is constant during the MD era,
sizable SIGWs may be produced during the early MD era.
Therefore, we also investigate our new effect during the
early MD era in this section. The transfer functions during
the MD era are given as

TϕðxÞ ¼ 1; ð44Þ

ThðxÞ ¼
3j1ðxÞ

x
: ð45Þ

Thus, the linear gravitational potential is constant during
the MD era, and the source function in Eq. (23) is greatly
simplified as

fhϕϕðu; xÞ ¼ TϕTϕ

�
−
40

3
u2Th þ 48Th −

16

3
u2xT 0

h

�

¼ 8½18þ u2ð1 − 2x2Þ�
x3

sin x −
8ðu2 þ 18Þ

x2
cos x;

ð46Þ

and the iterative part is zero from Eq. (26). Combining
Eqs. (46) with (19), we find the one-loop correction,

Pð13Þ
h ðτ; kÞ
Pð11Þ

h

¼
Z

dp
p

12ðkτ cos kτ − sin kτÞ
ðkτÞ6

× ½kτð54 − p2τ2Þ cos kτ
þ ðp2τ2 þ 18k2τ2 − 54Þ sin kτ�

×

�
3

5

�
2

PζðpÞ: ð47Þ

Let us consider a delta-function-like source in Eq. (36).
The final expression is similar to Eq. (38), while the
prefactor F is given as

F ðk�; k; τÞjkτ<1 ≃ −
2

25
Aζk2�τ2: ð48Þ

We show the power spectrum of the tensor modes in Fig. 4
for Aζ ¼ 10−4. The primordial power spectrum normalizes
the final result. In the left panel, from top to bottom,
brown, red, and solid blue lines denote different times
y ¼ 102; 103, and 104, respectively. Since the scalar source
is constant after horizon entry, it can continuously generate
the tensor modes. In the right panel of Fig. 4, we compare
jPð13Þj and Pð22Þ. Here, we take y ¼ 102, the amplitude is

Aζ ¼ 10−4, and Pð11Þ
h ¼ 10−10.

Large enhancement of second-order SIGWs was also
discussed in the previous literature, but there is a caveat
about the induced tensor modes during the matter era.
Induced tensor modes contain not only the GWs, but
also nonpropagating modes during the matter era, and
the latter is mainly amplified. We cannot regard the non-
propagating component as GWs since its energy contribu-
tion to the cosmic expansion is a−2, i.e., the nonpropagating
part represents the curvature rather than the GWs.
References [90,91] showed that the curvature is converted
into the GWs if the transition from matter to radiation is
faster than the oscillation timescale of scalar perturbations,
and the curvature dilutes without sourcing the GWs if
the transition is slow. The same argument may apply to the
present case, i.e., the final amplitude may be sensitive to the
transition between two eras. We leave further investigation
for future work.

C. Late matter-dominated era

The early-matter dominance is hypothetical, but late-
time matter dominance from recombination to dark-energy
dominance is manifest. We have already observed tiny
and almost scale-invariant scalar fluctuations at that scale.
Does the observed curvature fluctuation change the CMB
B-mode during the late-time matter era? The subhorizon
gravitational potential damps during the radiation era,
so there is a natural UV cutoff in the loop integral. For
simplicity, let us assume
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Pc
ζ ¼ AζΘðkeq − kÞ; ð49Þ

where Θ is the Heaviside step function, Aζ ∼ 2.1 × 10−9,
and keq ∼ 0.01 h=Mpc is the horizon scale of the matter-
radiation equality. In this case, using Eq. (41), the super-
horizon spectrum is suppressed by a factor of

F ðk; τÞ ∼ −
1

25
AζðkeqτÞ2: ð50Þ

At recombination time τrec ∼ 300 Mpc=h, keqτrec ¼ Oð1Þ,
so the correction is tiny, that is, Pð13Þ

h =Pð11Þ
h ¼ OðAζÞ.

Therefore, the CMB polarization from recombination
will remain unchanged. Reionization also introduces
low-lB modes with less lensing contamination. The
reionization time is given as τreio∼4000Mpc=h, so we

find Pð13Þ
h =Pð11Þ

h ¼ Oð103AζÞ, which could also be too
small for the experiments. Therefore, we conclude that
we will not see a reduction in the CMB polarization in the
present case. However, we only consider the linear
evolution of the scalar fluctuation in the late-matter
era. The nonlinear evolution of cosmological perturba-
tions plays an essential role during the matter era. Hence,
including enhancement due to the nonlinearity in the
above estimation will be interesting.

IV. COLLABORATIVE MULTIFREQUENCY GW
EXPERIMENTS FOR PBH DETECTION

The direct measurement of stochastic GW background
may tell us the amplitude of the small-scale curvature
perturbations Aζ and the mass distribution of PBHs in
future observations. Then, we point out that low-frequency
GWs may be secondarily reduced by large Aζ, which could
be tested in the next-generation CMB experiments. For
example, CMB-S4 and LiteBIRD, next-generation ground-
based and space-based experiments, are expected to reach
an upper limit of r < 0.001 [10,93]. Thus, combining the
multifrequency GW experiments range from 10−15 to
104 Hz, from CMB polarization to the LIGO/Virgo, should
be crucial to discuss PBH formation theories.

The accumulated effect of the one-loop correction Pð13Þ
h

from the RD era ceases at τD since scalar fluctuations below
the diffusion scale kD are exponentially suppressed as
discussed in Sec. III A. The one-loop calculation during the
MD era requires further investigation of nonlinear dynam-
ics, so we limit our quantitative arguments to the RD era. In
our case, the tensor-to-scalar ratio on the CMB scale is
written as

r≡
2
	
1
3
Pð13Þ

h ðτDÞ þ Pð11Þ
h



ACMB
ζ

¼ rð11Þð1þ ΔrÞ; ð51Þ

where Pð13Þ
h can be calculated in Eq. (38) and ACMB

ζ ≃
2.1 × 10−9 [94]. The factor 2 accounts for two polarizations

FIG. 4. Left: absolute value of the one-loop correction jPð13Þ
h j sourced by the delta-function-like source during MD era. The vertical

axis is normalized by the primordial tensor spectrum Pð11Þ
h , and Aζ is taken to be 10−4. Brown, red, and blue solid lines denote different

times: y≡ k�τ ¼ 102; 103, and 104, respectively. The damping feature for k=k� ≳ y−1 implies the horizon entry. Right: comparison

between two types of one-loop SIGWs power spectra. The cyan curve refers to 1
4
Pð22Þ

h while the red dashed line represents 1
3
jPð13Þ

h j. Here,
the dimensionless time y is chosen to be 102, Aζ ¼ 10−4, and Ph ¼ 10−10.
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of tensor modes. Note that r is evaluated at the pivot scale

ks¼0.05Mpc−1 for CMB observation. rð11Þ≡2Pð11Þ
h =ACMB

ζ

is the commonly used definition of the tensor-to-scalar ratio
for PGWs, and it is straightforward to see that

Δr ¼
1

3

Pð13Þ
h ðτDÞ
Pð11Þ

h

≃ Aζ½4 − 4.8 logðk�τÞ�; ð52Þ

which is calculated by Eq. (39). From the above expression,
Δr depends on k� and Aζ. At present, Aζ is loosely
constrained as shown in the left panel of Fig. 5.
However, we expect that PIXIE-like spectral distortion
experiments [95] and GW experiments including SKA,
LIGO, and BBO [27,95], will significantly improve the
upper bounds (see Fig. 1 in Ref. [86] or Fig. 4 in Ref. [27]
for details). Also, one can relate the peak scale k� to the
formation masses of PBHs by using the horizon-mass
approximation [96],

MPBH ≃ γMH

≃M⊙

�
γ

0.2

��
gform
10.75

�
−1
6

�
k�

1.9 × 106 Mpc−1

�
−2
;

ð53Þ

where γ ≃ 0.2, gform ≃ 106.75, and M⊙ is the solar mass.
Hence, with the constraints on Aζ shown in the left plot in
Fig. 5, we can obtain upper limits on jΔrj for each PBH
mass MPBH.

The plot shows that the lighter PBHs reduce PGW more.
Two concaves are due to the present constraints on Aζ from
FIRAS and PTA in the left panel in Fig. 5. jΔrj in Fig. 5
may exceed the unity for a certain small MPBH, implying
the ignorance of the higher-order nonlinear terms or that
we cannot trust perturbative analysis anymore because
the autotensor spectrum including all corrections must
be non-negative.
A remaining issue is gauge dependence. Tensor fluctua-

tions at nonlinear order are generally gauge dependent;
therefore, comparing theory and observations is not straight-
forward. Several works suggested that the induced GWs are
physically well defined only in the subhorizon scale, and the
induced GWs are gauge independent in that limit [99–102].
However, the loop effect we discussed is manifest at the
superhorizon scale; that is, we consider the nonlinearity in
the superhorizon tensor modes. We cannot distinguish the
third-order tensor fluctuations from the linear ones once the
source disappears, and the evolution afterward is linear.
Therefore, the same solution does not apply to the gauge
issue of the superhorizon corrections. However, as we work
in the same gauge condition for the rest of cosmic history,
observational predictions such as the CMB polarization
should be consistent. We will further investigate the gauge
dependence of the loop effect in future work.

V. CONCLUSIONS

The nonlinear interaction of cosmological perturbations
secondarily induces tensor fluctuations or GWs. Such

FIG. 5. Left: current constraints on the curvature perturbations on different scales, including the Planck [94] (red), Lyman-α forest [97]
(blue), far infrared absolute spectrophotometer (FIRAS) CMB spectral distortion [98] (orange), and pulsar timing arrays (PTA)

constraint on the standard SIGW Pð22Þ
h [41] (magenta). We also present constraint from PBH abundance account for dark matter [27,86]

(green) with a conservative value Aζ ¼ 10−2. Similar plots can also be found in Refs. [27,41,86]. The lower horizontal axis corresponds
to the peak scale k� for the delta-function-like source. Right: upper limit on tensor-to-scalar ratio variation jΔrj in terms of the
monochromatic PBH mass MPBH. The shadow refers to the parameter space allowed by the left panel.
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secondary GWs are attracting growing attention as we
indirectly test the PBH formation theories via future GW
measurements. Recent works mostly considered the one-
loop autopower spectrum of second-order induced tensor
modes. This paper identified a missing one-loop contribu-
tion from the cross-power spectrum of first- and third-order
tensor modes. We computed the third-order tensor fluc-
tuation sourced by a tensor and two scalar perturbations,
including higher-order nonlinear interactions and iterative
solutions. Assuming a primordial tensor mode and
enhanced delta-function-like scalar fluctuation in a typical
PBH formation scenario, we found that the new one-loop
correction is scale invariant and negative in the super-
horizon region. Hence, short-scale large scalar fluctuations
may significantly reduce the superhorizon primordial
tensor-power spectrum. Suppose that the recent LIGO/
Virgo events are explained by tens-solar-mass PBHs
generated by a sharp peak of scalar fluctuations with Aζ ∼
10−2 at k� ∼ 105 h=Mpc, we showed that the tensor-power
spectrum at the CMB scale reduces by at most 35%. Hence,
the polarization B mode might not be observed because the
secondary effect of PBH formation reduced the original
tensor spectrum. In a hypothetical early MD era, the
reduction effect is more sensitive to the scalar amplitude
since the gravitational potential is constant, implying that
the loop expansion may easily fail. Hence, a detailed loop
analysis will be required for further quantitative predictions
in MD eras.
The new IR behavior greatly differs from the case of the

second-order tensor autopower spectrum since the causally
generated second-order tensor fluctuations are never corre-
lated over the superhorizon scale. Then, does the scale-
invariant reduction violate causality? The new third-order
correction is not a production of GWs from zero but a shift
of the existing linear tensor modes via the Fourier mode
coupling at nonlinear orders. Equation (18) implies that
the third-order correction is the amplitude modulation
of superhorizon first-order tensor fluctuations by the
subhorizon scalar fluctuations as illustrated in Fig. 6.
References [103–106] discussed similar effects for CMB
spectral distortion anisotropies in the presence of primor-
dial non-Gaussianity. They found that the local non-
Gaussinaity introduces the Fourier mode coupling between
super- and subhorizon modes at third order. Then, the
secondarily generated spectral distortions are correlated
over the superhorizon scale without violating causality. The
superhorizon evolution of other cosmological perturbations
due to the primordial non-Gaussianity is also discussed in
Refs. [32,107,108]. Our mechanism is essentially the same
as this, while non-Gaussianity is naturally introduced by
nonlinearity in the Einstein equation. The variation of the
superhorizon tensor mode is also discussed with the
separate Universe formalism in Ref. [87]. Similar IR
dependence was also found in the general relativistic
correction of the matter power spectrum in Ref. [109] in

the context of large-scale-structure, while the correction is
tiny for ζ ∼ 10−5 in that work.
One of the authors recently claimed that the one-loop

inflationary tensor-power spectrum might be scale-
invariantly enhanced or reduced due to a subhorizon
resonant spectator scalar field [22]. Their reduction effect
is due to the Born approximation for the fourth-order
interaction Hamiltonian, which corresponds to the third-
order source in the equation of motion in our analysis. The
scale-invariant enhancement comes from the iterative cor-
rection of one-loop diagram (a1) in Fig. 2. The iterative
correction during inflation can be amplified and dominant
when the scalar Green function is also enhanced for a
nontrivial background. We do not expect similar enhance-
ment during radiation or matter eras. The iterative correction
is comparable to the reduction effect in our case. In the
present case, the coupling constant between ζ and hij is of
the order of unity. Hence, the amplification of ζ always
propagates to the loop. This is not necessarily the case during
inflation in Ref. [22], since the coupling constant is slow-roll
suppressed. Therefore, the inflationary one-loop correction
is not necessarily enhanced for an arbitrary PBH formation
scenario. However, the new significant reduction effect
discussed in this paper always appears once ζ is amplified.
Hence, PBH formation and reduction of primordial GWs
may be two sides of the same coin, suggesting that
combining GW detectors at all scales is indispensable!
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APPENDIX A: ITERATIVE SOLUTIONS
IN THE IR REGION

In this appendix, we discuss the IR scaling of the three
source terms we ignored in the main text. The first
contribution arises from

Sð3Þϕhϕh;ij
¼ 12

h
ϕhð2Þij

00 þ ð2Hϕþ ϕ0Þhð2Þij
0i: ðA1Þ

The second-order tensor fluctuation in the above source
is obtained by integrating

hð2Þij
00 þ 2Hhð2Þij

0 −∇2hð2Þij ¼ 8ϕ0hð1Þij
0 þ 8ϕ∇2hð1Þij : ðA2Þ

When substituting the solution of Eq. (A2) into Eq. (A1),
we find the linear tensor fluctuation in the third-order
source always appears with derivative operators. Then,
from Eq. (18), those derivative operators turn into the
external momentum when cross correlating with the linear
field. Hence, these terms vanish in the IR region.

Secondly, we find the following source:

Sð3Þhϕϕϕ;ij
¼ 2hð1Þij ð∇2Ψð2Þ −∇2Φð2ÞÞ þ 6ðΦð2Þ þ Ψð2ÞÞ∇2hð1Þij

þ 3ðΦð2Þ0 þ 3Ψð2Þ0Þhð1Þij
0 þ 3ð∂kΨð2Þ − ∂

kΦð2ÞÞ
× ð∂jhð1Þki þ ∂ih

ð1Þ
kj − ∂kh

ð1Þ
ij Þ: ðA3Þ

As discussed above, derivatives of tensor fluctuations will
vanish in the IR region. In addition, the second-order scalar
fluctuations in the first line of Eq. (A3) reduces to the zero
modes so that∇2 ¼ 0. Therefore, we may safely ignore this

source. Similarly, cross correlating Sð3Þhhϕϕ;ij
with the linear

tensor modes, hϕϕ reduces to the zero mode, which should
always be zero from statistical isotropy of cosmological
perturbations.

APPENDIX B: ANALYTICAL RESULT IN RD

In this appendix, we provide the analytical expression for

the kernel function generated from the source Sð3Þhϕϕ during
RD era, which reads

Ih;hϕϕðu; xÞ ¼
3

70u6x2

�
2

ffiffiffi
3

p
ð53u2 − 168Þ sin 2xSi

�
2uxffiffiffi
3
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�
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����
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3
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����sin2x
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3x cos x
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[29] Jacopo Fumagalli, Sébastien Renaux-Petel, and Lukas T.
Witkowski, Oscillations in the stochastic gravitational
wave background from sharp features and particle pro-
duction during inflation, J. Cosmol. Astropart. Phys. 08
(2021) 030.

[30] Matteo Braglia, Xingang Chen, and Dhiraj Kumar Hazra,
Probing primordial features with the stochastic gravita-
tional wave background, J. Cosmol. Astropart. Phys. 03
(2021) 005.

MISSING ONE-LOOP CONTRIBUTIONS IN SECONDARY … PHYS. REV. D 107, 083518 (2023)

083518-13

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1088/0264-9381/28/21/215011
https://doi.org/10.1088/0264-9381/28/21/215011
https://doi.org/10.1007/s10701-016-0057-0
https://doi.org/10.1007/s10701-016-0057-0
https://doi.org/10.3847/1538-4357/ac1596
https://doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.76.084019
https://doi.org/10.1103/PhysRevD.76.084019
https://doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.1103/PhysRevLett.107.069901
https://doi.org/10.1103/PhysRevLett.107.069901
https://doi.org/10.1103/PhysRevD.95.123510
https://doi.org/10.1103/PhysRevD.95.123510
https://doi.org/10.1103/PhysRevD.97.123532
https://doi.org/10.1103/PhysRevD.97.123532
https://doi.org/10.1103/PhysRevD.99.103521
https://doi.org/10.1103/PhysRevD.100.043518
https://doi.org/10.1088/1475-7516/2017/09/013
https://doi.org/10.1088/1475-7516/2017/09/013
https://doi.org/10.1088/1475-7516/2021/03/013
https://doi.org/10.1088/1475-7516/2021/03/013
https://doi.org/10.3390/universe7110398
https://doi.org/10.1103/PhysRevD.104.083537
https://doi.org/10.1103/PhysRevD.104.083537
https://arXiv.org/abs/2209.02272
https://doi.org/10.1103/PhysRevLett.122.201101
https://doi.org/10.1103/PhysRevD.99.041301
https://doi.org/10.1103/PhysRevD.99.041301
https://doi.org/10.1088/1475-7516/2021/10/080
https://arXiv.org/abs/2207.14267
https://doi.org/10.1103/PhysRevD.99.043511
https://doi.org/10.1103/PhysRevD.99.043511
https://doi.org/10.1103/PhysRevD.105.063533
https://doi.org/10.1103/PhysRevD.105.063533
https://doi.org/10.1088/1475-7516/2021/08/030
https://doi.org/10.1088/1475-7516/2021/08/030
https://doi.org/10.1088/1475-7516/2021/03/005
https://doi.org/10.1088/1475-7516/2021/03/005


[31] Jacopo Fumagalli, S. ébastien Renaux-Petel, and Lukas T.
Witkowski, Resonant features in the stochastic gravita-
tional wave background, J. Cosmol. Astropart. Phys. 08
(2021) 059.

[32] Atsuhisa Ota, Induced superhorizon tensor perturbations
from anisotropic non-Gaussianity, Phys. Rev. D 101,
103511 (2020).

[33] Vicente Atal and Guillem Domènech, Probing non-
Gaussianities with the high frequency tail of induced
gravitational waves, J. Cosmol. Astropart. Phys. 06
(2021) 001.

[34] Ema Dimastrogiovanni, Matteo Fasiello, Ameek Malhotra,
and Gianmassimo Tasinato, Enhancing gravitational wave
anisotropies with peaked scalar sources, J. Cosmol. As-
tropart. Phys. 01 (2023) 018.

[35] Chao Chen and Atsuhisa Ota, Induced gravitational waves
from statistically anisotropic scalar perturbations, Phys.
Rev. D 106, 063507 (2022).

[36] Stephen Hawking, Gravitationally collapsed objects of
very low mass, Mon. Not. R. Astron. Soc. 152, 75 (1971).

[37] Bernard J. Carr and S. W. Hawking, Black Holes in the
Early Universe, Mon. Not. R. Astron. Soc. 168, 399
(1974).

[38] Bernard J. Carr, The primordial black hole mass spectrum,
Astrophys. J. 201, 1 (1975).

[39] Juan Garcia-Bellido and Ester Ruiz Morales, Primordial
black holes from single field models of inflation, Phys.
Dark Universe 18, 47 (2017).

[40] Cristiano Germani and Tomislav Prokopec, On primordial
black holes from an inflection point, Phys. Dark Universe
18, 6 (2017).

[41] Christian T. Byrnes, Philippa S. Cole, and Subodh P. Patil,
Steepest growth of the power spectrum and primordial
black holes, J. Cosmol. Astropart. Phys. 06 (2019) 028.

[42] Jing Liu, Zong-Kuan Guo, and Rong-Gen Cai, Analytical
approximation of the scalar spectrum in the ultraslow-roll
inflationary models, Phys. Rev. D 101, 083535 (2020).

[43] Chengjie Fu, Puxun Wu, and Hongwei Yu, Primordial
black holes and oscillating gravitational waves in slow-roll
and slow-climb inflation with an intermediate noninfla-
tionary phase, Phys. Rev. D 102, 043527 (2020).

[44] Keisuke Inomata, Evan McDonough, and Wayne Hu,
Amplification of primordial perturbations from the rise
or fall of the inflaton, J. Cosmol. Astropart. Phys. 02
(2022) 031.

[45] Gianmassimo Tasinato, An analytic approach to non-slow-
roll inflation, Phys. Rev. D 103, 023535 (2021).

[46] Ogan Özsoy and Gianmassimo Tasinato, Consistency
conditions and primordial black holes in single field
inflation, Phys. Rev. D 105, 023524 (2022).

[47] Philippa S. Cole, Andrew D. Gow, Christian T. Byrnes,
and Subodh P. Patil, Steepest Growth Re-Examined:
Repercussions for Primordial Black Hole Formation,
arXiv:2204.07573.

[48] Kazunori Kohri, Chia-Min Lin, and Tomohiro Matsuda,
Primordial black holes from the inflating curvaton, Phys.
Rev. D 87, 103527 (2013).

[49] Masahiro Kawasaki, Naoya Kitajima, and Tsutomu T.
Yanagida, Primordial black hole formation from an axion-
like curvaton model, Phys. Rev. D 87, 063519 (2013).

[50] Shi Pi, Ying-li Zhang, Qing-Guo Huang, and Misao
Sasaki, Scalaron from R2-gravity as a heavy field,
J. Cosmol. Astropart. Phys. 05 (2018) 042.

[51] Lilia Anguelova, On primordial black holes from rapid
turns in two-field models, J. Cosmol. Astropart. Phys. 06
(2021) 004.

[52] Gonzalo A. Palma, Spyros Sypsas, and Cristobal Zenteno,
Seeding Primordial Black Holes in Multifield Inflation,
Phys. Rev. Lett. 125, 121301 (2020).
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