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We propose a novel mechanism for significantly enhancing the amplitude of primordial electromagnetic
fields during inflation. Similar to existing proposals, our idea is based on parametric resonance effects due
to conformal-symmetry-breaking coupling of a gauge field and the inflaton. Our proposed scenario,
however, significantly differs from previously studied models and avoids their shortcomings. We,
particularly, construct a viable system where the gauge field is exponentially amplified on super-horizon
scales, therefore evading the no-go theorem formulated on the basis of widely encountered drastic
backreaction of the magnetic field energy on the inflationary background. We argue that in order for the
resonant scenario to work with a bounded and positive-definite coupling function, a mass term for
the gauge sector is required. We compute the spectrum of the produced magnetic fields and demonstrate the
compatibility with current observational constraints. We demonstrate that while the magnetic fields do not
noticeably backreact on the inflationary background, the nonzero mass term can contribute significantly to
the total energy-momentum tensor. We point out the parameter space where the latter issue is absent.
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I. INTRODUCTION

The origin of cosmological magnetic fields on interga-
lactic scales of ∼4 Mpc remains unexplained in cosmology.
The strength of such magnetic fields has been measured to
be between 10−17 and 10−14 Gauss by several experiments
[1–6]. Interestingly, inflation—an accelerated expansion in
the early Universe—may be a working regime where the
quantum vacuum fluctuations of magnetic fields can be
stretched beyond the horizon and seed the observed
magnetic fields on large scales. There are many models
proposed in the literature [7–22], most of which are based
on breaking of the conformal invariance in the gauge sector
(see also Refs. [23,24] for useful reviews). This is necessary
because in the Maxwell’s theory, there is no enhancement
of the electromagnetic (EM) fluctuations in a Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe.
There are multiple ways for breaking the conformal

invariance. The simplest one is to introduce a coupling of
the EM field and a (pseudo) scalar inflaton, although
alternatives involving coupling the gauge field to the scalar
curvature [7,25] or additional spectator fields [26–28] have

also been considered. In fact, one of the well-studied models
of magnetogenesis during inflation is the so-called Ratra
model (see, e.g., Refs. [20,29,30] for recent works) with a
nonminimal coupling of the form fðϕÞ2FμνFμν, where ϕ is
the inflaton field and Fμν is the electromagnetic field
strength. Typically, there are two problems in such models
of primordial magnetogenesis; these are the strong-coupling
[20,31–33] and backreaction [13,14,31,34,35] problems.
The former arises when the effective coupling constant
[∼fðϕÞ−1] becomes much larger compared to unity, so that
the perturbative calculations are unreliable. The latter prob-
lem usually happens when the energy density of the
electromagnetic sector becomes comparable to the back-
ground energy density during inflation, prematurely ending
it. Additionally, there are phenomenological limitations
arising from cosmic microwave background (CMB) con-
straints [19,35–37].
Among the interesting models of primordial magneto-

genesis, the idea of resonant production during inflation was
investigated in Refs. [27,38]. In Ref. [38], a coupling of the
form IðϕÞFμνF̃μνwas considered,where IðϕÞ is a function of
the inflaton ϕ and F̃μν is the dual of the EM field strength.
Assuming that IðϕÞ is an oscillating function in conformal
time, the helical EM modes with subhorizon wavelengths
grow exponentially, sourcing the late-universe large-scale
magnetic fields. However, since the amplification is
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predominantly at subhorizon scales during inflation, the
magnetic energy density dilutes rapidly when the amplified
modes exit the horizon. In order for the heavily diluted
magnetic energy density to be in agreement with observa-
tional constraints, the subhorizon enhancement mechanism
should be very powerful, leading to magnetic field energy
density at the epoch of horizon crossing exceeding the
inflationary background energy density (see Ref. [38] as
well as Sec. III below).
In this work, we consider a coupling of the form

fðϕÞ2FμνFμν together with the mass term of Aμ in the
context of a resonant mechanism for generating a sizable
primordial magnetic field. Oscillations of fðϕÞ (hence, in
the coupling of the EM sector) and a small mass of Aμ

compared to Hubble scale can give rise to resonant
amplification of certain EM modes, without leading to
both the strong-coupling and backreaction problems. We
will see in Sec. IV that the no-go theorem mentioned above
does not apply to our model due to the fact that the
significant enhancement of the EM modes takes place
outside the horizon. We will argue that in order for the
resonant scenario to work with a bounded and positive-
definite coupling function fðϕÞ, a mass term for the gauge
sector is required. We will demonstrate that while the
magnetic fields do not noticeably backreact on the infla-
tionary background, this mass term contributes signifi-
cantly to the total energy-momentum tensor. We point out
the parameter space where the latter issue is absent.
The rest of this paper is organized as follows. In Sec. II,

we introduce our model along with the notation used
throughout the paper. We summarize the no-go argument
discussed in Ref. [38] and explain a possible way out in
Sec. III. In Sec. IV, we analyze a toy model which generates
large late-time magnetic fields without encountering both
the strong-coupling and backreaction problems. Our con-
clusions are summarized in Sec. V, and technical details
presented in the Appendix.

II. SETUP

The model considered here is given by the following
action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p h
LEH þ Lϕ þ LϕA

i
; ð1Þ

with

LEH ¼ M2
Pl

2
R; ð2Þ

LϕA ¼ fðϕÞ2
�
−
1

4
FμνFμν −

1

2
m2

AAμAμ

�
; ð3Þ

Lϕ ¼ −
1

2
ð∂ϕÞ2 − VðϕÞ; ð4Þ

where R is the 4D Ricci scalar, the field strength tensor is
defined as Fμν ≡∇μAν −∇νAμ, and ∇μ is the covariant
derivative associated with the curved spacetime. The
inflaton field and its potential are denoted by ϕ and
VðϕÞ, respectively. Throughout this paper, we assume
ϕ ¼ ϕðtÞ; i.e., we are only interested in the dynamics of
Aμ on a fixed background ϕðtÞ. The function fðϕÞ2 in
Eq. (3) is an arbitrary function of the inflation, which
breaks the conformal symmetry of the gauge-field action.1

Clearly, the presence of the mass term in Eq. (3) breaks the
gauge symmetry under Aμ → Aμ þ ∂μΛðxÞ transformation,
where ΛðxÞ is a scalar function of spacetime coordinates. It
is worth stating that the breaking of gauge invariance due to
the mass term may be a result of spontaneous symmetry
breaking, so that the mass can be regarded as a function of
the inflaton. After inflation, we require that the gauge
symmetry should be recovered, leading to a vanishing
mass term.
The background metric is assumed to be the spatially flat

FLRW metric,

ds2 ¼ −dt2 þ aðtÞ2dx⃗2; ð5Þ

where t is the cosmic time and aðtÞ is the scale factor. We
define the Hubble parameter as H ≡ _a=a with the dot
denoting a derivative with respect to the cosmic time. Note
that in this paper we are primarily using the cosmic time.
Without loss of generality, the vector field Aμ can be

decomposed as Aμ ¼ ∂μχ þ AT
μ , where χ represents the

longitudinal mode2 and AT
μ represent the transverse modes.

Using such a decomposition in (3), it is easy to see that only
the AT

μ modes acquire a mass, while the mode χ is massless.
In order to avoid the χ mode becoming a ghost, m2

A has to
be positive definite. Since we are only interested in the
dynamics of the gauge field at linear level, the mixing of χ
and AT

μ modes can be discarded.3 Moreover, we will see
below that the χ mode does not contribute to the magnetic
field simply because of the fact that Fij only gets a
contribution from AT

i . For the rest of the paper, we are
going to drop the superscript “T” and denote the transverse
modes as Aμ.
For convenience, we impose the Coulomb gauge con-

dition for the transverse modes,

A0ðt; x⃗Þ ¼ 0; δij∂iAjðt; x⃗Þ ¼ 0: ð6Þ

1The breaking of conformal invariance in the gauge sector is
typically necessary in order to achieve a sizable amplification of
the magnetic field in an expanding universe [39].

2Note that the field χ in this definition is dimensionless.
3In fact, the mixing term is of the form AT

i ∂
iχ, which, by

performing an integration by parts and using ∂
iAT

i ¼ 0, does not
contribute to the equations of motion.
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The Fourier modes, Aλðt; kÞ, of the vector potential are
defined via

Aiðt; x⃗Þ ¼
Z

d3k
ð2πÞ3

X
λ¼�

eik⃗·x⃗eλi ðk̂Þ

×
h
Aλðt; kÞb̂λk⃗ þ Aλðt; kÞ�b̂λ†−k⃗

i
; ð7Þ

where k≡ jk⃗j, k̂≡ k⃗=k, and eλi ðk̂Þ denote the polarization
vectors. The creation and annihilation operators are defined
to satisfy

½b̂λ
k⃗
; b̂λ†

k⃗0
� ¼ ð2πÞ3δλλ0δð3Þðk⃗ − k⃗0Þ: ð8Þ

Note that the polarization vectors satisfy the following
orthogonality relations: k⃗ · eλðk̂Þ ¼ 0, eλðk̂Þ · eλ0 ðk̂Þ ¼ δλλ

0

and
P

λ e
λ
i ðk̂Þeλjðk̂Þ ¼ δij − kikj=k2. In addition, due to the

symmetries of the FLRW background, the mode functions
Aλðt; kÞ depend only on the magnitude k of the comoving
momentum.
During inflation, the function fðϕÞ can be treated as a

function of time. From the action in Eq. (1), the equation of
motion for the mode function Aλðt; kÞ is given by

Äþ
_F
F
_Aþ k2

a2
Aþm2

AA ¼ 0; ð9Þ

where F≡ af2, and we have omitted the subscript λ since
both of the polarizations satisfy the same equation.
In terms of the variable A≡ ffiffiffiffi

F
p

A the equation above
becomes

Äþ
�
k2

a2
þm2

A þ 1

4

�
_F
F

�
2

−
F̈
2F

�
A ¼ 0: ð10Þ

This is the main equation we will work with in Sec. IV. It is
important to note that in this case the produced EM field is
nonhelical because the operator fðϕÞ2FμνFμν is even under
parity transformations. On the other hand, in the parity-
violating scenario considered in, e.g., Ref. [38], the
coupling of A and ϕ depends on k, leading to suppressed
super-horizon enhancement and causing a backreaction
problem.
Let us comment on the longitudinal mode χ. As

explained before, the mode χ behaves as a massless scalar
field in de Sitter space and does not contribute to the
magnetic field by definition. On top of that, in the energy
density we can completely neglect contributions coming
from the χ mode. This can be realized by looking at the
equation of motion of χ in k space,

d
dt

ða3f2 _χcÞ þ Fk2χc ¼ 0; ð11Þ

where χc ≡mAχ. For an oscillating function F considered
in Sec. IV, in the super-horizon limit k → 0, the solutions χc
would be exponentially decreasing. Therefore, the contri-
butions from the longitudinal mode in the energy density
are negligible compared to the ones from the trans-
verse modes.
The electric field Eμ and magnetic field Bμ on the FLRW

background are defined as

Eμ ≡ Fμνuν; Bμ ≡ F̃μνuν; ð12Þ

where uμ is the observer’s four-velocity. The dual field
strength F̃μν is defined as

F̃μν ≡ 1

2
ffiffiffiffiffiffi−gp ϵμνρσFρσ; ð13Þ

where ϵμνρσ is the totally antisymmetric Levi-Civita symbol
with ϵ0123 ¼ 1. Using the convention ϵ0νρσ ¼ ϵijk, for a
comoving observer with uμ ¼ ð1; 0⃗Þ the E and B fields
defined in Eq. (12) become

Eμ ¼ ð0;− _AiÞ; Bμ ¼
�
0;
1

a
ϵi

jk
∂jAk

�
: ð14Þ

Clearly, from the expression above, the longitudinal mode χ
does not give contributions to the B field.4 The energy
density of the gauge field is given by

ρem ¼ hTðAÞ
tt i ¼ f2

2
hEμEμ þ BμBμ þm2

AAμAμi
≡ ρE þ ρB þ ρM; ð15Þ

where TðAÞ
μν is the energy-momentum tensor of the gauge

field. The energy densities in the B field, the E field, and the
mass term per logarithmic k interval are given by

dρB
d log k

¼ 1

4π2

�
k
a

�
4 1

a
j

ffiffiffiffiffi
2k

p
Aðt; kÞj2; ð16Þ

dρE
d log k

¼ f2

4π2

�
k
a

�
2
���� ddt

� ffiffiffiffiffi
2k

p
Aðt; kÞffiffiffi
a

p
f

�����
2

; ð17Þ

dρM
d log k

¼ m2
A

4π2

�
k
a

�
2 1

a
j

ffiffiffiffiffi
2k

p
Aðt; kÞj2: ð18Þ

In terms of the fractional density parameter ΩB ≡ ρB=ρtot,
with ρtot denoting the total energy density of the Universe,
the present-day magnetic field strength of B0 ≈ 10−15

Gauss corresponds to ΩB ≈ 10−23.

4Although the field χ contributes to the E field, the fact that χ is
just a massless scalar field in an approximately de Sitter space
implies that it does not get amplified outside the horizon.
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Notice that in the usual case of conformally invariant EM
sector Eq. (16) is reduced to

dρB
d log k

¼ 1

4π2

�
k
a

�
4

cos2
�

k
aH

�
≈

1

4π2

�
k
a

�
4

; ð19Þ

where the last term is the leading order in the super-horizon
expansion. In this case, the contribution of a particular
mode to the energy density rapidly decays as a−4 on super-
horizon scales. As we will explain in Sec. IV, in our
scenario, this dilution can be compensated by the expo-
nential growth of the mode functions outside the horizon.
Before concluding this section, let us comment on the

background evolution of the inflaton field. Its dynamics is
governed by

ϕ̈þ 3H _ϕþ ∂ϕV ¼ IðE;B; AÞ; ð20Þ

where the source term is defined by

IðE; B; AÞ≡ f∂ϕfhEμEμ − BμBμ −m2
AAμAμi; ð21Þ

representing the backreaction of the gauge field production
on the inflationary background. This source is related to the
difference between the electric and magnetic energy den-
sities and the energy density associated to the mass term,
implying that as long as these densities are negligible
compared to the inflationary background, the right-hand
side of Eq. (20) can be safely neglected.

III. NO-GO THEOREM: A REVIEW

In this section, we briefly review the no-go theorem of
the gauge field production during inflation formulated in
Ref. [38]. A crucial assumption of this theorem is that the
amplification happens only inside the horizon, while the
mode functions freeze when their wavelengths become
larger than the Hubble horizon. Since the inflationary
energy density stays almost constant, the fractional energy
densityΩB is rapidly diluted as ∝ a−4 due to the expansion.
Assuming, for simplicity, that the Universe becomes

radiation-dominated right at the end of inflation and stays
as such up until present epoch, we can neglect the time
evolution of ΩB after inflation. The observational con-
straints therefore suggest that the fractional energy density
at the end of inflation should satisfy Ωend

B ≳ Ωobs
B ¼ 10−23.

In passing, it is interesting to note that this lower bound can
be relaxed if inflation is followed by an intermediate epoch
of stiff fluid domination. Extrapolating Ωend

B back when the
relevant modes of interest first exited the horizon leads to

Ω�
B ¼ Ωend

B e4ΔN� ; ð22Þ

where ΔN� is the number of e-foldings from the horizon
exit until the end of inflation. Our primary interest is in the
magnetic fields at large scales, corresponding to ΔN� ≈ 50,

which leads to Ω�
B ≫ 1; therefore, heavily invalidating the

inflationary dynamics. Clearly, this problem is exponen-
tially less severe for small scale production. Indeed,
ΔN� ≈ 11, corresponding to very small scales, would avoid
the backreaction problem.
For illustration purposes, let us estimate the amplitude of

the gauge field j ffiffiffiffiffi
2k

p
Aj at the end of inflation required for

explaining the large-scale magnetic fields without encoun-
tering a large backreaction during inflation. For this illus-
tration, we assume no super-horizon enhancement and limit
ourselves to a more standard situation of conserved mode
functions outside the horizon. For simplicity, let us assume
that the amplification of A is peaked at a scale k�,
j ffiffiffiffiffi

2k
p

Aj2=a ¼ 2k�Ā2�δðk=k� − 1Þ, where Ā� is a constant
amplitude. From Eq. (16), the requirements of no back-
reaction (ρB ≲ ρϕ) and satisfying observational limits trans-
late into an inequality,

KðΩobs
B Þ1=2 ≲ ffiffiffiffiffiffiffi

2k�
p

Ā� ≲ e−2ΔN�K; ð23Þ

where K ≡ ffiffiffiffiffi
12

p
πðk�=kfÞ−2MPl=H, with kf denoting the

horizon scale at the end of inflation. It is clear from this
simple estimate that without super-horizon evolution, for
typical ΔN� ∼ 50 and Ωobs

B ¼ 10−23, the inequality in
Eq. (23) cannot be satisfied.
With our mechanism we achieve the mode functions to

be amplified on super-horizon scales, effectively leading to
milder (or complete absence) of dilution. We now proceed
to the details of our scenario.

IV. TOY MODEL

A. Analysis

We demonstrate the main properties of our mechanism in
this section. Let us start with discussing the function FðtÞ ¼
FðϕðtÞÞ introduced in Eq. (9). We assume that FðtÞ is an
oscillating function with frequencyω during a certain period
of time. It is then convenient to introduce the variable
z≡ ωðt − tiÞ=2, where ti denotes the onset of oscillations.
For simplicity, we assume an exponentially expanding
universe with aðzÞ ¼ expð2rzÞ, where r≡H=ω.
A simple model to ensure the positive definiteness of F is

given by

F0

F
¼ −2γ sinð2zÞ: ð24Þ

This choice renders the mode-function equation Eq. (10) to
take the form of Whittaker-Hill equation [40] with a time-
dependent leading coefficient,

A00 þ
h
CðzÞ þ 2q cosð4zÞ þ 2p cosð2zÞ

i
A ¼ 0; ð25Þ

where the prime denotes a derivative with respect to z.
Similar equation has been analyzed in Ref. [41] in the
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context of vacuum stability in Higgs inflation, and in
Ref. [42], in the context of preheating with nonstandard
kinetic terms. We provide a brief review of such equations
in the Appendix. In Eq. (25), all the coefficients are fixed in
terms of a single parameter γ,

CðzÞ≡ 4k2

a2ω2
−
γ2

2
þ δ; p≡ γ; q≡ 1

4
γ2; ð26Þ

where δ≡ 4m2
Ar

2=H2.
It is useful to note that in the case where m2

A ¼ 0, the
mode function A satisfies ðF _AÞ· ¼ 0 in the limit k=a → 0.
This implies that when F is assumed to be a bounded
function, the massless vector field cannot be exponentially
amplified on super-horizon scales; see, e.g., [43] for a
similar discussion. This means that the mass term plays an
important role in our analysis. For exponentially decaying
F, the mode functions A can be amplified on super-horizon
scales. We will comment on this possibility and its draw-
back in Sec. IV B.
In order to derive analytical approximations, we will

neglect for now the time-dependent term in CðzÞ (achieved
in the super-horizon limit) and will rely on the Floquet
theorem [40,44]. The general solution of Eq. (25) can be
written as

j
ffiffiffiffiffi
2k

p
AðzÞj ¼ e�μzhðzÞ; ð27Þ

where μ is the Floquet exponent and hðzÞ is a periodic
function with period π. The growth rate μ can be analyti-
cally determined using Eq. (A7), and it depends on the
parameters γ and δ; see also the discussion in the Appendix.
Figure 1 demonstrates the dependence of μ on the param-
eter γ, where we fix δ ¼ 10−2. We use this result for guiding
our selection of valid parameter combinations. Particularly,

γ ¼ 7 corresponds to large super-horizon enhancement
with a growth rate of μ ≈ 2.5.
We now turn to exact numerical analysis of Eq. (25). We

particularly solve it in the range spanning from zi ¼ 0 to
zf ¼ 50, which, in terms of an e-folding number ΔN is
given by zf − zi ¼ ΔN=ð2rÞ. We impose the following
initial conditions:

j
ffiffiffiffiffi
2k

p
AðzÞjz¼zi ¼ 1;

����
ffiffiffiffiffi
2k

p dAðzÞ
dz

����
z¼zi

¼ 2k
ω
: ð28Þ

The numerical solutions are shown in Fig. 2. Notice that the
mode with momentum k crosses the horizon at

zc ¼
1

2r
log

�
k
ωr

�
; ð29Þ

which is marked by vertical dashed lines in Fig. 2. It is
evident from Fig. 2 that the mode functions experience a
large amplification once they cross the horizon, leading to
gauge field production at super-horizon scales. Note that
here we have chosen γ ¼ 7 and δ ¼ 10−2, and the resulting
growth agrees with the prediction of Fig. 1.
It is interesting to note that a similar amplification could

have been achieved in a model with tachyonic mass. In our
scenario, however, we avoid the usual ghost and gradient
pathologies encountered in tachyonic gauge theories since
the coefficients of kinetic terms do not change signs during
the evolution.

B. Phenomenological validity

Having computed the mode functions we can now
estimate the magnetic field spectrum. First, notice that the
mode functions can be approximated as j ffiffiffiffiffi

2k
p

Aj∼
expðμΔzkÞ, where the growth factor μ is approximately
universal for all the modes; see Fig. 2. The duration of
amplificationΔzk, on the other hand, clearly depends on the
mode since the enhancement is effectively active only when

FIG. 1. Dependence of the growth exponent μ on the parameter
γ, for δ ¼ 10−2. The intersection of the two dashed lines marks
the parameter choice leading to scale-invariant magnetic spec-
trum. The μðγÞ scaling is well-described by the simple fitting
function provided in the Appendix and is approximately given by
μ ¼ max f0; 0.6γ − 1.64g.

FIG. 2. Numerical solutions of A for different scales k. The
vertical lines mark the horizon crossing of the corresponding
mode. Here, γ ¼ 7, r ¼ 0.5, δ ¼ 10−2, and ΔN ¼ Nf − Ni ¼ 50.
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the given mode becomes super-horizon. We can therefore
write

Δzk ¼
1

2r
log

�
kf
k

�
; ð30Þ

where kf is the comoving horizon scale at the end of inflation.
Clearly, for k ¼ kf, we have Δzk ¼ 0, and there is no
amplification for this mode.
From Eq. (16), we have

dΩB

d log k
¼ C × 10−12

�
H

1013 GeV

�
2
�
k
kf

�
5−μ=r

; ð31Þ

where C is an Oð1Þ numerical factor. The fifth power of k
emerges due to the a−5 factor.
It is now easy to infer the spectral tilt from Eq. (31).

Particularly, for 5 − μ=r < 0, the spectrum is red tilted; i.e.,
it gets large contributions from small-k modes. This is
because the exponent μ of the mode functions overcom-
pensates the dilution factor (a−5) due to the expansion of
the Universe. On the other hand, for 5 − μ=r > 0, the
spectrum is blue tilted because in this case the super-
horizon dilution dominates over the super-horizon growth
of mode functions. The exact balance between dilution and
amplification is achieved when 5 − μ=r ¼ 0, which there-
fore leads to a scale-invariant energy spectrum.
The usual energy spectrum in the Uð1Þ-symmetric EM

theory is recovered when μ=r ¼ 1 in Eq. (31). This is a
consequence of our variable choice in the cosmic-time
frame, i.e. A ¼ ffiffiffiffi

F
p

A, which grows as
ffiffiffi
a

p
outside the

horizon. In this case, the spectrum is very blue tilted and
scales as k4; see Eq. (19).
In addition to our analytical result in Eq. (31), in Fig. 3,

we show the magnetic field spectra calculated using the
exact numerically evaluated mode functions. The gray solid
line represents the spectrum in the Maxwell limit, while the
red, blue, and black solid lines represent red-tilted, blue-
tilted, and scale-invariant spectra, all agreeing with our
analytical expectations. The spectra are arbitrarily normal-
ized for a more convenient comparison of their slopes.
In order to explore a wider parameter range, in Fig. 4, we

demonstrate the dependence of μ=r on γ and δ. The
diagonal dashed line represents the parameter combinations
resulting in a scale-invariant magnetic spectrum.
It is useful to rewrite Eq. (31) by introducing a typical

CMB pivot scale of kCMB ∼ 0.01 Mpc−1. We obtain

dΩB

d log k
≃ 10−12þξ

�
H

1013 GeV

�
2
�

k
Mpc−1

�
5−μ=r

; ð32Þ

where we have omitted the Oð1Þ numerical factor and
have introduced ξ≡ ð5r − μÞð2 − ΔNCMBÞ=ðr log 10Þ, with
ΔNCMB being the inflationary e-folding number correspond-
ing to the typical CMB scales,ΔNCMB ≡ logðaf=aCMBÞ. As

an example, fixing H ∼ 1013 GeV and ΔNCMB ¼ 50, the
requirementΩBðzfÞ≳ 10−23 at the scale of k ≈Oð1Þ Mpc−1

results in a lower bound μ=r≳ 4.47. Wewill show, however,
that a working scenario requires a lower energy scale. More
generally, the requirement that ΩB ≳ 10−23 at the end of
inflation can be reformulated as follows. From Eq. (31),
choosing k ¼ kB (the scale relevant to the magnetic-field
production), we obtain the following inequality:

2xþ nBðκ − ΔNCMBÞ ≳ −23 logð10Þ; ð33Þ

FIG. 3. Numerical evaluation of the magnetic energy spectra at
the end of inflation. The spectra are arbitrarily normalized in
order to facilitate the comparison of their shapes. The spectrum is
red tilted for μ ≈ 3.6, blue tilted for μ ≈ 1.3, and scale invariant for
μ ≈ 2.5—all in agreement with our analytical result of Eq. (32).
The gray solid line represents the spectrum in the Maxwell limit,
and the black dashed line represents the scale-invariant spectrum
for guiding the eye. We used r ¼ 0.5, δ ¼ 10−2, and ΔN ¼ 50.

FIG. 4. The power index of the spectrum 5 − μ=r in the δ–γ
parameter space. The dashed line represents the scale-invariant
magnetic energy density: 5 − μ=r ¼ 0.
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where nB ≡ 5 − μ=r, κ ≡ logðkB=kCMBÞ, x≡ logðH=MPlÞ,
and x0 ≡ logðH0=MPlÞ, with H0 being the Hubble param-
eter today.
Next, we will discuss three important aspects of our

proposal.
(a) No ΩB and ΩM backreaction. In addition to the

observational bound in Eq. (33), we should also make
sure that gauge field enhancement does not lead to
significant backreaction, i.e., ΩB < 1 and ΩM < 1.
The first of these gives us,

2xþ nBðκ − ΔNCMBÞ ≲ 0: ð34Þ

Let us now consider the backreaction from ΩM.
From Eq. (18) and the mode function solutions, we
obtain

dΩM

d log k
≃

δ

r2

�
H
MPl

�
2
�
k
kf

�
nB−2

; ð35Þ

where we have omitted an unimportant Oð1Þ numeri-
cal prefactor. Even in the case of a scale-invariant
magnetic spectrum, the above energy contribution is
red tilted, suggesting a potential backreaction prob-
lem. As we mentioned earlier, the mass term δ is
essential for our resonant mechanism to operate, and
we cannot exponentially lower this term. In fact, recall
that for the scale-invariant magnetic spectrum, we
need δ=r2 ¼ Oð1Þ when γ is chosen to be moderately
small. Alternatively, we could lower the energy scale
of inflation, as well as lower the inflationary e-folding
number corresponding to the scales of interest for
magnetic field generation. The inflationary scale,
however, cannot be lowered arbitrarily.
From Eq. (35), we can derive the condition to avoid

the back-reaction from ΩM, ΩM < 1, as

2xþ ðnB − 2Þðκ − ΔNCMBÞ ≲ 0: ð36Þ

Note that for this estimate we have fixed δ=r2 to be of
order unity.
Finally, ΔNCMB is fixed in terms of H=MPl by re-

quiring a long-enough inflationary period, ða0H0Þ−1 <
ðaCMBHÞ−1. Assuming an instant transition to radiation-
dominated universe, we have

ΔNCMB ≳ 1

2
ðx − x0Þ: ð37Þ

For simplicity, we use ΔNCMB ¼ 1
2
ðx − x0Þ, so that

the constraints in Eqs (33), (34), and (36) become

ð4 − nBÞxþ nBð2κ þ x0Þ ≳ −46 logð10Þ; ð38Þ

ð4 − nBÞx≲ −nBð2κ þ x0Þ; ð39Þ

ð6 − nBÞx≲ −ðnB − 2Þð2κ þ x0Þ: ð40Þ

For a fixed value of κ, the inflationary scaleH=MPl and
the magnetic spectral tilt nB should be chosen carefully
in order to satisfy all the above constraints.
In Fig. 5, we plot these three constraints and show that

the allowed region is in the range nB ≲ −4 and
H=MPl ≲ 10−32, where we have fixed κ ¼ 7

5 and
x0 ¼ −140. The reheating temperature associated to
the allowed inflationary scaleH=MPl ∼ 10−32 is approx-
imately TR ∼ 103 GeV. It should be noted that nB ≈ −4
is supported by our model, as can be seen from Fig. 4.
In addition, we clearly see from Fig. 5 that the scale-
invariant casewith nB ¼ 0 is outside the allowed region.
In Fig. 6, we plot the exponent μ versus γ for different

values of δ, which indicates that the value of δ can be
lowered by choosing a much larger γ, potentially
widening the available parameter space. We thus con-
clude that in order for our resonant magnetogenesis to
explain the red-tilted ΩB without an excessive back-
reaction from ΩM, we need to consider a low-scale
inflation.
For completeness, let us also estimate the effect of an

intermediate transition epoch in between inflation and
radiationdomination.Dependingon the equationof state
during such a transition epoch, ΩB could be further
amplified if the Universe is dominated by a stiff fluid.
Such scenarios could naturally happen in models

FIG. 5. Parameter regions where our mechanism produces
sufficiently large magnetic fields and avoids strong backreaction
from the magnetic and potential energy sectors. The intersection,
denoted by slanted gray shading, corresponds to the region
satisfying Eqs. (38)–(40).

5Note that κ ¼ 7 exactly corresponds to the scales of our interest
for large-scale magnetic field generation, i.e., kB ¼ 103kCMB.
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connecting inflation and dark energy; see, e.g.,
Refs. [45,46] for well-motivated examples.
For the sake of amore general argument, let us assume

that in the transition epoch lasting for ΔNtr e-foldings,
the Hubble function evolves as H ∼ a−β with β being a
constant. During this epoch, we have ΩB ∼ a2ðβ−2Þ,
meaning that depending on the value of β, ΩB can
either get further enhanced or be suppressed.We assume
that the mass term vanishes right after inflation, recov-
ering the standard gauge-invariantMaxwell theory in the
late Universe, and there is no production of ΩM during
the transition phase. The conditions in Eqs. (38)–(40) are
modified to

ð4 − nBÞxþ nBð2κ þ x0Þ þ 46 logð10Þ þQ≳ 0;

ð41Þ

ð4 − nBÞxþ nBð2κ þ x0Þ þQ≲ 0; ð42Þ

ð6 − nBÞxþ ðnB − 2Þ
�
2κ þ x0 þ

Q
nB − 4

�
≲ 0;

ð43Þ

where Q≡ ΔNtrðβ − 2Þð4 − nBÞ. Clearly, by setting
ΔNtr ¼ 0, we can recover Eqs. (38)–(40). We have
checked that in case of β ¼ 3 (Kination) in a transition
epoch lasting several e-foldings, the graywedge inFig. 5
can be shifted toward less negatively tilted spectra and to
higher Hubble-scales during inflation.

(b) No strong coupling. The inverse of the function fðϕÞ
determines the effective gauge coupling in our model
and it should always remain smaller than unity in order

for our perturbative treatment to be valid. The nor-
malization of f itself, however, does not appear in our
model, allowing us to rescale f to arbitrary values.
It is useful to note that in the case of standard

parametrization where f ∼ aα, the scale-invariant
magnetic spectrum is achieved with α ¼ 2 [17],
corresponding to a rapidly growing f. Requiring
f−1 to be smaller than unity during approximately
the last 50 e-foldings of the inflationary epoch leaves
us with f ≳ e100 at the end of inflation. This corre-
sponds to extremely weakly coupled plasma in the
postinflationary universe. A separate mechanism is
therefore required to effectively lower the value of f
from e100 to Oð1Þ, posing an interesting challenge.
In our scenario, f evolves mildly; for an approx-

imately constant F,6 we have f ∼ a−1=2. Not only is
this a milder evolution compared to the f ∼ a2 case,
but it is also a decreasing function. This is a note-
worthy property, because in our scenario, we can start
with a very weakly coupled theory, and dynamically
evolve toward f ∼Oð1Þ at the end of inflation.
It is interesting to note in this context that the form

of the source term in Eq. (25) required for a successful
resonance can be realized without an explicit mass
term for the gauge field. Such a possibility can be
realized by requiring the function f̃ ¼ ffiffiffiffi

F
p

to satisfy
the following differential equation:

FIG. 6. The growth rate μ as a function of γ for different values of the offset parameter δ. In the parameter range δ ∈ ½10−6; 10−2�, a very
good approximation to these solutions is given by a simple fitting function μ ¼ max f0; 0.6γ − 0.85j log10 δj0.95g.

6From Eq. (24), it is easy to realize that FðzÞ is an oscillating
function regardless the values of γ. One can always choose the
normalization of FðzÞ such that it is oscillating around unity
during inflation.
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f̃00 þ
�
−
γ2

2
þ δþ 2q cosð4zÞ þ 2p cosð2zÞ

�
f̃ ¼ 0:

ð44Þ

This equation by itself is of the Whittaker-Hill form,
and not only does this lead to an exponentially
evolving amplitude of the coupling function but also
leads to oscillations in the latter. When the coupling
function crosses zero during oscillations, the gauge
coupling becomes infinite, invalidating such a pos-
sibility.

(c) Screening of the electric fields. The electric sector can
also be amplified due to the exponential growth of the
gauge-field mode functions during inflation. Interest-
ingly, both ΩM and ΩE scale similarly [see Eqs. (17)
and (18)], and our results for keepingΩM backreaction
under control would automatically imply no strong
electric field backreaction.
An additional argument regarding the suppression

of electric fields during inflation is related to the
Schwinger pair production. When exceeding a certain
critical value, the electric field produces electron-
positron pairs [47,48], whose field can screen the
original electric field (see also Refs. [49,50] for an
attempt to describe the dynamics of the process in a
flat space). Limiting ourselves to a flat space for
simplicity, the pair creation rate in an external electric
field E scales as exp½−πm2

e=ðeEÞ�, where me is the
electron mass and e is its charge. Qualitatively, above a
critical field value of Ecrit ≳ 2m2

e=e, the energy of the
electric field in a region of size ∼1=me exceeds the
rest-mass energy of an electron-positron pair, leading
to effective pair production.7 The produced electron-
positron pairs then induce an electric field which
screens the effect of the external (amplified) electric
field, ameliorating the backreaction risk. In our sce-
nario, the electric field is amplified way beyond the
required critical value, therefore leading to the screen-
ing described above. For this qualitative picture, we
assume that the pair-induced electric field is homo-
geneous and static on large scales and does not affect
the amplification of the magnetic field. A more
detailed analysis might reveal that the produced pairs
could also generate currents and affect the magnetic
fields. We leave such an analysis for future.

V. CONCLUSIONS

In this work, we have proposed a novel inflationary
mechanism for generating the observed large-scale cosmo-
logical magnetic fields in the late Universe. In contrast to

the existing similar proposals, which considered subhor-
izon amplification, our mechanism relies on the super-
horizon enhancement of the gauge-field mode functions.
This crucial difference allows our model to evade the
backreaction no-go theorem of Ref. [38]. In our scenario,
the evolution of the mode functions is determined by the
Whittaker-Hill equation, leading to the parametric reso-
nance for the modes when they exit the comoving Hubble
horizon. We have presented a detailed analysis of the
resonance, obtaining the numerical and analytical solutions
to the Whittaker-Hill equation in the regime not previously
discussed in the literature. Particularly, the semianalytical
method explained in the Appendix can be applied to other
physical systems which are governed by similar equations.
Further, we have evaluated the spectrum of the magnetic

field energy density ΩB, finding that our model is able to
naturally explain scale-invariant, as well as red- and blue-
tilted spectra. We have demonstrated that the observational
limit of Ωobs

B ≳ 10−23 can be easily satisfied, without the
danger of backreactions on the inflationary background
from the enhanced magnetic sector. We have also argued
that super-horizon resonance amplification requires a mass
term for the gauge field and have shown that the back-
reaction for this additional potential-energy sector can be
neglected if the magnetic spectrum is sufficiently red tilted.
Similarly, we have presented arguments suggesting that
there is no strong backreaction from the electric sector.
Additionally, we have argued that in contrast to many

conformal-invariance-breaking scenarios presented in the
literature, our model does not suffer from the drastic
evolution of the coupling f. The function F is an oscillating
function and does not need to increase exponentially in
order to guarantee a sufficiently sizeable enhancement of
the magnetic field.
This work can be extended in several interesting direc-

tions. Particularly, we leave a detailed comparison with
observational constraints to a future work. Second, it would
be interesting to consider the same mechanism in related
contexts. For instance, during preheating the inflaton
background is usually assumed to be an oscillating function
of time, which might result in further enhancement of the
magnetic energy density. Finally, it is worth investigating
relations between magnetic fields and the produced gravi-
tational waves in related scenarios; see, for example,
Ref. [51], which studies the resonant production of gravi-
tational waves during inflation.
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APPENDIX: WHITTAKER-HILL EQUATION

In this appendix, we provide a brief review of the
Whittaker-Hill equation (see Ref. [40] for an in-depth
exposition) and will provide the relevant expressions regard-
ing the (in)stability of its solutions. The Whittaker-Hill
equation is of the form,

d2A
dz2

þ
h
Cþ 2q cosð4zÞ þ 2p cosð2zÞ

i
A ¼ 0: ðA1Þ

According to the Floquet theorem, the solution of (A1)
can be written as

AðzÞ ¼ eμz
X∞
n¼−∞

c2ne2inz; ðA2Þ

with constant c2n coefficients. The Floquet exponent μ can
be computed using the following expression [40]:

μ ¼ −
i
π
arccos

h
1þ Δð0Þ

�
cosðπ

ffiffiffiffi
C

p
Þ − 1

	i
; ðA3Þ

where ΔðiμÞ is the determinant of an infinite matrix,

ΔðiμÞ≡

��������������

. .
.

ζ̃−2 ζ−2 1 ζ−2 ζ̃−2 0 0

0 ζ̃0 ζ0 1 ζ0 ζ̃0 0

0 0 ζ̃2 ζ2 1 ζ2 ζ̃2

. .
.

��������������

;

ðA4Þ
and

ζ2n ≡ p
C − ðiμ − 2nÞ2 ; ζ̃2n ≡ q

C − ðiμ − 2nÞ2 : ðA5Þ

In general, the exponent μ is a complex number, μ ¼
μR þ iθ with μR; θ ∈ R. The solution is unstable if μ has a
nonzero real part (μR ≠ 0).
For negative C, using Eq. (A3), we obtain

α coshðπμRÞ ¼ 2Δð0Þ sinh2
�
π

2

ffiffiffiffiffiffi
jCj

p �
þ 1; ðA6Þ

where α ¼ �1 depending on the sign of the right-hand side.
Since Δð0Þ is a real number for any real γ, θ should be an
integer. Thus, using Eq. (A6), the solution is given by

μR ¼ 1

π
log

�
αD�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − 1

p �
; ðA7Þ

where D≡ 2Δð0Þsinh2ðπ
2

ffiffiffiffiffiffijCjp Þ þ 1. Notice that there are
two roots for each sign of α resulting in the same value of
jμRj. Later on, we use μ to denote the real part μR.
In order to find the growth rate μ, the determinant of an

infinite matrix in Eq. (A4) should be evaluated. However,
in practice, the matrix can be truncated at a finite size,
even though large truncation size could be necessary
around the boundaries of instability regions, rendering the
evaluation of the determinant with standard methods
technically challenging. The special structure of the
matrix allows it to be considered as a tri-block-diagonal
matrix, for which the determinant can be computed
recursively [52]. Figure 6 shows the values of μ as a
function γ for different values of δ, and we see that the
numerical values of μ (denoted by dots) agree with the
semianalytical results (dashed lines). For completeness,
we give an simple fitting function for μ as a function of γ
and δ: μðγ; δÞ ¼ max f0; 0.6γ − 0.85j log10 δj0.95g.
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