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We use low-redshift background cosmology data to place quantitative constraints on three separate
modified gravity models, each of which aims to explain the low-redshift acceleration through a different
physical mechanism. The Lifshitz cosmology is effectively a parametric extension of the canonical ΛCDM
model, where a time-dependent cosmological constant originates from vacuum energy. The infinite
statistics model is also a parametric extension of ΛCDM, where the dark energy is dynamic and originates
from the curvature of a dual space-time. We show that the data restrict the additional parameters in these
models to be consistent with their ΛCDM values, and in particular that the data imply that the theoretically
predicted value for a dimensionless coupling parameter in the Lifshitz model is ruled out at more than 6
standard deviations. In the Regge-Teitelboim model, gravity is described by embedding the usual space-
time manifold in a fixed higher-dimensional background, and there is no parametricΛCDM limit. We study
several separate realizations of the model, respectively introduced by Davidson, by Fabi et al., and by Stern
and Xu, and show that the first two are ruled out by the low-redshift data we use, while the latter is
consistent with these data but requires a nonstandard value of the matter density. Overall, our analysis
highlights the tight constraints imposed by current data on the allowed low-redshift deviations from the
standard ΛCDM background evolution.
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I. INTRODUCTION

The most compelling goal of modern fundamental
cosmology is identifying the physical mechanism under-
lying the observed low-redshift acceleration of the
Universe. Conceptually, there are three theoretical possibil-
ities that can be envisaged. The first possibility is a
cosmological constant, which has the minimal number
of additional model parameters. This solution is, broadly
speaking, in agreement with the currently available data,
even though the observational inferred value is entirely
unexpected given contemporary theoretical expectations.
The second possibility is adding dynamical degrees of
freedom, particularly in the form of scalar fields, since they
are known to be among nature’s building blocks. Finally,
the third and most radical possibility is modifying the
behavior of gravity.
In this work we present a comparative study of the

observational constraints on three different modified grav-
ity models. All three have been suggested, in the recent
literature, as alternatives to the canonical ΛCDM paradigm,
but these claims were based on somewhat qualitative

arguments. Here we compare the models with low-redshift
background cosmology data, obtaining statistically robust
constraints on each of them. Each of the models stems from
different postulates or physical assumptions. The Lifshitz
model, recently explored by Berechya and Leonhardt [1],
proposes that dark energy originates from vacuum fluctua-
tions, with the acceleration of the Universe coming from
treating it as a time-dependent dielectric medium. The
infinite statistics model, introduced by Jejjala et al. [2,3]
suggests that an effectively time-dependent vacuum energy
density is a consequence of the geometry of the dual space
time. Finally, the Regge-Teitelboim model, some of whose
cosmological solutions have been considered by several
authors [4–6] is based on embeddings of our the space-time
manifold in a fixed higher-dimensional background, and
regards the embedding coordinates as dynamical degrees of
freedom. These embeddings lead to additional source terms
in the Einstein equations which, in certain circumstances,
could lead to accelerating solutions.
Our analysis takes all three models at face value and

phenomenologically constrains them using low-redshift
background cosmology data. Perturbation theory method-
ology has not yet been applied to these models but, as we
demonstrate, even background cosmology data are suffi-
cient to provide highly stringent constraints. In the next
section we briefly summarize the Type Ia supernova and

*up202004386@edu.fc.up.pt
†up201906538@edu.fc.up.pt
‡Carlos.Martins@astro.up.pt

PHYSICAL REVIEW D 107, 083514 (2023)

2470-0010=2023=107(8)=083514(11) 083514-1 © 2023 American Physical Society

https://orcid.org/0000-0001-5728-4225
https://orcid.org/0000-0002-4886-9261
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.083514&domain=pdf&date_stamp=2023-04-14
https://doi.org/10.1103/PhysRevD.107.083514
https://doi.org/10.1103/PhysRevD.107.083514
https://doi.org/10.1103/PhysRevD.107.083514
https://doi.org/10.1103/PhysRevD.107.083514


Hubble parameter data and methods used in our analysis,
both of which are standard.
In the following three sections we describe the motiva-

tion for each of the models (as suggested by the authors of
each of them) and the present our constraints on the model
parameters, obtained from the aforementioned datasets
through standard likelihood analyses. Since we are con-
cerned with the low-redshift behavior of these models and
also only using low-redshift data, we will ignore the
contribution of radiation to each model’s Friedmann
equation. Finally in Sec. VI we present a comparative
analysis of our results as well as some conclusions.

II. DATA AND METHODS

Our analysis relies on two recent and independent
datasets, each of which has been extensively used in the
literature for such analyses. The first is the Pantheon
catalog [7,8], including its covariance matrix. The second
is a compilation of 38 Hubble parameter measurements
reported in Farooq et al. [9]. Overall, all data are at redshifts
z < 2.5, and therefore the assumption of ignoring the
radiation density has no significant impact in our results.
We follow a standard likelihood analysis—see, e.g. [10]

—with the likelihood being defined as

LðqÞ ∝ exp

�
−
1

2
χ2ðqÞ

�
; ð1Þ

where q symbolically denotes the free parameters in the
model being considered. Since our two datasets are
independent, the total chi-square is the sum of the two,
χ2 ¼ χ2SN þ χ2HZ. We will generally work with the dimen-
sionless Friedmann equation, and our observable for both
datasets will be the rescaled Hubble parameter,

EðzÞ ¼ HðzÞ
H0

: ð2Þ

The canonical confidence levels are then identified, in
terms of the corresponding Δχ2, with standard numerical
tools.
The Pantheon supernova dataset contains 1048 super-

novas, which span the redshift range 0 < z < 2.3 [7],
further compressed into 6 correlated measurements of
E−1ðzÞ in the redshift range 0.07 < z < 1.5 [8]. The latter
work demonstrates that this provides an effectively iden-
tical characterization of the dark energy properties as the
full supernova sample, while the data compression has
obvious computational advantages. The chi-square in this
case has the explicit form

χ2SNðqÞ ¼
X
i;j

ðEobs;i − Emod;iðqÞÞC−1
ij ðEobs;j − Emod;jðqÞÞ;

ð3Þ

where the obs and mod subscripts denote observations and
model respectively, and C is the covariance matrix of the
dataset. We note that this analysis is independent of the
Hubble constant, H0.
The Farooq et al. Hubble parameter dataset is a hetero-

geneous set of 38 measurements some of which come from
cosmic chronometers and the rest from baryon acoustic
oscillations (BAO). We must point out that strictly speaking
the BAO measurements rely on some underlying assump-
tions on a fiducial model. That having been said, this model
dependence is known not to be significant, at least for
models close to ΛCDM, in which case this dependence is at
the percent level—discussions can be found in [11,12].
Previous works indicate that such model dependence can
be larger in models with late-time inhomogeneities or those
where backreaction is important. There is no particular
reason why this should be the case for the models which we
study in the following sections, but nevertheless this could
be seen as a potential theoretical systematic. The correla-
tion between these BAO measurements is nonzero but
small, so the measurements in the dataset can be assumed to
be independent (i.e., the covariance matrix is assumed to be
trivial). The cosmic chronometer subset is less constraining
than its BAO counterpart. In fairness, we should also point
out that there are potential observational systematics
associated with these measurements [13,14].
In order to do the analysis in terms of EðzÞ and thus

easily combine the two datasets in the previously defined
likelihood we must marginalize the Hubble constant. This
can be done analytically [15], thereby reducing the param-
eter space and also eliminating the need of choosing
specific priors on the Hubble constant. The marginalization
procedure relies on computing three separate quantities

AðqÞ ¼
X
i

E2
model;iðqÞ
σ2i

; ð4Þ

BðqÞ ¼
X
i

Emodel;iðqÞHobs;i

σ2i
; ð5Þ

CðqÞ ¼
X
i

H2
obs;i

σ2i
; ð6Þ

where the σi are the uncertainties in observed values of the
Hubble parameter. Then the chi-square is given by

χ2ðqÞ ¼ CðqÞ − B2ðqÞ
AðqÞ þ lnAðqÞ

− 2 ln

�
1þ Erf

�
BðqÞffiffiffiffiffiffiffiffiffiffiffiffi
2AðqÞp

��
; ð7Þ

where Erf is the Gauss error function and ln is the natural
logarithm.
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III. THE LIFSHITZ MODEL

Lifshitz cosmology stems from the hypothesis that
curved spacetime is analogous to a dielectric medium
whose index of refraction changes proportionally to the
scale factor [16]. If that is the case, then the Universe’s
vacuum energy can be calculated using methods developed
long ago by Lifshitz et al. [17], and the dark energy could
be due to these vacuum fluctuations. Ignoring the density
parameter for radiation, the self-consistent dynamics that
results from the interaction between the vacuum energy and
the background universe can be written

H2ðzÞ ¼ H2
0½Ωmð1þ zÞ3 þ ΩLCðzÞ�; ð8Þ

H2
0
_ΩLC ¼ 8αΛH∂

3
t H−1; ð9Þ

where Ωm ¼ kρ0=3H2
0 is the usual density parameter for

matter, ΩLC is the (time/redshift dependent) density param-
eter for dark energy and αΛ is a dimensionless coupling
parameter which depends on the chosen cutoff and on the
possible contributions of other fields in the standard model
of particle physics. Assuming that the electromagnetic field
provides the dominant contribution (an assumption which
underlies the dielectric medium analogy) and a Planck-
scale cutoff, its theoretically predicted value is [16]

αΛ ¼ 1

9π
∼ 0.0354: ð10Þ

Assuming that the contribution of the vacuum energy is
negligible at last scattering, the analysis of Berechya and
Leonhardt [1] presents an approximate closed-form sol-
ution of the Friedmann equation, valid at low redshifts

E2ðzÞ ¼ Ωmð1þ zÞ3 þΩ∞

�
1þ 18αΛ

�
ln

�
1þ Ωm

Ω∞
ð1þ zÞ3

�
− 3

Ωmð1þ zÞ3
Ωmð1þ zÞ3 þ Ω∞

��
; ð11Þ

where Ω∞ ≡ lima→∞ΩLC is an integration constant which
one might physically interpret as the value of the quantum
vacuum contribution to dark energy in the asymptotic
future.
Importantly, there is a normalization condition, since by

definition we must have Eð0Þ ¼ 1. This leads to

Ωm þ Ω∞

�
1þ 18αΛ

�
ln

�
1þ Ωm

Ω∞

�
− 3

Ωm

Ωm þ Ω∞

��
¼ 1:

ð12Þ

This is clearly well behaved in the ΛCDM limit αΛ → 0.
The Ω∞ → 0 limit would correspond to an Einstein–de
Sitter universe, withΩm ¼ 1. Taking these at face value, the
model is therefore a one-parameter extension of the flat
ΛCDM model. The fact that EðzÞ is a low-redshift analytic
approximation is manifest in the fact that for large enough
values of αΛ the previous consistency condition can lead to
Ω∞ > 1. Figure 1 depicts the numerical solution of Eq. (12)
in the relevant range of the model parameters, specifically

αΛ ∈ ½0; 1=9π� and Ωm ∈ ½0.1; 0.5�. In particular, in the
limit Ωm → 0 we find

Ω∞ ¼ 1 −Ωmð1 − 36αΛÞ; ð13Þ

for the theoretically expected value αΛ ∼ 0.0354 we there-
fore obtain Ω∞ ≃ 1þ 0.273Ωm.
The work of [1] suggests, based on a qualitative analysis

of particular choices of model parameters, that the model
can reproduce the observed low-redshift acceleration of the
Universe. However, there is no thorough exploration of the
model’s parameter space, carried out with a statistically
robust analysis, which we present in what follows. The
results of this analysis, assuming uniform priors for the two
model parameters with the ranges specified in the previous
paragraph, are shown in Fig. 2. It is noteworthy that there is
no significant degeneracy between the two model param-
eters. The one-sigma constraint on the matter density is

Ωm ¼ 0.29� 0.02; ð14Þ

FIG. 1. Result of the numerical solution of Eq. (12) in the
relevant range of the model parameters. The color map represents
the value of Ω∞. The black solid lines identify the locus of values
ofΩ∞ of 0.6, 0.7, 0.8, 0.9, and 1.0, respectively from bottom right
to top left.
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while for the dimensionless coupling we obtain the two-
sigma upper limit

αΛ < 0.0094: ð15Þ

This is fully consistent with the ΛCDM model, and in
particular the theoretically preferred value of αΛ ¼ 1=9π is
excluded at about 6.5 standard deviations.

IV. THE INFINITE STATISTICS MODEL

The so-called infinite statistics model is based on the
hypothesis that dark energy originates from the curvature
of an assumed dual space [2], which according to these
authors can be motivated from quantum gravity, under the
further assumptions of nonlocality of the effective space-
time description and of Lorentz covariance. In that case the
functional form of the dark energy contribution, viz. its
redshift dependence, would be obtainable from the infinite
statistics [18,19] (technically defined as the unique statis-
tics consistent with Lorentz covariance in the presence of
nonlocality) of the quanta of said dual space-time. In that
case dark energy contributions would come from a series
of terms: the lowest order of these would be a standard
cosmological constant (Λ that is realized as a dynamical
geometry of the dual space-time), but there will be addi-
tional redshift-dependent terms, leading to modified
Einstein equations.

FIG. 2. Constraints on the Lifshift model, under the assump-
tions specified in the main text. In the top panel the black lines
show the one, two and three sigma confidence levels, while the
color map depicts the reduced chi-square. The middle and bottom
panels show the one-dimensional posterior likelihoods for each
parameter. Note that the theoretically preferred value of αΛ ¼
1=9π corresponds to the top edge of the top panel and the right-
side edge of the bottom panel.

FIG. 3. The redshift at which the two terms in the Friedmann
equation have identical values, as a function of the matter density
and the scaling parameter, depicted by the color map. The black
solid lines identify the locus of values of this redshift of 0.2, 0.4,
0.6, 0.8, and 1.0, respectively from the right to the left of the plot.
The value of this redshift for a flat ΛCDM model is z ∼ 0.326,
and is identified by the dashed line.
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Skipping the technical details which can be found in
Jejjala et al. [2], for our present purposes the important
flow-down consequence is that one obtains a closed form
Friedmann equation

E2ðzÞ ¼ Ωmð1þ zÞ3 þ ð1 −ΩmÞ
1 − bðξÞ
1 − bðξ0Þ

; ð16Þ

where

bðξÞ ¼
�
1þ ξþ 1

2
ξ2 þ 1

6
ξ3
�
e−ξ; ð17Þ

ξ ¼ ξ0
1þ z

: ð18Þ

We thus have again a parametric extension of ΛCDM,
where the only nonstandard parameter is the dimensionless
scaling parameter ξ0. In this case the ΛCDM limit is
recovered in the limit ξ0 → ∞. Figure 3 identifies, as a
function of the matter density and the scaling parameter, the
redshift at which the two terms in the Friedmann equation
have identical values. This shows that for values ξ0 ≥ 10
the model is indistinguishable from ΛCDM, and Occam’s
razor (or analogous statistical model selection arguments)
would therefore indicate that the additional parameter is
unwarranted. A recent work [3] has a simplistic comparison
with Hubble parameter data, and claims a preference for a
finite value of ξ0. They also suggest that in this model one
obtains a phantom (and therefore physically problematic)
dark energy equation of state. Be that as it may, in what
follows we provide a more robust analysis, also relying on
an extended dataset.
The results of this analysis are shown in Fig. 4. For the

matter density we use the same uniform prior as in the
previous section, Ωm ∈ ½0.1; 0.5�, while for the scaling
parameter we use a uniform prior in its logarithm,
log10ðξ0Þ ∈ ½0; 2�. As in the model in the previous section
there is no degeneracy between the two parameters, and we
have explicitly verified that equivalent results would be
obtained from different choices of priors (e.g., a uniform
prior in ξ0). We do not fully reproduce the results of [3], and
instead find no statistically significant preference for a
finite value of ξ0. Specifically our one-sigma constraint on
the matter density is

Ωm ¼ 0.28� 0.02; ð19Þ

while for the logarithm of the dimensionless scaling
parameter we have the two-sigma lower limit

log10ðξ0Þ > 0.99: ð20Þ

As in the previous case, we find consistency with the
ΛCDM model.

V. THE REGGE-TEITELBOIM MODEL

In Regge-Teitelboim gravity, one embeds the space-time
manifold in a fixed higher dimensional background, and
further assumes that the embedding coordinates, rather than

FIG. 4. Constraints on the infinite statistics model, under the
assumptions specified in the main text. In the top panel the black
lines show the one, two and three sigma confidence levels, while
the color map depicts the reduced chi-square. The middle and
bottom panels show the one-dimensional posterior likelihoods for
each parameter.
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the metric tensor, are the dynamical degrees of freedom
[20]. (We note that this approach has been criticized by
other authors [21].) In principle one can choose different
embeddings, and these choices will lead to correspondingly
different cosmological solutions. A common feature of
these cosmological solutions is the presence of additional
source terms in the standard Einstein equations that do not
come from the energy-momentum tensor. Onemay therefore
consider the possibility that these additional terms could be
responsible for the recent acceleration of the Universe. Here
we study three previously considered such scenarios [4–6],
which stem from different five-dimensional embedding
choices. Note that in thesemodels the vacuumenergy density
(or cosmological constant) is assumed to vanish, so the
models do not have a ΛCDM limit.

A. The Davidson model

In the model first considered by Davidson [4], an
embedding in a flat five-dimensional background leads
to a dimensionless Friedmann equation which can be
written

E2ðzÞ −Ωmð1þ zÞ3 −Ωkð1þ zÞ2 ¼ Ωμð1þ zÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −Ωkð1þ zÞ2

p ;

ð21Þ

where Ωk ¼ −k=ða0H0Þ2 is the usual spatial curvature
density parameter and we have defined

Ωμ ¼
μ

27H3
0a

4
0

; ð22Þ

and μ is an integration constant, coming from the choice of
the embedding [4], which in practical terms describes the
deviation from the standard Friedmann equation (without a
cosmological constant). This is subject to the consistency
condition

1 −Ωm −Ωk ¼
Ωμffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωk

p : ð23Þ

Alternatively one may note, as shown in [4] that the
effective equation of state of the additional term is
weff ¼ peff=ρeff ¼ −1=9, so we can also write

E2ðzÞ ¼ Ωmð1þ zÞ3 þΩkð1þ zÞ2
þ ð1 −Ωm − ΩkÞð1þ zÞ8=3; ð24Þ

suggesting that this will not provide a good fit to the data.
The result of our likelihood analysis, for the broad range

of values of Ωm ∈ ½0.0; 1.0� and Ωk ∈ ½−1.0; 1.0�, is shown
in the top panel of Fig. 5: clearly the model does not fit the
data, and the best reduced chi-square in this parameter
range is around χ2ν ∼ 2.9; for comparison, for the standard

ΛCDM compared to the datasets which we are considering
in this work the reduced chi-square is χ2ν ∼ 2.9. We
explicitly checked that the two above parametrizations
lead to similar results. It is curious to note that the best
(or, more rigorously, least bad) fit would correspond to an
empty universe with k ¼ −1, which has some similarities
with another model in the same class which we discuss in
what follows, but in any case this particular model does not
fit the data.

B. The Fabi et al. model

In the model of Fabi et al. [5], a different embedding in a
flat five-dimensional background leads to the following
Friedmann equation,

H2 þ k
a2

¼ 8πG
3

�
ρþ c0

a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k _a2

p
�
; ð25Þ

FIG. 5. The reduced chi-square, indicated by the color map, for
the (possibly) physically realistic regions of parameter space in
the models of Davidson (top panel) and Fabi et al. (bottom panel).
Notice that the color map spans the range from 0 to 10; in both
cases the minimum value of the reduced chi-square is χ2ν ∼ 2.9.
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where c0 is again an integration constant. In this case the
Friedmann equation is only changed for k ≠ 0. For k ¼ 0
one gets the standard Friedmann equation but with a
rescaled matter density (or, equivalently, a rescaled
Newtons’s constant), which clearly cannot fit the data in
the absence of a cosmological constant. Fabi et al. claim
that k ¼ −1 leads to low-redshift acceleration. More
accurately, we find that this is a necessary (but not
sufficient) condition for acceleration.
Defining, for convenience,

Ωc ¼
8πGc0
3H2

0a
3
0

; ð26Þ

we can rewrite the Friedmann equation as

E2ðzÞ þ kð1þ zÞ2
ða0H0Þ2

¼ Ωmð1þ zÞ3 þ Ωcð1þ zÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kE2ðzÞða0H0Þ2

ð1þzÞ2
q :

ð27Þ

For each choice of the curvature parameter k, the normali-
zation condition Eð0Þ ¼ 1 enables the determination of the
ða0H0Þ2 parameter, which must obviously be positive,
through

1þ k
ða0H0Þ2

¼ Ωm þ Ωcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kða0H0Þ2

p : ð28Þ

Interestingly, Ref. [5] also shows that the effective equation
of state of the additional term is weff ¼ peff=ρeff ¼ −1=9,
just like in the Davidson case. It follows that, for the most
relevant k ¼ −1 case, we can also write the dimensionless
Friedmann equation as

E2ðzÞ ¼ Ωmð1þ zÞ3 þ Ωcð1þ zÞ8=3
þ ð1 −Ωm −ΩcÞð1þ zÞ2; ð29Þ

despite the different free parameters, its similarity with the
one for the Davidson case is manifest. The corresponding
likelihood analysis can be seen in the bottom panel of
Fig. 5, and naturally the result is the same as in the
Davidson case.

C. The Stern and Xu model

The assumption of a flat five-dimensional embedding,
which underlies the models in the two previous subsec-
tions, has recently been relaxed by Stern and Xu [6], who
have briefly explored nonflat cases. Specifically, they claim
that an embedding in five-dimensional de Sitter space can
lead to late-time accelerating solutions.
Defining L to be the (de Sitter) curvature radius, one can

now write the dimensionless Friedmann equation as

E2ðzÞ ¼ Ωmð1þ zÞ3 þ Ωcð1þ zÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLH0Þ2E2 − 1

p ; ð30Þ

or equivalently

E2ðzÞ ¼ Ωmð1þ zÞ3 þ ð1−ΩmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLH0Þ2 − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLH0Þ2E2 − 1

p ð1þ zÞ4;

ð31Þ

with the additional relation between the model parameters

ðLH0Þ2 ¼ 1þ
�

Ωc

1 −Ωm

�
2

: ð32Þ

Note that this parameter space is further constrained, since
there are combinations of parameters that would lead to an
unphysical behavior of EðzÞ, especially at higher redshifts.
This effectively imposes a theoretical prior on this model’s
parameter space. In the analysis which we report this prior
has been imposed, and no unphysical behavior occurs for
the ranges of the model parameters depicted in the figures
resulting from the likelihood analysis which follow, and
for the redshift range relevant for the data which we are
considering. Nevertheless, and as a caveat for the reader,
we note that we are proceeding on the phenomenological
assumption that this is a low-redshift approximation to the
behavior of a physicallymore robust underlyingmechanism.
Figure 6 depicts the value of this parameter, as a function

of Ωm and Ωc, for a wide range of values of the two
parameters. A previous qualitative analysis [6] suggests
that this model can fit low-redshift Hubble parameter

FIG. 6. The value of the dimensionless parameter ðLH0Þ2, as a
function of the matter density Ωm and the additional model
parameter Ωc, depicted by the color map. The black solid lines
identify the locus of values of this parameter of 1.01, 1.1, 1.25,
and 1.5, respectively from the bottom to the top of the plot.
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measurements, even in the absence of matter. We note that
the dataset used in [6] is a subset of the Farooq et al.
dataset, while in the present analysis we use the full Farooq
et al. dataset together with Type Ia supernovae, as has been

previously discussed. In what follows we present a more
robust statistical analysis.
Figure 7 summarizes our constraints on this model. We

start by assuming the uniform priors Ωm ∈ ½0.0; 0.5� and

FIG. 7. Constraints on the Stern and Xu realization of the Regge-Teitelboim model. In the top panels the black lines show the one, two
and three sigma confidence levels, while the color map depicts the reduced chi-square. The middle and bottom panels show the one-
dimensional posterior likelihoods for each parameter. Left-side panels show the results with a Ωm ≥ 0 prior, while in right-side panels
this assumption is relaxed.
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Ωc ∈ ½0.0; 0.5�, for which the results are shown in the left-
hand side panels of the figure. We confirm that the model
fits the data, and indeed it overfits it, with the reduced chi-
square at the best fit being χ2ν ∼ 0.7. (For comparison,
fitting the standard CPL phenomenological dark energy
model to the same data yields a reduced chi-square at the
best fit of χ2ν ∼ 0.9 [22].) We derive one-sigma posterior
constraint

Ωc ¼ 0.30� 0.03; ð33Þ

and a two-sigma upper limit

Ωm < 0.06; ð34Þ

which together lead to a dimensionless curvature radius
LH0 ∼ 1.04. Looking at the shape of the likelihood, one
may infer that the peak of the statistical likelihood is
elsewhere (outside the chosen prior range), which can
easily be confirmed by relaxing the previous assumption

and allowing (again, purely phenomenologically) for neg-
ative values of Ωm. The results in this case are shown in the
right-hand side panels of Fig. 7. In this case the reduced
chi-square at the best fit decreases to χ2ν ∼ 0.6, and we
obtain the one-sigma posterior constraint

Ωc ¼ 0.41þ0.10
−0.08 ; ð35Þ

Ωm ¼ −0.13þ0.09
−0.10 : ð36Þ

As expected the two parameters are negatively correlated,
and in this wider parameter space the preferred value of Ωc
increases, while that of the matter density is correspond-
ingly decreased. Naturally a negative matter density is
observationally questionable, although it is only a one-
sigma result and, as has been pointed out, the model quite
overfits the data. The preferred dimensionless curvature
radius is comparatively less impacted, now having a
value LH0 ∼ 1.06.

FIG. 8. Constraints on the Stern and Xu realization of the Regge-Teitelboim model, allowing for the presence of a cosmological
constant. In the top left panel the black lines show the one, two and three sigma confidence levels, while the color map depicts the
reduced chi-square. The other panels show the one-dimensional posterior likelihoods for each parameter.
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As a final and again purely phenomenological exercise,
we can also consider the case where a cosmological
constant is included in the model, in addition to the
higher-dimensional term. In other words, the Friedmann
equation becomes

E2ðzÞ ¼ Ωmð1þ zÞ3 þ ΩΛ þ Ωcð1þ zÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLH0Þ2E2 − 1

p ; ð37Þ

with

ðLH0Þ2 ¼ 1þ
�

Ωc

1 −Ωm −ΩΛ

�
2

: ð38Þ

In this case this is also a parametric extension of ΛCDM,
but it is still the case that this parameter space is further
constrained, and some combinations of parameters would
lead to an unphysical behavior of EðzÞ. Admittedly, from a
statistical perspective this is a moot exercise because the
simpler model already overfits the data. On the other hand,
from a phenomenological point of view it is a useful
exercise to infer, despite the expected degeneracies between
the parameters, the extent to which the data select between
the various terms (and their redshift dependencies).
Figure 8 shows the results of our analysis exploring the

parameter space in the neighbourhood of the standard flat
ΛCDMmodel parameters and using the set ðΩm;ΩΛ; LH0Þ
as independent parameters, with uniform (uninformative)
priors on each of them. Interestingly, we find that the
statistically preferred value of the cosmological constant is
still the standard one, while that of the matter density
decreases with respect to the standard one, being partially
offset by the new term in the Friedmann equation.
Specifically, we find the one-sigma constraints

ΩΛ ¼ 0.70þ0.02
−0.03 ; ð39Þ

Ωm ¼ 0.17þ0.08
−0.11 ; ð40Þ

together with the two-sigma lower limit

ðLH0Þ > 1.02: ð41Þ

For comparison, we have also considered the alternative
choice of using the set ðΩm;ΩΛ;ΩcÞ as independent
parameters, again with uniform priors on each of them.
This leads to results which, within their uncertainties, are
consistent with the above ones. Specifically, we now have
the one-sigma constraints

ΩΛ ¼ 0.71þ0.03
−0.02 ; ð42Þ

Ωm ¼ 0.18þ0.07
−0.10 ; ð43Þ

and a two-sigma lower limit in the additional parameter

Ωc > 0.02: ð44Þ

As expected, the reduced chi-square at the best fit is still
χ2ν ∼ 0.6 in both cases.

VI. CONCLUSIONS

We have compared three classes of modified gravity
models for the low-redshift acceleration of the Universe
against low-redshift background cosmological observa-
tions. Each of them stems from different (and possibly
questionable) physical assumptions, but our analysis has
been a purely phenomenological one, addressing the
question of the extent to which the models are in agreement
with available data and, more specifically of how these data
constrain model parameters.
For the fist two models classes—the Lifshitz model

recently explored by Berechya and Leonhardt [1] and the
infinite statistics model introduced by Jejjala et al. [2,3]—
the outcome is effectively the same. At least for the low-
redshift range under consideration, they are one-parameter
extensions of ΛCDM, and the data constrain this parameter
to be consistent with and very close to its “null” value. In
other words, there is no evidence of deviations from
ΛCDM. Moreover, for the Lifshitz model, this additional
parameter (a dimensionless coupling parameter) has a
theoretically predicted value, or at least one that would
be preferred by the physical assumptions underlying the
model. Our analysis demonstrates that this preferred value
of the coupling is ruled out at more than 6 standard
deviations.
For Regge-Teitelboim gravity, the situation is different.

Here there is no cosmological constant, and therefore they
are not parametric extensions of ΛCDM. Instead, the recent
acceleration of the universe must be due to a different
physical mechanism. Specifically, this is an additional source
term in the standard Einstein equations, which does not
come from the usual four-dimensional energy-momentum
tensor but emerges from the higher-dimensional nature of
the model in which the standard space-time manifold is
embedded. In this class of models one has some freedom in
the choice of embeddings, and we have provided constraints
on three such choices, all previously considered in the
literature. Two of these choices are thoroughly ruled out,
as they would have an effective dark energy equation of state
weff ¼ −1=9. The third choice, recently considered by Stern
and Xu [6] is compatible with the data we have considered,
and actually overfits the data.
It is interesting to consider why this model requires a

lower than standard matter density to provide a good fit.
Indeed, in the form presented by Stern and Xu the
statistically preferred value would be a negative matter
density, though naturally this is purely a point of statistics
and not a point of physics. One does know that the Universe
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contains baryons; whether or not it contains dark matter is
may be more debatable. As can be seen in the case of Fabi
et al., and even in the original Regge-Teitelboim work, a
rescaled matter density seems to be a common feature in
these models. This interpretation is commensurate with the
fact that, if one phenomenologically extends these models
by allowing for the possibility of a cosmological constant,
then the low-redshift data used in our work still prefer the
standard value of the cosmological constant, ΩΛ ∼ 0.7, but
a lower value of the matter density,Ωm ∼ 0.2. That said, we
hasten to add that these models can, at best, be low-redshift
approximations to some more fundamental models since
for a significant range of the model’s parameter space one
would find an unphysical behavior of EðzÞ, at least at high
redshifts.
In any case, our analysis does highlight the tight

constraints on the allowed low-redshift deviations from
the standardΛCDM background evolution. Naturally, more

stringent constraints can be obtained by extending our
analysis beyond low-redshift background cosmology data,
e.g. by including cosmic microwave background data.
While this may be moot for most of the models we have
considered (because they are already ruled out, our con-
strained by low-redshift data to be effectively indistin-
guishable from ΛCDM), it would be interesting to carry out
this analysis for the Stern and Xu model, or physically
motivated extensions thereof.
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