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Ultralight dark matter (ULDM) is an axion-like dark matter candidate with an extremely small particle
mass. ULDM halos consist of a spherically symmetric solitonic core and an NFW-like skirt. We simulate
halo creation via soliton mergers and use these results to explore the core-halo mass relation. We calculate
the eigenstates of the merged halos and use these to isolate the solitonic core and calculate its relative
contribution to the halo mass. We compare this approach to using a fitting function to isolate the core and
find a difference in masses up to 8.2%. We analyze three families of simulations—equal-mass mergers,
unequal mass mergers, and halos with a two-step merger history. Setting the halo mass to the initial mass in
the simulation does not yield a consistent core-halo relationship. Excluding material “ejected” by the
collision yields a core-halo relationship with a slope of 1=3 for simultaneous mergers and roughly 0.4 for
two-step mergers. Our findings suggest there is no universal core-halo mass relationship for ULDM and
shed light on the differing results for the core-halo relationship previously reported in the literature.
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I. INTRODUCTION

The development of accessible and accurate cosmologi-
cal simulations has revolutionized the way we visualize the
imprint of dark matter on observational data [1]. While
simulations of cold dark matter (CDM) can accurately
reproduce large-scale cosmological structures a number of
apparent discrepancies arise on kiloparsec (kpc) scales [2].
One such small-scale discrepancy and the motivation for
this work, the core-cusp problem, arises from differences
between computationally predicted dark matter density
profiles and profiles deduced from rotation curves of dwarf
galaxies [3–5]. CDM-only simulations predict a “cuspy”
internal profile [6] while observations tend to favor a flatter
central core [7,8]. Additional small-scale problems include
observations of fewer satellite dwarf galaxies than simu-
lations suggest (the missing satellites problem) [9,10], an
overabundance of isolated dwarfs [11], and CDM predic-
tions of massive subhalos which are too dense not to host
more bright satellites than are observed (the too big to fail
problem) [12].
The core-cusp problem is ameliorated but not necessarily

solved when baryons are added to CDM simulations
[13–15]. Consequently, it is possible that part of this
tension is due to nontrivial properties of the dark matter

itself. One such example is ultralight dark matter1 (ULDM),
an axion-like particle with a mass of order 10−22 eV. The
corresponding de Broglie wavelength for the ULDM
particle is on kiloparsec scales, so wavelike effects can
be manifest at sub-galactic scales. In particular, quantum
pressure prevents the formation of a cuspy central halo,
instead supporting a Bose-Einstein condensate core with a
solitonic density profile [17]. Simulations demonstrate that
the outer regions of ULDM halos resemble the Navarro-
Frenk-White (NFW) profile of CDM [6], such that above
kiloparsec scales the two models are mutually consistent
[18,19]. A general review of ULDM physics can be found
in Ref. [20], while more recent reviews of theoretical
frameworks and observational signatures can be found in
Refs. [16,21].
Dubbed the core-halo relation, the ratio of the mass of

the core to the overall halo is key to many observational
tests of ULDM. It is expected to depend on the mass of
the constituent particle and the halo mass and, despite a
number of analyses, disagreement persists over the specific
scaling [22–27]. We seek to reconcile these disparate
results and add a more quantitative perspective by decom-
posing our ULDM halos into eigenstates, via the formalism
we developed in Ref. [28].
Our halos are formed through collisions of ULDM

solitons; we arrange the solitons in symmetric initial
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1This model is also known as fuzzy dark matter, scalar-field
dark matter,Ψ dark matter, or BECDM. See Ref. [16] for a recent
review of nomenclature subtleties.
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configurations and use the pseudo-spectral code,
CHPLULTRA [29], to follow their evolution. These idealized
scenarios highlight the dependence of the core-halo rela-
tionship on merger history, which will be key to mapping it
to realistic astrophysical settings with hierarchical structure
formation [30–32]. We find that the apparent core-halo
relationship can be impacted by numerical boundary
conditions and the details of parameter definitions.
Consequently, we can contextualize many of the results
seen in previous work and we see that the eigenvalue
decomposition reduces scatter in the fits relative to profile-
matching techniques. The overall outcome of our work
suggests that we cannot find a universal core-halo relation-
ship that is fully independent of the process by which the
halo is assembled. We expect this finding to only be
strengthened in more realistic halo formation scenarios
that allow for effects such as mass accretion and tidal
interaction with subhalos or granules.
This paper is organized as follows: In Sec. II, we present

the formation of halo cores through soliton collisions and
discuss the dependence on initial conditions. We describe
the numerical methods we use—including our three sets of
data and definitions of parameters—in Sec. III. In Sec. IV,
we describe the scaling between halo parameters and
relative core mass, and discuss the effect of merger
histories. Finally, we discuss our results and future work
in Sec. V.

II. FORMATION OF HALOS

A. The Schrödinger-Poisson eigensystem

In the nonrelativistic regime, ULDM can be described by
a macroscopic wave function evolving under the influence
of its own self-gravity. The dynamics are then governed by
the Schrödinger-Poisson system of equations:

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
∇2ψ þmaΦψ ð1Þ

∇2Φ ¼ 4πGmjψ j2; ð2Þ

where ψ is the wave function of the dark matter, Φ is the
gravitational potential, and m is the mass of the constituent
particle. As the ULDM field configuration is described by a
single wave function ψ , the dark matter density traces the
quantum mechanical probability distribution and is defined
as ρ ¼ mjψ j2. The ground state of the Schrödinger-Poisson
system is called a soliton.
Several methods of constructing generic ULDM halos

can be found in the literature: collisions of multiple solitons
[23–25,33,34] spherical or elliptical collapse [35], and
cosmological simulations utilizing a Schrödinger-Poisson
solver [22,36,37]. A fourth method [38,39] uses the
Widrow-Kaiser function [40] to build up a halo out of
eigenmodes.

We can define three pertinent initial energies in the
system: the classical kinetic energy K, the quantum
energy Q, and the gravitational potential energy V. The
three components are defined as follows [20,25]:

K ¼ 1

2

Z
dr ρv2 ð3Þ

Q ¼ 1

2

Z
drj∇ ffiffiffi

ρ
p j2 ð4Þ

V ¼ 1

2

Z
dr ρΦ: ð5Þ

We create halos by coliding solitons.2 If the solitons are
initially nonoverlapping, the kinetic term reduces to the
familiar K ¼ Σ 1

2
Miv2i , where Mi and vi are the mass and

velocity of the ith soliton, respectively. The quantum
energy Q corresponds to the quantum pressure term which
stabilizes each soliton in the absence of an internal velocity
dispersion. Finally, the gravitational potential energy V
includes both self-gravitation and intersoliton gravitational
interactions, but is dominated by the former.3 Changing the
distance between solitons thus only negligibly impacts the
potential energy while changing their mass has a larger
impact. For this reason, we only vary the initial masses and
number of colliding solitons rather than their relative
distances. Furthermore, we always start the solitons at
rest. This is because we are only interested in gravitation-
ally bound mergers where a final halo is formed, in which
case adding initial velocities is physically equivalent to
initializing the solitons farther away at some earlier time.
ULDM haloes consist of a solitonic core and an

NFW skirt. The radial density of such a halo can be
parametrized as

ρðrÞ ¼
�
ρsolðrÞ; 0 ≤ r ≤ rα
ρNFWðrÞ; rα ≤ r ≤ rvir

ð6Þ

where rα is the transition radius between the soliton and the
skirt. The exact value of the transition radius varies in
previous work (see e.g. [22,27,39]), but is usually taken to
be a few times the full width half maximum of the core, and
our analysis does not depend on it at any point. The virial
radius of the NFW skirt is rvir. Note that, while a pure
soliton is an eigenstate of the Schrödinger-Poisson system,
a composite ULDM halo is not.
In order to effectively track the evolution of the solitonic

core in a halo, we first calculate the eigenstates of the
Schrödinger-Poisson system. We begin by verifying that

2Such a halo is somewhat “synthetic,” insofar as it is not
produced through spherical collapse of overdensities in a cos-
mological code.

3We do not consider nongravitational self-interactions, though
such models exist. For more on these, see, e.g., Refs. [41,42].
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the potentialΦ of the halo is approximately constant in time
after the merger completes. This suggests the following
approximation for the Schrödinger equation:

−i
∂

∂t
ψ ¼

�
−
1

2
∇2 þ hΦi

�
ψ ð7Þ

where hΦi is a time-averaged potential and we have set
ma ¼ ℏ ¼ G ¼ c ¼ 1 for simplicity. This approximation
allows us to solve for the eigenstates and eigenenergies of
the system for a given hΦi; our choices for the time-
averaged potentials are discussed below. For a detailed
discussion of the construction of the eigenstates, see
Refs. [28,43].

B. Review of the core-halo mass relation

The core-halo relationship is expressed via the unitless
parameter [18,25]

Ξ≡ jEj
M3

�
ℏ
Gm

�
2

: ð8Þ

Here, E ¼ K þQþ V is the total energy, andM is the total
mass of the system. The proposed relationship of the total
halo mass and core mass Mc is a power law

Mc=M ∝ Ξα:

Reference [22] first suggested a relation of the form
Mc ∝ ðjEj=MÞ1=2, where the authors arrived at the α ¼ 1=2
result by analyzing their simulations. Their argument for
the relation was as follows: the system specific energy
jEj=M represents the velocity dispersion of the halo σh, and
the core mass Mc is inversely proportional to the core’s
size, rc. We can then relate these two quantities via the
uncertainty principle, rcσh ∼ 1. Finally, we can divide both
sides by the halo mass M to arrive at a unitless version of
the relationship, which subsequent papers continued using.
While Ref. [44] was later able to reproduce α ¼ 1=2

using an effective thermodynamic model, the exact scaling
has been the topic of much debate. Reference [18] found
1=6 ≤ α ≤ 1=4 for equal-mass soliton binary mergers and
α ¼ 1=2 for unequal-mass soliton binary mergers.
Reference [25] found α ¼ 1=3 in mergers of many solitons
of different masses and initial conditions. Using a slightly
different approach, Ref. [24] considered ULDM halos with
stochastic merger trees, and found that the core-halo mass
relation depends only on the mass loss fraction of cores
during binary mergers, β, such that α ¼ 2β − 1. Their data
from cosmological simulations were fit well by β ¼ 0.7,
leading to an exponent of α ¼ 0.4.
References [34] and [36] show the results of tests using

halos formed through spherical collapse in cosmological
simulations; both results were consistent with α ¼ 1=3
rather than the original relation found in Ref. [22].

This (mis)match is somewhat curious given that Ref. [22]
also performed cosmological simulations with expanding
backgrounds, while Refs. [18] and [25] used idealized
soliton mergers to construct halos.
Reference [39] uses a wave superposition method to

artificially construct ULDM halos with a variety of density
profiles. The authors then verify the dynamical stability of
these halos through numerical evolution of the SP system.
They are therefore able to self-consistently construct halos
with different relative core sizes, further suggesting that
results from simulations are not required for halo stability;
rather, the cores’ sizes can depend on merger history,
feedback processes, etc.
Reference [27] discusses the range of results (including

soliton mergers and cosmological simulations) and suggest
that tidal stripping (both “real” from halo interactions in the
cosmological simulations and “artificial” from choices of
boundary conditions in the idealized case) contribute to the
scatter in core-halo mass relations. Meanwhile, a more
recent paper used approximate analytical expressions for
Schrödinger-Poisson eigenstates to show that scatter in the
concentration-mass relation contributes significantly to
scatter in the core-halo mass relation, particularly for
ULDM halos with mass M > 109M⊙ [45].
Finally, Ref. [46] recently found that the ULDM halo

profile is a better fit to Spitzer Photometry and Accurate
Rotation Curves (SPARC) database than alternate models.
However, the authors were unable to find a single value of
particle mass that was a good fit for all the galaxies given
the universal core-halo relation from Ref. [47]. In the case
that dark matter is indeed ultralight, this result would be an
argument against the existence of a universal core-halo
relationship.
In this work we will primarily compare our results

with references considering the same formation mecha-
nism. Furthermore, we will consider halos of mass Mh ≲
109M⊙ for our choice of units (presented in the following
subsection), where Refs. [27,45] found less scatter. In the
following sections, we will explore how the core-halo mass
relation depends on merger history, as well as its sensitivity
to numerical boundary conditions and show that some of
these apparent discrepancies can be explained and resolved.

III. NUMERICAL METHODS

Simulations in this paper are performed in CHPLULTRA

[29], a pseudo-spectral Schrödinger-Poisson solver. The
simulation region has absorbing boundary conditions
[18,48], a grid resolution of 5123 and sides of length
L ¼ 2.0 code units, chosen to fit our largest halos while
resolving our smallest cores. Each simulation is run to a
time of T ¼ 1.0 code units, and the output is saved every
ΔT ¼ 0.001. For further discussion of the numerical
algorithm, see Ref. [49], which provides a detailed des-
cription of its implementation in a sibling code,
PYULTRALIGHT.
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Thanks to a scaling symmetry in the Schrödinger-
Poisson equations, conversions between code units and
astronomical units require only two parameters: the particle
mass, m22 ≡ma=10−22, and a free parameter λ (see
Ref. [49] for details). For a convenient choice m22 ¼ 1
and λ ¼ 2.5, the conversion is

time code unit → 12.1 Gyr ð9Þ

length code unit → 15.3 kpc ð10Þ

mass code unit → 5.57 × 106M⊙: ð11Þ

We use the above throughout this paper when converting
between code units and astrophysical units. For more details
on the implementation of CHPLULTRA, as well as more scaling
choices for code units, please see Appendix A of Ref. [28].

A. Initial conditions

We create three separate datasets: one where N equal
mass solitons merge simultaneously at the center of the
box, one where two groups of N=2 equal mass solitons
merge simultaneously with other before undergoing a
binary coalescence at the center of the box, and one in
which solitons of unequal mass merge. Each set is
schematically illustrated in Fig. 1 and described in more
detail below, and four representative halos and their cores
are illustrated in Fig. 2.

1. Simultaneous mergers

We initialize our first set of runs with equal-mass solitons
arranged in symmetric configurations, ranging from 2 to 14
solitons.4 We refer to this set as our “simultaneous
mergers.” The case of two solitons is a simple binary
merger, while higher even numbers of solitons correspond
to the vertices of the Platonic solids: the tetrahedron (4), the

octahedron (6), the cube (8), and the icosahedron (12). In
addition, we set up a superposition of the octahedron and
cube—called a cuboctahedron—to achieve a 14-soliton
merger. Odd numbers of initial solitons are achieved by
adding a single soliton to the center of the above configu-
rations.5 We repeat simulations for three different initial
soliton masses,M ¼ 40, 50 and 60 code units and illustrate
the initial conditions in the leftmost panel of Fig. 1.

2. Sequential mergers

To initialize these merger scenarios we populate our
simulation region with Nsol solitons, choosing the initial
arrangement so that the mergers occur in two separate
stages: two simultaneous initial mergers of 2 ≥ Nsol ≥ 7
solitons, followed by a subsequent merger of the two
products. Therefore, a sequential merger of e.g. 8 solitons
will first involve two simultaneous 4-soliton mergers and
then a subsequent binary merger. This setup is illustrated in
the second panel of Fig. 1. As before we repeat simulations
for three different initial soliton masses,M ¼ 40, 50 and 60
in code units.

3. Unequal mass soliton mergers

For our final class of merger scenarios, we relax our
assumption of equal progenitor masses. We do this in two
batches: first, we systematically investigate the effects of
changing the mass ratio μ≡M1=M2 in binary soliton
mergers, where M1 > M2. Reference [18] found that for
μ ∼ 2.5 the less massive soliton is completely disrupted and
forms a diffuse halo around the more massive progenitor,
which constitutes the “core” of the resulting system. We
therefore restrict ourselves to scenarios with 1 ≤ μ ≤ 2.5.
However, we note that the total preservation of the more
massive soliton as the core along with the disruption of the
less massive and thus puffier soliton does provide a
mechanism for supporting a variety of relative core-halo
sizes in ULDM. Specifically, we consider binary mergers

FIG. 1. A schematic illustration of three datasets, left to right: simultaneous mergers, sequential mergers, and two types of unequal-
mass mergers (binaries with varying mass ratio, and odd-N mergers with larger central soliton.).

4Mergers of more than 14 solitons result in final halos whose
cores could not be sufficiently resolved with a ð512Þ3 grid.

5We do not perform a merger of 10 or 11 solitons because there
is no convenient Platonic solid with 10 vertices.
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with mass ratios μ ∈ f1.05; 1.10; 1.25; 1.50; 1.75; 2.00;
2.25; 2.50g, with the mass of the lighter soliton being
M ¼ 40, M ¼ 50, or M ¼ 60 in code units. These initial
conditions are sketched in the third panel of Fig. 1.
Finally, we re-simulate each of the simultaneous

mergers of odd numbers of solitons but add a central
soliton with μ ¼ 1.5 times the mass of each of the other
solitons, as illustrated in the last panel of Fig. 1. In this
way, we fix the mass ratio but vary the number of solitons
colliding. This provides more range in Ξ, which is
sensitive to the number of initial solitons but insensitive
to changes in total mass.

B. Relative core mass Mc=Mh

In all of our runs the solitons start at rest, and have
merged to form a halo with a core and an NFW-like skirt
halfway through the simulation or earlier. We isolate the
contribution of the ground state to the halo wave function
by performing an inner product of our ψ-grid and the wave
function of the ground state soliton orthonormal ϕ0:

c0 ¼
Z

d3rψðrÞϕ�
0ðrÞ: ð12Þ

Working with the normalized wave function, the relative
mass of the solitonic core to the halo is jc0j2 ¼ Mc=Mh.
In order to define the soliton eigenstate ϕ0 in each case,

we calculate the time and spherically averaged density
profile hρi over 0.2 code units of time.6 Then, we solve for
the potential hΦi corresponding to this profile using the

Poisson equation [Eq. (2)], and use that the resulting
potential to calculate the eigenstates of the system. We
examine the ground state qualitatively to verify that it
matches the shape of the core of the halo after quasistable
behavior in c0 is reached: the equivalent to a soliton of
appropriate mass.
In each case, the formation of the solitonic core is

clearly seen in the sudden increase in the amplitude of
jc0j2; we illustrate this effect in our simultaneous mergers
dataset in Fig. 3. After the merger, the contribution of the
ground state core oscillates around an approximately
constant value. Mergers with a lower mass ratio take
significantly longer to “relax” to an approximately con-
stant core-size after the initial merger. We start averaging
only after this quasistatic phase is reached for each
individual run.
Therefore, we define the relative mass of the core,

Mc=Mh, as the average of jc0j2 over Δt ¼ 0.2 after the
core starts exhibiting quasistatic behavior. We have varied
both the time interval over which we average and when we
begin averaging; neither impacts our results significantly.
This insensitivity is important for two reasons:
(1) It allays any worry that our halos have not had

sufficient time to relax and
(2) We do not need to determine exactly when the

quasistatic behavior in jc0j2 begins.
Though not shown here, the sequential and unequal mass
datasets show similar behavior. Isolating the core using the
eigenstates of the system is a new approach. In previous
works, the mass of the core was determined by fitting the
center of the halo to a density profile. In Ref. [18], the
profiles are fit using the soliton profile approximation:

ρsolðrÞ ≃ ρ0½1þ 0.091 · ðr=rcÞ2�−8 ð13Þ

FIG. 2. The halos produced through the mergers illustrated in Fig. 1, from left to right: a simultaneous merger of four solitons, a
sequential merger of four solitons, a merger of two solitons with mass ratio 1.25, and a merger of five solitons where the central soliton is
1.5 times heavier than the others. Each time- and spherically-averaged halo profile is shown in gray, with the eigenstate derived core
overplotted in color. The dashed line shows the best fit of the analytic approximation of the soliton profile [Eq. (13)]. The figure is on a
log-log scale.

6The halos we create should be spherically symmetric, and so a
spherically-averaged density profile hρi is an accurate represen-
tation of the halos.
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where ρ0 is the central density and rc is the FWHM of the
soliton. We perform the same analysis on our data using
averaged halo density profiles hρi over the same intervals
(Δt ¼ 0.2) as with our eigenstate analysis. We begin by
setting ρ0 ¼ hρiðr ¼ 0Þ in the analytical profile. Next, we
compute rc using the following relationship [23]

ρ0 ≃ 3.1 × 1015
�
2.5 × 10−22 eV

ma

�
2
�
kpc
rc

�
4 M⊙

Mpc3
ð14Þ

and assuming ma ¼ 10−22 eV.
Once we have arrived at a soliton density profile through

fitting, we calculate its mass by integrating that profile to
the edge of the box. Hence, the core mass that we obtain
through this procedure represents the integrated mass of
the ground state contribution over the entire halo. This
approach differs from previous work wherein the soliton
mass is integrated only out to a predetermined cutoff, rα [in
accordance with the halo profile of Eq. (6)], as suggested in
e.g. Ref. [22]. Typically rα is a few times rc, though the
exact value is hard to determine precisely due to the
dynamical nature of soliton cores in simulations, including
the “breathing” mode and random walk [43,50]. We argue
that such an approach introduces ambiguity since the
choice of rα is somewhat arbitrary and computation of
the core mass involves integration over higher modes in the
central halo, thereby picking up nonsolitonic contributions.
Our eigenstate decomposition method avoids both of
these issues.7

C. Scaling parameter Ξ
The parameter Ξ≡ jEj=M3 can be straightforwardly

defined8 in a simulation where the total energy E and mass
M in a numerical box do not vary significantly with time.
However, in the course of our soliton mergers much of the
halo’s mass becomes unbound and ultimately removed by
the absorbing boundary conditions of our box. Though the
mass/energy loss decreases significantly after the merger, a
small but constant mass “leak” remains, meaning that the
final value of Ξ is dependent on how long we choose to run
our simulation. Furthermore, the rate of this mass loss
increases with rising soliton number N, meaning that the
slope of the core-halo mass relation Mc=Mh ∝ Ξα can be
impacted by our choice of Ξ.
With this in mind, we choose to explore two self-

consistent definitions: Ξi and hΞi. While the final value
of Ξ in any run with a sponge is directly dependant on the
simulation’s run time, the initial value

Ξi ≡ jEij
M3

i
ð15Þ

is always robustly defined, and is equivalent to choosing to
run the same simulation without a numerical sponge. The
drawback of this definition is that it measures the mass and
energy of the initial set of solitons arranged in the box,
rather than the final halo, and so includes the contribution
of mass that is no longer bound to the halo. In order to
measure the latter, we use the averaged hρi to define

FIG. 3. The evolution of the ground state of each halo is shown as a function of time. The subsample of our runs shown here are
indexed by the number of simultaneously merging solitons. Note that the merger is evident from the sudden creation of a core (for
instance, at t ¼ 0.15 for the N ¼ 2 case). After the merger each halo core oscillates around an approximately constant value; we take the
average from the beginning of over a period of Δt ¼ 0.2 after each merger reaches thus quasistatic phase as the relative halo mass,
Mc=Mh. For example, for the N ¼ 2 merger we start averaging at time T ¼ 0.2 and for N ¼ 14 we begin at T ¼ 0.15. Our results are
insensitive to changing either the starting time T or the averaging period Δt.

7Because of the steep decrease in the soliton profile outside rc,
our results change imperceptibly if we do impose a cutoff, further
validating our approach.

8We work in G ¼ m ¼ ℏ ¼ 1 units, and so have dropped that
factor from Eq. (8).
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hΞi ¼ jhKi þ hQi þ hVij
hMi3 : ð16Þ

The quantum energy hQi and potential energy hVi can be
directly calculated from hρi using Eqs. (4) and (5). The halo
mass hMi is defined as hMi ¼ R

4πhρir2dr.9 The kinetic
energy is more complex, as it requires knowledge of ψ
rather than ρ to calculate velocities. We calculate the
spherically-averaged cumulative kinetic energy out to the
maximal radial distance r ¼ L=2 and then average it over
the same time period as that used to fix hρi. Given that
kinetic energy is subdominant to both the quantum and
potential terms, our results are insensitive to these specific
choices. As with relative core mass in the previous
subsection, each run is averaged over Δt ¼ 0.2 starting
when the core reaches a quasistatic state after halo-
formation. In the case where we use initial quantities,
we consider Mc=Mi ∝ Ξα

i and in the averaged case we
consider Mc=hMi ∝ hΞiα. In both cases we do not define
the halo mass in terms of a virial radius, but integrate over
the whole box (or, in the case of hMi, over the largest
sphere inscribed in our box).

IV. CORE-HALO MASS RELATION(S)

A. Simultaneous mergers

We calculate the parameter Ξ using our two definitions
and plot it against our derived relative core masses showing
the results in Fig. 4. Fitting a power law to our data, we find
a slope α ¼ 0.223 when using Ξi and α ¼ 0.293 when
using hΞi. Both plots are shown on the same vertical axis
and with the same range on the horizontal axis, but shifted
relative to one another. In both panels the data points are
roughly groups in threes, corresponding to the three initial
soliton masses: Msol ¼ 40, 50 and 60 (in code units).
In both plots there is more visible scatter as Ξ → 0,

corresponding to more massive halos formed through
collisions of higher numbers of solitons. For Ξi, this stems
partially form the fact that the more solitons we collide, the
less the initial conditions in the box describe the final halo
produced through the collision. hΞi, on the other hand,
does describe the actual halos; however, the range of hΞi
changes due to our accounting for the mass and energy
loss in the box. Consequently, the confidence intervals
returned by the fitting function are comparable for both
choices of Ξ.
We illustrate the results from fitting cores and compare

them with results from calculating soliton eigenstates in
Fig. 5. Again, the two choices of Ξ produce different
slopes, and the fitted cores underestimate the slope (and

relative core size) when compared to eigenstate cores for
both definitions. In each case, the eigenstate-derived cores
exhibit slopes closer to numbers previously put forth in
the literature: 1=5 and 1=3 for Ξi and hΞi, respectively.
Comparing eigenstate and fit cores directly, we find a
difference of up to 8.2%, with the fitting method mostly
overestimating core mass compared to the eigenstate
equivalent. Nevertheless, the best fit slope for each choice
of Ξ is not dissimilar to the equivalent eigenstate-
extracted cores.
Furthermore, the 95% parameter confidence interval on

the fitted Ξi data is 0.209–0.246; for hΞi it is 0.281–0.323.
These are comparable to the confidence intervals quoted in
Fig. 4, suggesting that while the two core extraction
approaches perform similarly well. This is to say: while

FIG. 4. We present the log-scaled relationship between the
relative core mass and our two Ξ parameters in our simultaneous
data. The data points are colored by the initial mass of the
merging solitons, Msol, in code units, and their best fit slope is
shown by the black dot-dashed line. Both panels show the same
range in Ξ, shifted by a factor of 5. Top: using Ξi, the power law
fit to our data yields an exponent of 0.223 with a 95% confidence
interval of 0.209–0.237. A line of slope 1=4 is shown in gray for
comparison with the closest result from previous literature
(Ref. [23]). Bottom: using hΞi, the power law fit to our data
yields an exponent of 0.293 with a 95% confidence interval of
0.277–0.308. A line of slope 1=3 is shown in gray for comparison
with the closest result from previous literature (Ref. [51]).

9Since we run idealized simulations with a nonexpanding
background centered on a single halo we cannot self-consistently
define a critical density ρc, and therefore cannot define a mean-
ingful virial radius.
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we prefer our eigenstate method of defining the core as
more theoretically robust and unambiguous, it does not
significantly lessen the scatter in our data. Therefore, the
information presented in this subsection suggests that—for
a single formation mechanism, at least—the definition
of the halo mass Mh has a much stronger effect on the
core-halo mass relation than the definition of the halo core
mass,Mc. We verify this in Fig. 6: while the choice of core
definition matters very little for our halos, the choice of
halo mass (Mi or hMi) is quite impactful for all but the
lowest mass halos.

B. All data

We now include our sequential and unequal mass data-
sets in the analysis; the results are shown in Fig. 7. In the
case of Ξi, each dataset produces a different best slope:
0.223 (simultaneous), 0.280 (sequential), and 0.262
(unequal mass). There is significant scatter around each
of the fits, particularly toward low-Ξ (high mass) values and
in the cluster of unequal mass binary mergers in the upper
right corner. There is no clear linear relationship in the data.
For hΞi, the best fit slopes are more uniform: 0.293

(simultaneous), 0.397 (sequential), and 0.321 (unequal
mass). For the simultaneous and sequential mergers the
scatter in visually smaller, and both data can be approx-
imately described with a single line of slope α ≈ 1=3. The
sequential mergers favor a slope α ≈ 0.4 (although α ¼ 1=3
falls within the fit’s 95% confidence interval) and show
more scatter as hΞi → 0.
The Ξi values presented in the upper panel of Fig. 7 are

consistent with the findings of Ref. [18] and a slope of
approximately 1=4. The authors of Ref. [18] simulated
binary mergers of solitonic cores in the presence of a
sponge at the numerical boundary. Furthermore, they
normalized their core masses with respect to the initial

mass of the simulation; thus, their setup is most similar to
our simultaneous and unequal mass binary mergers ana-
lyzed against Ξi. Given the scatter in our data and its
evident dependence on merger history we are not able to
claim a single well-defined core-halo mass relation.
The hΞi data can be fit by a single line with a slope of

approximately 1=3, though sequential mergers diverge
both in terms of best-fit slope (0.4) and increased scatter.
The result of sequential mergers matches the findings of

FIG. 5. Shown is the core-halo mass relation for cores derived
from eigenstates (full circles, full lines) and from fitting functions
(hollow diamonds, dot-dashed lines). The points show individual
halos, while the lines are the best fit slopes indicated in the
legends. The black data use Ξi, the pink data use hΞi. All sets of
data include mergers of Msol ¼ 40, 50, and 60 solitons.

FIG. 6. We show the difference between our two core estima-
tion methods (eigenstates and fitting), as well as the difference
between the two halo mass definitions, Mi and hMi. The dot-
dashed line in both panels represents a slope of one as an aid to
the reader, and masses are presented both in code units and solar
masses M⊙.
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Ref. [24], in which the authors explicitly considered merger
history. The 1=3 result matches the analysis of Ref. [25]
which investigated scenarios involving a group of solitonic
cores of different masses that merge sequentially to form a
final virialized halo in a numerical box without sponge
boundary conditions. They worked with Ξi and we repro-
duce their results despite our differing numerical setup and
definition of Ξ, suggesting that merger history plays a
stronger role in the final core-halo relationship than the
exact definition of Ξ. We thus also recover the argument of
Ref. [27], where the authors suggest that a diversity of core-
halo mass relations can partially be attributed to “artificial”
stripping due to boundary condition choices. However,
we are able to somewhat blunt this effect by using the
definition hΞi.

We attribute this to the robustness of the hΞi definition,
stemming directly from the definition of hρi. By employing
a spherically- and time-averaged definition of our halo
profile after the core has reached the steady state, we
construct a definition of halo mass and energy that varies
less with time. Additionally, by using hΞi we average over
spurious contributions to the edge of the halo arising from
the numerical boundary. Finally, this definition is the more
useful one when considering real cosmological halos, as we
will not have access to information on the initial masses and
energies of individual halos. However, it’s worth noting that
using instantaneous values for astrophysical halos would
introduce scatter into the observed core-halo relationship
(as in Ref. [26]) when compared the simulated one using
averaged quantities; nevertheless, we expect the main result
to stay the same.
Finally, we compare our two definitions of Ξ directly in

Fig. 8. We note that while the relationship between Ξi and
hΞi is approximately the same for our simultaneous and
different mass datasets, the sequential data once again have
a distinct slope. This provides further evidence to our
conclusion that we cannot expect a single power law in Ξ to
describe populations of halos with different merger
histories.

V. DISCUSSION

We have presented a novel approach to isolating the
cores of ultralight dark matter halos by calculating the
ground state of the central soliton. We create halos through
mergers of different numbers of solitons of varying masses.
The ground state (and, indeed, the higher states) is
calculated using the approximately stationary potential of
the isolated halo, as described in Ref. [28]. We then project
the halo wave function onto the basis of eigenstates at each
timestep, revealing the time evolution of the halo core.
Following the initial formation phase the contribution of

FIG. 8. We show the relationship between our two Ξ defini-
tions, Ξi and hΞi, for all our available data. The data are plotted
with the same color and shape scheme as in Fig. 7, and the gray
line denotes a slope of 1.

FIG. 7. We present the log-scaled relationship between the
relative core mass and our two Ξ parameters in all three datasets.
The gray lines show exponents of 1=3, 1=4, and 1=6 for
comparison. Both panels show the same range in Ξ, shifted by
a factor of 5. In both panels, the simultaneous data (best fit slope)
are represented by black circles (dot-dashed line), the sequential
data by purple squares (dashed line), and the mass ratio data by
orange diamonds (dotted line). Top: using Ξi, the power law fit to
our data yields exponents (95% confidence intervals) of
0.223ð0.209 − 0.237Þ, 0.280ð0.219 − 0.341Þ, and 0.262ð0.265 −
0.292Þ. Bottom: using hΞi, the power law fit to our data yields an
exponents (95% confidence intervals) of 0.293ð0.277 − 0.308Þ,
0.397ð:313 − 0.481Þ, and 0.321ð0.303 − 0.339Þ.
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the ground state is approximately constant, allowing us to
define a relative core-halo mass, Mc=Mh.
This approach illuminates earlier approaches to the

problem. Previous work (starting with Refs. [22,47]) has
established the core-halo relation as a function of Mc=Mh.
This is usually taken to be a power law Mc=Mh ∝ Ξα,
where Ξ≡ jEj=M3 and values of α ranging from 1=6 to 1=2
have been suggested in the literature. Here, we explore both
Ξi, calculated with respect to the initial massMi and energy
Ei in the box, and hΞi, calculated from the spherically- and
time-averaged halo density profile hρi.
We compared fits to an analytic coreþ NFW profile and

the eigenstate approach, and fitting slightly overestimates
the slope of the core-halo relationship for both definitions
of Ξ relative to the eigenvalue method, such that αfit > αeig.
The core masses differ up to 8.2%, with fitted cores being
more massive than their eigenstate-derived counterparts.
These discrepancies are relatively small and may follow
from fitting to the density of the halo rather than its wave
function: the former is the square of the latter, ρ ¼ jψ j2, so
the density may include cross-terms which are not present
when dealing with the wave function directly. In any case,
the similarity between the two methods suggests that the
scatter in the core-halo mass relation is due to processes
affecting the halo skirt rather than the core.
We simulated soliton collisions in three regimes:
(1) simultaneous mergers—where N solitons of identi-

cal masses merge collide at the center of our box;
(2) sequential mergers—where two groups of N same-

mass solitons merge at the same time, after which the
two merger products collide at the center of the box,
forming the final halo; and

(3) unequal mass mergers—mergers of two solitons
with a mass ratio, μ ¼ M1=M2, or merging odd-N
with the central soliton having a mass 1.5 times
larger than the others.

Working with Ξi, we do not find a single scaling
behavior between the three datasets, and even within
individual datasets there is substantial scatter. The slopes
range from α ≈ 1=5 to α ≈ 1=3. The latter is consistent with
the findings of Ref. [18] who simulated binary mergers of
solitonic cores in the presence of a sponge at the numerical
boundary (as we do) and used the Ξi definition. For hΞi, the
overall best fit is α ≈ 1=3, though the sequential mergers
are better fit with α ≈ 0.4 and display more scatter. The 1=3

slope matches the results of Refs. [25,34], while the 0.4
slope matches those of Ref. [24].
The scatter and different slope in the sequential data

suggest that merger history plays a non-negligible part in
determining the relative mass of halo cores, possibly
introducing a nontrivial redshift dependence (e.g. as in
Ref. [45]). Furthermore, the simulations here are idealized
scenarios and astrophysical environments will be more
complex. In particular, cosmological data gives us instanta-
neous snapshots of galaxies rather than time-averaged
quantities, which will introduce additional scatter to any
observationally motivated core-halo relationship [26].
Thus, our analysis does not support the existence of a
single and universal core-halo mass relation for ULDM
halos. Moreover, the inclusion of more complicated physics
in halos such as mass accretion, dynamical heating from
granules, or tidal interactions with subhalos, may further
impact the core-halo relationship.
Finally, the underlying dynamics of ULDM—self-

gravitating quantum matter that undergoes gravitational
collapse—may be replicated in the post-inflationary uni-
verse [52–56] and in hypothetical axion miniclusters
[57,58]. Solitonlike structures can form in both these
phases and could play a role in a long post-inflationary
matter-dominated phase, and these will like obey a similar
core-halo relationship to ULDM. Consequently, the analy-
sis here can shed light on these scenarios, which are
governed by a common dynamical system, despite their
very different physical basis.
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