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The cosmological observations of cosmic microwave background and large-scale structure indicate that
our universe has a nearly scaling invariant power spectrum of the primordial perturbation. However, the
exact origin for this primordial spectrum is still unclear. Here, we propose the Weyl scaling invariant
R2 þ R3 gravity that gives rise to inflation that is responsible for the primordial perturbation in the early
universe. We develop both analytic and numerical treatments on inflationary observables, and find this
model gives a distinctive scalar potential that can support two different patterns of inflation. The first one is
similar to that occurs in the pure R2 model, but with a wide range of tensor-to-scalar ratio r fromOð10−4Þ to
Oð10−2Þ. The other one is a new situation with not only slow-roll inflation but also a short stage of
oscillation-induced accelerating expansion. Both patterns of inflation have viable parameter spaces that can
be probed by future experiments on cosmic microwave background and primordial gravitational waves.
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I. INTRODUCTION

Inflation is a hypothetical epoch of exponential expansion
introduced in the very early universe to solve the cosmo-
logical horizon and flatness problems [1,2]. It is also a
reasonable scheme to explain the origin of primordial
density perturbations, which plays the role of the seeds
that formed the structure of current universe [3]. In recent
years, the precise measurement of cosmic microwave back-
ground (CMB) presents us with an almost scale invariant
spectrum of primordial perturbations [4]. This result is
usually explained by an approximate de Sitter spacetime of
the very early universe [5–9]. Moreover, it is theoretically
explored that there is a more profound and basic principle
behind the phenomenon, namely, local Weyl scaling invari-
ance of the universe. This symmetry is first proposed by
H. Weyl in the attempt of understanding gravity and
electromagnetism in a unified framework [10,11], and after
a century of development, it has been applied extensively to
particle physics, cosmology [12–31] and gauge theory of
gravity [32–35].
Lately, inflation in the Weyl scaling invariant theory of

gravity, especially induced by a quadratic curvature termR2,
has been of many concern [36–46]. Comparing with the
conventional R2 model, which is also called the Starobinsky

model [47–50], the scaling invariant version not only allows
a viable inflation scenario with good observational agree-
ment, but also provides a framework to comprehend another
fundamental puzzles, such as the hierarchy problem
[38,41,51] and dark matter candidates [42,46].
However, inflation with only quadratic scalar curvature

might be just a simplistic scenario. From the viewpoint of
effective field theory, any higher-order curvature effects
may exist and play a role in the early universe. Hence it is
reasonable to evaluate their impacts on inflation. Generally,
the extensions with high-order tensors, like RμνRμν or
RμνρσRμνρσ, can result in unacceptable ghost degrees of
freedom [52], while the terms of arbitrary functions of the
Ricci scalar are known to be safe. Therefore, in this paper,
we consider a minimal extension of Ricci scalar beyond the
R2 model with Weyl scaling invariance, namely a cubic
term coupled with an extra scalar field as denominator
R3=φ2. We will show that even if this term is extremely
small, it will have an essential impact on inflation, which
even open up a completely different inflationary scenario
from Weyl R2 and conventional R2 þ R3 models.
The paper is organized as follows. In Sec. II, we develop

the analytic formalism of Weyl R2 þ R3 model and derive
the effective scalar potential. We show that in some cases,
the potential has two different kinds of global minima,
leading to two distinctive inflationary patterns. In Sec. III,
we investigate the inflation in the pattern of evolving to
the side minimum. We calculate the spectral index ns and
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tensor-to-scalar ratio r of the inflationary perturbations, and
give the preferred parameter space allowed by the latest
observations. Analytical treatments are developed for more
transparent, physical understanding of the asymptotic
behaviors. Then in Sec. IV, we investigate the pattern of
evolving to the center minimum. A special process called
“oscillating inflation” is considered in detail. Finally,
conclusions are given in Sec. V. We adopt the following
conventions: metric ημν ¼ ð−1;þ1;þ1;þ1Þ, natural unit
ℏ ¼ c ¼ 1 and MP ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.435 × 1018 GeV ¼ 1.

II. WEYL SCALING INVARIANT R2 +R3 MODEL

We start with the following Lagrangian for metric field
gμν, scalar field φ, and Weyl gauge field Wμ ≡ gWwμ with
local scaling symmetry

Lffiffiffiffiffiffi−gp ¼ 1

2

�
φ2R̂þ αR̂2 þ β

φ2
R̂3

�
−
ζ

2
DμφDμφ

−
1

4g2W
FμνFμν: ð1Þ

Here g is the determinant of metric, α, β and ζ are constant
parameters, Dμ ¼ ∂μ −Wμ is the covariant derivative
associated with scaling symmetry, gW is the coupling
constant, Fμν ≡ ∂μWν − ∂νWμ defines the invariant field
strength of Wμ, and R̂ is the Ricci scalar defined by the
local scaling invariant connection

Γ̂ρ
μν ¼ 1

2
gρσ½ð∂μ þ 2WμÞgσν þ ð∂ν þ 2WνÞgμσ

− ð∂σ þ 2WσÞgμν�: ð2Þ

Explicit calculation shows the relation between R̂ and usual
R defined by metric field gμν,

R̂ ¼ R − 6WμWμ −
6ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
WμÞ: ð3Þ

It is straightforward to verify the invariance of Eq. (1) under
the following Weyl scaling transformation

metric∶ gμν → g0μν ¼ f2ðxÞgμν;
scalar∶ ϕ → ϕ0 ¼ f−1ðxÞϕ;

Ricci scalar∶ R̂ → R̂0 ¼ f−2ðxÞR̂;
Weyl vector∶ Wμ → W0

μ ¼ Wμ − ∂μ ln fðxÞ; ð4Þ

where fðxÞ is an arbitrary positive function.
The purpose to explore the Lagrangian in Eq. (1) is two-

fold. Theoretically, such a R̂3 term constitutes as a simple
extension of the R̂2 theory, motivated from perspective of
effective field theories and also quantum loop corrections in
more fundamental theories [32–35]. Phenomenologically, it

is worthwhile to explore how such a term would modify the
cosmological observations related to inflation, and evaluate
the likelihood and robustness of the predictions in the
lowest-order theories.

A. Formalism in Einstein frame

General fðRÞ gravity is equivalent to the Einstein gravity
with a scalar field [53,54]. In Ref. [42], we have extended
the proof in general scaling invariant FðR̂;φÞ gravity. We
can explicitly show that by introducing an auxiliary scalar
field χ and rewrite the high-order curvature terms as

FðR̂;φÞ≡ φ2R̂þ αR̂2 þ β

φ2
R̂3

¼ FR̂ðR̂ → χ2;φÞðR̂ − χ2Þ þ FðR̂ → χ2;φÞ: ð5Þ

Here FR̂ denotes the derivative over R̂, FR̂ ¼ ∂FðR̂;φÞ=∂R̂.
We can verify that the equivalence relation χ2 ¼ R̂ can be
obtained from the Euler-Lagrange equation, δL

δχ ¼ 0.
Substituting Eq. (5) into Eq. (1), we find

Lffiffiffiffiffiffi−gp ¼ 1

2

�
φ2 þ 2αχ2 þ 3β

φ2
χ4
�
R̂ −

1

2

�
αχ4 þ 2β

φ2
χ6
�

−
ζ

2
DμφDμφ −

1

4g2W
FμνFμν: ð6Þ

Now we have demonstrated that linearization of R̂ has led
to the nonminimal coupling of the scalar field, χ.
We can transform the above Lagrangian into the Einstein

frame by making a Weyl or conformal transformation of the
metric field. However, we note that scaling invariance is still
preserved in our model with χ → χ0 ¼ f−1ðxÞχ. Therefore,
we can directly normalize the coefficient before the Ricci
scalar as

φ2 þ 2αχ2 þ 3βχ4=φ2 ¼ 1; ð7Þ

due to the scaling invariance of Eq. (6). This is
equivalent to making a Weyl transformation with fðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 þ 2αχ2 þ 3βχ4=φ2

p
in Eq. (4). Further dropping the

total derivative term in Eq. (3) due to its null surface
integral, we can write the Lagrangian as

Lffiffiffiffiffiffi−gp ¼ 1

2
R −

ζ

2
DμφDμφ − VðφÞ − 1

4g2W
FμνFμν − 3WμWμ

¼ R
2
−

∂
μφ∂μφ

2=ζ þ φ2=3
− VðφÞ − 1

4g2W
FμνFμν

−
6þ ζφ2

2

�
Wμ −

∂μ ln j6þ ζφ2j
2

�
2

; ð8Þ

QING-YANG WANG, YONG TANG, and YUE-LIANG WU PHYS. REV. D 107, 083511 (2023)

083511-2



with the scalar potential

VðφÞ ¼ α

2
χ4 þ β

φ2
χ6 ¼ α

6β
ðφ4 − φ2Þ

þ α3φ4

27β2

��
1 −

3β

α2
ð1 − φ−2Þ

�
3=2

− 1

�
; ð9Þ

where we have solved χ from Eq. (7)

χ2 ¼ αφ2

3β

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3β

α2
ð1 − φ−2Þ

r
− 1

�
: ð10Þ

It is now clear that we have a minimally coupled scalar φ
with a noncanonical kinetic term. To further simplifying the
theoretical formalism, we introduce the following redefi-
nitions for the scalar and the Weyl gauge field

φ2 ≡
8><
>:

6
jζj sinh

2
�
�Φffiffi
6

p
�

for ζ > 0;

6
jζj cosh

2
�
�Φffiffi
6

p
�

for ζ < 0;
ð11Þ

W̃μ ≡Wμ −
1

2
∂μ ln j6þ ζφ2j≡ gWw̃μ: ð12Þ

Then the final Lagrangian turns into a more compact form

Lffiffiffiffiffiffi−gp ¼ 1

2
R −

1

2
∂
μΦ∂μΦ − VðΦÞ − 1

4g2W
F̃μνF̃μν

−
1

2
m2ðΦÞW̃μW̃μ; ð13Þ

with the mass term of Weyl gauge field

m2ðΦÞ ¼
8<
:

þ6 cosh2
�

Φffiffi
6

p
�

for ζ > 0;

−6 sinh2
�

Φffiffi
6

p
�

for ζ < 0:
ð14Þ

We should note that m2ðΦÞ is negative when ζ < 0.
Therefore, to avoid the Weyl gauge boson becoming
tachyonic in this case, it requires some other mechanisms
to obtain a real mass, for example, introducing other scalar
field, which we do not explore in this paper. For viable
inflation, both positive and negative are possible, as we
shall show later.
In the above discussion, we have demonstrated that Weyl

scaling invariant R̂2 þ R̂3 model can be written equiva-
lently as the Einstein gravity coupled with a self-interacting
scalar Φ and a massive vector W̃μ with a field-dependent
mass. This conclusion is also true for any Weyl scaling
invariant model of gravity with high-order curvature R̂n as
the above formalism applies straightforwardly. It is also
worthwhile to point out that Weyl vector boson can serve as
a dark matter candidate [28,29,42], with details of the relic

abundance being discussed in [46]. In this paper, we shall
concentrate on the scalar potential Eq. (9) and discuss the
viable inflation scenarios with the presence of R̂3.

B. Effective scalar potentials

There are two necessary requirements for the potential
Eq. (9). The first one is φ2 > 0 since φ is a real scalar field.
The other is 1 − 3β

α2
ð1 − 1

φ2Þ ≥ 0, otherwise an imaginary

potential will emerge. Consequently, there are some con-
straints on the parameters and the viable value ofΦ. We can
rewrite the second requirement as

sinh2
��Φffiffiffi

6
p

�
≥ or ≤

jζj
6 − 2α2=β

; for ζ > 0;

cosh2
��Φffiffiffi

6
p

�
≥ or ≤

jζj
6 − 2α2=β

; for ζ < 0; ð15Þ

where “≥ ” for β < α2

3
and “≤ ” for β ≥ α2

3
. For convenience,

we define λ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi

jζj
6−2α2=β

q
(only for β < 0 or β > α2=3 cases)

and γ ≡ 3β
α2
, then discuss the possible ranges of the potential

corresponding to different parameters. The results are listed
in the Table I. To ensure the theoretical stability, we require
that Φ can only evolve within these ranges where the
potential is real. Figure 1 shows some instances of the
scalar potential for several values of ζ and γ.
We first discuss the case of positive ζ. When γ ¼ 0, it

is a hilltoplike potential with two minima at Φ ¼
� ffiffiffi

6
p

sinh−1
ffiffi
ζ
6

q
. However, as long as there is a tiny cubic

curvature, whether positive or negative, the shape of
potential will be affected significantly. When γ > 0, the
potential turns to decrease near Φ ¼ 0, and a third vacuum
can form there. This behavior is transparent, because when
ζ > 0, Φ ¼ 0 corresponds to φ2 ¼ 0 according to Eq. (11),
then substituting it in Eq. (9) will obtain VjΦ¼0 ¼ 0.
When γ < 0, the potential turns to rise near Φ ¼ 0 and

TABLE I. Effective potential range of the Weyl R2 þ R3 model.

ζ γ or β Real VðφÞ

ζ > 0

γ ≥ 1 jΦj ≤ ffiffiffi
6

p
sinh−1 λ

0 ≤ γ < 1 Fully real

γ < 0 jΦj ≥ ffiffiffi
6

p
sinh−1 λ

−6 < ζ < 0

γ > 1
1þζ=6 Fully imaginary

1 < γ ≤ 1
1þζ=6 jΦj ≤ ffiffiffi

6
p jcosh−1 λj

γ ≤ 1 Fully real

ζ ≤ −6
γ ≥ 1 jΦj ≤ ffiffiffi

6
p jcosh−1λj

1
1þζ=6 < γ < 1 Fully real

γ ≤ 1
1þζ=6 jΦj ≥ ffiffiffi

6
p j cosh−1 λj
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become imaginary and unphysical in −
ffiffiffi
6

p
sinh−1 λ < Φ <ffiffiffi

6
p

sinh−1 λ, which has been listed in Table I.
Next, we switch to the case of negative ζ. It is evident in

Fig. 1 that when ζ < 0 and jζj or jγj is relatively small, the
modification of R̂3 term on the Weyl R2 potential is
moderate, unlike the dramatic change near Φ ¼ 0 in the
case of positive ζ. This is because the mapping of Φ ⇒ φ2

does not cover the interval of φ2 < 1 for ζ < 0 according
to Eq. (11). In other words, for negative ζ with modest jγj,
Φ → 0 does not lead to φ2 → 0, which brings the violent
behavior of the potential around here in the case of ζ > 0.
However, when ζ is excessively negative or jγj is large
enough, the violent variation will reappear to a certain
extent. For γ > 0, the potential will return to a downward
trend near Φ ¼ 0, albeit there is no true vacuum formed
(but a false vacuum is formed). And for excessively
negative γ, the imaginary potential will reappear in the
range of −

ffiffiffi
6

p j cosh−1 λj < Φ <
ffiffiffi
6

p j cosh−1 λj, which we
have listed this situation in Table I (see ζ ≤ −6 with γ ≤

1
1þζ=6 case).
Generally, inflation takes place when the potential is flat

and Φ evolves to the vacuum (ΦjV¼0). The cosmological
observations would restrict the potential and the initial
value Φi when inflation starts, here the Φi is defined as the
value when the comoving horizon of the inflationary
universe shrinks to the same size as today.

For ζ > 0 and γ > 0, the scalar potential contains three
separate vacua, one lying at the center and the other two at
both sides. Therefore, there are two different viable infla-
tionary patterns. One pattern refers to the evolution into the
central minimum, and the other into the side minima. We
can calculate the value of Φ which corresponds to the
hilltop of the potential in this case

Φh ¼�
ffiffiffi
6

p
sinh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ

12

ffiffiffiffiffi
3γ

p
− 2γ

3− 4γ

s
; ζ > 0; γ > 0 ð16Þ

which is the critical point of two inflationary patterns.
Neglecting the velocity, if the initial value of inflation field
satisfies jΦij > jΦhj, it will evolve toward the side vacua.
If jΦij < jΦhj at the beginning, the inflation field will
evolve toward the central minimum. There is another point
worth noting. The potential at Φ ¼ 0 in this case has no
continuous left and right derivatives. This seems to be
problematic when the inflaton falls into the central mini-
mum. However, if we consider the existence of higher-
order curvature, e.g., R̂4=φ4, there will be a rounded
bottom at Φ ¼ 0, and if the higher-order curvature is
small, its influence will only concentrate around Φ ¼ 0
without affecting the physical quantities of slow-roll
inflation (see Appendix A in detail).
For other cases of ζ and γ, there are only the global side

minima. Hence the only feasible inflationary pattern is that
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FIG. 1. Effective potentials of Weyl R2 þ R3 model with α ¼ 109 and various γ and ζ. Here we only depict the real ranges
of potentials.
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Φ evolves to either one of the side minimum. The initial
value Φi has to correspond to a real potential, and when
there is a false vacuum in ζ < 0 case, it requires a large
enough jΦij outside two local maxima of the potential to
ensure the gradient of VðΦiÞ toward the true vacuum. Next,
we are going to discuss the inflation in these two patterns
respectively.

III. INFLATION TO THE SIDE

In this inflation pattern, φ2 [defined as Eq. (11)] is
usually not very close to 0, and as we shall show later,
observations generally would require an extremely small
cubic curvature, namely jγj ≪ 1. Therefore in many cases,

jγð1 − φ−2Þj ≪ 1 is satisfied. Under this condition, we are
able to have analytical treatment and expand the potential
Eq. (9) as

VðφÞ ¼ φ4 − φ2

2αγ
þ φ4

3αγ2

�
−
3γ

2

�
1 −

1

φ2

�
þ 3γ2

8

�
1 −

1

φ2

�
2

þ γ3

16

�
1 −

1

φ2

�
3

þO
�
γ4

φ8

��

¼ 1

8α
ð1 − φ2Þ2

�
1þ γ

6

�
1 −

1

φ2

�
þO

�
γ2

φ4

��
: ð17Þ

Then with Eq. (11), we derive

VðΦÞ ¼

8>>><
>>>:

1
8α

�
1 − 6

jζj sinh
2

�
Φffiffi
6

p
��

2
�
1þ γ

6

�
1 − jζj

6
csch2

�
Φffiffi
6

p
��

þOðγ2Þ
�

for ζ > 0;

1
8α

�
1 − 6

jζj cosh
2

�
Φffiffi
6

p
��

2
�
1þ γ

6

�
1 − jζj

6
sech2

�
Φffiffi
6

p
��

þOðγ2Þ
�

for ζ < 0:

ð18Þ

The first term is exactly the effective potential of Weyl R̂2,
which has been shown in [42,46], and the rest originates
from the cubic curvature term R̂3, to the leading order of γ.
Next we shall calculate the inflationary physical quantities,
the spectral index ns and tensor-to-scalar ratio r, and
contrast them with the latest observations. We first give
an analytical calculation for two limiting cases, then show
the full numerical results for general cases.

A. Analytical approach of γ → 0 case

We first discuss the γ → 0 case and show how ζ affects
ns and r. The slow-roll parameters in this case can be
derived as

ϵ≡ 1

2

�
V 0ðΦÞ
V

�
2

¼
12sinh2ð2Φffiffi

6
p Þ

½jζ þ 3j − 3 − 6sinh2ð Φffiffi
6

p Þ�2 ; ð19Þ

η≡ V 00ðΦÞ
V

¼
12 coshð4Φffiffi

6
p Þ − 4jζ þ 3j coshð2Φffiffi

6
p Þ

½jζ þ 3j − 3 − 6sinh2ð Φffiffi
6

p Þ�2 : ð20Þ

Generally, the slow-roll inflation occurs when ϵ and jηj is
small enough, and it will end when any of them evolves to
∼1. For the situation we are concerned with, ϵ breaks the
slow-roll limit before the other. Thus we derive the value of

Φ when inflation ends according to ϵ ¼ 1

Φe ¼
ffiffiffi
3

2

r
ln

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jζþ 3j2 þ 3

p
ffiffiffi
3

p − jζþ 3j

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

3
jζþ 3j2 − 4jζþ 3jffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jζþ 3j2 þ 3

q
þ 3

s �
: ð21Þ

When jζj > Oð102Þ, which is a preferred range by the
observational constraints as we will show shortly, the above
equation can be approximated as

Φe ≃
ffiffiffi
3

2

r
ln

�
1ffiffiffi
3

p ð2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 4

ffiffiffi
3

pq
−

ffiffiffi
3

p
Þjζ þ 3j

�

≃
ffiffiffi
3

2

r
lnð0.3094jζ þ 3jÞ: ð22Þ

It is now clear that when jζj is large enough, Φe will be
almost independent of the sign of ζ.
Next, we calculate initial value Φi, which is defined

when the size of comoving horizon during inflation shrinks
to the present size. We first focus on the e-folding number
of the slow-roll inflation

N ≡ ln
ae
ai

≃
Z

Φe

Φi

dΦffiffiffiffiffi
2ϵ

p ; ð23Þ

where ai=e ≡ aðΦi=eÞ is the cosmic scale factor when
inflation starts/ends. Substituting Eq. (19) into it, we find
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N ¼
ðjζ þ 3j − 3Þ ln ½tanhð Φffiffi

6
p Þ� − 6 ln ½coshð Φffiffi

6
p Þ�

4

				Φe

Φi

¼ jζ þ 3j − 3

4
ln

�
tanh ½1

2
lnð0.3094jζ þ 3jÞ�
tanhðΦiffiffi

6
p Þ

�

−
3

2
ln

�
cosh ½1

2
lnð0.3094jζ þ 3jÞ�
coshðΦiffiffi

6
p Þ

�
: ð24Þ

For the circumstances we are concerned with, namely N ∼
ð50; 60Þ and jζj > Oð102Þ, the second term of Eq. (24) is
much smaller than the first term, and it can be estimated as
∼ − 2.3. Thus we derive

Φi ≃
ffiffiffi
6

p
tanh−1

��
1 −

2

0.3094jζ þ 3j þ 1

�
e
−4ðNþ2.3Þ
jζþ3j−3

�

≡ ffiffiffi
6

p
tanh−1Ωðζ; NÞ: ð25Þ

Here we have defined Ωðζ; NÞ for later convenience.
When jζj ≫ 4N, it can be further approximated as

Φi ≃
ffiffi
3
2

q
ln jζj

2Nþ7.8. Substituting Eq. (25) into Eq. (19)

and (20), we find

ϵi ¼
48Ω2

½ðΩ2 − 1Þjζ þ 3j þ 3ðΩ2 þ 1Þ�2 ; ð26Þ

ηi ¼
4½ðΩ4 − 1Þjζ þ 3j þ 3ðΩ4 þ 6Ω2 þ 1Þ�

½ðΩ2 − 1Þjζ þ 3j þ 3ðΩ2 þ 1Þ�2 : ð27Þ

As a result, the tensor-to-scalar ratio r and spectral index
ns of inflationary perturbations in the γ → 0 limit are finally
calculated as

r ¼ 16ϵi ¼
768Ω2

½ðΩ2 − 1Þjζ þ 3j þ 3ðΩ2 þ 1Þ�2 ; ð28Þ

ns ¼ 1 − 6ϵi þ 2ηi

¼ 1þ 8ðΩ4 − 1Þjζ þ 3j þ 24ðΩ4 − 6Ω2 þ 1Þ
½ðΩ2 − 1Þjζ þ 3j þ 3ðΩ2 þ 1Þ�2 : ð29Þ

For N ∼ ð50; 60Þ and jζj > Oð102Þ, We can approximate
the expressions as

r ≃ r� −
54

ζ2
; ð30Þ

ns ≃ n�s −
11N
ζ2

; ð31Þ

where

r�≃
12

ðNþ3.55Þ2 ; n�s ≃1−
2

Nþ3.55
−

3

ðNþ3.55Þ2 ð32Þ

are the predictions of Starobinsky model (see Appendix B
for an analytical derivation.). Thus it is evident that the
predictions of inflationary perturbations in our model will
converge to that of Starobinsky model when γ → 0 and
ζ → ∞. As jζj decreases, the value of r and ns will also
decrease. We show this trend as the pink area in Fig. 2.
According to the latest observation [55], the lower limit
of ns has been constrained to ∼0.959, hence it requires
jζj > 270 in this γ → 0 case.

B. Analytical approach of ζ → ∞ case

Now we discuss the ζ → ∞ case and show how γ affects
r and ns. When ζ is large enough, the potential is greatly
widened. The side vacua are far away from 0 and so are Φi

and Φe (e.g., Φi ∼ 5.4MP, Φe ∼ 9.8MP for ζ ¼ 104).
Therefore Eq. (11) can be approximated as

φ2 ¼ 6

jζj
�
eΦ=

ffiffi
6

p
� e−Φ=

ffiffi
6

p

2

�2

≃ e
ffiffiffiffiffiffi
2=3

p
½Φ−

ffiffiffiffiffiffi
3=2

p
lnð2jζj=3Þ�

≡ e
ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0Þ: ð33Þ

Here and after, without losing generality, we may choose to
evolve in the positive Φ region, and denote Φ0 as the
minimum in this region. Substituting it into Eq. (17), we

FIG. 2. The predictions of spectral index ns combined with
tensor-to-scalar ratio r in the Weyl R2 þ R3 model with e-folding
number N ∼ ð50; 60Þ. The pink area shows the results in the
γ → 0 case with various ζ. The yellow and green areas respectively
show the ζ → ∞ and ζ ¼ −650 cases with various γ. The red line
is the result with both γ → 0 and ζ → ∞, which is equivalent to the
Starobinsky model. The blue area is the latest observation
constraint given by the BICEP/Keck collaboration [55].
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have the scalar potential for Φ ≫ 0

VðΦÞ ¼ 1

8α
ð1 − e

ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0ÞÞ2

�
1þ γ

6
ð1 − e−

ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0ÞÞ þOðγ2Þ

�
: ð34Þ

Ignoring the Oðγ2Þ terms, we give an approximate expression for the slow-roll parameters

ϵ≡ 1

2

�
V 0ðΦÞ
V

�
2

≃
½γe

ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0Þ − 2ðγ þ 6Þe

ffiffiffiffiffiffi
8=3

p
ðΦ−Φ0Þ þ γ�2

3½e
ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0Þ − 1�2½γ − ðγ þ 6Þe

ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0Þ�2

; ð35Þ

η≡ V 00ðΦÞ
V

≃
6ðγ þ 4Þe

ffiffiffiffiffiffi
8=3

p
ðΦ−Φ0Þ − 8ðγ þ 6Þe

ffiffi
6

p ðΦ−Φ0Þ þ 2γ

3½e
ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0Þ − 1�2½γ − ðγ þ 6Þe

ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0Þ�

: ð36Þ

In this case, the slow-roll inflation also ends at ϵ ∼ 1.
To find the expression of Φe, we further approximate
Eq. (35) as

ϵ ≃
e−

ffiffiffiffiffiffi
8=3

p
ðΦ−Φ0Þðγ − 12e

ffiffiffiffiffiffi
8=3

p
ðΦ−Φ0ÞÞ2

108ðe
ffiffiffiffiffiffi
2=3

p
ðΦ−Φ0Þ − 1Þ2

: ð37Þ

Then Φe can be derived as

Φe ¼ Φ0 −
ffiffiffi
3

2

r
ln

� ffiffiffi
3

p

γ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ

ffiffiffi
3

p
Þγ þ 9

q
− 3Þ

�
: ð38Þ

If γ is extremely small, we will find Φe ≃Φ0 − 0.94MP.
Next, we derive the analytic formula for Φi in this case.

The e-folding number of the slow-roll inflation can be
calculated with Eq. (37) as

N ¼ −

ffiffiffiffiffi
27

4γ

s
tanh−1

� ffiffiffiffiffi
γ

12

r
e−

ffiffi
2
3

p
ðΦ−Φ0Þ

�

−
3

8
ln ½12 − γe−

ffiffi
8
3

p
ðΦ−Φ0Þ� −

ffiffiffi
6

p

4
ðΦ −Φ0ÞjΦe

Φi
: ð39Þ

Considering N ∼ ð50; 60Þ and γ < Oð10−3Þ, the first term
of the integral is dominant, while the rest are the marginal
terms which can be approximately treated as a constant,
∼ − 2.7. Hence we have

N ≃

ffiffiffiffiffi
27

4γ

s �
tanh−1

� ffiffiffiffiffi
γ

12

r
e−

ffiffiffiffiffiffi
2=3

p
ðΦi−Φ0Þ

�

− tanh−1
� ffiffiffiffiffi

γ

12

r
e−

ffiffiffiffiffiffi
2=3

p
ðΦe−Φ0Þ

��
− 2.7; ð40Þ

and derive

Φi ¼ Φ0 −
ffiffiffi
3

2

r
ln

				
ffiffiffiffiffi
12

γ

s
tanh

�
tanh−1

� ffiffiffiffiffi
γ

12

r
e−

ffiffiffiffiffiffi
2=3

p
ðΦe−Φ0Þ

�

þ
ffiffiffiffiffi
4γ

27

r
ðN þ 2.7Þ

�				
≃Φ0 −

ffiffiffi
3

2

r
ln

				
ffiffiffiffiffi
12

γ

s
tanh

�
tanh−1ð0.622 ffiffiffi

γ
p Þ

þ
ffiffiffiffiffi
4γ

27

r
ðN þ 2.7Þ

�				
≡Φ0 −

ffiffiffi
3

2

r
lnΘðγ; NÞ; ð41Þ

where we have defined Θðγ; NÞ for later convenience. Then
substituting it into Eq. (35) and (36), we find

ϵi ¼
½γΘð1þ ΘÞ − 2ðγ þ 6Þ�2
3½1 − Θ�2½γΘ − ðγ þ 6Þ�2 ; ð42Þ

ηi ¼
2γΘ3 þ 6ðγ þ 4ÞΘ − 8ðγ þ 6Þ

3½1 − Θ�2½γΘ − ðγ þ 6Þ� : ð43Þ

Finally, we derive r and ns of the inflationary perturba-
tions in the ζ → ∞ limit

r ¼ 16ϵi ¼
16½γΘð1þ ΘÞ − 2ðγ þ 6Þ�2
3½1 − Θ�2½γΘ − ðγ þ 6Þ�2 ; ð44Þ

ns ¼ 1 − 6ϵi þ 2ηi ¼ 1 −
2½γΘð1þ ΘÞ − 2ðγ þ 6Þ�2
½1 − Θ�2½γΘ − ðγ þ 6Þ�2

þ 4
γΘ3 þ 3ðγ þ 4ÞΘ − 4ðγ þ 6Þ
3½1 − Θ�2½γΘ − ðγ þ 6Þ� : ð45Þ

If γ is extremely small, smaller than Oð10−4Þ, the above
expressions can be linearly approximated as

r ≃ r� − 2.4γ; ð46Þ
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ns ≃ n�s − 0.42γN; ð47Þ

where r� and n�s have been defined in the last paragraph of
Sec. III. A. We can see that compared with the predictions of
Starobinsky model, a positive γ will reduce both r and ns,
while a negative γ will increase them. We show this trend as
the yellow area in Fig. 2. It is manifest that the observations
have constrained jγj≲ 5 × 10−4 in this ζ → ∞ case.
Actually, this result agrees with other numerical investiga-
tions of the R3-extended Starobinsky model [56–63], since
the potential Eq. (34) is the same as the R3-extended
Starobinsky model with a vacuum shift. Moreover, com-
pared with Eq. (30) and (31), we note that the predictions of
r and ns in the γ → 0 case is similar to that of the ζ → ∞
and γ > 0 case with a simple replacement of γ ↔ 24

ζ2
. This

can be seen more clearly from Fig. 2, where the pink area
overlaps with the yellow area with γ > 0.

C. General cases

Nowwe discuss the general cases with various ζ and γ by
numerical treatment. The results are shown in Fig. 3. Here
the parameter ranges satisfying observational constraints
(see blue area in Fig. 2) are marked with colored areas,
where the color gradient from blue to red corresponds to

ascending value of r. The gray areas represent that the
potential defined by these parameters cannot support an
adequate inflation. In other words, their maximal e-folding
number is unable to reach N ¼ 50 or 60. The white areas
are the parameter ranges that can give rise to ample
inflation, but their prediction of ns or r has been excluded
by the observation constraints. Here we mark two dotted
lines to distinguish the boundaries of constraints. Beyond
the pink one indicates a large ns that exceeds the obser-
vational upper limit, while beyond the green one signifies a
too small prediction.
Let us focus on the colored parameter ranges that are

allowed by observations. In the jζj ≫ 1000 case, the result
is roughly equivalent to the analytical calculation shown
in the last subsection. The prediction of r is limited to
0.002 < r < 0.006. However, distinctive situations appear
when jζj is small. First, when −1000 < ζ < −200, the
restrictions on γ is relaxed, which can stand jγj ∼ 6 × 10−3

at most. Besides, the upper limit of r is greatly expanded.
There is even a small parameter range that gives r > 0.01.
We show an example as the green area in Fig. 2. It clearly
shows a distinguishable feature from theWeylR2 model and
the R3-extended Starobinsky model. If the next generation
experiment of CMB B-mode polarization detects the pri-
mordial gravitational waves with r > 0.01, it may support
Weyl R2 þ R3 model. Another notable feature emerges at
0 < ζ < 200, where the negative γ, even if very small, can
greatly affect the predictions of primordial perturbations.
Actually, there are some cases with small positive ζ and
small negative γ can give proper r and ns that match the
observation constraints, and generally, r is extremely small.
For instance, when ζ ¼ 80, γ ¼ −4 × 10−8, and N ¼ 60,
we have ns ¼ 0.963 and r ¼ 3 × 10−4.

IV. INFLATION TO THE CENTER

As we mentioned earlier, the third vacuum appears at
Φ ¼ 0 in the case of ζ > 0 and γ > 0, and if the initial value
satisfies jΦij < jΦhj [Φh is defined in Eq. (16)], inflation
can happen in the evolution of Φ to 0. Actually, the
situation is more complicated. A process called “oscillating
inflation” [64–76] will continue immediately after the end
of slow-roll inflation because the scalar potential in this
case is a nonconvex function in the region close to the
minimum, which means there is d2V

dΦ2 < 0whenΦ nears 0. In
other words, for such a nonconvex potential, despite the
slow-roll conditions (ϵ ≪ 1 and jηj ≪ 1) has been violated
during the bottom oscillation of the inflationary potential,
the universe can keep accelerating expansion until the
average amplitude of the inflaton’s oscillation becomes
lower than the borderline of d

2V
dΦ2 from negative to positive (if

there is a rounded transition in a small enough ΔΦ at the
bottom to connect the left and right sides of the potential,
see [64]), or until the contribution of the radiation produced
in reheating process becomes non-negligible.

FIG. 3. Possible parameter space for Weyl R2 þ R3 model
when Φ evolves to the side vacuum. The colored areas are the
parameter ranges allowed by the latest observations of BICEP/
Keck collaboration [55], where the color gradient from blue to red
corresponds to r increases from 0.001 to the observational upper
limit 0.036. The dotted lines are the boundaries that ns exceeds
the observational upper (pink line) or lower (green line) limit.
The gray areas represent the parameter ranges with inadequate
inflation, namely, the maximal e-folding number of inflation
cannot reach N ¼ 50 or 60.
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It is helpful to understand the behavior of oscillating
inflation from the perspective of the effective equation of
state. For an oscillating scalar field Φ, its effective equation
of state in one oscillating period is defined as

hwi≡ hpi
hρi ¼

h _Φ2 − ρi
hρi ¼ h _Φ2i

Vm
− 1 ¼ hΦ dV

dΦi
Vm

− 1

¼ 1 −
2hVi
Vm

; ð48Þ

where hi means the average value in one oscillation period,
and Vm represents the maximal potential of this oscillation
period. The accelerating expansion of the universe requires
hwi < − 1

3
, which is equivalent to the following relation

U ≡


V −Φ

dV
dΦ

�
> 0: ð49Þ

In fact, U amounts to the intercept of the tangent to the
potential at a certain Φ, shown as the upper part of Fig. 4.
As long as the intercept is positive and the contribution of
radiation is insignificant, the accelerating expansion will
proceed successfully. This is the reason why a nonconvex
potential can bring about oscillating inflation.

For the process with oscillating inflation, the definition
of e-folding number should be replaced to

Ñ ≡ ln
afHf

aiHi
≡ ln

aeHe

aiHi
þ ln

aoHo

aiHi
≃ N þ No; ð50Þ

where the subscripts i and e have been defined in the last
section, af and Hf represent the cosmic scale and Hubble
parameter when the full inflationary period ends, ao and
Ho represent their multiple of increase or decrease during
the oscillating inflation. It indicates that the new definition
is equivalent to adding a correction No based on the
e-folding number of slow-rolling period if we take
He ≈Hi. Generally, No is related to the shape of potential
near its minimum, reheating efficiency, and the scale of the
aforementioned rounded bottom. We have discussed in
Appendix A that a higher-order R̂4 term can bring our
model a rounded bottom. But here we consider this term is
small enough for simplicity, that is, No depends only on
the first two aspects. For the shape of potential, actually,
our model has the following approximate form near the
center minimum

VðΦÞ ≃ −
ξðΦ2Þ
2α

þ ξ2Φ4

3α

��
1þ 1

ξΦ2

�
3=2

− 1

�
; ð51Þ

where ξ≡ α2

3βζ. Since α determines the height of the
potential, which has been fixed for each set of ζ and β
according to the observation result of Δ2

s ∼ V
24π2ϵ

∼ 2.1 ×
10−9 [77], the shape of the potential is essentially deter-
mined by ξ in the oscillatory region. For reheating
efficiency, we consider a constant transfer rate Γ and
the transferred energy all turns to radiation ρr

Φ̈þ ð3H þ ΓÞ _Φþ dV
dΦ

¼ 0; ð52Þ

_ρr þ 4Hρr − Γ _Φ2 ¼ 0: ð53Þ

Then No is substantially related to the parameters ξ and Γ.
We numerically solve the above equations, and visualize

in the lower part of Fig. 4. It is transparent that if ξ ≫ 0.1,
oscillating inflation will bring appreciable correction to the
e-folding number. Because an inefficient reheating process
will postpone the end of the oscillating inflation, we can see
a smaller Γ corresponds to a larger No for a certain ξ.
However, No will tend to a fixed value as Γ decreases. This
property can be understood as follows. We can prove that
the potential has a quasilinear form when Φ → 0

VjΦ→0 ≃
ffiffiffi
ξ

p
3α

jΦj; ð54Þ

which implies thatUjΦ→0 → 0 according to its definition as
the intercept of the tangent to the potential. Hence hwi will

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

10-2 100 102 104
0

0.5

1

1.5

FIG. 4. Oscillating inflation in the center-evolving pattern of
Weyl R2 þ R3 model. The upper part is a diagram for visualizing
the condition of oscillating inflation, where the effective equation
of state hwi < − 1

3
is equated with that the intercept U of the

tangent to a certain point on the potential corresponding to the
average amplitude is positive. The lower part shows the increased
e-folding number during the oscillating inflation for various ξ and
reheating efficiency Γ.
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quickly converge to − 1
3
as the oscillation proceeds, and No

will soon grow to a nearly constant maximum if Γ is too
small to make the universe promptly produce enough
radiation to stop the oscillating inflation. This is the reason
why No has an extreme for each ξ.
Now we consider the reheating is inefficient, that is to

adopt No with Γ → 0, to derive the slow-roll e-folding
number N corresponding to Ñ ∼ ð50; 60Þ, and then to
calculate ns and r for various parameters ζ and γ. The
viable parameter space is depicted in Fig. 5, where the
meaning of markers is the same as that in Fig. 3, except for
the scale of color bar. It is evident that the observation
constraint on ns limits the parameters to ζ > 103 and
γ < 5 × 10−4. r has an upper limit ∼0.006, but no lower
limit in this case.

V. CONCLUSIONS

Cosmological observations have suggested that our
universe has a nearly scaling invariant power spectrum
of the primordial density perturbation, which motivates the
scaling symmetry as the possible feature of the underlying
fundamental theories that lead to inflation. We present the
theoretical formalism of the Weyl scaling invariant gravity,
R̂2 þ R̂3. We show this model in Eq. (1) can be rewritten
equivalently to the Einstein gravity coupled with a massive
gauge boson, and a scalar field as the inflaton. We further
discuss the viable ranges of the scalar potential according to
the requirement for reality and demonstrate how the R3

term would affect the shape of potentials. Compared with
the Weyl R2 inflationary potential [42,46] with two side
minima, the R3 extension brings an additional minimum at
center. Hence, there are two viable scenarios for the
inflation in this model. The first is to roll toward the side
minima, while the other is a new situation of rolling toward
the center minimum. Both scenarios allows viable param-
eter spaces that be probed by future experiments on cosmic
microwave background and primordial gravitational wave.
For the first scenario, we calculate the spectral index ns

and tensor-to-scalar ratio r of primordial perturbations both
analytically and numerically, and contrast the parameter
spaces with the latest observational constraints. The results
manifest that the level of cubic curvature is limited to
jγj < 6 × 10−3, and the prediction of r in this pattern has a
wide range from Oð10−4Þ to the upper limit of the
observations, Oð10−2Þ. These results are significantly dif-
ferent from the R3-extended Starobinsky model.
For the second scenario, a special process called oscillat-

ing inflation emerges after the familiar slow-roll inflation
because the potential near the center minimum is a non-
convex function that can lead to a sufficiently negative
value of average equation of state. We calculate the correc-
tion of e-folding number in the oscillating inflation stage,
and then derive the viable parameter spaces. The results
indicate that the parameters are limited to γ < 5 × 10−4 and
ζ > 103. Moreover, r has an upper limit ∼0.006, but no
lower limit.
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APPENDIX A: EFFECT OF AN EXTRA
R̂4=φ4 TERM

As we mentioned in the introduction, any high-order
curvature terms may exist and have an effect on the
inflationary potential from the viewpoint of effective field
theory. Therefore it is instructive to inspect how an extra
tiny R̂4 term affects our model. We expand Eq. (5) to the
following form

FðR̂;φÞ ¼ φ2R̂þ αR̂2 þ β

φ2
R̂3 þ δ

φ4
R̂4: ðA1Þ
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FIG. 5. Possible parameter space for Weyl R2 þ R3 model
when Φ evolves to the center vacuum. Here the total e-folding
number Ñ ≡ N þ No is considered with Γ → 0. The meaning of
markers is the same as that in Fig. 3, except for the color
correspondence of r.
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Then the frame fixing equation is rewritten as

φ2 þ 2αχ2 þ 3βχ4=φ2 þ 4δχ6=φ4 ¼ 1: ðA2Þ

It is a cubic equation for χ2, which has three roots as the
following form corresponding to n ¼ 1; 2; 3 respectively,

χ2 ¼ −
βφ2

4δ
þ ωn½Λþ

ffiffiffiffi
Δ

p
�1=3 þ ω2n½Λ −

ffiffiffiffi
Δ

p
�1=3;

n ¼ 1; 2; 3; ðA3Þ

where the phase factor ω ¼ −1þ ffiffi
3

p
i

2
, and

Λ ¼ ð4αβδ − β3 − 8δ2Þφ6 þ 8δ2φ4

64δ3
; ðA4Þ

Δ ¼ φ12

6912δ4

�
32α3δ − 9α2β2 − ð108αβδ − 27β3Þφ

2 − 1

φ2

þ 108δ2
ðφ2 − 1Þ2

φ4

�
: ðA5Þ

Only one of the three roots can return to Eq. (10) under
δ → 0 limit, which corresponds to a correct physical
situation. We call it a proper root. Which root is the proper
root depends on the sign of β and δ. When β > 0 and δ > 0,
the proper root is Eq. (A3) with n ¼ 3. When β < 0 and
δ > 0, it is n ¼ 1. And when δ < 0, it is n ¼ 2.

Furthermore, note that Eq. (A5) is the discriminant of
the cubic equation. Only when Δ ≤ 0, the proper root is a
real root that is physically allowed. This actually constrains
the upper limit of the parameter δ in some cases.
Using the same method as Sec. II. A., we can derive the

scalar potential as

VðφÞ ¼ α

2
χ4 þ β

φ2
χ6 þ 3δ

2φ4
χ8: ðA6Þ

We find that when δ is extremely small, the R̂4 term
basically does not affect the shape of the potential. Its
impact only concentrates around φ2 ¼ 0 (or Φ ¼ 0).
Figure 6 shows the potential and its derivative near the
central minimum with β > 0 and δ > 0, here we have
introduced Eq. (11). We are surprised to find that the R̂4

term eliminates the nonanalytic point of the Weyl R2 þ R3

model, which may have caused problems. The scale of the
rounded bottom is proportional to the parameter δ. Thus
when δ is small, the physical quantities of slow-roll
inflation (e.g., ns and r) will not be affected.

APPENDIX B: ANALYTICAL TREATMENT
OF STAROBINSKY INFLATION

We give an analytical calculation of the tensor-to-scalar
ratio r and spectral index ns in the Starobinsky inflationary
model, namely, the Einstein gravity modified by a R2 term.
The effective scalar potential can be written as

VðϕÞ ¼ 1

8α
ð1 − e−

ffiffiffiffiffiffi
2=3

p
ϕÞ2; ðB1Þ

where α is the coefficient of R2. The relevant two slow-roll
parameters are computed as

ϵ ¼ 4

3

1

ðe
ffiffiffiffiffiffi
2=3

p
ϕ − 1Þ2

; η ¼ −
4

3

e
ffiffiffiffiffiffi
2=3

p
ϕ − 2

ðe
ffiffiffiffiffiffi
2=3

p
ϕ − 1Þ2

: ðB2Þ

Since inflation ends when ϵ ∼ 1 is reached first
ðη ≃ −0.15Þ, we have

ϕe ¼
ffiffiffi
3

2

r
ln

�
1þ 2ffiffiffi

3
p

�
≃ 0.94MP: ðB3Þ

Then according to Eq. (23), the e-folding number is

N ¼
�
3

4

�
e

ffiffiffiffiffiffi
2=3

p
ϕ −

ffiffiffi
2

3

r
ϕ

��ϕe

ϕi

¼ 3

4

�
e

ffiffiffiffiffiffi
2=3

p
ϕi − e

ffiffiffiffiffiffi
2=3

p
ϕe −

ffiffiffi
2

3

r
ðϕi − ϕeÞ

�
: ðB4Þ

For N ∼ ð50; 60Þ, we find that approximately
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FIG. 6. Effective scalar potentials and derivatives of Weyl R2 þ
R3 model (red) and Weyl R2 þ R3 þ R4 model (blue) near the
center minimum with α ¼ 109, β ¼ 10−4α2, and δ ¼ 10−10α3.
The R̂4 term brings a rounded bottom to the potential when δ > 0.
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ϕi ≃
ffiffiffi
3

2

r
ln

�
4

3
ðN þ 4.3Þ

�
: ðB5Þ

Substituting it into Eq. (B2), we finally derive

r ¼ 16ϵ ¼ 12

ðN þ 3.55Þ2 ; ðB6Þ

ns ¼ 1 − 6ϵþ 2η ¼ 1 −
2

N þ 3.55
−

3

ðN þ 3.55Þ2 : ðB7Þ

These results are shown as the red line in Fig. 2.
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