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We present first-order post-Newtonian (1PN) approximations of a general imperfect fluid and of an
axion as a coherently oscillating massive scalar field, both in the cosmological context. For the axion, using
the Klein transformation and Madelung transformation we derive the Schrodinger and Madelung
hydrodynamic formulations, respectively, in an exact covariant way and to 1PN order. Complete sets
of equations for the 1PN formulations are derived without fixing the temporal gauge condition. We study
the linear instability in cosmology and a static limit for both fluid and axion; these are presented
independently of the gauge condition to 1PN order, thus are naturally gauge invariant.
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I. INTRODUCTION

Post-Newtonian (PN) hydrodynamics is a consistent
approximation of Einstein’s gravity with Newtonian
hydrodynamics appearing as the zeroth-order PN (OPN)
in the ¢ — oo limit in some dimensionless combinations
of the metric and energy-momentum variables [1,2].
Cosmological extension is possible with different temporal
gauge conditions readily available [3]. The background
Friedmann equations are subtracted in cosmology, and the
remaining deviations from the background can be consis-
tently expanded to the PN orders.

The scalar field with various forms of potential is
popularly used in physical cosmology as tools for variety
of essential cosmological roles. For example, the inflation,
dark matter, and dark energy are often modeled by using
the scalar field. However, with general forms of potential
the scalar field does not allow the PN approximation. This
is understandable as the general scalar field does not
necessarily have the Newtonian (OPN) limit. The situation
changes as we consider an axion.

As an axion, we consider a coherently oscillating
stage of a massive scalar field; we may include a self-
interaction term assuming that due to small coupling it
does not interfere with the coherent oscillation of the field.
The cosmological axion is known to behave as a zero-
pressure fluid, thus nonrelativistic in both background and
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perturbations [4-7], in fact, even to fully nonlinear and
exact perturbations [8]. The axion, being an oscillating
scalar field, actually has a characteristic stress (both
isotropic and anisotropic) reflecting the wave nature and
uncertainty principle [9,10]. For an extremely small axion
mass with macroscopic Compton wavelength its effect
becomes cosmologically important [11,12].

Here we study the first-order PN (1PN) approximation of
the cosmological axion. The PN expansion differs from the
relativistic perturbation theory. In the latter, all deviations
from the Friedmann background in the metric and energy-
momentum tensor are regarded as perturbation, and a
consistent expansion is made for the perturbations order
by order assuming that the perturbations are small. In the
former, the remaining deviations after subtracting the
Friedmann background are expanded in PN expansion
by identifying dimensionless PN variables with ¢!
involved. The lowest expansion gives the Newtonian limit,
and the next order involving c¢~2, like GM/Rc?, ®/c?,
v?/c?, p/oc?, etc., gives the 1PN expansion; M, R, ®, v, p,
and ¢ are characteristic mass, length, gravitational poten-
tial, velocity, pressure, and density, respectively. The
perturbation theory is fully relativistic but applicable for
small deviations (i.e., weakly nonlinear) from the back-
ground, whereas, the PN expansion is weakly relativistic
but fully nonlinear. Thus, the two approximations (if
available) are complementary to each other.

The weak gravity limit is yet another complementary
approximation where the gravity is assumed to be weak
(near OPN) while considering fully relativistic and non-
linear energy-momentum (thus, coPN) [13]. This appro-
ximation is relevant in many astrophysical situations
including cosmology; in the observable Universe, except
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for nearby compact objects like neutron stars and black
holes, the gravity represented by a dimensionless metric
parameter ®/c? is extremely small with a typical value
less than 107 [14]. The weak gravity limit of a general
scalar field (including an axion) in cosmology is pre-
sented in [15] in the context of electrodynamics and
magnetohydrodynamics.

The PN approximation is available for an axion only
after a transformation which was introduced by Klein in
his way to derive the Schrodinger equation as the non-
relativistic limit of the Klein-Gordon equation [16—18].
By further applying a transformation by Madelung the
Schrodinger equation leads to Madelung’s hydrodynamic
formulation of the system [9]. Although the Klein trans-
formation is suitable to derive the nonrelativistic limit
and the Madelung transformation originally applied to
the Schrodinger equation, here we apply these to the
relativistic Klein-Gordon equation in our way to derive
the PN corrections.

As our 1PN fluid formulation is valid for a general
imperfect fluid, we can also derive the axion hydrodynamic
equations from the fluid equations using the PN order fluid
quantities for the axion. In this work, the 1PN fluid and
axion formulations are applied to the gravitational insta-
bility and to a static limit. Both are available without
imposing the temporal gauge condition. Thus, we derive
the Jeans scale and the equilibrium scale for an axion fluid
in a naturally gauge-invariant manner.

In Sec. I we summarize the complete set of 1PN
equations for the three (hydrodynamic, Schrédinger, and
Madelung) formulations without imposing temporal gauge
condition, thus in gauge-ready forms. The equations are
derived in the appendixes. In Secs. IIl and IV we apply the
formulations to the gravitational instability and the static
limit. Section V is a discussion. Appendix A presents
covariant forms of fluid quantities under the Klein and
Madelung transformations. The complete PN corrections
for these three (fluid, Schrodinger, and Madelung) for-
mulations are derived in Appendix B.

II. COSMOLOGICAL 1PN EQUATIONS

Here we summarize the 1PN equations of the three
formulations. Derivations are presented in the appendixes.
|

The 1PN metric convention is [1,3]

1 1
dﬁ:—l—?2U+?QUL4Tﬂ¥m2

1 . 1 o
——32aPicdtdx’ +a2<1 +—22V>5ijdx’dxf, (1)
C C

where a(t) is the cosmic scalar factor, the index of P; is
raised and lowered using 6;; and its inverse, and to 1PN
order we have V = U. The energy-momentum (thus fluid
quantities) convention can be found in Egs. (B7)-(B11).
In the above metric convention we ignored the transverse-
trace-free tensor-type metric, and imposed the spatial gauge
conditions (without losing any generality and convenience)
to make the spatial part of the metric simple, but we have
not imposed the temporal gauge condition yet [3]. Together
with the temporal gauge condition to be introduced below,
all remaining 1PN variables are spatially and temporally
gauge invariant [3].

The 1PN order equations will be presented without
imposing the temporal gauge condition. The general
temporal gauge condition can be written as [3]

VY
SP L+l +meU =0, 2)
a a

with arbitrary real numbers n and m. As the gauge condi-
tion we can choose any number for n and m; n =3
(Chandrasekhar, standard PN gauge, or maximal slicing),
n =3 = m (uniform-expansion gauge), n =4 (harmonic
gauge), n = 0 = m (transverse-shear gauge), etc. As these
gauge conditions, together with the spatial gauge conditions
we already have imposed in the metric, completely remove
the gauge degrees of freedom, all remaining 1PN variables
after imposing the gauge condition can be equivalently
regarded as gauge invariant, see [3]. Later in Secs. III and
IV, we will show that for the gravitational instability and in
the static equilibrium limit, analyses are possible without
imposing the gauge condition. This implies that these two
analyses are naturally gauge invariant.

A. 1PN hydrodynamic equations

The hydrodynamic conservation equations and Einstein
equation to 1PN order give

. 1 . 1
0+ 3Hp —l—a(gv’),i +? {(QH + ov?) + 3H (oIl + p)

1 . . . ) o .2 .
—I——|:QU’(H—|—U2—3U)+QPI+pUI+Ql+H;1)J:| —|—Q<3U—|——UA,~1)Z+4H1)2>} =0, (3)
a i a
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1 1 . i ; 1 1 (1 )
g(a“gvi)' + (ev/v; + p&] +1I}) ; — Uit {g {a*[ovi(TT+ v* + U) + pv; + Q; + 0]}

1 ) . . . ) .
+ —[ov/v;(TT + v — 2U) + oP'v; + pv/v; + Qv + Q07 — ZUH{] j
p )

. 2 . 2 1 .
+2Uov; +EU,/'(QUJUI' +117) _EQTJ —ZUJ[Q(H +20%) + p] + QU’Pj,i} =0, (4)
A 1 A .. . a 2
1 i\ 1 , 3
+?(CZP .i) + 872G E(QH—Qbe) +ov —|—§(p —pb) =0, (5)
. 1
(U+ HU) ; +— (P*; — AP;) = 4nGoav;, (6)

4a
where H = a/a. To the background order, we have Egs. (B16) and (B25).

B. 1PN Schrodinger equations

The Klein transformation is [16]

h . .
(l//e_lw”t 4 l//*elwct), (7)

V2m

where ¢ is a real scalar field and y is a complex wave function; w, = mc?/# is the Compton frequency. The Schrodinger-
Einstein equations to 1PN order give

¢

- 87t || Ly 2y +2m2U L T Y g
=8ty Jy +—= (¥ +5Hy | + =5 Uy +— | =i = 3Hys il

2im 2m?

- m (1
+ = <2Uli/ +—le.i> +% (—P{,- 14U + 6HU>1//+ T+ Uz)l,,] —0, (8)
a a

A 1 A .. . 7 2 1 .
U+ 4nGm(|y|* = |y, |*) +—5925T+3|U+3HU + 2%y —— UAU +— (aP';)
a ¢ a a a a '
h2 1 * * 4 4
+8zG— —W(WAW +y Ay) +6xl(ly|* = |wpl*)| ¢ =0, 9)
. 1
(U +HU);+ - (P ui = APy) = 22Gih(yw' —w'y ;). (10)
To the background order, we have Eq. (B16) with

618
m

Ant i

m?c?

op = mly, |, opll, =3p, =

. o La
|, wbwb+wbwb+3alwblz<1— |Wb|2>:0. (11)

C. 1PN Madelung equations

— gimu/h 12
W_\/;e . (12)

The Madelung-FEinstein equations to 1PN order give

The Madelung transformation is [9]
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1 1 1 . 1
Q+3HQ+EV-(QU)+? |:—(Ql/'t)' —3HQI;t—4UEV~(QU) +4QU+EV'(QP):| =0, (13)
1 21 1A '
u+Hu+ u- Vu——VU—h——V<—2—\/§—8ﬂ—f“g>
2m?a a” /o

11 1
+—==-V|-zi? =27+ U? -
cca 2

)
20w’ +P- u+—

(§+3H§+4Ui¥— S’Z )}:0, (14)

A 1 A .. . i 2 1
a C a a a a

N h2 1
+8zGou” + 872G — |——

m a
V(U + HU)
where we defined u

12
u—U—|—2u _W

(1 AJo 8t
a /o “m

1

1 n
+—2{—§u2—2T+U2 20u* +P- u+—<
C

L)} -o (15)

+$(VV~P—AP) = 4rGoan, (16)

= 1Vu. The original equation of Eq. (14) is

! A\/_ 8¢

Ve 40
IR AU G .

Ve Ve

Sgﬂ =0. (17)

The relation between u and fluid velocity v;, introduced in the four-vector in Eq. (B7), is given in Eq. (B43). To the

background order, we have Eq. (B16) with

678 . h>
opll, =3p, = T;le”

D. OPN equations

To OPN order, we take the ¢ — oo limit. For a hydro-
dynamic fluid, the mass and momentum conservation
equations and Poisson’s equation are

1
@+3HQ+ZV~(QV):O, (19)

1 1 . ) . 1
— (a*ov) +— (Qv’vf + pé] + Hi) -—oVU =0, (20)
a a j a

A

?U = —4zG(0 — 0p)- (21)

For the axion, the Schrodinger-Poisson’s equations are

3 nr /A
i\ y+>Hy | = ———(——8xt|y|* |y —mUy,
2 2m \a

(22)

) a 4rt h?
Qb+3;Qb(I_WQb> =0. (18)
|
A
U = —4aGm(lwl* = lw|*). (23)

For the axion, the Madelung conservation equations with
Poisson’s equation are

1
@+3HQ+EV'(QU) =0, (24)

. 1 1
u+Hu+—-u-Vu--VU
a a

h2 1v 1 Ao 8t
a? N m

g) =0, (25)

U= —4rnG(e0 - ¢p)- (26)

These equations are valid to fully nonlinear order.
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III. GRAVITATIONAL INSTABILITY
We consider linear perturbations in the cosmological
context. We set
0—0+d60=0(1+59), IT — II + 611,

p—p+op, W =y + oy. (27)

The other variables are already perturbed order; we ignore
the self-interaction term. Here we keep only to linear order
in perturbation variables, and in case clarification is needed
we indicate the background order variables with a subindex
b, like ¢, etc.

A. Hydrodynamics
To the linear order perturbation, Eqgs. (3)—(5) give

11\ |- 7 I1
o(1+5)] +22le(1+5) + &
C a C C
1 I1 1 3 .
+—V-{[Q<1+—2> +£2:|V+—ZQP} +—2QU
a C C C C

=0, (28)
I nm\ p 1 1
— 1+ ) +5|v+— ~V
o {le(e) 1B aoff +ow
1 . 1 I1 p
=0, (29)

N T
+—2{3U+9EU+6EU+—2(¢1V-P)']:0. (30)
a a a

Subtracting the background equation, we can derive density
perturbation equation to 1PN order

, a. 4nGu c? y
O t2-8, ——5 06— Tﬂ(A5P+H’,ij>
1(3 s - ap.
+ 5 {3 en(2-25)| 5225
c“ |a o 0 ae
— 42Go (3— 3)
Q
122Goa? [é ;
s (-5
a
[
——(a'V-Q) s =0, (31)
a’Q

= Su/u =6+ I/ c?
which follows from = ¢(c? 4+ 11); in this way, IT, and
oIl are absorbed to ¢ and §,,. In deriving this equation, as P;
cancels we do not need to impose the gauge condition and
Eq. (6) is not used. Thus, Eq. (31) is naturally gauge
invariant. This is a density perturbation equation valid to
IPN order; p, I1;;, and Q; are provided by specifying the
nature of the fluid; see below for the axion case.

The Jeans scale dividing the gravity and pressure domi-
nating scales can be derived by setting p = 6ll =11;; =
Q; = 0. In Fourier space with A = —k? and introducing the
sound velocity as 5p /o = v26, by setting the coefficients of §
terms equal to zero, assuming constant v, we can show

k; _ 4zGo (1 1 v%)

a Vs

where we used § =6¢/¢ and &

Qc? (32)
where Q = 87Go/(3H?). As we consider a general fluid, the
axion can be regarded as a fluid. In order to derive the axion-
Jeans scale to be derived later, we need to properly include
the nonvanishing 6I1 and v, see below Eq. (41).

For a zero-pressure ideal fluid (Q; = 0 = II;;), we have

47tG,u

84256, -1

C H

122Goa? [a - i

+ A { o+ <2a a2>5} =0. (33)
In the absence of internal energy we replace 6, — 6 and
i/ c* = o. This was derived in Eq. (25) of [19]; comparison
with relativistic linear perturbation was made in that paper.
Equation (33) coincides with the 1PN limit of relativistic
density perturbation equation in zero-shear gauge and
uniform-expansion gauge both of which show proper
Newtonian limit in the subhorizon limit for density and
velocity perturbations and gravitational potential [20]. The
PN correction terms become important near the horizon
scale while the PN expansion is reliable in the subhorizon
scale. In the comoving gauge and the synchronous gauge,
Eq. (33) without the PN correction is exactly valid in all
scales [21,22]. However, in these two gauge conditions we
cannot properly identify the gravitational potential.

B. Axion hydrodynamics
To the background order, Egs. (13) and (17) give

0+3He =0, (34)
2
i= (f 43 Y@ )
Ve Ve
3fl2 -3 3n?
= (A+IH) =5A
4m?c? ( - 2 > 8m? (35)

Thus, ¢ « a3
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To the linear order perturbation, Egs. (13)—(15) using
Eq. (17) give

-1 1. 1 A (.
5+-V-u+— 3U+V-P—22<5—2a5)] —0,
a c a dm=a a
(36)
1 fﬂ 11 n .
u+-u—-—VU- am V5+ 2 V(—ZT—{—Wé)
=0, (37)

—U+47zGQc3+ [2 T+3U+9 U+6 'y

1 2A
?(av P) —47rGQ h ] = 0. (38)

Equation (16) is not needed. Without imposing temporal
gauge condition we can derive

h2A2
5—1—2 5— 47[GQ(3+4 5 45
1 (12z2Goa? [a - a
44— |-0 2——— 16
b (-2
h2A a-. h*A?
-|-2 22(3 5+4 245)}—0. (39)

These equations can also be derived from Egs. (28)—(31) by
using the axion fluid quantities; to the linear order, ignoring
the self-interaction terms, Eq. (B44) gives

mo—o Pp__ 3"
b ’ o 4m?c?
op hZA nz . . .
o 4am’d’ amie (6-+ 3H5 + 3HS),
hZA

The background pressure p,, appearing with the ¢~ factor
does not have any role to the 1PN order. Compared with the
zero-pressure ideal fluid in Eq. (33), the axion equation in
Eq. (39) differs only in the quantum stress (with %) terms
appearing in both OPN and 1PN orders.

From the coefficients of 6 terms in Eq. (39), setting
A — —k%, we have the Jeans wave number

%:2 \/’?’”{1—@ m)‘/”fzh]. (41)

Thus, the 1PN correction is of /Go/w.~H/w,. =
hH /(mc?) order. To 1PN order this differs from the fluid
case in Eq. (32). As mentioned below Eq. (32), we can
derive this result directly from Eq. (31) using Eq. (40) and

n (kK> 122Go
FRUATIE ) W

4m? c

The evolution of axion density perturbation in the non-
relativistic limit was studied in [23].

C. Schrodinger formulation

From the Madelung transformation, we have

h
e=mlyl*,  u= 55w /v, (43)

to the background, and

Sy Sy 2i Sy Sy
A
vy h v

(44)

* 0

to perturbations. To the background order, Eq. (8) gives

3a n a
== — |y +3-y ) =0 45
W+2aw 2im02<W+ aw> (45)
Using
oy 1 im
— ==0+—du, 46
y 20t (46)

the imaginary and real parts of Eq. (8) give

1 A /.
6+ 5u+ {3U+ P’ <5 2— 5)] 0,
4ma

(47)
. A h2
Using u = éVu, we have Egs. (36) and (37), and Eq. (9)

gives Eq. (38).

IV. STATIC LIMIT

We consider the static limit with v=¢ =0, etc., in
Minkowski background, thus a =1, A = ¢, = 0, etc. We
ignore the self-interaction.

A. Hydrodynamics

For the fluid, without imposing the gauge condition,
Egs. (4) and (5) give

(L)
C

1

1
=— |V 1 2U |11 4
arezmeg| 7t (e @
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1 1
A(U+—22T) - —4ﬂG{Q<1 +—2H+—22U) +3£2].
C C Cc C

(50)
Combining the above equations, we have
Vp +(1-520)1L; 42G p+3
v (-~ 0220, =" ﬂ4 ﬂ+1 LY

which is consistent with the Oppenheimer-Volkoff equation
in the spherically symmetric case to the 1PN order [24]. As
P, disappears in the above equations, all variables are
naturally gauge invariant, and we do not need Eqs. (3) and
(6) which give (¢P"); = 0 and P*;; = AP; to 1PN order.

B. Axion hydrodynamics

For an axion, combining Egs. (14) and (15), we have

n’A 3n% A A 3n% A
2m 2m*c* \Jo ) /e m-c* \/e
(52)

This is valid independently of the gauge condition, and
also follows from Eq. (51) using the fluid quantities
in Eq. (B44).

By setting A,/o/+/@ — —k*/2 (1/2-factor to match with
the Jeans scale) we have the equilibrium wave number

/G 9/rnGoh
ke = 24/ VR (1 4 2V 20T (53
n 4 mc

This can be compared with Jeans wave number in Eq. (41).

C. Schrodinger formulation

For an axion, combining the real part of Eq. (8) and
Eq. (9), we have

h2A 3 Ay A 32 A
S5 ) 7))
m

2m*c? y ) w m2c? y
(54)
which is valid independently of the gauge condition. The
imaginary part gives (P'y?), =0. For u; =0, we have
Ay /y = A\/o/+/0, and Eq. (54) leads to Eq. (52).

V. DISCUSSION

The PN approximation, being weakly relativistic but
fully nonlinear, provides a complementary method to the
relativistic perturbation theory which is fully relativistic but
weakly nonlinear. Here we presented complete sets of 1PN
approximation equations for a general imperfect fluid and

an axion in the cosmological context. In the axion case we
present the Schrodinger and Madelung hydrodynamic
formulations where PN expansions are possible. All PN
formulations are derived without fixing the temporal gauge
condition.

The complete sets of equations for the three formulations
are summarized in Sec. II. Detailed derivations are pre-
sented in two appendixes; these include the covariant
formulations and the 1PN approximations for the axion.
As applications we studied the gravitational instability and
a static limit of the 1PN formulations. We analyzed these
two cases without imposing the gauge condition, thus
results are naturally gauge invariant, see Secs. III and IV.

In [8] we derived a relativistic axion density perturbation
equation valid to fully nonlinear order by using the fully
nonlinear and exact perturbation formulation made for a
fluid [25]. We took the axion-comoving gauge setting time
average of the longitudinal part of 79 equal to zero; we note
that although we have not imposed the temporal gauge
condition in our study of the PN order gravitational
instability in Sec. III, the PN approximation does not allow
the comoving gauge condition which implies vanishing
perturbed lapse function, a (the Newtonian gravitational
potential) in Eq. (B1), for a zero-pressure medium. In that
study, by assuming H/w,. < 1 we arrived at the same
equation known in a nonrelativistic limit except for
relativistic contributions from the metric. By strictly ignor-
ing the H/w, higher order term, which is #H/(mc?) thus
1PN order, [8] has derived the nonrelativistic limit of the
axion part.

In this work we presented a consistent 1PN extension for
both gravity and axion parts. The nonrelativistic (OPN) and
1PN approximations of hydrodynamics as limits of the
relativistic fully nonlinear perturbation formulation were
presented in [26]. Thus, we derived 1PN approximation as
the leading relativistic correction to the classical axion
field. A complementary approach using an effective field
theory for the nonrelativistic regime of scalar field models
was studied in [27].

Here we treated the axion as a classical scalar field.
Regarding the axion as a quantum scalar field, however,
in [6,28] it was suggested that the axion fluid thermalizes
by gravitational self-interactions and forms a Bose-Einstein
condensate with cosmologically long-range correlation and
galactic scale observational consequences. There are some
conflicting ideas in the literature concerning the issue [29].

The PN approximation can be applied to situations
where all relativistic effects are small but not negligible.
The 1PN equations are fully nonlinear, and the equations
are designed so that the relativistic effects appear as the PN
correction terms in the more familiar Newtonian hydro-
dynamic equations. Thus, the PN formulation is easier for
numerical simulations compared with the full-blown
numerical relativity. By setting a = 1, ignoring the back-
ground fluid quantities and A, the formulations are valid in
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the Minkowski background. The 1PN equations are gen-
erally valid and can be applied to any astrophysical system
where a single component fluid or axion is dominating.
Extension to multicomponent fluid in combination with
axion is trivial; see [30] for multicomponent fluids and
scalar fields.
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APPENDIX A: COVARIANT FORMULATION

We present covariant equations of the axion under the
Klein and Madelung transformations. Although both trans-
formations are applicable in the nonrelativistic limit, here
we apply these in the relativistic and covariant level. The
covariant (1 4 3) equations for a general fluid can be found
in [31]. In the case of an axion, what we need are fluid
quantities of the axion and the equation of motion replacing
(or complementing) the energy and momentum conserva-
tion equations. We will present these for the Schrodinger
and Madelung formulations of the axion.

1. Scalar field

The fluid quantities are introduced based on a timelike
four-vector u,, normalized with u“u, = —1, as [31]

Tab = pugup + p(gab + ”aub) + qaltp + Uy + Ty,
(A1)

where p, p, q,. and 7, are the energy density, pressure,
energy flux, and anisotropic stress, respectively, with
g u’ =0=r,u’, n, = mp,, and 7% = 0. Thus, we have

1
pP=3 Tabhaba

3 9da = _Tcduchgv

p=Tu'u’,

Tap = Tcdhzhg - phab’ (AZ)
where h,, = g, + u,u, is the spatial-projection tensor.
The fluid quantities have 13 independent components (u, p,
three u,,, three ¢, and five z,;,), whereas T',;, needs only 10
independent components. Thus, we can freely impose three
frame conditions without any physical constraint. Often
used ones are the normal-frame setting u; =0, thus
u, = n,, and the energy-frame setting ¢; = 0, thus ¢, = 0.
The energy and the momentum conservation equations
follow from u, 7", = 0 and hST ., = 0, respectively,

/1 + (/’4 + p)e + ﬂabaab + qa;a +4q“a, =0, (A3)

(4 + pag +ho(py+ 75 + @)

4
+ (wab + Oab + _ehab> qb = O? (A4)

3

where ;4 =y .u; the expansion scalar (@), the acceleration
vector (a,), the rotation tensor (@), and the shear tensor
(o,p) are introduced as

1
Oup = gab - gehabﬂ

hZhZuC;d = hfahi]uc;d + hfahz)uc;d = a)ab + Gab,

— — 7 = b
0= Ma;a, a, = U, = Ugpl™,

(AS)

with Ay =5 (Aap — Apa) and Ay =3 (Aa + Apy).

We consider a minimally coupled scalar field in
Einstein’s gravity. We choose our convention in the
Lagrangian density as

6‘4

1 ic
L=~y @(R—ZA)—EQ’ ¢o—V(p) + Ly |,

(A6)
where L, is the matter part Lagrangian and A is the

cosmological constant. For the scalar field, the equation of
motion and the energy-momentum tensor are

Up=V,. (A7)
1 5C
T, = ¢,a¢,b - §¢’ ¢,c +V ) Gap- (AS)
The fluid quantities in Eq. (A2) give
172 1
== V+ < heb ,
=5 VA,
1=2 L %
pP= 545 -V —gh baPw 4o = —Qhad s,
1
Tap = hfzﬁb.chifﬁ,d - ghathde,c(p.d' (A9)
The equation of motion in Eq. (A7) gives
G+0p+V = hi(hp,), —hip,a® =0.  (A10)

By taking the energy-frame condition, ¢, = 0, we have

hbg, =0, thus u, = —¢ ./ cj) and the fluid quantities and
the equation of motion are simplified as

1= 1=
p=s¢ +V.  p=3¢ V. my=0. (AlD)
$+0p+V,=0. (A12)
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Using the fluid quantities in Eq. (A11), we can show that Mn 1o Jon (20)! (B2 [P\ "

Eq. (A3) gives Eq. (A12) and Eq. (A4) is naturally valid. V= Z ¢ = n (n!)2 ( m ) ’ (A13)
The energy-frame condition h%¢, =0 imposed in =

the field, however, is not suitable for the axion in a

coherent oscillation stage. In the axion case, as we take

time-average, h?¢, = 0 is not necessarily the same as

where in the second step we used the Klein transformation
and ignored (by time-averaging) oscillating terms. In the

- ) ) following we consider up to n = 2, thus
¢hf?¢7b = 0; for example, 7, # 0 in the axion case [8]. The

difference did not appear in the linear order perturbation

iad i 1 m?c?
studied in [7,32]. In general, we can use Eqs. (A7) and V= P+ ¢4 mc2|z//|2 . (Al4)
(A9), instead. 2 n fl4
2. Relativistic Schrodinger formulation where we set 1, = hz Ay = 4;124 g, and g = 0" n
The Klein transformation is in Eq. (7). We consider a The Klein-Gordon equation and the energy- momentum
scalar field potential [33] tensor become [34]

h . 2imc imc m2c? 2m
0=0¢p-V,= Norn {e‘”’”z”” [Dw = Vet Ty =5 (6 Dy = ?gh//lzw] + C-C-}, (A15)
hZ

Tap = me?|w[20a8) + ich(y @Oy = Wi Spw) +—w @¥)
1 00 2 2 ; :0,, % *;0 hz 1Cy, ¥ 4
=5 9ab (1 + g")me*w|* + ich(yy* —y*™w) R +glyl*], (Al6)

where we ignored oscillating terms in 7,;, and used

oy oy
V= ﬂv +6¢

These can be derived in action formulation. The field part of Lagrangian is

v, (A17)

I . 1 n?
£ = Va0 V)| = == PP ekl =y ) V)| (a1
Variations with respect to ¢, w, y*, and g, with 6£ = 1,/=gT**5g,,, lead to Egs. (A7), (A8), (A15), and (A16).
Thus, the equation of motion becomes

abl—*O tm

o “lm
—l//.c+c.g ab )

i
Oy — g™ — Py =g+ 1) - l// 8t y|*w = 0. (A19)
This is a Schrédinger equation in the relativistic form. More properly, it is the Klein-Gordon equation written in terms of v,
and in the absence of the self-interaction term, it leads to the Schrodinger equation in the nonrelativistic limit with ¢ — oo,
see below.

Using Eqs. (A2) and (A16), the fluid quantities become

1 , 1 R = 1
= e 0 4 36+ 1) e (3 ) = v+ (P w4 2a ).
2

1 1 1 1 .. 1n PR
p =gl 0 =30+ 3] + (w0 o i+ 5 (P = S - ont ol ),

1 |
qu = —mlp*u’(ulu, + ct ) — ihc {5 o™ =y’ + (w y™ —yhy)u (u"ua + 5%)}

2

n Lo
- |l//,cuL| U, + =
m

3 (waw' + l//f;l//,c)u“] ,
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1
= Pt 1,000+ 1) = (00 + )6+ 140)
+ ih |:C<u0u(a + et (@)W —wiyw) + c(@ug + ct @ )up) (W y* —wlow)ut

1
=3 (9as + utty) (g% + uul) (y y* —wiw)

n? 1 .
2 ot v ) W ) = (s + ) W+ )| (A20)

The energy-frame condition, g, = 0, gives

mly|*u® (ulu, + ct,,) = —ihc [5 (o™ = wiap)u’ + (w oy —ylw)u <u°ua + 5%)]

2

1 ,
{Il//,cuclzua + (W + l//f‘al//,c)u‘] : (A21)

m 2

Contracting with ¢ = g*®ct;, = g™, we have

1
PO + ) = =ihe 3 (P00 + ) + i =)

h2

1
- {Iw.cuclzu0 + Egﬂc(w,cwf‘d + l//,*cv/,d)ud] : (A22)

We have ct, = 89, thus u®u, + ct, = h% and u’u® + ¢* = h% are components of the spatial projection tensor. The
Schrodinger equation (A19) gives

2

. » * * h * *
mly 2 (g% + 1) = —incg®™ (y " —wiow) + 5 Oy + (O )y — 16x¢ |y ). (A23)

Using these the fluid quantities become

: lc > c * *
= mlyPe +ihs—5 (g’ = u) v oy —yew)

(. u? 1
e W= i) = (O ] + 1202w
21 C 00 00 .
p=iheeg(gu’ = gu ) w —yiy)
hZ 3Cy % Oc * * ud 3 * * 4
e VWt 9wy twewa) o+ 5 [(Owly” + (Dt )y] = 1228yl . (A24)
As we have
¢ u® — ¢®u¢ = (" + uPu)u® — (g" + uu®)uc, etc., (A25)

using Equations (A21) and (A22), we finally have
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2

h
_ 2.2
U m|1//|c+4m

d

1k c u * *
{owew =20+ v 5= (v + © il + 202, ol

u
h2 1 u€ 2
B O N e 00 oyt -
+4m|y/|2{(wv/ wEy) (et —wiaw) — ¢ { Wy W,Lw)uo]}
I/t
I/l

U

in® 1 N . u .
I P {—(w‘w — Y)W ) —5 + 9w ) 0 (woy* —ywhw) F] ,
h2

—— Y+ (v Yy )5 ud
6m ,C ¥ d cr,

p:

I\JIUJ

[(Oy)y* + (Oy*)y] - 12ﬂfs|wl4}

n? o o 00 ucl?

ﬁw{(w v =yt (w ot —wly) — g {(w,cu/ —yy) W] }

'h3 1 d d e
L =) (v v l//d) o LW W) s (W — )
12m20|l[/|2 ct d c < d e, MO e e MO ’

h? 1 ,
Tap = Z |:<l//.(a =+ l//,cucu(a)@/fb) =+ l//.*cucub)) - g (gab =+ uaub)(l//’cl//?(c + |W,cuc|2):|

fzz 1
iyl 4 (v/aw —waw)(ypy wbl//)+ W @™ =W W)y (W oy —wlep)u
Ly 50 5050 « N 2
_5 u u(a b)+§ a%p (W,CW _W,CW)F
1

Y (gab + uaub)

1 1Cy % *.C * * * * u 2
3 {(w"v/ —ySy) (w ey —wiy) — g% {(v/,cv/ —yly) uo] ]}

4
ifl3 1 2 * * c
+— g { (W0 + 8, uplw P + 5 (u U(a + 80, )W pWie + W u
__(gab+u ub)|:

1
9wy + i g )ud + |y ou CIQMO]}(w,ew*—w?‘ew)ue

+ w3 2Oy P { [|W,cuc|2”a + 7 (W' + l//,alll.c)ucj| |:|l//.cuc|2ub + 3 (w v’ + W.bll/.c)uc]

1 M k k) e
3 1 (W oy’ + vy g u (' + ™y u ] } (A26)

1
Y (gab + uaub) |:|W,eue|4 +

For 2 i 0, we have
H= m‘l//|202’ P = 0= Tab» (A27)

thus the axion behaves as a zero-pressure fluid. Only for L)) mly|*> can be properly identified as the fluid
m=c
density o(=u/c?).

3. Relativistic Madelung formulation
The Madelung transformation is in Eq. (12). Applying the Madelung transformation to Eq. (A19), we have

Ove 8ty  m?
N R

The imaginary and real parts, respectively, give

im 1
(wu, +c* + g% =2cg’u,) + %5 [(u).c = cg™ 0.+ cgToue] = 0. (A28)

(ou).. = c@® — cg™TY 0. (A29)
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n? /d 8t

Using the Madelung transformation in Eq. (12) on Eq. (A20), we have

e =+ 1 LR+ (VR + g VaDE - .

p= el —wap -+ I [ L e e+ (Ve - vaDve- .

2
o = olcu® — ) {w ~ ), (e >] (o) + (v gy,

m

Tap = g{ {(u — ), = (cud - u,CMC)ua] [(u — ), — (cul - u,cu”)ub}

1 .
- § (gab + uaub) |:u’cu,c - 2cgocu,c + 02900 + ( u —u.u )2:| }

2

Ve + Vaarmive, + (et | -3 g + v Ve + (Ve | s

where we used Eq. (A30).
The energy-frame condition, g, = 0, gives

P e

o=yt (cu’ —u uu, +— :
m Q( O_M.cuc)

VLt (V)| (a%)
Using this, Eq. (A30) becomes

2 O 7t 4 Cucz
e - (DS, ) (e

cu’ —u . u 0

o [Vau+ Vet [ Ve, + (Ve

m* ¢*(cu® — u .u
(A33)

Thus, Eq. (A31) gives

pm e L+ (Ve - aE+ )

m* o(cu

p= g |5 VE VL (Va3 VEOVE+

nt (Ve u)? ,)29‘”’ [\/E,a + (\/Z).dud)ua] [\/5_,, - (\/é_dud)ub],

Rd (0 _ S c)\2
3m* o(cu’ — u .uf

2 [veor e [ Ve, + aatn] -+ uan [ varve. + (v

nt (Veu) 2{{\/5,a+(\/§,d“d)“a] [\/E,bJr(\/é_?,d“d)”b}

m* Q(Cuo - u.cuc)

— —(Gap + uqup) g {f + (Vo u )uc] [\/5.d+ (\/a,euE)ud] } (A34)

Tap =

+

b-)»—
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For o plad 0, we have
p=o0c*  p=0=n1,, (A35)
thus the axion behaves as a zero-pressure fluid; only for % — 0, ¢ can be properly identified as the fluid density.

APPENDIX B: COSMOLOGICAL 1PN APPROXIMATION

1. Curvature and fluid quantities

Our metric convention is

goo = —(1 + 2a), Joi = —Xis gij = a*(1+29)5;;, (B1)

with

a

o
"o

%l
u‘ “U

@ Xi=a (B2)
We consider the flat cosmological background, and index O = ct. The spatial indices of y; and P; are raised and lowered
using 6;; and its 1nverse In order to properly include the 1PN expansion, we have to consider ¢~* order in g, see Eq. (B19);

thus, @ 1ncludes ¢~? order, and we expand the inverse metric g°° to ®* order. Here are the metric tensor, connection, and
curvatures to the 1PN order in PN expansion

(0] P; ¥
900:_<1+2cz>, 901‘:—61?3[, gij:a2<1_202)5ijv

(o} ®? . 1P | v
0 _(1-22442), o= gi=— (14256, B3
g < c2Jr c4) g ac g a2< + c2> (B3)
o 1 . D, 1
0 i 0 _ ~.t
oo = a(zq’q’*a”q’i)’ Lo =5 = 2 (200, +alP),
. 1 [ 1 R IS R I D
Fij:—a H(Sl]——3(1 lP"’ZH((I)—'—lP) 5l]—|——3aP(,]>, FOOZ_Z_ZCD +—4—2 pALON —(dP) s
C C cTa c a
. 1 ¥ 11 . 1 . . ,
Doy = HE, = 56,4+ 55 (P = P'j). Ty= = (48, + ¥ 6, = ¥'5). (B4)

The Riemann curvature is
0 [ 1 j 0 ) -6
Root':—; aPi_E(D,iij , R%;j = L70(c™°),

1 1 . : .
+ 0,0, + 200, - ¥,0; - ¥ @, + VD5 + (aP(; ;) }
1 .

Roijk — __3 [2a2(‘{' + HOD) [jék], + aP[J k],] ,

i 1 (a i i 1 i : I i
Ry =5, 0= 2® ) + 3y~ |¥ +H(®+2¥)]| 5

1 o ) . ) 1 ) N

T (2YPLPID; — WD — 07+ D) + 55 {a(Pl‘j - Pj,l)] }

a
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. 1 1
Rigy = — C_{ (¥ + HO) 65}, + P, ]]

. 1 . . . . 1 . .
R'jor = P [(‘P +H®)'5; — (¥ + H®) ;5 +Z(Pl,j - Pj’l).k]v
. 2 . . .
R jke = ? (aszé[kéf]j + b g [kéf]j - le[kébﬂ]> . (BS)

The Ricci and the scalar curvature are

l\)

1 i A 1 .. . . a 1 1 ;
R8:—<32——2®>—F{S[‘I’—FH((I)—%Z\P)%—ZZGD} — |2(® - ‘P)A¢>+(<I>+‘P)’d>}—;(aP’J-)'},

a a
1 1 X 1 a oA ] .
0 _ k i 2 i i i
1 (i A
R=—[6(2+H) +250¥-)|. (B6)
C a a

Using Chandrasekhar’s 1PN notation in Eq. (B19) we recover Egs. (1)-(8) in [3].
The normalized fluid four-vector is introduced as

v; 2\ v, 1 /1 1 1 ;
Mian?_a<1+_2C2>?’ Mo——l—?<§v +©> —4|: 'l) + = (D‘i‘lP)U —E(I)2+P l:|a
; 1 v? ¥y Pi 1 /1 1 3 1 3
u :E[<1+F+2c_2)” +;], u0:1+;<§v —d>>+—4K§v —§<I>+‘P)v +2c1>2} (B7)

where v = v'v;.

We introduce
a
H= Q(cz + H)’ qi = ; Qi’ = aznzjv (BS)

where ¢ and oIl are mass density and internal energy density, respectively. The indices of Q; and I1;; are raised and lowered
using §;; and its inverse; we have

a 1 . . | B 1 )
q;=—-0; g0 = ——5 Q" q'=—0", qoziinl,
c c ac c
a . 1 i
T =a Hu’ 7[0,»:—;1_[,-/-1)/, JTO():?HUU v,
. ¥y . . 1 a : 1 o
77.';-: (1+2?>H3, ﬂé):—anlv] ﬂ?zznljl}], ﬂgz—?nljl)llﬂ, (Bg)

thus, 7& = 0 implies

—HijUi’Uj. (BIO)

The energy-momentum tensor gives
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T) = —oc® — (Il + v?) — é [o(TT+ v? + 2¥)v? + oP'v; + pv? +2Q,v" + IT;;v'07],
1V = qeav; + = [ovi(I1+ 17 = @) + pv; + Q; + ;v
i = ou'v; + p + T} + C_12 lov'v;(IT+ v +2%) + eP'v; + pv'v; + Q'v; + Qv + 2¥IT}), (B11)
thus T = —oc? — oIl + 3p.
2. 1PN hydrodynamic formulation

We consider Finstein’s equation in a form

872G 1
Ré = % <Tg - 2T5;;) + A (B12)

The R, R}, and R’ components, respectively, give

1 /A i 1 . . . i 1 i
= <—ZCD—47ZGQ—3§+ACZ> +—4{3[‘1’+H(<1>+2‘P) +2gq>] — = 2(® - W)AD + (D + ¥)iD ]
¢ \a c a
1, 1\ 3
——(aP' ;) —=8aG |o( ;11 +v" | +5p| r =0, (B13)
a 2 2
1 -
— —-(Y+HD); + 1a (P i — AP;) — 4nGoav;| =0, (B14)
c a
1 a A ] . 872G . | . .
= [(E+2H2>5}+?\P5} +?(‘P—q>){i] - [Qvlvj+n}+§(gcz+gn—p)5}] +A8,  (BIS)

where the left-hand sides are derived up to 1PN order; we kept ¢ order in Eq. (B15) only to have a proper cosmological
background equation. In the cosmological background, to the background order, from Eqs. (B13) and (B15), we have

a 47zG I, ol AC? a’>  8zG 11, Ac?
I _rF 142 382 L = 1+— —_. B16
P 3 |:Qb< + CZ> + CZ:| + 3’ (12 3 Qp + CQ + 3 ( )

Subtracting the background equation, Eq. (B15) becomes

A1 .
WO+ 5 (¥ - ®); = 4xGée. (B17)
Thus, trace and trace-free parts, respectively, give
A
¥ =4nGoe. ¥ =0 (B18)

As mentioned, @ still includes 1PN order contribution besides the OPN (Newtonian) one. Compared with Chandrasekhar’s
notation

1 _ 1 _
CDI—U—?(2T—U2), ‘P:—V, Ui:Ui—?[((D+2lP)Ui+Pi], (Blg)
where
1 . dx o a
= =—, i = — i B20
ac’ —dd Wl “i=rY (B20)
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Using U and V, we have V = U to OPN order; o; is used in [1,3]. Subtracting the background equation, Eqgs. (B13) and
(B14) give

A 1 A . ) i 2
SU+4nG(o—0p) + 5425 T +3( U+ 3HU + 22U ) - S UAU
a C a a a
1 . 1 , 3
+?(‘1P',i) +8zG E(QH—Qbe) +ov +§(P—Pb) =0, (B21)
. 1
(U+ HU) ; +—(P*;; — AP;) = 4nGoav;. (B22)

4a

The energy and momentum conservation equations are

1 . 1 . 1
-1y = & 3te+ L (er') + p { ol )] 4 3H(eI + p)

1, . , S . :
+—[gvl(H+vz+®+2‘P)+gP’+pv’+Q’+H}zﬂ].+g{—3\1'+—(d>—3‘11)iv'+4Hv2”, (B23)
a N a B

1 . ; ; 1 1 (1 .
(a*ov;) + ;(QU’UI‘ +po +1L) ; + EQ‘D,I‘ T2 {a4 {a*lov;(T1+ v* = @) + pv; + Q; + v/ ]}

1 . . . . , .
+- [ov/v;(TT + v* + 2¥) + oP/v; + pv/v; + Q/v; + Qv 4 2¥IT]] ;

: . 1 , 1 1 4
+ (® - 3%¥)ov; + " (® - 3¥) ;(ov/v; +10]) + ;Q,{Q(H +v?) + p —20] + E‘I{,.gvz + ngP,’,}. (B24)

To the background order, from Eq. (B23), we have

{gb<1+%>]+3f1{gb(1+%> +%} —0. (B25)

Subtracting the background equation, and using U and T we have

1 1
(e—0p) +3H(0—0p) + ; (ov'); + pl {(@H — 0p1, + 0v?) + 3H (Il — @1, + p — pp)

1. . o o2
+—[ov' (Il + v* = 3U) + oP' + pv' + Q' + ITiw/]  + Q<3U +=U v + 4Hv2> } =0, (B26)
a o a ’

1 1 . ; j 1 1 (1 4
— (a*ov;) + = (ev/v; + p6} + 1)) ; = —oU ; + — {4{614[0%'(“ + 02+ U) + pvi + Qi + 0 ]}
a a a ¢ |a

I , , . . ,
+- v/ v, (TT + v* = 2U) + oP/v; + pv/v; + Qlv; + Q07 — 2UH{}
5J

. 2 . 2 1 .
+2UQ’U,+—U,](QUJ1J,+H{)——QT,Z——UI[Q(H+21)2) +p] +Q’U]PJZ} =0. (B27)
a a a

For a general fluid to 1PN order, the energy and momentum conservation equations are in Egs. (B26) and (B27), and
Einstein’s equation provides Eqgs. (B21) and (B22). These provide a complete set of equations valid to 1PN order without
imposing the temporal gauge condition; see below Eq. (2) for gauge conditions. The background evolution is described by
Egs. (B16) and (B25).
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3. 1PN Schrodinger formulation
To 1PN order, Eq. (A19) gives

A 2i .3 2 1 .. . A 1 A
(az - Sﬂfs|l//|2)1//+;:n <l,t/ —|—2H1//> ;Z Dy + — {—y/— 3Hy + 2‘1’?1// +?(<I> - ¥)ly

2i 1 . ) 1 . . . 4m?

+ 20 (o = Piy )+ (S P — = 3% — 6HD |y + o @2y | = 0. (B28)
h a ’ h\a - n

Using the PN notation in Eq. (B19), we have

A 2im (3, 2w 1 . A
S =8, Jw+ ot (S Hy | + - Uy +— | =i = 3Hjr 20 =y
a nh 2 h
2im A im (1 2m 5
+ S8 (20 4+ Py ) + 58 (=P 44U+ 6HU |y + “ T+ )] o, (B29)
a

Using the four-vector in Eq. (B7), Eq. (A26) gives the energy-frame condition, ¢g; = 0,

L1 1
mly|av; = —ihs (y ' —yhw) +— {mlwl (v* + ®@)av; — ih(jry* —yry)av

2
o 1 .
~ 3 |:W,i1//* Hy vy + l//,*il//,j)vjj| } (B30)
and the fluid quantities
n”iilr . 1 1
=P L S e ) G —wi) i (S ]+ et
n? I 1 L 1 A
p=%{—ﬁww, 6y Pa ——s (Wt =yt ) (w ) — 22 By + (By™ )] + 4ntly| }
- : {61/'/|2—il//'iw*-‘l‘+z(l/'/w*-+l/'/*w-)vi
12mc? a? ! a ! !
N . A 1 ; N . A 1 ;
+3|:l//+3HW—2‘P?W—?(®—T)”WJ:|W*+3|:l//*+3Hl//*—2lP?l//*—?((D—T)‘IW?;}W}
? 1 s s ek * * i 1 X X i2 i 0 X *
W?{“(W =) (= wiw) v+ S [y —wiw) o'+ Rt =yt ) (v —w.iw)}
ih3 1 1 *,1 .k * 0 ! * * i —
EEp TR 'y —y™ly) [(W,i‘/f + i) + p (v’ + W,il//,j)vj] . 0,=0,
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1 2 1
—Taz(w”‘w*—w*”‘w)(w,kw*—w,*kw)vivj—ﬁéij{ W™ =y ) (y ™ — i) ok ts 5 (o™ —yiw)v ]]}

(B31)
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Using the axion fluid quantities, Einstein’s equation in (B21) and (B22) give

A 1 A .. . (i 2 1 .
S U+ 4nGm(y? = o) + 5425 +3( U+ 3HU + 22U ) = S UAU + 5 (aP',)
a c a a a a ’
hz 1 * * 4 4
+81G— _2_a2(l”m’/ +y*Ay) + 628 (lwl* =y |*) | ¢ =0, (B32)
. 1
(U+HU), +4_(Pk ki — AP;) = 22Gih(yy; —w'y ;). (B33)
it U . :

Equations (B29), (B32), and (B33) provide a complete set of axion fluid to 1PN order without imposing the temporal gauge
condition; see below Eq. (2) for gauge conditions. The background evolution is described by Egs. (B16) and (B25), with

6nt h?

2, oIl =3p, = |Wb|4- (B34)

0 = m|l//b

4. 1PN Madelung formulation

Under the Madelung transformation the imaginary and real parts of Eq. (B28), or directly from Egs. (A29) and (A30),
give

1 1 _ _ S . . .
0+ 3Ho o 5 (ou'); + 2 {—(Qu)' —3Hoi +2(® + ¥) 2 (ou'); + . (eP'); — o(® +3¥) + —o(® - ‘I’)”u.,} =0,

a

(B35)
1 h2 1 \/_ 877 L 1. Lo
1A 1677, 1 VO
+—2 f+3Hf 2(® +‘P)—2—‘/_ LQ——2(¢>—‘P)"L =0. (B36)
2m= /e Ve Ve m a Ve
By identifying u = 1Vu, we have
. 1 1 N . . .
¢+ 3Ho —I—EV- (ou) +3 [—(Qu) —3Hoi — o(® + 3¥)
1 1 1
+2(¢+‘P)EV'(Qu)—i—ggu‘V((I)—‘P)%—ZV-(QP) =0, (B37)
1 1 1 8 11 1
u+Hu+ u-Vu+-— V<I>——2—V<—i z Q)+—2—V{——i¢2+(d>+‘P)u2+u-P
2m*-a Ve cta 2
1 16x7, 11
\/_+3H\/_ (q>+\p)—2—f Do - = — (V@) - V(®—W)| ¢ =0, (B38)
2w e e Ve @ /e
and, for remaining i, we can use
1 /1A 4
l;t:—q)——llz—F—z —2—\/5_—8” SQ . (B39)
2 2m* \a”~ /0 m
Using Chandrasekhar’s 1PN notation in Eq. (B19) we have
. 1 1 . . 1 -1
Q+3HQ+ZV-(QU)+? —(ott) —3HQM—4U;V-(QU)+4QU+;V-(QP) =0, (B40)
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2 A
u+Hu+1u Vu——VU h 1V<i—\/§—%g>

2m2a \a? NG, m
2 1 167
cAlgl ki oy s 2 cover 4 wt o Ve sy, U—2—\/_ U—"s0)| =0,  (B41)
cta 2 N \/_ N m
1 h (1 Ao 8xt,
= U -t (5 . B42
! 2" T <a2 Jo o m Q) (B42)

To 1PN order, using the four-vector in Eq. (B7), Eq. (A34) gives the fluid quantities. The energy-frame condition, g, = 0,
in Eq. (A32) gives

u; = av, [1 - % (it + q>)] " <§ 41 */ﬁk k) \g (B43)

Thus, to OPN order u ; = av;. Using the notation in Eq. (B8), the fluid quantities follow from Eq. (A34). We can identify ¢
as the mass density, and have

h2 1 127t
o= (ve'va - ﬂww—&),

:%{—;ﬁ% Sveave+

» 1271'T2

5 [3VAWa+ 3HV) + 37
- 4\/'51\/5,ivi + 32 (Vev')? - —2l11(\/5’f\/5,,. +3v0AVe) ~ % (® - ‘P)*"\/E\/E.,] } Q: =0.
5= o | Ve~ 3Vt vay - fa( Ve Lyt ) (Ve + v n- o)
+ §5ij(\/§,kvk)2 - gﬁ’k\/@,kvi%} } (B44)

This also follows from Eq. (B31). Notice that p and I1;; are derived up to 2PN order as we need that order to derive the axion

conservation equations in (B40) and (B41) from the fluid conservation equations in (B26) and (B27); we also need to use
Egs. (B42) and (B43).
Using the axion fluid quantities, Einstein’s equations in (B21) and (B22) give

A N . L a 2 -

SU+4nG(o—0p) + 5425 +3( U+ 3HU + 22U ) =5 UAU + = (aP' )

a C a a a a :
2

h 1 6nt
+ 82Gou? + SITGW [— — VOAo + - (0* - e%)] } =0, (B45)

. 1
(U"’HU)I +E(Pkkl_APl> :471:Ggau, (B46)

These also follow from Eqs. (B32) and (B33) using the Madelung transformation.
Equations (B40), (B41), (B45), and (B46) provide a complete set of axions in Schrodinger formulation to 1PN order

without fixing the temporal gauge condition; see below Eq. (2) for gauge conditions. The background evolution is described
by Egs. (B16) and (B25), with

61t
0 (B47)

opll, =3p, =
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