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We analyze the consequences of different evolutions of the Hubble parameter on the spectrum of
scalar inflationary perturbations. The analysis is restricted to inflationary phases described by a transient
evolution, when uncommon features arise in the inflationary spectra that may lead to an amplitude
enhancement. We then discuss how the spectrum is, respectively, amplified or blue-tilted in the presence or
absence of a growing solution of the Mukhanov-Sasaki equation. The cases of general relativity with a
minimally coupled inflaton and that of induced gravity are considered explicitly. Finally, some remarks on
constant roll inflation are discussed.
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I. INTRODUCTION

The possibility that a large amount of the dark matter
(DM) content in our Universe is made of (primordial) black
holes (PBHs) has been seriously considered in the past few
years [1]. This idea seems compelling because it could
improve our understanding of cosmological evolution and,
in particular, of inflation [2]. Moreover, the PBH hypoth-
esis is also intriguing due to the increasing amount of direct
and indirect observations of black holes (BHs) out of the
astrophysical range, as well as the current lack of evidence
for particle models of DM that go beyond the Standard
Model of particle physics.
According to the present observational bounds [3], it is

possible that even the whole DM content of the Universe
today is composed of PBHs originated from the collapse
of matter overdensities in a certain wavelength interval of
inflationary perturbations. In this scenario, the abundance
of PBHs is related to the amplitude of the inflaton
fluctuations, the enhancement of which must be by several
orders of magnitude with respect to the amplitude probed
by cosmic microwave background (CMB) radiation.
Nonetheless, the microscopic physics that originate such
a mechanism of amplification is still debated. For example,
the amplification needed can be generated by a phase of
ultraslow roll (USR) inflation in the presence of an
inflection point of the inflaton potential [4]. This USR
phase is the consequence of a transient period of inflatonary
evolution, when slow-roll conditions are violated, and the
inflaton then relaxes toward a de Sitter attractor. In contrast

to the case of the fluctuations imprinted in the CMB, the
perturbations [5] do not freeze at horizon exit in this case,
as a growing solution of the Mukhanov-Sasaki (MS)
equation is present, and it is responsible for the amplifi-
cation of the modes. Other possibilities have been consid-
ered in the literature, such as an inflationary model able to
generate a blue-tilted spectrum without the presence of the
growing solution [6,7].
In this article, these two mechanisms of amplification are

considered. Instead of analyzing the possible consequences
of different inflationary models obtained by varying the
form of the inflaton-gravity action, we shall here consider
different evolutions of the Hubble parameter and corre-
spondingly obtain the inflaton action. Within this approach,
even if the inflaton potential cannot be exactly recon-
structed, the features of the resulting spectra can still be
calculated, and one may verify whether their amplitude is
amplified. For simplicity, our starting point is the case of a
minimally coupled inflaton, then some nonminimally
coupled models are also investigated. Moreover, different
techniques for the reconstruction are adopted.
The article is organized as follows. In Sec. II, we review

the general formalism of the dynamics of the inflationary
perturbations adopting a slightly unconventional formal-
ism, and we derive the conditions for the existence of a
growing solution in the MS equation or simply a blue-tilted
spectrum in the absence of this solution. Furthermore, a
useful relation between the odd and even slow-roll (SR)
parameters in a certain hierarchy is obtained. This relation
is valid for transient periods described by a certain time
evolution, and it will be employed across the entire article.
In Sec. III, different models are analyzed, and the procedure
for reconstruction is illustrated. In Sec. IV, the application
of the formalism to constant roll inflation is studied.
Finally, the conclusions are drawn in Sec. V.
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II. INFLATIONARY PERTURBATIONS

Let us first review the formalism of the inflationary
perturbations. On adopting a slightly unconventional
approach, we find the conditions that must hold in order
to have an amplification of the inflationary spectrum either
as the wave number k grows or as time evolves. In a
realistic inflationary scenario, wherein amplification starts
at some given time, both mechanisms essentially lead to an
enhancement of the shortest wavelength part of the spec-
trum (k > kCMB). The conditions are then expressed in a
model-independent form, which is valid provided the SR
parameters are “constant,” and we use it in what follows to
discuss different scenarios.
In general, after some manipulations, the MS equation

takes the following form:

v00k þ
�
k2 −

z00

z

�
vk ¼ 0; ð1Þ

where the prime denotes the derivative with respect to
conformal time η and z is a time-dependent function
that depends on the specific model of inflation. For
example, in the case of general relativity (GR) with a
minimally coupled inflaton, one has z ¼ a

ffiffiffiffiffi
ϵ1

p
, which leads

to (see, e.g., [8])

z00

z
¼ a2H2

�
2 − ϵ1 þ ϵ2

�
3

2
þ ϵ2

4
−
ϵ1
2
þ ϵ3

2

��
≡ a2H2fMSðϵiÞ; ð2Þ

with ϵ1¼− _H=H2, ϵiþ1¼ ϵ−1i dϵi=dN for i>0, andN¼ lna.
The infinite set of ϵi ’s form the so-called hierarchy of
“Hubble flow functions” of SR parameters. It is important
to note that, depending on the model of inflation, other
hierarchies are commonly used, and they are associated
with the evolution of different (homogeneous) degrees of
freedom.
In general, one has

z00

z
≡ a2H2fMS; ð3Þ

where fMS is a dimensionless quantity that takes a different
form depending on the inflationary model. It can then be
expressed as a function of the SR parameters ϵi’s.
It is now convenient to define the new independent

variable ξ ¼ k=ðaHÞ, where dξ=dη ¼ −aHð1 − ϵ1Þξ < 0
during inflation. Because of

d
dη

¼ −aHð1 − ϵ1Þξ
d
dξ

ð4Þ

and

d2

dη2
¼ a2H2ð1 − ϵ1Þ2

�
ξ2

d2

dξ2
þ ϵ1ϵ2
ð1 − ϵ1Þ2

ξ
d
dξ

�
; ð5Þ

we are led to

�
ξ2

d2vk
dξ2

þ ϵ1ϵ2
ð1 − ϵ1Þ2

ξ
dvk
dξ

�
þ ξ2 − fMSðϵiÞ

ð1 − ϵ1Þ2
vk ¼ 0: ð6Þ

On rewriting the MS equation in terms of ξ one eliminates
its explicit dependence on aH.
In the regime where the SR parameters are constant

and in the long wavelength limit (ξ → 0), Eq. (6) can be
algebraically solved and the features of the primordial
spectra can be derived in a straightforward manner.
Indeed, in this limit, the two independent solutions of
Eq. (6) have the form vk ¼ ξα, where α satisfies the
algebraic equation

α2 þ
�

ϵ1ϵ2
ð1 − ϵ1Þ2

− 1

�
α −

fMSðϵiÞ
ð1 − ϵ1Þ2

¼ 0; ð7Þ

with

α1;2 ¼
−
h

ϵ1ϵ2
ð1−ϵ1Þ2 − 1

i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
ϵ1ϵ2

ð1−ϵ1Þ2 − 1
i
2 þ 4

fMSðϵiÞ
ð1−ϵ1Þ2

r
2

: ð8Þ

For instance, when fMS is defined by Eq. (2), and in the
pure de Sitter case (ϵi ¼ 0), we obtain

α1;2 ¼
1� 3

2
: ð9Þ

For this case, the positive solution, α1 ¼ 2, decreases in
time, while the negative solution, α2 ¼ −1, increases, and it
remains nontrivial in the limit ξ → 0, which leads to

vk;dS∼k−1=2
�

k
aH

�
−1
; Rk;dS∼k−3=2

aH
z

¼k−3=2H; ð10Þ

where Rk ≡ vk=z is the curvature perturbation (z ¼ a in
the de Sitter case), and the prefactor k−1=2 is essentially
fixed by the initial (Bunch-Davies) conditions. The quan-
tityRk is independent of time, and the spectral index can be
straightforwardly computed to be

ns − 1 ¼ d lnΔ2
s

d ln k
; ð11Þ

with Δ2
s ≡ jRk;dSj2k3=ð2π2Þ, which leads to the well-

known de Sitter result ðns − 1ÞdS ¼ 0.
In the SR case (jϵij ≪ 1), the SR parameters can be

approximated by constants and the expressions (8) are still
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valid but must be expanded to first order for consistency.
One then obtains

α1;2 ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12ϵ1 þ 6ϵ2
p

2
≃
1� ð3þ 2ϵ1 þ ϵ2Þ

2
; ð12Þ

which implies ðns − 1ÞSR ¼ −2ϵ1 − ϵ2.
We note that there is a caveat one must take into account

for USR. In this case, one finds the same solutions for the
α’s as the de Sitter case, but the definition of the curvature
perturbations is different, since zUSR ∝ a

ffiffiffiffiffi
ϵ1

p
→ 0.

Then, the amplitude of primordial curvature perturbations
depends on time and is amplified. In the USR case, the
spectral index cannot be calculated analytically with the
same procedure as illustrated for de Sitter and SR.
One can better illustrate the differences among the three

cases just mentioned by solving the equation for Rk,

R00
k þ 2

z0

z
Rk þ k2Rk ¼ 0: ð13Þ

In terms of ξ, Eq. (13) can be conveniently rewritten as

ξ2
d2Rk

dξ2
þ
�
ϵ1ϵ2 − 2ð1− ϵ1Þ d ln z

dN

ð1− ϵ1Þ2
�
ξ
dRk

dξ
þ ξ2

ð1− ϵ1Þ2
Rk ¼ 0:

ð14Þ

In GR with a minimally coupled inflaton, we have
d ln z=dN ¼ 1þ ϵ2=2. Then, for constant SR parameters
and in the long wavelength limit, the last term is negligible,
and the equation admits a constant solution and a solution
proportional to ξβ, where

β ¼ 3 − 4ϵ1 þ ϵ2 þ ϵ1ðϵ1 − 2ϵ2Þ
ð1 − ϵ1Þ2

: ð15Þ

If ξβ decreases in time, the constant solution dominates in
the ξ → 0 limit. This is what happens for de Sitter and SR.
In contrast, if ξβ increases in time, it dominates in the ξ → 0
limit. This is what occurs for USR leading to results that are
very different from de Sitter and SR, namely, an amplitude
of the spectrum that increases in time. The nonconstant
solution is

Rk ∝
�

k
aH

�
β

∼ e−βð1−ϵ1ÞN; ð16Þ

and it increases or decreases depending on the sign of

Φ≡ βð1 − ϵ1Þ ¼
3 − 4ϵ1 þ ϵ2 þ ϵ1ðϵ1 − 2ϵ2Þ

ð1 − ϵ1Þ
; ð17Þ

increasing if Φ < 0 and decreasing if Φ > 0. Only in the
latter case can the spectral index of the primordial spectrum

be analytically calculated by using the definition (11). For a
general inflationary model, one finds

Δ2
s ∝ k2þ2α2 ¼ k

2−
h

ϵ1ϵ2
ð1−ϵ1Þ2

−1
i
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
ϵ1ϵ2

ð1−ϵ1Þ2
−1
i
2

þ4
fMSðϵiÞ
ð1−ϵ1Þ2

r
ð18Þ

and

ns − 1 ¼ 2 −
�

ϵ1ϵ2
ð1 − ϵ1Þ2

− 1

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵ1ϵ2

ð1 − ϵ1Þ2
− 1

�
2

þ 4
fMSðϵiÞ
ð1 − ϵ1Þ2

s
: ð19Þ

A. Evolutions with “constant” SR parameters

Let us now illustrate an important point. The results
obtained above are exact when the SR parameters are
constant. However, given the recursive definition of the SR
parameters (ϵiþ1 ¼ ϵ−1i dϵi=dN), a constant set of ϵi ’s
corresponds to either H ¼ const and ϵi ¼ 0 (de Sitter case)
or ϵ1 ¼ const and ϵi ¼ 0 for i > 1 (power law inflation). It
may thus seem redundant to present the general formalism
for such a restricted range of applications. Nevertheless,
we note that the above results can be applied to a wider set
of problems. First, as we already mentioned, the general
results for Φ and ns − 1 can be applied to the SR case, in
which the expressions must be expanded to the first order
for consistency, since the SR parameters are approximately
constant when they are small. Furthermore, the large a limit
of some transient phase (such as the USR phase) leads to
nontrivial sequences of “constant” SR parameters. In these
cases, one obtains a hierarchy of, for example, ϵi’s with
constant, nonzero SR parameters for either even or odd
values of i, while the remaining SR parameters are zero. For

instance, let ϵi ¼N→∞ li þ LiðNÞ with limN→∞ LiðNÞ ¼ 0.
Then, due to their recursive definition, one obtains

ϵiϵiþ1 ≡ dϵi
dN

¼a→∞ Li;NðNÞ; ð20Þ

which leads to limN→∞ ϵiþ1 ¼ 0, provided limN→∞ ×
Li;NðNÞ ¼ 0, and, in particular,

ϵiþ1 ¼N→∞ Li;NðNÞ
li þ LiðNÞ : ð21Þ

Moreover,

ϵiþ2 ≡ dϵiþ1=dN
ϵiþ1

¼N→∞ Li;NNðNÞ
Li;NðNÞ þ ϵiþ1: ð22Þ
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Let us now suppose LiðNÞ ∝ e−γN ∼ a−γ , with γ > 0.
In this case

ϵiþ2 ¼N→∞ − γ þ ϵiþ1; ð23Þ

and the subsequent terms of the hierarchy take values equal
to zero and −γ:

lim
N→∞

ϵi¼ li; lim
N→∞

ϵiþ1þ2n¼0; lim
N→∞

ϵiþ2n¼−γ: ð24Þ

Therefore, because of their definition, an infinite sequence
of SR parameters may take alternate “constant” values in
the large a limit. This property is crucial in the analysis that
follows, and it depends on the form of LiðNÞ. Indeed,
exponential forms lead to the result (24) but, in contrast, if
Li ∝ N−γ , then the sequence obtained is limN→∞ ϵj ¼ 0

for j > i.
It is also worthwhile to mention that similar results

can be generalized to other hierarchies of SR parameters
because they only depend on the recursive definition of the
SR parameters [analogously to Eq. (20)] and on the form
of Li. For example, the same results can be extended to the
hierarchy of “scalar field flow functions” that is defined by
δ0 ¼ ϕ=ϕ0 and δiδiþ1 ¼ dδi=dN. In general, the ϵi’s and
the δi’s are related through the homogeneous Friedmann
and Klein-Gordon equations, and, in some scenarios, it is
useful to use one or both hierarchies.

III. MODEL RECONSTRUCTION

We are interested in reconstructing scalar field poten-
tials that describe transient inflationary solutions,
which are associated with varying SR parameters with
a “constant” behavior in the future (and necessarily
ϵ1 < 1). Therefore, the results illustrated in the previous
section can be adopted to study such models and to verify
whether they can generate an amplification of the pri-
mordial spectrum. Finding the entire evolution of the
scalar field is not necessary for this purpose, and we
will only calculate the potential and the asymptotic
behavior of the homogeneous quantities in terms of the
corresponding SR parameters. The potentials that lead
to an amplification can then be used to build an infla-
tionary model that fits the CMB observations and which
produces a large amount of DM in the form of PBHs at
the end of inflation.

A. GR with a minimally coupled inflaton

To proceed with the reconstruction, let us first briefly
review the homogeneous Einstein equation,

H2 ¼ 1

3MP
2

�
1

2
_ϕ2 þ VðϕÞ

�
; ð25Þ

_H ¼ −
_ϕ2

2MP
2
; ð26Þ

which leads to

MP
2H2ð3 − ϵ1Þ ¼ V: ð27Þ

This last equation can be used to reconstruct the potential.
Equations (26) and (27) can be conveniently used for the
reconstructions starting from some ansatz for H ¼ HðaÞ.
In this case, Eq. (26) becomes

ϵ1 ¼
1

2MP
2

�
dϕ

d ln a

�
2

; ð28Þ

which can be integrated to obtain, when possible,
a ¼ aðϕÞ.
Let us first consider the following evolution of the

Hubble constant:

H ¼ H0

�
αþ A

an

�
m
; ð29Þ

where A, α, n > 0. Similar to USR, the evolution described
by Eq. (29) has a de Sitter attractor in the future, and,
indeed, HðaÞ is that of USR when n ¼ 6 and m ¼ 1=2.
(It is interesting to note that this evolution represents a
general solution in the model with a minimally coupled
scalar field and a constant potential, or, in other words, in a
universe driven by a mixture of two fluids: a cosmological
constant and stiff matter. It is curious that n ¼ 6 and
m ¼ 1=4 yield the general solution for the universe driven
by the Chaplygin gas [9].) We also note that the transient is
described by A=an ∼ e−nN and that a result similar to
Eq. (24) is then expected. This is easily verified if we
explicitly calculate the hierarchy of SR parameters:

ϵ1 ¼ m · n
A

αan þ A
¼ mϵ3 ¼ mϵ5 ¼ … ⟶

a→þ∞
0 ð30Þ

and

ϵ2 ¼ −n
αan

αan þ A
¼ ϵ4 ¼ ϵ6 ¼ … ⟶

a→þ∞
− n; ð31Þ

where a > ½ðm · n − 1ÞA=α�1=n is necessary for inflation to
occur. We can integrate and invert Eq. (28) to obtain

exp

�
ϕ − ϕ0

MP

ffiffiffiffiffiffiffi
n
2m

r �
¼ xþ 1

x − 1

x0 − 1

x0 þ 1
; ð32Þ

with x≡ A−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αan þ A

p
and x; x0 > 1. Notice that

ϕ ¼ ϕ0 when x ¼ x0. Conversely, ϕ ¼ ϕ∞, with

ϕ∞ ≡ ϕ0 þMP

ffiffiffiffiffiffiffi
2m
n

r
lnB0; ð33Þ
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for x → ∞. Equation (32) can be solved for x, which yields

x ¼ e
ϕ−ϕ0
MP

ffiffiffiffi
n
2m

p
þ B0

e
ϕ−ϕ0
MP

ffiffiffiffi
n
2m

p
− B0

; ð34Þ

where B0 ¼ ðx0 − 1Þ=ðx0 þ 1Þ, and the reconstructed
potential is finally

V ¼ H2
0

�
αx2

x2 − 1

�
2m
�
3 −

n ·m
x2

�
: ð35Þ

For n ¼ 6 and m ¼ 1=2, one recovers a constant potential
and the USR evolution, as expected. For other choices of
the parameters n and m, the expression for the potential in
terms of ϕ is a complicated function with exponentials
that need not be written here explicitly. However, this
cumbersome expression is exact. Since the asymptotic
behavior of the potential at ϕ ∼ ϕ∞ determines the limiting
values of the SR parameters, we simply give the form of V
around ϕ∞, which is

V ≃ 3H2
0α

2m

�
1þ n

4

�
1 −

n
2

��
ϕ − ϕ∞

MP

�
2
�
: ð36Þ

Finally, let us calculate the consequences of the background
evolution given by Eq. (29) on the inflationary spectrum.
The value of Φ is

Φ ¼ 3 − 4ϵ1 þ ϵ2 þ ϵ1ðϵ1 − 2ϵ2Þ
ð1 − ϵ1Þ

⟶
a→þ∞

3 − n; ð37Þ

and for n > 3 the curvature perturbationsRk are amplified,
after their horizon exit, as time passes. In contrast, if
0 < n < 3, from the constant solution for Rk, one finds

ns − 1 ¼ n > 0; ð38Þ

which implies the amplitude is that of a blue-tilted
spectrum, which grows as the wave number k increases.
We conclude that for GR with a minimally coupled
inflaton, the inflationary evolution described by Eq. (29),
with a transient phase and a de Sitter attractor in the future,
leads to an inflationary enhancement. The corresponding
inflaton dynamics is driven by the potential (35), and
similar behaviors can be obtained from potentials of the
form (36) with the field close to ϕ∞.

B. Power law solutions

In this section, we generalize the results obtained from
Eq. (29) and study the transient phase with a power law
inflation attractor. For this case, in contrast to de Sitter, it is
only possible to reconstruct the inflaton potential exactly
for particular choices of the parameters. Close to the
attractor, an approximate reconstruction can always be

obtained, and that is enough for the purposes of model
building. The amplification of the primordial spectrum
can still be studied in full generality, as it depends on the
asymptotic values of the SR parameters, which can be
calculated exactly. In this case, and in the large a limit,
one obtains

ϵ1 → constþ LðaÞ; ð39Þ

with LðaÞ → 0. In analogy to the previous case, we
consider

ϵ1 ¼
�
β þ B

an

�
m
→ βm; ð40Þ

with β, B, n > 0 and βm < 1 (so as to have acceleration
close to the attractor). Notice that, when β ¼ 0, one finds a
transient phase with a de Sitter attractor, but ϵ1 in Eq. (40) is
different from that in the set (30). This case is expected to
generate a hierarchy of the form (24) in the large a limit.
Indeed, the ansatz (40) leads to the following hierarchy of
SR parameters:

ϵ2 ¼ −mϵ4 ¼ −mϵ6 ¼ � � � ¼ −
nmB

Bþ βan
→ 0 ð41Þ

and

ϵ3 ¼ ϵ5 ¼ � � � ¼ −
nβan

Bþ βan
→ −n; ð42Þ

where, in contrast to the de Sitter case examined in the
previous section, now the even SR parameters tend to zero.
By proceeding with reconstruction and integrating

Eqs. (40) and (28), one finds, respectively,

H¼H0exp

�
−
ðβþ B

anÞ1þm

ð1þmÞnβ 2F1

�
1;1þm;2þm;1þ B

βan

��
ð43Þ

and

ϕ − ϕ0 ¼ fðaÞ − fða0Þ; ð44Þ

where

fðaÞ ¼
2

ffiffiffi
2

p
MPðβ þ B

anÞ
2þm
2
2F1ð1; 1þ m

2
; 2þ m

2
; 1þ B

βanÞ
ð2þmÞnβ :

ð45Þ

In this case, the exact reconstruction of the potential
is rather complicated unless one adopts simplifying
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assumptions. For example, let m ¼ −1 and 0 < β < 1.
Then,

H ¼ H0

½nðBþ βanÞ� 1nβ
ð46Þ

and

ϕ − ϕ0 ¼ MP

ln

0
B@1þ

ffiffiffiffiffiffi
ϵ1ðaÞ
β

q
1−

ffiffiffiffiffiffi
ϵ1ðaÞ
β

q 1−
ffiffiffiffiffiffiffiffi
ϵ1ða0Þ

β

q
1þ

ffiffiffiffiffiffiffiffi
ϵ1ða0Þ

β

q
1
CA

n
ffiffiffi
β

p : ð47Þ

In the a → ∞ limit, one obtains

ϕ∞ ¼ ϕ0 þMP

ln
�
βþ1
β−1 A0

�
n

ffiffiffi
β

p ; ð48Þ

with A0 ≡ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1ða0Þ=β

p Þ=ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1ða0Þ=β

p Þ. The rela-
tion (47) can be inverted to obtain an ¼ anðϕÞ:

an ¼ an0

h�
1 −

ffiffiffiffiffiffiffiffiffi
ϵ1ða0Þ

β

q �
þ
�
1þ

ffiffiffiffiffiffiffiffiffi
ϵ1ða0Þ

β

q �
en

ffiffi
β

p
ðϕ−ϕ0Þ=MP

i
2

4en
ffiffi
β

p
ðϕ−ϕ0Þ=MP

;

ð49Þ

and finally the potential can be reconstructed, provided we
substitute Eq. (49) into Eq. (27). In terms of an, it then takes
the following form:

V ¼ H2
0

½nðBþ βanÞ� 2nβ
�
3 −

�
β þ B

an

�
m
�
: ð50Þ

The expression in terms of ϕ is cumbersome, and it will not
be needed. It is also worthwhile to note that such a potential
depends on the homogeneous inflaton through the expo-
nential function expðn ffiffiffi

β
p

ϕ=MPÞ. This functional depend-
ence is expected as it is the generalization of the standard
power law inflation potential, which contains only one
exponential function of the inflaton. Moreover, various
approximate reconstruction methods can be used to obtain
the shape of the potential close to the attractor, but we omit
this discussion here. Whereas the exact reconstruction
can be obtained for certain values of the parameters, the
behavior of the resulting inflationary spectra can be
calculated exactly from Eqs. (41) and (42). For generic
values of m, one may compute

Φ ¼ β2m − 4βm þ 3

ð1 − βmÞ ¼ 3 − βm > 0: ð51Þ

This shows the absence of the growing solution for
Eq. (13). The spectral index is then simply given by

ns − 1 ¼ −
2βm

1 − βm
< 0: ð52Þ

This is the same result as the one obtained for the power
law attractor solution. In contrast to the de Sitter case, the
resulting primordial spectrum, if evaluated on the trajectory
that approaches the attractor (and close to it), coincides
with the spectrum calculated on the attractor itself, and no
amplification or peculiar features emerge. It is also note-
worthy that this result is not restricted to the evolution given
by Eq. (40), as it only depends on the limits (41) and (42),
which are not particular to Eq. (40). For instance, starting
from the ansatz

HðaÞ ¼ H0

�
a0
a

�
βm
�
1þ A0

an

�
m
; ð53Þ

where n; A0 > 0, the resulting spectra are the same.
The observed absence of amplification in the cases of

power law inflation considered here is relevant because
power law is the exactly solvable inflationary model that is
most akin to SR. One may then conjecture that similar
results (and, in particular, the lack of amplification) hold for
SR inflation when the inflaton approaches the attractor
solution, and the enhancement is a peculiarity of de Sitter.

C. Nonminimally coupled inflaton

Let us now consider the different scenario of a non-
minimally coupled inflaton. In order to perform the
reconstruction, we first review the basic homogeneous
equations for this model:

H2 ¼ 1

3FðϕÞ
�
_ϕ2

2
þ V − 3HF;ϕ

_ϕ

�
ð54Þ

and

_H ¼ −
1

2FðϕÞ ½ð1þ F;ϕϕÞ _ϕ2 þ F;ϕðϕ̈ −H _ϕÞ�; ð55Þ

where FðϕÞ represents a general nonminimal coupling and
F ¼ MP reproduces the minimally coupled case. In contrast
to the previous cases, the homogeneous equations and the
reconstruction procedure now become more involved.
Then, for simplicity, we shall henceforth limit our study
to the induced gravity (IG) case, where FðϕÞ¼ ξϕ2 [10,11].
This simplifying choice is also justified by the fact that both
Higgs inflation and Starobinsky inflation (in the Einstein
frame) occur in a regime that is very close to pure IG.
Reconstructing the inflaton potential for a given HðaÞ is

not as straightforward as for GR with a minimally coupled
inflaton, and we found exact potentials only for certain
values of the parameters and for the de Sitter attractor case
[cf. Eq. (29)]. Nevertheless, we can still predict the shape of
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the inflationary spectra or, at least, the possibility of an
amplification in the large a limit.

D. De Sitter limit

Let us consider HðaÞ given by Eq. (29). In IG, the
following exact relations hold between some SR parameters:

ϵ1 ¼
δ1

1þ δ1

�
δ1
2ξ

þ 2δ1 þ δ2 − 1

�
; ð56Þ

ϵ1 ¼
1

2ξð1þ 6ξÞ
�
ð1þ 2ξÞδ21 − 8ξδ1

− 6ξ2
�
1þ 2δ1 −

δ21
6ξ

��
d lnV
d lnϕ

− 4

��
: ð57Þ

Before discussing the reconstruction of the inflaton potential,
we must first calculate the asymptotic values of the SR
parameters, which are pivotal in the analysis of the ampli-
fication of the spectrum. From Eq. (54), the potential can
then be obtained as

V ¼ 3ξϕ2H2

�
1þ 2δ1 −

1

6ξ
δ21

�
; ð58Þ

provided H ¼ HðϕÞ and δ1 ¼ δ1ðϕÞ are known [indeed,
Eq. (58) is the IG counterpart of Eq. (27) in GR].
Let us first calculate the SR parameters in the large a

limit. Since lima→∞ ϵ1 ¼ 0, one has either lima→∞ δ1 ¼ 0
and lima→∞ δ2 ≠ 0, or lima→∞ δ2 ¼ 0 and lima→∞ δ1 ≠ 0
but satisfying the relation

δ1;∞ ¼ 2ξ

1þ 4ξ
: ð59Þ

These results follow from the functional dependence of
HðaÞ on a inherited by ϵ1 and δi’s and by the general
result given in Eq. (24), which is applied here to the SR
hierarchy δi. Notice that, in contrast to GR, two different
de Sitter trajectories are present in IG, and they are
associated with two different evolutions of the inflaton
field. Using Eq. (57) in the same limit for a, one obtains that
the potential, on the attractor, must satisfy

d lnV∞

d lnϕ
− 4 ¼ 0 ⇒ V∞ ∝ ϕ4 ð60Þ

in the former case and

d lnV∞

d lnϕ
− 4 ¼ 0 ⇒ V∞ ∝ ϕ2 ð61Þ

in the latter case.
We can now proceed to evaluate the full hierarchy of δi ’s.

Starting from Eq. (56) and differentiating, we find

ϵ2 ¼
δ2½ð1þ 4ξÞδ21þ 2ξðδ2þ δ3 − 1Þþ 2δ1ð1þ 4ξþ ξδ3Þ�

ð1þ δ1Þ½ð1þ 4ξÞδ1þ 2ξðδ2− 1Þ� ;

ð62Þ

and, by further differentiating, the ϵi’s with arbitrary large i
can be obtained. In the large-a limit, we have already
calculated ϵ2i ¼ −n and ϵ2iþ1 ¼ 0 [cf. Eqs. (30) and (31)],
and one then obtains two possible hierarchies for the δi’s:

δ2iþ1;∞ ¼ 0; δ2i;∞ ¼ ϵ2;∞ ¼ −n ð63Þ

and

δ1;∞ ¼ 2ξ

1þ 4ξ
; δ2iþ1;∞ ¼ −n; δ2i;∞ ¼ 0: ð64Þ

This latter statement cannot be simply verified by sub-
stitution because the limits involved do not commute.
For example, on substituting first δ2 ¼ 0 in Eq. (62),
one obtains ϵ2 ¼ 0, which is not correct. One must solve
(at least perturbatively in the large-a limit) Eq. (56) and
then evaluate the limits with the help of the solution found.
The above results are correctly reproduced only if we
proceed in this manner.
The exact reconstruction of the inflaton potential is not

possible in general. Nonetheless, in specific cases, the
potential may be derived exactly as follows. Consider the
following ansatz for δ1:

δ1 ¼
n0 þ n1a−n

d0 þ d1a−n
; ð65Þ

which is suggested by the expression for ϵ1 and Eq. (56). If
n0 ¼ 0 and n1 ≠ 0, then Eq. (65) can be integrated, and the
resulting ϕðaÞ is inverted as follows:

ϕðaÞ¼ϕ0ðd0þd1a−nÞ−
n1
nd1 ⇒a−n¼

ðϕðaÞϕ0
Þ−

nd1
n1 −d0

d1
: ð66Þ

The coefficients n1, d0, d1, and ξ can finally be fixed by the
requirement that Eq. (65) be a solution of Eq. (56). Two
nontrivial solutions can be found:

d0 ¼ −
ð1þ nÞn1α

Amn
; d1 ¼ −

ð1þ nÞn1
mn

;

ξ ¼ m
2ð1 − 3mþ nþmnÞ ; ð67Þ

or

d0 ¼ −
ð1þ nÞn1α

Amn
; d1 ¼ −

ð1þ nþmnÞn1
mn

;

ξ ¼ m
2ð1 − 2mþ nþmnÞ : ð68Þ
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Notice that more exact solutions for δ1 can be found if we
start from the ansatz (65) and n0 ≠ 0. However, by further
integrating these solutions to obtain ϕðaÞ, one is led to
noninvertible functions, and the reconstruction cannot be
completed. For both Eqs. (67) and (68) one has

δ1;∞ ¼ 0; ð69Þ

and one can explicitly verify that the hierarchies belong to
the set (63). Notice that n1 in Eqs. (67) and (68) can
be arbitrarily chosen, as should be due to the form of
the ansatz (65). Let us, for simplicity, complete the
reconstruction choosing n and m to reproduce USR in the
IG context (n ¼ 6,m ¼ 1=2). In this case, Eqs. (67) and (68)
take the following form:

n0 ¼ 0; d0 ¼ −
7α

3A
n1; d1 ¼ −

7

3
n1;

ξ ¼ 1=10 ⇒ δ1 ¼ −
3A

7ðAþ αa6Þ ; ð70Þ

n0 ¼ 0; d0 ¼ −
7α

3A
n1; d1 ¼ −

10

3
n1;

ξ ¼ 1=36 ⇒ δ1 ¼ −
3A

10Aþ 7αa6
: ð71Þ

From Eq. (29), aðϕÞ in (66), and Eq. (70), one finds

δ1 ¼
3

7

�
α

�
ϕ0

ϕ

�
14

− 1

�
and H2 ¼ H2

0

�
ϕ

ϕ0

�
14

; ð72Þ

with ϕ=ϕ0 ⟶
a→∞

α1=14 and ϕ > ϕ0, while for Eq. (71) one
finds

δ1 ¼
3

10

�
α

�
ϕ0

ϕ

�
20

− 1

�
and

H2 ¼ H2
0

��
7

10

ϕ

ϕ0

�
20

þ 3α

10

�
; ð73Þ

with ϕ=ϕ0 ⟶
a→∞

α1=20 and ϕ > ϕ0. Finally, by using Eq. (58),
one obtains

V ¼ −
3H2

0

490ϕ12ϕ14
0

ð8ϕ28 − 72αϕ14
0 ϕ14 þ 15α2ϕ28

0 Þ ð74Þ

for the first exact solution, and

V ¼ −
H2

0

6000ϕ38ϕ20
0

ð7ϕ20 þ 3αϕ20
0 Þ

× ð7ϕ40 − 84αϕ20
0 ϕ20 þ 27α2ϕ40

0 Þ ð75Þ

for the second. In the a → ∞ limit, the potentials (74)
and (75) satisfy the condition d lnV=d lnϕ ¼ 4. The

potential can have negative values but, in the vicinity of
ϕ ≃ ϕ∞, the potential is positive and V∞ > 0.
We discuss at last the behavior of the primordial scalar

curvature spectrum. The general formulas illustrated in
Sec. II can easily be generalized to the IG case wherein

zIG ¼ aϕδ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξ

1þ δ1

s
; ð76Þ

and Φ is given by

Φ ¼
�
1 − ϵ1 −

ϵ1ϵ2
ð1 − ϵ1Þ

þ
�
2þ 2δ1 þ 2δ2 −

δ1δ2
1þ δ1

��
:

ð77Þ
If we evaluate Φ with respect to the hierarchies (63)
and (64), one observes that only constants and terms linear
in the SR parameters remain. Moreover, ϵ1;∞ ¼ 0 and Φ
then simplifies to

Φ ¼ 3þ 2δ1 þ 2δ2; ð78Þ
which can be negative only for the hierarchy (63) but is
strictly positive for the hierarchy (64), provided we restrict
ourselves to positive values of the nonminimal coupling ξ.
In the former case, Φ ¼ 3 − 2n, which implies that the
growing solution exists for n > 3=2.
If no growing solution exists [as is the case for (64)

or (63) with n < 3=2], an amplification of the spectrum is
possible only if the spectrum is blue-tilted. Let us then
evaluate ns − 1. In the IG case, fMSðϵiÞ in the MS equation
is given by

fMS ¼ δ21 þ δ22 þ ð3 − ϵ1Þð1þ δ1 þ δ2Þ þ δ2δ3

þ
δ1δ2ðϵ1 þ δ1 − 3δ2 − δ3 þ 2δ1δ2

1þδ1
− 2Þ

1þ δ1
− 1; ð79Þ

and, as usual, it can be simplified to obtain the following
expression for the scalar spectral index:

ns − 1 ¼ 3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðδ21 þ δ22 þ 3ð1þ δ1 þ δ2Þ − 1Þ

q
:

ð80Þ

Then, for the hierarchy (63) and n < 3=2, we obtain

ns − 1 ¼ 3 − j3 − 2nj ¼ 2n; ð81Þ

which is indeed blue-tilted, while for the hierarchy (64),
we find

ns − 1 ¼ −
4ξ

1þ 4ξ
; ð82Þ

which is red-tilted.
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We therefore conclude that solutions having H of the
form given in Eq. (29), in the IG context, may lead
to a spectrum enhancement for evolutions asymptotically
described by the hierarchy (63) and either for n > 3=2 (due
to the presence of the growing solution) or 0<n<3=2
(in the absence of the growing solution but with the blue-
tilted spectrum).

IV. APPLICATIONS

We have so far studied the consequences of cosmological
evolutions with a transient phase, which is crucial to
potentially obtain the amplification required by the for-
mation of PBHs. Indeed, the presence of the transient
generates, in the large-a limit, a sequence of values for the
SR parameters that is otherwise not obtained. We then
reconstructed, when possible, the potentials that led to the
desired evolution. In this section, our approach will be
slightly different, as we shall study the presence of the
transient solutions in the particular dynamical regime of
constant roll (CR) inflation [12], which is the natural
generalization of USR.
CR solutions satisfy the equation

ϕ̈þ BH _ϕ ¼ 0; ð83Þ

where B > 0, and one recovers the USR solution for B ¼ 3,
while the case of jBj ≪ 1 reproduces standard SR. We
observe that the CR condition (83) can be rewritten, in
terms of the SR parameters, as

δ2 þ δ1 − ϵ1 þ B ¼ 0: ð84Þ

Equation (84) is model independent, since it only depends
on the definitions of ϵi ’s and δi’s, and can easily be
integrated to obtain

dϕ
d ln a

H

�
a
a0

�
B
¼ C3 ⇒ _ϕ ¼ C3

�
a0
a

�
B
; ð85Þ

where C3 is an integration constant.
In the minimally coupled case, CR can generate an

amplification of the primordial scalar spectrum. In what
follows, after a revision of this result (which was
analyzed in [8]) we shall consider CR in IG and study
its consequences.

A. Constant roll in GR with a minimally
coupled inflaton

In GR with a minimally coupled inflaton, on imposing
CR conditions and adopting the Hamilton-Jacobi (HJ)
formalism, it is possible to reconstruct the evolution of
the Hubble parameter and the corresponding potential [8].

In particular, one finds that HðϕÞ is the following super-
position of two exponential functions:

HðϕÞ ¼ C1 exp

� ffiffiffiffi
B
2

r
ϕ

MP

�
þ C2 exp

�
−

ffiffiffiffi
B
2

r
ϕ

MP

�
: ð86Þ

In [8], the solution (86) with one exponential (C1 ¼ 0 or
C2 ¼ 0), as well as the cosh and sinh cases, are analyzed
with the aim of finding the exact solutions compatible
with CMB observations [13] (and thus not amplified).
In particular, Ref. [7] focuses on the cosh case, which
corresponds to the C1 ¼ C2 ≠ 0 case, and implements it for
a potential that exhibits two stages of slow roll that are
separated by a constant roll phase, within a framework that
also fulfills the current power-spectra constraints.
Here, in a slightly different approach, we consider the

general case, and we study the power enhancement of
the spectrum. Equation (26) can be rewritten in terms of the
SR parameters

ϵ1 ¼
ϕ2

2MP
2
δ21; ð87Þ

from which, using the chain rule, we obtain

ϵ1 ¼ −δ1
d lnH
d lnϕ

: ð88Þ

Equation (87) then becomes

ϵ1 ¼
2MP

2

ϕ2

�
d lnH
d lnϕ

�
: ð89Þ

The potential can subsequently be reconstructed by sub-
stituting Eqs. (86) and (89) into Eq. (27):

VðϕÞ ¼ MP
2HðϕÞ2

�
3 −

2MP
2

ϕ2

�
d lnH
d lnϕ

�
2
�
: ð90Þ

To obtain the corresponding evolution, one must integrate
and invert the equation

δ1 ¼ −
2MP

2

ϕ2

d lnH
d lnϕ

; ð91Þ

which can easily be derived from Eq. (87) by using (88).
One finds

�
a
a0

�
B
¼ x

BðC2 − C1x2Þ
; ð92Þ
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where x ¼ expð
ffiffiffi
B
2

q
ϕ
MP
Þ. It is straightforward to invert

Eq. (92) so as to obtain x ¼ xðaÞ. Correspondingly, one has

HðaÞ ¼ �
4C1C2 þ ða0a Þ2B ∓ ða0a ÞB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C1C2 þ ða0a Þ2B

q
∓ ða0a ÞB þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C1C2 þ ða0a Þ2B

q

⟶
a→∞ � 8C1C2 þ ða0a Þ2B

4
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p : ð93Þ

Notice that the same result can be obtained if one uses the
CR definition (84) instead of Eq. (26).
The last, approximate, equality in Eq. (93) is the large-a

limit of HðaÞ, and this shows that the CR evolution is
asymptotically equivalent to the evolution given in Eq. (29)
with m ¼ 1 and n ¼ 2B. The results obtained in Sec. II
for large a are therefore inherited by CR. Thus, one obtains
ϵ2iþ1;∞ ¼ 0 and ϵ2i;∞ ¼ 2B. Correspondingly,

Φ ¼ 3 − 2B; ð94Þ

which shows that the curvature perturbations are amplified
for B > 3=2 due to the presence of a growing solution. In
contrast, if 0 < B < 3=2, one finds a blue-tilted spectrum

ns − 1 ¼ 3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − 2BÞ2

q
¼ 2B > 0; ð95Þ

i.e., a spectrum enhancement in the absence of growing
solutions. Therefore, CR inflation admits transient solu-
tions that always lead to an amplification. Finally, it is
worthwhile to mention that the solutions with C1 ¼ 0 or
C2 ¼ 0 simply correspond to the attractor solutions for
power law inflation, and thus they are not associated with
any amplification effect. Indeed, in Ref. [7], a cosh type
potential and the corresponding transient solution is con-
sidered in order to obtain the desired enhancement of the
primordial spectra in the CR scenario.

B. Constant roll with a nonminimally coupled inflaton

Let us now consider CR in the IG context. For this case,
the HJ formalism leads to [14]

HðϕÞ ¼ C1ϕ
ðBþpÞ=2 þ C2

ϕðp−BÞ=2 ; ð96Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBþ 2Þ2 þ 2Bð2þ ξ−1Þ

p
and ðBþ pÞ=2 and

ðp − BÞ=2 are both positive with ðp − BÞ=2 < ðBþ pÞ=2.
For simplicity, we shall take C1;2 > 0, and we restrict the
analysis to the ϕ > 0 interval. Studying the spectrum
enhancement for CR in the IG case is more complicated
than for GR. This is essentially a consequence of the
complicated form of Eq. (56) in comparison to Eq. (26) in
the GR case. However, the simple relation (84) holds, and it

can be used to simplify the equations. First, with Eq. (84),
one may eliminate δ2 from Eq. (56) and obtain

ϵ1 ¼
1þ 2ξ

2ξ
δ21 − ðBþ 1Þδ1: ð97Þ

Subsequently, by using Eq. (88), one finds

δ1 ¼
2ξ

1þ 2ξ

�
Bþ 1 −

d lnH
d lnϕ

�
; ð98Þ

and the potential can be reconstructed by substituting
Eqs. (96) and (98) into Eq. (58).
The evolution could be obtained by integrating Eq. (98)

and inverting the result. However, analytically inverting the
resulting equation for arbitrary values of the parameters is
impossible. As we are only interested in the asymptotic
form of HðaÞ, one can employ a perturbative approach.
Integration of Eq. (98) yields

�
a0
a

�
B
¼ ϕ

2þB
2

�
ðBþ pþ 2ÞC1ϕ

p
2 þ ðB − pþ 2ÞC2

ϕ
p
2

�
;

ð99Þ

where Bþ pþ 2 > 0 and B − pþ 2 < 0. Therefore, in the
large-a limit, the inversion of Eq. (99) leads to

ϕðaÞ ¼ ϕ∞ þ
X
i>1

ϕi

�
a0
a

�
iB
∼ ϕ∞ þ ϕ1

�
a0
a

�
B
; ð100Þ

where ϕ∞ is positive. By substituting Eq. (100) into
Eq. (96) and expanding for large a (properly accounting
for the next-to-leading-order contributions), one finally
obtains the asymptotic form of HðaÞ, which reads

H ∼H∞ þH1

�
a0
a

�
B
: ð101Þ

Comparison to Eq. (29) shows that m ¼ 1 and n ¼ B,
and the corresponding hierarchy of δi ’s is given by
Eq. (63) since

δ1;∞ ¼ lima→∞ _ϕ

H∞ϕ∞
¼ 0; ð102Þ

where _ϕ is given by (85). One then obtains

Φ ¼ 3 − 2B; ns − 1 ¼ 2B; ð103Þ

and, when 0 < B < 3=2,

ns − 1 ¼ 2B; ð104Þ
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which are the same results as GR with a minimally coupled
inflaton. Indeed, in the a → ∞ limit, the homogeneous
inflaton is frozen at a certain value, and one essentially
recovers the evolution of the minimally coupled case,
where “Newton’s constant” is now reproduced by the
(constant) asymptotic value of the inflaton. Furthermore,
the a dependence of the solution is a consequence of the
fact that the CR condition (84) is independent of the
specific inflationary model, providedH∞ and ϕ∞ are found
to be (finite) constants.

C. Jordan and Einstein frame mapping

In the previous section, we found the same asymptotic
behavior for the spectra in the minimally coupled case and
in the IG case. This result was obtained in spite of the fact
that the CR condition is not frame invariant; i.e., the CR
condition in the Einstein frame (EF) is not mapped, in
general, into a CR condition in the Jordan frame (JF). In
this section, we briefly review this statement and discuss
its consequences.
It is well known that, by a suitable conformal trans-

formation and a redefinition of the scalar field (inflaton),
one can map a minimally coupled theory (defined in the so-
called EF) into a nonminimally coupled one (in the JF). In
particular, for IG, the mapping is given by the following
transformation rules (see, e.g., [15]):

aðtÞ ¼ MPffiffiffi
ξ

p
σ
ãðtÞ; NðtÞ ¼ MPffiffiffi

ξ
p

σ
ÑðtÞ; ð105Þ

and

ϕ ¼ MP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξ

ξ

s
ln

σ

σ0
; ṼðϕðσÞÞ ¼ MP

2

ξ2σ4
VðσÞ; ð106Þ

where the tilde refers to the Einstein frame, ϕ is the scalar
field in the EF, and σ is that in the JF. Notice that here NðtÞ
and ÑðtÞ in Eq. (105) correspond to the lapse function in
the Jordan and Einstein frames, respectively, and they
are not to be confused with the number of e-folds, which
was previously denoted by N. The mapping induces the
following transformations of the Hubble parameter:

H̃ ¼ dã=dt

Ñ ã
¼ ð1þ δ1Þ

MPffiffiffi
ξ

p
σ
H; ð107Þ

where

HðtÞ¼ daðtÞ=dt
aðtÞNðtÞ; ϵiþ1¼

dϵi=dt
ϵiNðtÞHðtÞ ; δiþ1¼

dδi=dt
δiNðtÞHðtÞ

ð108Þ

are the Hubble and SR parameters in the JF. From the
relation (105), one also finds that

d
d ln ã

¼ ð1þ δ1Þ−1
d

d ln a
: ð109Þ

It is now straightforward to obtain the relations between
SR parameters in the two frames:

ϵ̃1 ≡ −
d ln H̃
d ln ã

¼ −ð1þ δ1Þ−1
d

d ln a
ln

�
ð1þ δ1Þ

MPffiffiffi
ξ

p
σ
H

�

¼
δ1 þ ϵ1 −

δ1δ2
1þδ1

1þ δ1
: ð110Þ

Given the relation (56), one then finds

ϵ̃1 ¼
ð1þ 6ξÞδ21
2ξð1þ δ1Þ2

: ð111Þ

From Eqs. (56) and (111), given that CR for a minimally
coupled inflaton has ϵ̃1;∞ ¼ 0, one concludes that, corre-
spondingly, in the JF one has δ1;∞ ¼ 0 and ϵ1;∞ ¼ 0. If we
differentiate Eq. (111), we obtain the following relations
among other SR parameters in the two frames

ϵ̃2 ¼
2δ2

ð1þ δ1Þ2
; ð112Þ

ϵ̃3 ¼
δ3 − 2δ1δ2 þ δ1δ3

ð1þ δ1Þ2
; ð113Þ

ϵ̃4 ¼
δ1δ2½2δ2 − 2δ1δ2 þ 3δ3 þ 3δ1δ3 − ð1þ δ1Þ2δ3δ4�

ð1þ δ1Þ2ð2δ1δ2 − δ1δ3 − δ3Þ
;

ð114Þ

and further ϵ̃i’s can be found by iterating the procedure but
are useless for what follows.
Similarly, one can directly calculate the relations of the

δ̃i’s with the dynamical variables in the JF:

δ̃1 ≡
_ϕ

Ñ H̃ ϕ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξ

ξ

s
MP

ϕ

δ1
1þ δ1

ð115Þ

and

δ̃2 ≡ dδ̃1=dt

Ñ H̃ δ̃1
¼ −δ̃1 þ

δ2
ð1þ δ1Þ2

: ð116Þ

From the last relation and Eq. (56), one has that the CR
condition in the EF,

δ̃2 þ δ̃1 − ϵ̃1 þ B ¼ 0; ð117Þ
is mapped into the following condition in the JF:

δ2 þ ðB − 1Þδ1 − ϵ1 þ B ¼ 0: ð118Þ
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Notice that only for B ¼ 2 the CR condition is frame
invariant. Nonetheless, both equations reduce to δ2;∞ ¼
δ̃2;∞ ¼ −B at late times, and the evolution is indistinguish-
able, at least as far as the homogeneous degrees of freedom
and the inflationary spectra are concerned.
We conclude that, whereas the scalar spectral index

ns − 1 is frame invariant,Φ is generally not frame invariant.
This can be checked directly by substitution. However,
assuming CR holds in the EF, one verifies thatΦ and ns − 1
are both frame invariant in the asymptotic regime. This
approximate invariance can be intuitively understood from
the fact that, for large scale factors (late times), the CR
condition in the EF implies that the nonminimally coupled
homogeneous inflaton in JF freezes at a particular asymp-
totic value (due to δ1 → 0), which can be seen as “Newton’s
constant,” so as to recover the evolution of the minimally
coupled EF scenario [see comments after Eq. (104)].
Indeed, one may verify by substitution that Φ is frame
invariant in the δ1 → 0 limit (i.e., when the field in the
Jordan frame freezes).

V. CONCLUSIONS

In this article, we have analyzed the effects of different
transient phases, which may occur during inflation due to a
particularity of the inflaton potential, on the primordial
inflationary spectrum of scalar perturbations. These tran-
sients have been studied in the last few years as sources of
amplification of the amplitude of the curvature spectrum. It
is important to notice that if the amplitude of scalar
perturbations grows large enough, it may induce gravita-
tional collapse and consequently seed the formation of
primordial black holes after inflation ends. In the literature,
several mechanisms for such an amplification during
inflation have been proposed. In particular, the presence
of an ultraslow-roll or, more generally, a constant-roll phase
has been studied. Whereas in the former case the

amplification is due to the existence of a growing solution
to the equation of motion of the curvature perturbations, in
the latter case the amplification can also be generated by a
blue-tilted spectrum in the absence of the growing solution.
The purpose of this paper was precisely to examine

general features of the aforementioned models starting
from a rather generic ansatz for the Hubble parameter as a
function of the scale factor. This general description of the
transient phase is model independent, and many results
obtained can readily be applied to several modified gravity
models. The matter-gravity dynamics is described in terms
of the hierarchies of SR parameters, both at the homo-
geneous level and at the level of perturbations. These
hierarchies, when the transient phase that describes the
approach to some inflationary attractor is considered, have
been shown to take a peculiar form wherein either odd or
even terms of the hierarchy are null and the remaining ones
are different for zero. This general feature is a peculiarity
of the asymptotic form of the SR parameters close to the
attractor, and it is then used as a simplifying assumption
throughout the entire article. The resulting hierarchies, in
the large-a limit and for the cases considered, were used to
calculate the behavior of the primordial curvature spectrum
as the parametrization of HðaÞ was varied. Then, when
possible, the corresponding inflaton potential was fully
reconstructed. An overview of the spectra enhancement
results was presented in Table I.
For simplicity, only the induced gravity case has been

considered here as a generalization of general relativity
with a minimally coupled inflaton. Induced gravity is
particularly relevant since both Higgs and Starobinsky
inflationary models (which are in good agreement with
observations) take place in the “induced gravity phase.”We
note that while transient evolutions that have the de Sitter
universe as a limit (such as USR) can lead to an ampli-
fication, the results differ when power law inflation is
considered as the limit of a transitory dynamics and, for the
cases we were able to solve explicitly, no modification of
the scalar spectrum was obtained. Finally, the constant-roll
case was discussed in more detail as an application of the
preceding results, and the issue of the transition from the
Einstein frame to the Jordan frame was also scrutinized.
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TABLE I. Results summary.

Inflation
model

Asymptotic
solution

Growing
solution

Blue-tilted spectral
index

GR dS n > 3 0 < n < 3
GR PL − −
IG dS, δ1;∞ ¼ 0 n > 3=2 0 < n < 3=2
IG dS, δ1;∞ ≠ 0 − −
CRþ GR dS B > 3=2 0 < B < 3=2
CRþ IG dS, δ1;∞ ¼ 0 B > 3=2 0 < B < 3=2

LEONARDO CHATAIGNIER et al. PHYS. REV. D 107, 083506 (2023)

083506-12



[1] G. F. Chapline, Nature 253, 251 (1975); P. Meszaros,
Astron. Astrophys. 38, 5 (1975).

[2] A. A. Starobinsky, in Current Trends in Field Theory,
Quantum Gravity and Strings, Lecture Notes in Physics
Vol. 246, edited by H. J. De Vega and N. Sanchez (Springer-
Verlag, Heidelberg, 1986), pp. 107–126; A. D. Linde,
Particle Physics and Inflationary Cosmology, Con-
temporary Concepts in Physics Vol. 5 (Harwood Academic
Publishers, New York, 1990).

[3] B. Carr and F. Kuhnel, Annu. Rev. Nucl. Part. Sci. 70, 355
(2020).

[4] J. Garcia-Bellido and E. Ruiz Morales, Phys. Dark Universe
18, 47 (2017); G. Ballesteros and M. Taoso, Phys. Rev. D
97, 023501 (2018); M. Cicoli, V. A. Diaz, and F. G. Pedro,
J. Cosmol. Astropart. Phys. 06 (2018) 034; H. Motohashi
and W. Hu, Phys. Rev. D 96, 063503 (2017); C. Germani
and T. Prokopec, Phys. Dark Universe 18, 6 (2017).

[5] V. F. Mukhanov, Sov. Phys. JETP 68, 1297 (1988); J. M.
Maldacena, J. High Energy Phys. 05 (2003) 013; V. F.
Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys.
Rep. 215, 203 (1992); V. F. Mukhanov, Phys. Lett. B 218,
17 (1989); J. M. Bardeen, Phys. Rev. D 22, 1882 (1980);
M. Sasaki, Prog. Theor. Phys. 70, 394 (1983).

[6] A. Y. Kamenshchik, A. Tronconi, and G. Venturi, J. Cos-
mol. Astropart. Phys. 01 (2022) 051; A. Y. Kamenshchik,

A. Tronconi, T. Vardanyan, and G. Venturi, Phys. Lett. B
791, 201 (2019).

[7] H. Motohashi, S. Mukohyama, and M. Oliosi, J. Cosmol.
Astropart. Phys. 03 (2020) 002.

[8] H. Motohashi, A. A. Starobinsky, and J. Yokoyama, J.
Cosmol. Astropart. Phys. 09 (2015) 018.

[9] A. Yu. Kamenshchik, U. Moschella, and V. Pasquier,
Phys. Lett. B 511, 265 (2001).

[10] A. D. Sakharov, Sov. Phys. Dokl. 12, 1040 (1968); S. L.
Adler, Rev. Mod. Phys. 54, 729 (1982).

[11] A. Cerioni, F. Finelli, A. Tronconi, and G. Venturi, Phys.
Rev. D 81, 123505 (2010).

[12] H. Motohashi and A. A. Starobinsky, Europhys. Lett. 117,
39001 (2017).

[13] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 594, A20 (2016); arXiv:1502.01589; Y.
Akrami et al. (Planck Collaboration), arXiv:1807.06211;
N. Aghanim et al. (Planck Collaboration), arXiv:1807
.06209.

[14] H. Motohashi and A. A. Starobinsky, J. Cosmol. Astropart.
Phys. 11 (2019) 025.

[15] A. Y. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G.
Venturi, and S. Y. Vernov, Classical Quantum Gravity 31,
105003 (2014).

RECONSTRUCTION METHODS AND THE AMPLIFICATION OF … PHYS. REV. D 107, 083506 (2023)

083506-13

https://doi.org/10.1038/253251a0
https://doi.org/10.1146/annurev-nucl-050520-125911
https://doi.org/10.1146/annurev-nucl-050520-125911
https://doi.org/10.1016/j.dark.2017.09.007
https://doi.org/10.1016/j.dark.2017.09.007
https://doi.org/10.1103/PhysRevD.97.023501
https://doi.org/10.1103/PhysRevD.97.023501
https://doi.org/10.1088/1475-7516/2018/06/034
https://doi.org/10.1103/PhysRevD.96.063503
https://doi.org/10.1016/j.dark.2017.09.001
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1016/0370-2693(89)90467-X
https://doi.org/10.1016/0370-2693(89)90467-X
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1143/PTP.70.394
https://doi.org/10.1088/1475-7516/2022/01/051
https://doi.org/10.1088/1475-7516/2022/01/051
https://doi.org/10.1016/j.physletb.2019.02.036
https://doi.org/10.1016/j.physletb.2019.02.036
https://doi.org/10.1088/1475-7516/2020/03/002
https://doi.org/10.1088/1475-7516/2020/03/002
https://doi.org/10.1088/1475-7516/2015/09/018
https://doi.org/10.1088/1475-7516/2015/09/018
https://doi.org/10.1016/S0370-2693(01)00571-8
https://doi.org/10.1103/RevModPhys.54.729
https://doi.org/10.1103/PhysRevD.81.123505
https://doi.org/10.1103/PhysRevD.81.123505
https://doi.org/10.1209/0295-5075/117/39001
https://doi.org/10.1209/0295-5075/117/39001
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://arXiv.org/abs/1502.01589
https://arXiv.org/abs/1807.06211
https://arXiv.org/abs/1807.06209
https://arXiv.org/abs/1807.06209
https://doi.org/10.1088/1475-7516/2019/11/025
https://doi.org/10.1088/1475-7516/2019/11/025
https://doi.org/10.1088/0264-9381/31/10/105003
https://doi.org/10.1088/0264-9381/31/10/105003

