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Cosmological observations precisely measure primordial variations in the density of the Universe at
megaparsec and larger scales, but much smaller scales remain poorly constrained. However, sufficiently
large initial perturbations at small scales can lead to an abundance of ultradense dark matter minihalos that
form during the radiation epoch and survive into the late-time Universe. Because of their early formation,
these objects can be compact enough to produce detectable microlensing signatures. We investigate
whether the EROS, OGLE, and HSC surveys can probe these halos by fully accounting for finite source
size and extended lens effects. We find that current data may already constrain the amplitudes of primordial
curvature perturbations in a new region of parameter space, but this conclusion is strongly sensitive to yet
undetermined details about the internal structures of these ultradense halos. Under optimistic assumptions,
current and future HSC data would constrain a power spectrum that features an enhancement at scales
k ∼ 107=Mpc, and an amplitude as low as Pζ ≃ 10−4 may be accessible. This is a particularly interesting
regime because it connects to primordial black hole formation in a portion of the LIGO/Virgo/Kagra mass
range and the production of scalar-induced gravitational waves in the nanohertz frequency range reachable
by pulsar timing arrays. These prospects motivate further study of the ultradense halo formation scenario to
clarify their internal structures.

DOI: 10.1103/PhysRevD.107.083505

I. INTRODUCTION

The spectrum of primordial curvature perturbations on
large scales has been precisely constrained by a variety of
observations, including the cosmic microwave background
(CMB) [1], the Lyman-alpha forest [2], the UV galaxy
luminosity function [3], and strong gravitational lensing
[4]. These measurements bring information about the
energy content of our Universe and allow us to constrain
models of inflation (see for example Ref. [5]). While
current data are only able to constrain scales above roughly
a megaparsec, an increasing number of new probes have
been proposed to constrain primordial perturbations at
smaller scales. Among these probes, the formation of
primordial black holes (PBHs) [6–8] and nonlinearly

induced stochastic gravitational waves (GWs) [9] are of
particular recent interest.
PBHs can originate from the collapse of extreme inho-

mogeneities deep within the radiation-dominated era
[10–13] and can attain a wide range of masses [14–17].
Various observational bounds have been set on their abun-
dance [18]. However, PBHs in the asteroid-mass range could
explain the darkmatter, whilemuch larger PBHs could be the
seeds of supermassive black holes at high redshift [19–22]
(which may be challenging to explain within astrophysical
formation scenarios [23]) and/or be responsible for a fraction
of the black holemerger events already discovered by LIGO/
Virgo/Kagra (LVK) detectors (e.g., [24–31]) and detectable
by future experiments [32–37].
Primordial curvature perturbations comparable to those

necessary to generate a population of PBHs would also
induce GWs due to the nonlinear nature of gravity [38–43].
The resulting stochastic GW background may be detected
by GW observatories such as pulsar timing arrays (PTAs)
[44–47], the future Laser Interferometer Space Antenna
[48], and ground-based observatories like LVK [49] and the
proposed Einstein Telescope and Cosmic Explorer [50–52].
However, a model that features a sufficiently enhanced

power spectrum at small scales to give rise to significant
GWs and PBHs would also lead to the formation of an
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abundant population of highly dense dark matter minihalos
[53–60], as long the dark matter is collisionless and capable
of clustering on the relevant scales (e.g., [61]). While PBHs
arise from Oð1Þ initial density perturbations, perturbations
as small as Oð10−2Þ would still be sufficient to form halos
already before matter-radiation equality [62–66], which
occurred at redshift z ≃ 3400 [1]. The smaller perturbations
from which these halos arise would be far more common
than the extreme perturbations necessary to produce PBHs,
as illustrated in Fig. 1. Since these halos form long before
the redshift 30–50 at which halos would begin to form in a
standard cold dark matter scenario (e.g., [67]), they would
be characterized by extraordinarily high internal density.
These ultradense halos would be extended compact objects
that can survive to the present day, giving rise to new
observational signatures.
Lensing observations have already been used extensively

to search for evidence of PBHs by directly looking for the
signatures of those compact objects on the magnification of
observed stars (e.g., [69–77]). In this work, we address a
different question: can we constrain scenarios with boosted
small-scale power (whether they produce PBHs or not) by
searching for the lensing signatures of the ultradense
compact halos formed by the enhanced perturbations?1

Borrowing the analytic description of ultradense halo
formation developed in Ref. [66], we will show that large
primordial curvature perturbations at Oð0.1Þ pc scales,
which correspond to the formation of solar mass PBHs
and nanohertz stochastic GW backgrounds, can lead to
observable lensing signatures.

II. ULTRADENSE DARK MATTER HALOS FROM
AN ENHANCED CURVATURE SPECTRUM

In this section, we describe the abundance and properties
of the ultradense dark matter halos formed in scenarios with
an enhanced power spectrum at small scales. For concrete-
ness, we consider the scenario described by model A of
Ref. [30], which produces PBHs around 10M⊙ comprising
roughly ≈0.05% of the dark matter and maximize the
current upper bound set by LVK observations. Again, the
ultradense halos are not connected to PBHs directly; they
only emerge from the same cosmological scenario (see
Fig. 1). Ultradense halos can arise with or without PBHs,
and we will discuss implications for alternative (and
agnostic) scenarios in Sec. IV.
Figure 2 shows the primordial curvature power spectrum

PζðkÞ (dashed curve) in this model, which grows as Pζ ∝
k4 at scales smaller than those constrained by CMB and
large-scale structure data until it reaches a peak around
Pζ ∼ 10−2 near the pc−1 scale. The PBHs form around that
scale. We also show the matter power spectrum Pðk; aÞ
(solid curve) at a ¼ 10−5, approximated as

Pðk; aÞ ¼ I21

�
log

� ffiffiffi
2

p
I2

k
keq

a
aeq

��
2

PζðkÞ ð1Þ

with I1 ≃ 6.4 and I2 ≃ 0.47 [82]. Here aeq ≃ 3 × 10−4 and
keq ≃ 0.01 Mpc−1 are the scale factor and horizon wave
number at matter-radiation equality, respectively. We
assume for simplicity that dark matter is infinitely cold.
In practice, for many dark matter models, the matter power
should be truncated at some small scale due to kinetic
coupling with the radiation and the resulting thermal free
streaming (e.g., [83]). Our approach is thus limited to dark
matter models that are capable of clustering at the relevant
scales of about a comoving parsec.

FIG. 1. Illustration of the ultradense halo scenario. We show a
cartoon picture of the primordial density field. A region of
extreme excess density is necessary to exceed the collapse
threshold and produce a PBH (e.g., [68]), but more modest
density excesses are much more common and form ultradense
halos. Note that ultradense halos are not significantly correlated
with PBHs spatially; they simply arise from the same cosmo-
logical scenario. Also, scenarios with too little primordial power
to produce a significant number of PBHs can still yield abundant
ultradense halos, as we will see in Sec. IV.

FIG. 2. Dimensionless power spectrum of primordial curvature
perturbations (dashed curve) and matter perturbations (solid
curve) in model A of Ref. [30]. The matter power spectrum is
evaluated at a ¼ 10−5, and the dark matter is assumed to be
infinitely cold. Note that matter perturbations are already deeply
nonlinear by this time.

1References [53,78] previously considered microlensing by
halos arising in similar scenarios. Related approaches have also
been proposed, including astrometric photolensing [79] and
distortions in strongly lensed images [80,81].
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A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
Pðk; aÞ ∼ 102 at k ≃ 106 Mpc−1 by a ¼ 10−5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes
homogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
threshold for collapse is

δc ¼ 3ð1þ σ=
ffiffiffi
5

p
Þ; ð2Þ

where σ is the rms density contrast, if we approximate that
the ellipticity e of the initial tidal field within each region is
equal to its most probable value,

e ¼ ð
ffiffiffi
5

p
δc=σÞ−1 ð3Þ

(e.g., [84]). As derived in Ref. [66], the collapse threshold in
Eq. (2) leads to the excursion set mass function (e.g., [85])

df
d logM

¼
ffiffiffi
2

π

r
ðνþ 0.556Þe−1

2
ðνþ1.34Þ2

ð1þ 0.0225ν−2Þ0.15
���� d log σMd logM

���� ð4Þ

describing the differential dark matter mass fraction in
collapsed regions of mass M, where ν≡ 3=σM. Here σM
is the rms density contrast in spheres of mass M, i.e.

σ2M ¼
Z

∞

0

dk
k
PðkÞW2ðkrÞ; ð5Þ

with WðxÞ≡ 3ðsin x − x cos xÞ=x3 and M ¼ ð4π=3Þρm;0r3,
where ρm;0 ≃ 33M⊙ kpc−3 is the comoving dark matter
density.2

Insofar as the collapse of matter density perturbations
results in halo formation, df=d logM describes the ultra-
dense halo mass distribution. We evaluate df=d logM for
the power spectrum in Fig. 2 and plot it in the upper panel
of Fig. 3. This distribution integrates to 28% of the dark
matter at a ¼ 10−5 (black curve), a much greater contri-
bution than the sub-10−4 fraction in PBHs. The peak of the
distribution is around ∼10−6M⊙, a mass scale that differs
from that of theOð10ÞM⊙ PBHs that emerge from the same
scenario. When dark matter halos and PBHs arise from
perturbations of the same scale, the PBH masses MPBH are
larger than the halo masses by a factor of about
∼ðMeq=MPBHÞ1=2 [66], where Meq ≃ 3 × 1017M⊙ is the

horizon mass at matter-radiation equality. This scaling
arises because while halos form out of matter, PBHs form
primarily out of radiation, the density of which far exceeds
that of matter during the radiation epoch. This relation
suggests that dark matter halos accompanying Oð10ÞM⊙
PBHs should have masses around ∼10−7M⊙. In practice,
halo masses somewhat exceed the above expectation
because the halo formation threshold is much lower than
that for PBHs, which allows halos to form from larger-scale
initial perturbations.
However, the mass distribution df=d logM derived

above really describes the distribution of collapsed regions,

FIG. 3. Ultradense halos arising in a scenario characterized by
the primordial power spectrum Pζ in Fig. 2, at three different
times during radiation domination. Top panel: the differential
dark matter mass fraction in collapsed regions of mass M. These
regions become halos once they are locally matter dominated.
Upper middle panel: the typical scale factor af at which a
collapsed region of massM becomes matter dominated, resulting
in halo formation. That af depends on a is an artifact of our
simplified computation, but we note that af and df=d logM are
mostly independent of a. This independence breaks down when
M ≳ 10−6M⊙, but af ∼ 10−5 in that regime, so for our analysis,
we simply adopt the values of af and df=d logM at a ¼ 10−5

(black curves). Lower middle panel: halo’s characteristic density
ρh, derived from af as described in the text, as a function of mass
M. We show both the conservative (dashed) and optimistic (solid)
estimates; see Eq. (10). Bottom panel: Likewise, the conservative
(dashed) and optimistic (solid) estimates of a halo’s scale
radius rh.

2Since the power spectrum in Fig. 2 does not have a small-
scale truncation, it is not necessary to employ the sharp k-space
filtering used in Ref. [66] (see Ref. [86]).

LENSING CONSTRAINTS ON ULTRADENSE DARK MATTER … PHYS. REV. D 107, 083505 (2023)

083505-3



and it cannot be taken for granted that these regions form
halos. During the radiation epoch, bound, virialized halos
can only form within regions that are locally matter
dominated [65]. Reference [66] showed that in the con-
tinued absence of gravitational forces, an initially over-
dense region achieves an overdensity ρ=ρm, with ρm being
the average matter density, as high as

ρ

ρm
∼ e−2

���� d logΞd log r

����−1; ð6Þ

where e is the ellipticity of the initial tidal field and

ΞðrÞ ¼ 3r−3
Z

r

0

ξðr0Þr02dr0; ð7Þ

with ξðrÞ being the correlation function. The functional
dependencies in Eq. (6) arise because a collapsing mass
shell will simply overshoot and expand back outward if it
does not produce a high enough matter overdensity to halt
the expansion. The following trends can be highlighted.

(i) The tidal field ellipticity e enters because, without
gravity, particle drifts must be highly focused to
produce regions of significant overdensity.

(ii) The correlation function ξðrÞ enters because it
describes the average radial profile of the density
contrast about an arbitrary point. ΞðrÞ is then the
average profile of themean density enclosed within r.
If Ξ drops steeply (high jd logΞ=d log rj), then the
collapse of successively larger mass shells is gradual,
and so the density contributed by later shells is not
able to efficiently build on top of the density contrib-
uted by earlier shells before the early shells disperse
away (after overshooting the collapse). If instead Ξ
drops shallowly (low jd logΞ=d log rj), then the
collapse of successively larger infalling mass shells
occurs rapidly, and the density contributed by these
shells builds up efficiently.

Due to Eq. (6), a collapsed region of mass M becomes
locally matter dominated, resulting in a halo formation, at
roughly the scale factor

afðMÞ ∼ e2
���� r

R
∞
0 dkPðkÞW0ðkrÞR
∞
0

dk
k PðkÞWðkrÞ

����aeq; ð8Þ

where M ¼ ð4π=3Þρm;0r3 again and W0 is the derivative of
W. The fraction in Eq. (8) is just d logΞ=d log r.
Meanwhile, Eqs. (2) and (3) imply that the ellipticity of
the initial tidal field for a region of mass M, at its collapse
time, is typically

eðMÞ ¼ 1

3

�
1 −

�
1þ σMffiffiffi

5
p

�
−1
�
: ð9Þ

We show afðMÞ, evaluated using Eqs. (8) and (9), in the
second panel of Fig. 3.
Note that, as formulated, af depends on the scale factor a

at which we evaluate the matter power spectrum PðkÞ. This
dependency is not physically meaningful, and in principle,
af should instead depend on the full history of PðkÞ.
However, we will adopt the values of af and df=d logM at
a ¼ 10−5 (black curves in Fig. 3) for simplicity. Both af
and the halo mass function df=d logM only vary signifi-
cantly with a for masses near 10−6M⊙, and since af ∼ 10−5

there, the halo distributions evaluated at a ¼ 10−5 are
expected to be approximately correct.
We also remark that the scaling of af with halo massM is

easy to understand. In regimes where halos are rare, any
halo must have formed from an extreme outlier peak in the
initial density field. But outlier peaks are more spherical
(e.g., [87]), which implies lower ellipticity e and hence
earlier halo formation according to Eq. (8).

B. Structures of ultradense halos

We now discuss how we model the internal structures of
the ultradense halos. Halo formation during the radiation
epoch has not been simulated in detail, so there is consid-
erable uncertainty in this treatment. Nevertheless, it is a
general consequence of mass accretion in a cosmological
context that the characteristic density ρh of a collisionless
dark matter halo is closely linked to the mean density of the
Universe at its formation time af (e.g., [88–90]). For halos
that form during the radiation epoch, this motivates

ρh ¼ αρr;0a−4f ; ð10Þ

where ρr;0 ≃ 0.012M⊙ kpc−3 is the radiation density today
and α is a proportionality factor. Simulations during the
matter epoch suggest that the density ofmaterialwithin a halo
is about 103 times the density of the Universe at the time that
the material became part of the halo [90,91]. This consid-
eration suggests α ≃ 103, but halo formation dynamics may
be significantly different during the radiation epoch. In the
following, wewill bracket the uncertainty in Eq. (10), as well
as that in Eqs. (6) and (8), by allowing α to vary. Generally,
one expects that at least the matter density does not drop
during the formation process, which suggests α ∼ 1 as a
lower limit. We will explore the consequences of assuming
α ∈ ½1–103�. The third panel of Fig. 3 shows ρh as a function
of halo mass M for α ¼ 103 and α ¼ 1.
We assume ultradense halos form with density profiles

similar to the Navarro-Frenk-White (NFW) form [92,93]
with scale radius ρh and scale density rh. Since Fig. 3 shows
halo mass functions evaluated close to their formation
times, we set a halo’s outer virial radius at this time to be
Rvir ¼ 2rh, roughly the smallest value found in simulations
of the smallest halos during the matter epoch [94].
Integrating the NFW profile out to radius 2rh leads to
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M ≃ 5.4ρhr3h: ð11Þ

Given M and ρh, this expression determines rh. These
choices are only intended to give an approximate repre-
sentation of the inner structure of an ultradense halo, and
their impact is secondary to the uncertainty in α in Eq. (10).
For example, the precise choice of Rvir=rh has only a minor
impact since the numerical coefficient in Eq. (11) grows
only logarithmically with the virial radius. The bottom
panel of Fig. 3 shows the halo scale radii rh evaluated
through this approach. We also comment thatM here and in
Fig. 3 thus represents the halo mass near the formation time
and not the mass today. Put in another way,M is the mass of
the densest central part of the halo, which is the part that
contributes the most to microlensing and is the least
susceptible to destruction during later evolution.
While we assume that the NFW profile is approximately

accurate near the halo’s center, we cannot expect it to
remain valid at distances much larger than rh. The density
profile in that regime is set long after halo formation by the
details of the halo’s accretion history [88,89,91,95]. It has
been noted that the long-term accretion rates of galaxy
cluster-scale halos [96] are slow enough that ρ ∝ r−4 is
predicted after sufficiently long times [95], as opposed to
the NFW profile’s ρ ∝ r−3. For ultradense halos in our
scenario, the linear power spectrum has a similar P ∝ k4

scaling to the spectrum of density variations relevant at
cluster scales, and we also anticipate that radiation domi-
nation during the early evolution of ultradense halos will
significantly suppress their growth. Due to these consid-
erations, we approximate the late-time density profile of an
ultradense halo with the Hernquist form [97],

ρðrÞ ¼ ρhðr=rhÞ−1ð1þ 0.58r=rhÞ−3; ð12Þ

where the numerical factor is tuned so that this profile
closely matches the NFW profile up to a few times rh. At
large radii, the profile in Eq. (12) scales as ρ ∝ r−4 in
accordance with the accretion rate considerations above.
For a typical ultradense halo with massM ¼ 1.9 × 10−6M⊙
and characteristic radius rh ¼ 1100α−1=3 R⊙, the upper
panel of Fig. 4 shows the density profile in Eq. (12) as
well as the corresponding NFW profile.
When integrated out to infinity, the mass associated with

the density profile in Eq. (12) converges to a value of about
3.5M, where M is the halo mass at formation given by
Eq. (11). We noted in Sec. II A that the ultradense halos
contain about 28% of the dark matter at early times
a ∼ 10−5. Thus, adoption of this density profile implies
that ultradense halos eventually come to contain essentially
all of the dark matter. This outcome is consistent with
reasonable expectations. For example, Ref. [99] found that
in the standard picture of cosmological structure formation,
90%–95% of the dark matter is expected to lie in halos
today. A similar conclusion should apply to ultradense

halos, which can accrete material up until around redshift
30, when CMB-level primordial perturbations (correspond-
ing to k≲ 104 Mpc−1 in Fig. 2) finally become nonlinear
and much larger cosmic structures begin to dominate. One
limitation to our analysis, however, is that we assume every
halo grows by the same factor of 3.5. A more detailed
treatment would account for the spread in ultradense halo
accretion histories.
The central structures of collisionless dark matter halos

remain mostly unaltered by later evolution (e.g., [90]). This
is why the characteristics ρh and rh that we fix at the
ultradense halos’ formation epoch are expected to remain

FIG. 4. Properties of an ultradense halo with formation mass
M ¼ 1.9 × 10−6M⊙ and characteristic radius rh ¼ 1100α−1=3 R⊙.
Upper panel: the density profile that we adopt [Hernquist form,
Eq. (12)], in blue, for the optimistic and conservative assumptions
of α ¼ 103 (solid curves) and α ¼ 1 (dashed curves), respectively.
As Eq. (10) shows, α is the factor by which the halo’s characteristic
density exceeds that of the Universe at the halo’s formation time.
We also show in orange the corresponding NFW density profiles,
for which the density is excessively high at large radii. Middle
panel: vcirc=r as a function of radius r for the same density profiles,
where vcirc is the circular orbit velocity. We show in green the
median and central 68% band for tidal shocking from stellar
encounters for halos around 8 kpc from theGalacticCenter, derived
in Ref. [98]. The interpretation is that where vcirc=r drops below the
tidal shocking parameter, which is roughly the velocity kick Δv=r
imparted onto halo particles, disruption by stellar encounters is
likely to become significant. We also show in red where the
Galactic tidal forces become important. Lower panel: the deflection
angle for light passing the halo at closest distance r.
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largely accurate today. There are several ways in which this
concordance can fail, however. First, ultradense halos can
merge. While the merger rate is expected to be low for a
power spectrum that grows as steeply as that of Fig. 2, this
effect would reduce the number of ultradense halos
moderately. We note however that the fraction of dark
matter in these halos is not altered, and simulations suggest
that the characteristic density of a merger remnant is
typically not lower than that of the progenitors [89,100].
Thus, mergers are only expected to shift the ultradense halo
distribution to slightly higher masses. We will neglect this
effect here, leaving a more careful analysis for future work.
Ultradense halos also accrete onto much larger halos at

later times, such as the halos that surround galaxies. Indeed,
they are expected to contain a fraction of the dark matter
inside galactic halos that is comparable to the fraction of dark
matter that resides in ultradense halos initially. The extremely
high density of these objects makes them essentially unaf-
fected by tidal forces inside a much larger host. For example,
the middle panel of Fig. 4 shows vcirc=r ¼

ffiffiffiffiffiffiffiffi
F=r

p
as a

function of radius r for a typical ultradense halo,wherevcirc is
the circular orbit velocity andF is the halo’s central force.We
compare this quantity to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dFMW=dR

p
(red line), where

dFMW=dR ≃ 300 ðkm=sÞ2=kpc2 is the radial component of
the Milky Way’s tidal tensor at the Sun’s galactocentric
radius of 8 kpc, which we evaluate using the mass model in
Ref. [101]. The interpretation is that the impact of Galactic
tidal forces only becomes important when vcirc=r approachesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dFMW=dR

p
, which occurs over 106 R⊙ from the halo

center.
However, encounters with individual stars represent the

more serious concern for ultradense halos inside the
Galaxy. These become important when the velocity Δv
that they inject into halo particles approaches vcirc. In the
middle panel of Fig. 4, we also show the distribution of
tidal shocking parameters B ∼ Δv=r, as defined and evalu-
ated by Ref. [98], for halos orbiting the Galaxy at about
8 kpc. Shocks by stellar encounters are expected to
significantly alter the structures of ultradense halos at radii
beyond roughly 104–105 R⊙. However, it is unclear what
impact they have on ρ ∝ r−4 density profiles, because ρ ∝
r−4 is already the limiting density profile arising from such
tidal shocks [102,103].3 We will neglect stellar encounters
in this work, with the justification that they are not expected
to alter ultradense halo density profiles until radii signifi-
cantly beyond rh are reached.4

Finally, the lower panel of Fig. 4 shows how our typical
ultradense halo deflects passing light. We plot the deflec-
tion angle ð4G=c2ÞM2DðrÞ=r as a function of the distance r
of closest approach, where

M2DðrÞ≡
Z

r

0

2πbdb
Z

∞

−∞
dzρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p 	
ð13Þ

is the mass within an infinite cylinder of radius r.

III. MICROLENSING CONSTRAINTS ON
ULTRADENSE HALOS

In this section, we summarize the computation of the
gravitational microlensing of light sources, applying the
technique to constrain the ultradense minihalos described
above. As dark matter halos are intrinsically extended
objects, it is important to account for their sizewhen deriving
their potential lensing signatures. We follow the works of
Refs. [109,110] (see also [111–115]) to derive the rate of
lensed events at the EROS-2 [70], OGLE-IV [73], and
Subaru-HSC [71] surveys while accounting for finite source
sizes and extended lenses.

A. Detectability of a microlensing event

The light coming from a source is deflected by the
gravitational field of an object (lens). For low-mass lenses,
the deflection cannot be resolved, but only a modification
of the flux F , defined as

μ≡ F=F 0; ð14Þ

may be detected, where F 0 is the flux in the absence of
lensing. It is convenient to define the observer-lens, lens-
source, and observer-source distances as DL, DS, and
DLS ≡DS −DL, respectively. With respect to the axis
passing through the lens center and the source, one can
also define the angle β as the true source position angle and
θ as the angle of the observed lensed image of the source.
We depict this geometrical setup in Fig. 5.
As we noted above, the lensing halos are assumed to

have Hernquist density profiles defined in Eq. (12). These
profiles have total mass M0 ¼ 3.5M, as we noted above,
where M is the formation mass discussed in Sec. II.
Analogously, we define the late-time mass fraction, after
halos have gained mass, as f0 ¼ 3.5f. Also, we define
R90 ¼ 32rh as the radius at which 90% of the total mass is
contained. These definitions mirror the choices used by
Refs. [109,110].
The lensing equation determines the path of light rays

after a deflection and can be written as

β ¼ θ −
θ2E
θ

M0ðθÞ
M0

; ð15Þ

3This behavior is a further theoretical motivation for adopting
density profiles that scale as ρ ∝ r−4 at large radii in microlensing
studies.

4Dark matter models characterized by a nonvanishing dark
matter annihilation cross section would cause a depletion of the
central, and densest, inner regions (see, e.g., [104–108]). How-
ever, this is not relevant to this work, as the depletion typically
takes place at r ≪ rh.
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where M0ðθÞ ¼ M2DðDLθÞ is the lens mass projected onto
the lens plane, as defined in Eq. (13). It is convenient to
introduce the Einstein angle [116]

θE ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM0

c2
DLS

DLDS

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM0

c2
ð1 − xÞ
xDS

s
; ð16Þ

defined as the solution of the lensing equation when
βðθEÞ ¼ 0 and obtained as the value of θ for a pointlike
lens M0ðθÞ → M0. We also introduced the adimensional
ratio x≡DL=DS. Correspondingly, we denote the Einstein
radius as the distance RE ≡DLθE on the lens plane. It takes
values

RE≃2×103 R⊙

�
M0

M⊙

�
1=2

�
DS

10 kpc

�
1=2

�
1−x
x

�
1=2

: ð17Þ

In units of RE, the source radius in the lens plane is
rS ≡ xR⋆=RE. In units of θE, the angular distance from the
lens center to the source center is u ¼ β=θE and to a point
on the edge of the source is

ūðφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ r2S þ 2urS cosφ

q
ð18Þ

(see Fig. 5). One can then rewrite the lensing Eq. (15) for
each infinitesimal point on the edge of the source as

ūðφÞ ¼ t −
mðtÞ
t

; ð19Þ

to find the positions of images at tiðūðφÞÞ≡ θi=θE with i
labeling the, in general, multiple solutions. For a spheri-
cally symmetric density profile ρðrÞ we assume throughout
this work, one can write

mðtÞ ¼
R
t
0 dσσ

R
∞
0 dλρ

�
RE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ λ2

p 	
R∞
0 dγγ2ρðREγÞ

: ð20Þ

We neglect limb darkening and model the source star as
having a uniform intensity in the lens plane. It follows that
the magnification produced by an image i is given by the
ratio of the image area to the source area [74,114]:

μi ¼
1

4πr2s

�
2η

Z
2π

0

dφ
dψ
dφ

t2i ðφÞ
�
; ð21Þ

where η ¼ sgnðdt2i =dū2jφ¼πÞ while the angular measure is
defined from the angle ψ as

tanψ ≡ rS sinφ
uþ rS cosφ

: ð22Þ

Finally, we can compute the overall magnification μtot as
the sum of the individual contributions

μtot ¼
X
i

μi: ð23Þ

In this treatment, following Refs. [109,117], we ignore the
wave optics effects that are relevant when computing
the magnification from lenses whose size is smaller than
the wavelength of the detected light. For the masses
considered in this work, the finite source size effect
dominates the suppression of lensing signatures belowM ≈
10−11M⊙ [118]. Therefore, wave effects can be neglected.
If one takes the limit of negligible source size (i.e.

rS ≪ u) and pointlike lens (i.e. R90 ≪ RE), one can derive
analytical solutions to the lens equation and find

μtot ¼
2þ u2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p : ð24Þ

In the opposite limit of a very large source rs ≫ u, one
finds that the lensing solutions give a large suppression of
μ. This is because the lens only affects a negligible fraction
of light rays coming from the source.
Lensing surveys (such as EROS, OGLE, and HSC that

we will consider later on) define as detectable a micro-
lensing event whose temporary magnification of the source
star exceeds the threshold value μth ¼ 1.34. Following this
criterion, we will require μtot > μth. It is therefore conven-
ient to generalize this criterion and define the threshold
impact parameter u1.34 as

FIG. 5. Upper panel: geometrical setup under consideration.
The light source (S), the lens (L), and the observer (O) are
separated by their respective distances Di. Lower panel: the
lensing plane reporting the source and lens finite sizes, rescaled
compared to the Einstein radius, as well as the integration angles.
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μtotðu ≤ u1.34Þ ≥ 1.34; ð25Þ

such that the magnification is above 1.34 for all smaller
impact parameters. In the limit of a pointlike lens and
negligible source size, one can directly derive from Eq. (24)
the maximum impact parameter that satisfies this condition,
which is u ¼ 1. We show in Fig. 6 the threshold impact
parameter u1.34 as a function of both the source size rS
projected on the lens plane and the lens size r90.

B. Number of detectable microlensing events

The number of detectable lensing events can be computed
by integrating the rate of overthreshold signals. For a single
source star and unit exposure time, the differential event rate
with respect to the halo mass distribution, x ¼ DL=DS, and
event timescale tE (i.e. the time the magnification remains
larger than the threshold), can be written as

d2Γ
dxdtEd lnM0

¼
�
dρlensesðxÞ
d logM0

�
2DSεðtEÞQ2ðxÞ

M0v20
e−QðxÞ=v2

0 ;

ð26Þ

wherev0 is the circular velocity in thegalaxy. Thedifferential
density distribution of lenses ρlensesðxÞ can be derived by
multiplying the galactic overdensity by the ultradense halo
mass fraction, which means

dρlensesðxÞ
d logM0

≡ df0
d logM0

× ρDMðxÞ: ð27Þ

We also introducedQðxÞ≡ 4ðu1.34ðxÞREðxÞ=tEÞ2, and εðtEÞ
is the efficiency of telescopic detection. The total number of
detectable events Nevents is

Nevents

N⋆Tobs
¼

Z
d logM0dR⋆dtEdx

�
d2Γ

dxdtEd logM0

dn
dR⋆

�
;

ð28Þ

where N⋆ is the number of observed source stars in the
survey, Tobs is the total observation time, and dn=dR⋆ is the
distribution of source star radii. As we will see, the finite
source size is only relevant for theHSCsurvey ofM31.When
considering the other surveys, we will simply marginalize
over the stellar radius distribution, as it does not affect the
lensing signatures. In the Appendix, we summarize the setup
of the three surveys we consider in this study, i.e. EROS-2
[70], OGLE-IV [73], and Subaru-HSC [71].
To gain intuition on what is the reach of current con-

straints, in Fig. 7 we show the upper bound on the fraction of
dark matter in the form of ultradense halos by taking a
simplified monochromatic halo mass distribution. We show
the constraint by assuming different values of the average
density ρ̄≡ 3M0=ð4πR3

90Þ ¼ ρh=7300 of the halos. At the
lowest masses, the dominant constraint comes from HSC
data, peaking around M0 ≃ 10−9M⊙. OGLE dominates the
bounds at intermediate masses around M0 ≃ 5 × 10−5M⊙,
while the EROS survey constrains the heavier portion of the
plot. As one can see, for dense enough halos, the constraint
converges to the one for pointlike lenses shown inRef. [109].
On the other hand, assuming less dense halos and corre-
spondingly larger lens sizes relaxes the constraint, and the
M0 < 10−2M⊙ regime becomes entirely unconstrained for
ρ̄≲ 10−15M⊙=R3

⊙. This shows how crucial the halo density
(or, equivalently, its physical extension) is for setting con-
straints via microlensing.
In Fig. 7 we superimpose the final halo mass distribution

df0=d logM0 obtained in Sec. II considering model A from
Ref. [30]. We see that this distribution crosses the constraint
coming from HSC and OGLE lensing surveys, but only if
one assumes the average density to be at least as high as
ρ̄ ¼ 10−12M⊙=R3

⊙. However, translating the formation
properties of the halos from Fig. 3 into the late-time
Universe mass M0 and size R90, one discovers that halos
in this scenario are too large to be constrained by the
current experiment, having an average density of ρ̄ ≈ 3 ×
10−17M⊙=R3

⊙ at M0 ¼ 10−5M⊙ and ρ̄ ≈ 7 × 10−15M⊙=R3
⊙

at M0 ¼ 10−8M⊙, assuming α ¼ 103. Even smaller aver-
age densities, and correspondingly larger lens sizes, are
attained by assuming smaller values of α. We conclude,
therefore, that current lensing surveys are not able to
constrain enhanced power spectra peaked around
k ≈ 106=Mpc. In particular, we verified by considering
the full halo distributions from Fig. 3 (as opposed to the
monochromatic cases studied in Fig. 7) that the specific
PBH formation scenario in the LVK detection window
from Ref. [30] (model A) is not currently constrained by
lensing surveys.

FIG. 6. Threshold impact parameter for detection as a function
of both the source size rS projected on the lens plane and the lens
size r90, both normalized with respect to the Einstein radius. In
the limit of negligible source and lens sizes, the threshold impact
parameter converges toward the pointlike limit where u1.34 → 1.
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Also, due to the strong relationship between a halo’s
density and its mass in Fig. 3, the strongest prospects for the
detection of ultradense halos in such a PBH scenario
involve using HSC to constrain the low-mass tail of the
halo distribution. Unfortunately, since this tail is a highly
model-dependent feature (related to how shallowly the
primordial power spectrum in Fig. 2 decays at large k), this
approach is unlikely to yield generally applicable con-
straints on the PBH scenario. In the next section, we will
explore the constraints that can be set by current and future
HSC observations on a narrow enhancement to the power
spectrum, for which this low-mass halo tail does not
contribute.

IV. CONSTRAINTS ON THE POWER SPECTRUM
AT SMALL SCALES

We now test the sensitivity of microlensing to the
ultradense halos arising from a broader family of primor-
dial curvature power spectra. We want to consider realistic
narrow spectra as a benchmark. Therefore, we consider

PPLþExp
ζ ðkÞ ¼ A0ðk=k0Þ4 exp½2 − 2ðk=k0Þ2�; ð29Þ

which is parametrized by the peak amplitude A0 and wave
number k0 such that the maximum is achieved at
PPLþExp

ζ ðk0Þ ¼ A0. This spectrum grows as PζðkÞ ∝ k4

for k < k0, the characteristic growing slope that can arise in
simple ultraslow-roll inflation models (see, e.g., [119–121]),
while it is Gaussian suppressed for k > k0. The precise form
of the small-scale (large k) suppression turns out to be
unimportant for our constraint. We explicitly check this by
also considering the functional form

PPLþPL
ζ ðkÞ ¼ 2A0=½ðk=k0Þ−4 þ ðk=k0Þ4�−1: ð30Þ

This spectrum similarly peaks at PPLþPL
ζ ðk0Þ ¼ A0 and

grows as k4 for k < k0, but at larger k it decays as k−4.
We repeat the procedure in Sec. II to generate the

ultradense halo distribution for these scenarios. We make
one change, however. Press-Schechter mass functions like
Eq. (4), when evaluated using the real-space top-hat
window function, are not well behaved when the power
spectrum decays rapidly at small scales. They predict a halo
count that diverges at small mass scales, even when there is
no power on such scales [86]. This difficulty arises from the
assumption of uncorrelated steps in the excursion set
formulation of Press-Schechter theory [85], which corre-
sponds to the use of a sharp k-space window function,
WðxÞ ¼ θHðc − xÞ, instead of the top-hat window. Here c is
a constant, which fixes the connection between the wave
number and the mass scale, and θH is the Heaviside step
function. Therefore, we adopt the sharp k-space window

FIG. 7. Upper bound on the fraction of dark matter in ultradense halos [with the density profile of Eq. (12)] for the simplified cases
where all halos have the same mass and characteristic density. The colored curves show the maximum mass fraction today, f0 ¼ 3.5f,
assuming a monochromatic mass distribution at mass M0 ¼ 3.5M and different values of the average halo density ρ̄ ¼ ρh=7300 (f, M,
and ρh are the formation-time halo parameters considered in Sec. II). For each mass and density, the corresponding radius R90 can be
computed as R90 ¼ ð3M0=4πρ̄Þ1=3. The upper side of the frame indicates the R90 assuming ρ̄ ¼ 10−6M⊙=R3

⊙. In this case, the halo sizes
are always much smaller than the Einstein radius in Eq. (17), and the constraints coincide with those derived in the point-mass limit (see
Ref. [109]). We also show, for visual comparison, the halo mass distribution df0=d logM0 obtained in Sec. II considering model A from
Ref. [30] as well as a few realizations of the narrowly peaked power spectrum in Eq. (29). Note that when deriving constraints on these
models, we will account for the full halo distributions arising therefrom rather than the monochromatic distributions probed here.
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when evaluating σM in Eq. (5). Following Refs. [86,122],
we set c ¼ 2.5.
Figure 8 shows the resulting halo distributions. One

noteworthy feature is that, even though the overall mass
fraction f decreases with smaller A0, the corresponding
halo density ρh increases. This is a consequence of the
important role of ellipticity in the collapse; see Sec. II for
more details. As the amplitudes of primordial perturbations
decrease, the overdensities that can collapse to form
ultradense halos are rarer and hence increasingly spherical
(e.g., [87]). This allows the halos to form at earlier epochs
and therefore possess larger internal density.
We derive current constraints and forecast what is

accessible with future HSC observations (see for example
forecasts in Ref. [123]) by following the same steps as in
the previous section. In particular, we assume Tobs ¼ 7 h to
derive the constraint using available HSC observations [71]
and Tobs ¼ 70 h to forecast future reach (extrapolating the
same detection efficiency and assuming the same number
of stars in the survey).
We first test the impact of different parametrizations of

the spectral shape, Eqs. (29) and (30). Figure 9 shows the
current HSC constraint for both cases under the optimistic

assumption that α ¼ 103 [see Eq. (10)]. The close match
between the two outcomes confirms that the particular form
of the low-mass tail of the power spectrum is not important.
Figure 10 shows the HSC constraints for the PPLþExp

ζ ðkÞ
power spectrum parametrization [Eq. (29)]. Under the
optimistic assumption that α ¼ 103, current measurements
force the spectral amplitude to be A0 ≲ 2 × 10−3 around
k0 ¼ 107 (solid blue curve). Increasing the observation
time Tobs by a factor of 10 would give rise to slightly more
stringent constraints (solid red curve) in a wider range of k0.
We also note that for larger spectral amplitudes A0, the
constraint degrades. This is a consequence of the more
diffuse halos that arise if the amplitudes of initial density
perturbations are too large, as discussed above.
As we discussed in Sec. II, α parametrizes theoretical

uncertainty about the internal structures of ultradense halos.
If we adopt a more moderate assumption, α ¼ 30, then the
current constraint disappears and only future observations
can constrain a smaller portion of parameter space (red
dashed curve). With the most conservative assumption of
α ¼ 1 instead, both current and future constraints disap-
pear, as the lenses are then too diffuse to generate
observable signatures within the HSC survey. This outcome
motivates further study of the ultradense halo formation
scenario, likely with numerical simulations, to understand
their internal structures and hence determine whether they
can produce solid constraints through microlensing.

A. Consequences for PBHs and GWs

In this section, we briefly summarize the potential
consequences of these constraints on scenarios of PBH
formation as well as the production of induced GWs.

FIG. 9. Comparison between HSC constraints on the PLþ Exp
or PLþ PL power spectra in Eqs. (29) and (30) that peak at
amplitude A0 at the scale wave number k0. We shade the region
excluded by current HSC observations with Tobs ¼ 7 h under the
optimistic assumption α ¼ 103 about ultradense halos’ internal
structures. Evidently, the two parametrizations yield comparable
results.

FIG. 8. Ultradense halos arising from the PLþ Exp power
spectrum [Eq. (29), solid curves] and the PLþ PL power
spectrum [Eq. (30), dashed curves]. We fix k0 ¼ 6 ×
106 Mpc−1 but vary the amplitude A0 from 10−4 to 10−1

(different colors). Upper panel: the differential dark matter mass
fraction in halos as a function of formation mass M. Middle
panel: halo’s characteristic density ρh, as a function of formation
massM, for α ranging from 1 to 103 [shaded bands; see Eq. (10)].
The lines correspond to α ¼ 30; for the PLþ PL power spectrum
(dashed) we only show this line. The right-hand axis also denotes
the halo formation time (the bands are not relevant here). Lower
panel: likewise, a halo’s scale radius rh as a function of formation
mass M.
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1. Primordial black holes

To compare lensing constraints with the PBH scenario,
we compute the power spectral amplitude required to
generate a significant abundance of PBHs assuming both
spectra defined in Eqs. (29) and (30).
The first step is to consider the relationship

MH ≃ 17M⊙

�
g�

10.75

�
−1=6

�
k=κ
pc−1

�
−2

ð31Þ

between the cosmological horizon mass MH, which relates
to the PBH mass mPBH by an order unity factor dictated by
the critical collapse parameters [124], and the comoving
wave number k. Here, g� is the effective number of degrees
of freedom of relativistic particles and κ ≡ krm relates k to
the characteristic perturbation size at horizon crossing rm.
For example, if we consider a spectrum centered around

k0 ¼ 6 × 106 Mpc−1 one finds MH ≈ 2.5M⊙, correspond-
ing to the formation of PBHs of around a solar mass.
We compute the PBH abundance fPBH as [6]

fPBH≡ ΩPBH

ΩCDM
¼ 1

ΩCDM

Z
dlogMH

�
Meq

MH

�
1=2

βðMHÞ; ð32Þ

where MH is the horizon mass at the time of horizon
reentry, Meq ≃ 3 × 1017M⊙ the horizon mass at matter-
radiation equality, and ΩCDM is the dark matter density
today (in units of the critical density). Adopting threshold
statistics, we compute the mass fraction assuming Gaussian
primordial curvature perturbations5 and accounting for the
nonlinear relationship between curvature and density per-
turbations [127–129]. One obtains

βðMHÞ ¼ K
Z

δmax
l

δmin
l

dδl

�
δl −

1

4Φ
δ2l − δc

�
γ

PGðδlÞ; ð33Þ

PGðδlÞ ¼
1ffiffiffiffiffiffi

2π
p

σðrmÞ
e−δ

2
l =2σ

2ðrmÞ; ð34Þ

where δl is the linear (i.e. Gaussian) component of the
density contrast and the integration boundaries are dictated
by having overthreshold perturbations and type-I PBH
collapse (see, e.g., [130]). We indicate with σðrmÞ the
variance of the linear density field computed at horizon
crossing time and smoothed on a scale rm (see, e.g.,
Ref. [30] for more details), while δc is the threshold for
collapse. We also introduced the parameters K and γ to
include the effect of critical collapse, while Φ controls the
relationship between the density contrast and the curvature
perturbations.
We adopt the technique of Ref. [68] to compute the

threshold δc for PBH formation. The PLþ Exp spectrum
[Eq. (29)] gives rise to collapsing peaks for which the
characteristic comoving size is κ≡ rmk ¼ 2.51, the shape
parameter is αc ¼ 4.14 (see Ref. [130] for more details) and
the threshold for collapse is δc ¼ 0.572 in the limit of
perfect radiation domination. When considering the PLþ
PL spectrum [Eq. (30)], we find instead that κ ¼ 2.36,
αc ¼ 3.25, and δc ¼ 0.558.
We include the effect of the softening of the equation of

state of the Standard Model plasma due to the QCD
transition as done in Ref. [30] and based on the numerical
simulations of Ref. [131] (see also [31,132,133]). This
generates the slight dip in the black lines of Fig. 10
around MH ≈M⊙.
The gray shaded region at the top of Fig. 10 is

immediately ruled out because PBHs would be produced
with an abundance larger than all of the dark matter in our

FIG. 10. Parameter space excluded by current (7 h) and future
(70 h) HSC observations, assuming a PLþ Exp power spectrum
of the form in Eq. (29) that peaks at amplitude A0 at the scale
wave number k0. The optimistic assumption α ¼ 103 about the
internal density of ultradense halos results in the blue region
being ruled out currently and the larger red region in the forecast.
For the more moderate assumption α ¼ 30, current data do not set
constraints, but the 70-h observations are forecasted to rule out
the region enclosed by the dashed line. If we assume α ¼ 1, then
neither current nor the forecasted observations can set any
constraint. At the top, we indicate the horizon mass MH
corresponding to k0 [assuming g� ¼ 25 and κ ¼ 2.5; see
Eq. (31)], which is close to the mass scale of the PBHs that
would result from primordial power at that scale. We also indicate
the SGWB peak frequency fGW corresponding to power at that
scale. We shade in gray the region already ruled out by requiring
no overproduction of PBHs, while the solid black horizontal lines
correspond to the PBH mass fractions fPBH ¼ ½1; 10−3; 10−5�
from top to bottom. The horizontal green lines indicate the energy
density of the SGWB, ΩSGWB ¼ ½10−10; 10−11; 10−12; 10−13�.

5See, however, the recent Refs. [125,126] for nonperturbative
extensions of this computation if one assumes non-Gaussian
primordial curvature perturbations.
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Universe (fPBH ≥ 1). The two lines below indicate PBH
mass fractions fPBH ¼ 10−3 and fPBH ¼ 10−5, respectively,
following the logarithmic scaling with A0. We conclude
from the plot that, provided that dark matter can cluster on
the relevant scales and that halos are dense enough with
α ≈ 103, current HSC data exclude the possibility that a
narrow population of PBHs with stellar mass comprise a
non-negligible fraction of the dark matter.

2. Induced stochastic GW background

We also compute the GW signal sourced by scalar
perturbations at second order to show how constraints
on ultradense dark matter halos may have interesting
consequences for induced GWs within the nanohertz
frequency range [134–138]. The frequency fGW of the
stochastic GW background (SGWB) is related to the
comoving wave number k ¼ 2πfGW by the relation

k ≃ 6.47 × 1014
�
fGW
Hz

�
Mpc−1: ð35Þ

For example, a spectrum centered around k0 ¼
6 × 106 Mpc−1 corresponds to fGW ≈ 9 × 10−9 Hz. This
falls within the range of frequencies corresponding to the
putative signal recently reported by the NANOGrav
Collaboration [44] (and also independently supported by
other pulsar timing array data [45–47]).
The current energy density of GWs is given by [38–43]

ΩGW;0 ¼ 0.39Ωr;0

�
g�ðTHÞ
106.75

��
g�;sðTHÞ
106.75

�
−4
3

ΩGW;H ð36Þ

as a function of their frequency fGW, with

ΩGW;H ¼
�

k
kH

�
−2b Z ∞

0

dv
Z

1þv

j1−vj
duT ðu;vÞPζðkuÞPζðkvÞ

ð37Þ

(see, e.g., Ref. [9] for a recent review). Here, b≡ ð1 −
3wÞ=ð1þ 3wÞ with w being the Universe’s equation of
state at the emission time, Ωr;0 is the density fraction of
radiation, g�ðTÞ and g�;sðTÞ are the temperature-dependent
effective number of degrees of freedom for energy density
and entropy density, respectively, and T ðu; vÞ is the
transfer function [139,140]. We denote with the subscript
“H” the time when induced GWs of the given wave number
k fall sufficiently within the Hubble horizon to behave as a
radiation fluid in an expanding universe.
In Fig. 10, we show the GW abundance produced at

second order by the curvature power spectrum in Eq. (29).
Current and future constraints would be able to rule out the
scalar-induced interpretation of the SGWB potentially
hinted by the PTA data, again provided that the internal
density of ultradense halos is sufficiently high (α ≈ 103)

and that dark matter can cluster on the relevant
∼107 Mpc−1 scales.

V. CONCLUSIONS AND OUTLOOK

Constraining the primordial Universe is one of the
fundamental endeavors of modern cosmology. While
CMB and large-scale structure observations allow us to
measure the amplitude of perturbations at megaparsec
scales and higher, primordial fluctuations on smaller scales
evade our observational capabilities. Developments in the
theory of PBH formation and GW emission allow us to set
conservative upper limits on the amplitudes of initial
perturbations, while current and future GW data may allow
for stronger constraints or, potentially, discoveries.
PBHs and the stochastic GW background probe scenar-

ios where the amplitudes of perturbations are enhanced at
small scales. In this paper we have discussed a different
probe of these scenarios: the potential lensing signatures
left by the formation of ultradense dark matter halos in the
early Universe, as modeled in Ref. [90]. Using data from
the HSC, OGLE, and EROS surveys, we showed that it is
possible to constrain the amplitude of perturbations at small
scales. In particular, the Subaru-HSC observations may
allow us to constrain primordial perturbations in a narrow
range of scales around k ∼ 107 Mpc−1. Such scales corre-
spond to the formation of stellar mass PBHs, which are of
interest for LIGO/Virgo/Kagra and next-generation gravi-
tational-wave detectors. Perturbations at these scales could
also source a stochastic GW background in the nanohertz
range, which is of potential interest to PTA experiments.
Microlensing of ultradense halos could probe primordial
spectral amplitudes as low as Pζ ≃ 10−4.
The principal limitation to this approach is that it requires

that the dark matter be capable of clustering, and remaining
clustered, at the relevant k ∼ 107 Mpc−1 scales. If the dark
matter is too warm [141,142] or too light [143,144], then its
thermal motion or quantum pressure, respectively, could
preclude the formation of the sub-Earth-mass halos that
arise from perturbations on such scales. However, particle
dark matter heavier than about 10−7 eV [144] (including
the QCD axion [145]) can carry density perturbations at the
relevant Oð0.1Þ pc scales as long as it was never in kinetic
equilibrium with the Standard Model plasma. So can
particles that were in thermal contact with the plasma as
long as they are heavier thanOð100Þ GeV (with the precise
threshold being sensitive to when kinetic decoupling
occurred [146]). Meanwhile, if the dark matter has signifi-
cant nongravitational self-interactions, then collisional
relaxation effects would likely suppress the density inside
ultradense halos to a significant extent over cosmic time
(e.g., [147]). A similar effect would arise from gravitational
collisions if the dark matter is predominantly PBHs at mass
scales not sufficiently smaller than the ultradense halo mass
scale (e.g., [148]). However, collisionless particle dark
matter would preserve the internal density of ultradense
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halos. PBH dark matter toward the lower end of the
asteroid-mass window (e.g., [18]) is likely also light
enough to maintain the density within the relevant 10−8 −
10−7M⊙ halos.
Finally, we emphasize that our current and prospective

constraints are subject to significant theoretical uncertainty
regarding the properties of halos that form during the
radiation epoch, particularly their internal density values.
While optimistic assumptions produce very interesting
constraints on primordial power that are relevant to the
interpretations of ongoing GW and PTA experiments,
conservative assumptions yield no constraint from micro-
lensing. This outcome motivates more detailed explora-
tions, likely with numerical simulations of cosmological
volumes, of halo formation during the radiation epoch.
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APPENDIX: MICROLENSING SURVEYS

In this appendix, we summarize the setup of the three
surveys we consider in this work. These are EROS-2 [70],
OGLE-IV [73], and Subaru-HSC [71].

1. EROS

The EROS-2 survey observes stars located within the
Large Magellanic Cloud (LMC), which is placed at a
distance DS ¼ 50 kpc away from Earth. We neglect the
contribution from Small Magellanic Cloud data in this
analysis as its constraining power was shown to be
subdominant compared to LMC sources. The lenses are
assumed to be distributed within the Milky Way (MW), and
we describe its dark matter density distribution as an
isothermal profile [110,149]:

ρDMðrÞ ¼
ρs

1þ ðr=risoÞ2
ðA1Þ

with ρs ¼ 1.39 GeV=cm3 and riso ¼ 4.38 kpc. The radial
position r can be rewritten from Earth’s location as

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
Sol − 2xRSolDS cosl cos bþ x2D2

S

q
; ðA2Þ

where Rsol ¼ 8.5 kpc is the Sun’s radial position and
ðl; bÞ ¼ ð280°;−33°Þ are the LMC’s sky coordinates.
The MW circular speed is taken to be approximately

v0 ¼ 220 km=s [150]. The number of source stars that
are used in the survey is N⋆ ¼ 5.49 × 106 and the obser-
vation time is 2500 days. The efficiency factor ϵðtEÞ can be
found in Fig. 11 of Ref. [70]. As the EROS-2 LMC survey
has only observed one candidate microlensing signature
(which we assume to be of astrophysical origin), i.e.
Nobs ¼ 1, one can set an upper bound at 90% confidence
level by requiring Nexp ≲ 3.9, assuming Poisson statistics.
The constraint we derive adopting the EROS survey is

shown in Fig. 7, assuming a monochromatic mass distri-
bution of lenses of various sizes, and occupies the range of
masses M ∈ ½10−4–10�M⊙. As one can see, there is no
difference in the constraint for lens density values
ρ̄≳ 10−9M⊙R−3

⊙ . This is because such a lens is much
smaller than its Einstein radius (17) and close to the
pointlike limit. A similar argument leads to the conclusion
that the finite source size effect is also irrelevant. Therefore,
in Eq. (28) we marginalize the distribution of stellar sizes.

2. OGLE

The OGLE-IV survey adopts as light sources stars of the
Milky Way bulge. When deriving the constraint based on
the OGLE-IV survey, we describe the isothermal density
profile of the MW halo as in the previous section. However,
we set the distance to the source stars as DS ≃ 8.5 kpc, the
longitude and latitude of the source in Galactic coordinates
as ðl; bÞ ¼ ð1.09°;−2.39°Þ and the detection efficiencies at
the values provided in Ref. [73]. In this case, the number of
source stars that are used in the survey is N⋆ ¼ 4.88 × 107

and the observation time is 1826 days.
One important difference of OGLE-IV compared to the

other surveys is the presence of 2622 candidate events
observed in their 5-year dataset, which is found to agree
within 1% with astrophysical models of standard fore-
ground events [73] (see also [151]). It is also interesting to
notice that the survey identified Nobs ¼ 6 events near tE ∼
0.1 days for which there is no satisfactory explanation is
found within the foreground model [73,152,153] and that
constitute potential PBH detections. Here, we will assume
it constitutes a foreground, regardless of its nature. We
derive the constraint on the fraction f of dark matter in lens
objects by requiring that the combination [110]

κ ¼ 2
XNbins

i¼1

�
NFG

i − NSIG
i þ NSIG

i ln
NSIG

i

NFG
i

�
ðA3Þ

be smaller than κ ¼ 4.61, which corresponds to the
90% confidence level assuming Poisson statistics. Here,
the index i indicates the binning of events by tE adopted in
Ref. [73], NDM

i is the number of lensing signals induced by
dark matter halos from Eq. (28), NFG

i is the number of
astrophysical foreground events, and NSIG

i ≡ NFG
i þ NDM

i .
The resulting constraint for a monochromatic halo mass

distribution is shown in Fig. 7. The OGLE survey is
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dominant in the range of masses M ∈ ½10−6 − 10−3�M⊙.
Due to the lighter lenses considered here, and the con-
sequent smaller Einstein radius, the constraint begins to
degrade when ρ̄≲ 10−9M⊙R−3

⊙ .

3. HSC

The Subaru-HSC survey [71] observed stars of the
M31 galaxy, whose distances from us are approximately
DS ≃ 770 kpc. The lensing signatures may arise from the
presence of compact structures in both the MW and
M31. The circular speeds are taken to be approximately
v0 ¼ 220 km=s for the MW [150] and v0 ¼ 250 km=s for
M31 [154]. The differential event rate is therefore the sum
of two pieces dΓ ¼ dΓMW þ dΓM31. We find that the
contribution from lenses within the MW dominates the
number of events. Following Ref. [71], the spatial dark
matter distribution of the MW is assumed to be given by an
NFW profile with scale density 0.184 GeV=cm3, scale
radius 21.5 kpc, and r determined from Earth’s location
as in Eq. (A2) with ðl; bÞ ¼ ð121.2°;−21.6°Þ [155]. The
number of stars in the Subaru-HSC survey is
N⋆ ¼ 8.7 × 107, while the observation time is Tobs ¼ 7 h.

Finally, the detection efficiency is given by Fig. 19 in
Ref. [71]. Following Ref. [109], we approximate the
detection efficiency as ϵ ¼ 0.5 in the regime with
2 min ≤ tE ≤ 7 h.
The constrained lens masses in the Subaru-HSC survey

are much lighter than in the case of EROS and OGLE
surveys. Therefore, they correspond to much smaller
Einstein radii for which both extended lens size and the
finite source size corrections are important. In particular,
the latter effect was neglected in the first version of the
analysis of Ref. [71] that lead to an overestimation of the
number of detectable events below around 10−11M⊙, which
is instead drastically suppressed. Following Ref. [117],
when integrating over the source star radii of M31 R⋆ in
Eq. (28), we adopt the distribution derived using the
Panchromatic Hubble Andromeda Treasury star catalog
[156,157] and the MESA Isochrones and Stellar Tracks
stellar evolution package [158,159] (see Fig. 4 of Ref. [117]
and related discussion for more details). Also in this case,
we consider the HSC single microlensing event candidate
as foreground and requireNexp ≲ 3.9, which corresponds to
the 90% confidence level assuming Poisson statistics.
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de Genève, 2021, arXiv:2110.06815.

[9] G. Domènech, Universe 7, 398 (2021).
[10] Y. B. Zel’dovich and I. D. Novikov, Sov. Astron. 10, 602

(1967).
[11] S. W. Hawking, Nature (London) 248, 30 (1974).
[12] G. F. Chapline, Nature (London) 253, 251 (1975).
[13] B. J. Carr, Astrophys. J. 201, 1 (1975).
[14] P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50,

7173 (1994).
[15] J. Garcia-Bellido, A. D. Linde, and D. Wands, Phys. Rev.

D 54, 6040 (1996).
[16] P. Ivanov, Phys. Rev. D 57, 7145 (1998).
[17] S. Blinnikov, A. Dolgov, N. K. Porayko, and K. Postnov,

J. Cosmol. Astropart. Phys. 11 (2016) 036.

[18] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Rep.
Prog. Phys. 84, 116902 (2021).

[19] M. Volonteri, Astron. Astrophys. Rev. 18, 279 (2010).
[20] B. Carr and J. Silk, Mon. Not. R. Astron. Soc. 478, 3756

(2018).
[21] S. Clesse and J. García-Bellido, Phys. Rev. D 92, 023524

(2015).
[22] P. D. Serpico, V. Poulin, D. Inman, and K. Kohri, Phys.

Rev. Res. 2, 023204 (2020).
[23] M. Volonteri, M. Habouzit, and M. Colpi, Nat. Rev. Phys.

3, 732 (2021).
[24] S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haïmoud, M.

Kamionkowski, E. D. Kovetz, A. Raccanelli, and A. G.
Riess, Phys. Rev. Lett. 116, 201301 (2016).

[25] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama,
Phys. Rev. Lett. 117, 061101 (2016); 121, 059901(E)
(2018).

[26] Y. Ali-Haïmoud, E. D. Kovetz, and M. Kamionkowski,
Phys. Rev. D 96, 123523 (2017).

[27] M. Raidal, C. Spethmann, V. Vaskonen, and H. Veermäe,
J. Cosmol. Astropart. Phys. 02 (2019) 018.

[28] G. Franciolini, V. Baibhav, V. De Luca, K. K. Y. Ng,
K. W. K. Wong, E. Berti, P. Pani, A. Riotto, and S.
Vitale, Phys. Rev. D 105, 083526 (2022).

[29] L. Liu, X.-Y. Yang, Z.-K. Guo, and R.-G. Cai, J. Cosmol.
Astropart. Phys. 01 (2023) 006.

[30] G. Franciolini, I. Musco, P. Pani, and A. Urbano, Phys.
Rev. D 106, 123526 (2022).
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