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51Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro, Rio de Janeiro 20921-400, Brazil
52Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München,

Scheinerstrasse 1, 81679 München, Germany
53Department of Physics, University of Oxford,

Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
54School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom

55Department of Astronomy, University of Geneva, Chemin d’Écogia 16, CH-1290 Versoix, Switzerland
56Santa Cruz Institute for Particle Physics, Santa Cruz, California 95064, USA
57Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

58Center for Astrophysics | Harvard & Smithsonian,
60 Garden Street, Cambridge, Massachusetts 02138, USA

59Australian Astronomical Optics, Macquarie University, North Ryde, New South Wales 2113, Australia
60Lowell Observatory, 1400 Mars Hill Road, Flagstaff, Arizona 86001, USA

T. M. C. ABBOTT et al. PHYS. REV. D 107, 083504 (2023)

083504-2



61Department of Physics and Astronomy, Pevensey Building, University of Sussex,
Brighton BN1 9QH, United Kingdom

62School of Mathematics, Statistics and Physics, Newcastle University,
Newcastle upon Tyne NE1 7RU, United Kingdom

63Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências, Universidade de Lisboa,
1769-016 Lisboa, Portugal

64Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,
CP 66318, São Paulo, São Paulo 05314-970, Brazil

65Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, United Kingdom

66George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,
and Department of Physics and Astronomy, Texas A&M University,

College Station, Texas 77843, USA
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We constrain six possible extensions to the Λ cold dark matter (CDM) model using measurements from
the Dark Energy Survey’s first three years of observations, alone and in combination with external
cosmological probes. The DES data are the two-point correlation functions of weak gravitational lensing,
galaxy clustering, and their cross-correlation. We use simulated data vectors and blind analyses of real data
to validate the robustness of our results to astrophysical and modeling systematic errors. In many cases,
constraining power is limited by the absence of theoretical predictions beyond the linear regime that are
reliable at our required precision. The ΛCDM extensions are dark energy with a time-dependent equation
of state, nonzero spatial curvature, additional relativistic degrees of freedom, sterile neutrinos with eV-scale
mass, modifications of gravitational physics, and a binned σ8ðzÞ model which serves as a phenomeno-
logical probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot
redshift we find ðwp; waÞ ¼ ð−0.99þ0.28

−0.17 ;−0.9� 1.2Þ at 68% confidence with zp ¼ 0.24 from the DES

measurements alone, and ðwp; waÞ ¼ ð−1.03þ0.04
−0.03 ;−0.4

þ0.4
−0.3Þ with zp ¼ 0.21 for the combination of all data

considered. Curvature constraints of Ωk ¼ 0.0009� 0.0017 and effective relativistic species Neff ¼
3.10þ0.15

−0.16 are dominated by external data, though adding DES information to external low-redshift probes
tightens the Ωk constraints that can be made without cosmic microwave background observables by 20%.
For massive sterile neutrinos, DES combined with external data improves the upper bound on the massmeff
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by a factor of 3 compared to previous analyses, giving 95% limits of ðΔNeff ; meffÞ ≤ ð0.28; 0.20 eVÞ when
using priors matching a comparable Planck analysis. For modified gravity, we constrain changes to the
lensing and Poisson equations controlled by functions Σðk; zÞ ¼ Σ0ΩΛðzÞ=ΩΛ;0 and μðk; zÞ ¼
μ0ΩΛðzÞ=ΩΛ;0, respectively, to Σ0 ¼ 0.6þ0.4

−0.5 from DES alone and ðΣ0; μ0Þ ¼ ð0.04� 0.05; 0.08þ0.21
−0.19 Þ

for the combination of all data, both at 68% confidence. Overall, we find no significant evidence for physics
beyond ΛCDM.

DOI: 10.1103/PhysRevD.107.083504

I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe made about two decades ago [1,2] established
Λ cold dark matter (ΛCDM) as the standard model in
cosmology. This paradigm relies on three pillars: that
general relativity correctly describes gravitational inter-
actions at cosmological scales; that at those scales the
Universe appears homogeneous, isotropic, and spatially
flat; and that the Universe’s content at late times is
dominated by nonrelativistic, pressureless CDM and the
cosmological constant term Λ. The resulting ΛCDMmodel
is in good agreement with cosmological observations from
a wide range of temporal and spatial scales [3–22].
The impressive phenomenological success of the ΛCDM

model has not been matched in our understanding of
the physical nature of dark energy [23,24], nor in insights
as to why the cosmological constant appears to be so
small relative to natural scales in particle physics [25–28].
Therefore, cosmology is in need of new and better data that
can help shed light on these cosmological conundrums. The
quest to understand dark energy has spawned a worldwide
effort to measure the growth and evolution of cosmic
structures in the Universe. Ongoing experiments focused
on dark energy include wide field photometric surveys such
as the Dark Energy Survey (DES)1 [29–31], the Hyper
Suprime-Cam Subaru Strategic Program2 [18,32], and the
Kilo-Degree Survey (KiDS)3 [19,33], in addition to ongoing
spectroscopic surveys like the Extended Baryon Oscillation
Spectroscopic Survey (eBOSS)4 [34] and the Dark Energy
Spectroscopic Instrument (DESI)5 [35]. These surveys have
demonstrated the feasibility of ambitious large-scale struc-
ture analyses, featured development of state-of-the-art sys-
tematics calibration, and established new standards in
protecting analyses against observer bias before the results
are revealed. Thus far, these surveys have provided con-
straints consistent with the ΛCDM model and contributed
to tightening the constraints on several key cosmological
parameters.

Using data from these surveys to search for deviations
from the predictions of ΛCDM is one of the primary goals
of modern cosmology. Such deviations could provide clues
as to where that minimal cosmological model needs to be
extended, and thus a deeper understanding of the funda-
mental physics impacting the large-scale properties of the
Universe. One approach to testing the ΛCDM model is to
compare ΛCDM parameter estimates inferred from differ-
ent sets of observables. This is the motivation behind the
ongoing exploration of the 3–5σ tension in measurements
of the Hubble constant H0 between low-redshift distance-
ladder measurements and those from the cosmic microwave
background (CMB) at z ≈ 1100 (see Refs. [36–41] for a
summary), as well as the scrutiny of 1–3σ offsets between
large-scale structure [16–19,30,42–46] and CMB-based
[11,12] constraints on the amplitude of matter density
fluctuations scaled by the square root of the matter
density, S8 ≡ σ8ðΩm=0.3Þ0.5.
In the present analysis we adopt a complementary

approach by constraining cosmological models which
add physics beyond that of the standard ΛCDM paradigm.
While future precision measurements and careful charac-
terization of existing data (e.g., as in Refs. [47,48]) will
undoubtedly be required to resolve the origin of any
tensions between datasets, it is also valuable to investigate
whether (or to what extent) any observed offsets may be
alleviated by new physics. Additionally, constraining the
parameters of extended models can offer greater sensitivity
to signatures of beyond-ΛCDM physics that may not
manifest clearly as a tension between different measure-
ments of ΛCDM parameters.
This paper constrains a range of extended models using a

combined analysis of weak-lensing and galaxy-clustering
observations from the first three years of data6 of the Dark
Energy Survey (henceforth DES Y3) [49]. The models are
as follows:

(i) Dynamical dark energy parametrized via the linear
expansion of the dark energy equation of state
wðaÞ ¼ w0 þ ð1 − aÞwa;

(ii) nonzero spatial curvature Ωk;
(iii) varying the effective number of relativistic species

Neff ;1http://www.darkenergysurvey.org/.
2https://www.naoj.org/Projects/HSC/.
3http://kids.strw.leidenuniv.nl/.
4https://www.sdss.org/surveys/eboss/.
5https://www.desi.lbl.gov/.

6Publicly available at https://des.ncsa.illinois.edu/releases/
y3a2.
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(iv) sterile neutrinos varying parameters Neff and meff to
control the particles’ temperature and effective mass,
respectively;

(v) deviations from general relativity introduced via the
functions Σðk; zÞ ¼ Σ0ΩΛðzÞ=ΩΛ;0 and μðk; zÞ ¼
μ0ΩΛðzÞ=ΩΛ;0, respectively, modifying the lensing
and Poisson equations;

(vi) variation of the growth rate of structure parametrized
by independent σ8 values in different redshift bins.

Theselectionof thesemodelsdictatedbothby their interest to
the cosmologycommunity (this is the primarymotivation for
w0 − wa, Ωk, Neff ) and by the kinds of physics about which
DES measurements add qualitatively new information
[primarily motivating Neff −meff , Σ0 − μ0, binned σ8ðzÞ].
This work is a successor to the DES Y1 extended-

model analysis [50], which for conciseness we will
reference as DES-Y1Ext, and complements the main
DES Y3 galaxy-clustering and weak-lensing analysis
[44] (henceforth DES-Y3KP) that presented cosmology
results for ΛCDM and the wCDM model testing for a
constant dark energy equation of state different from −1.
All of these studies extract cosmological information
from DES data via a so-called “3 × 2 pt” analysis, in
which parameter estimation is based on the combined
analysis of three types of projected two-point correlation
functions: cosmic shear measurements capturing weak-
lensing distortions to the shape of background source
galaxies, galaxy-clustering measurements of the posi-
tions of foreground lens galaxies, and the tangential shear
of source galaxy shapes around each of the lens positions.
Compared to DES-Y1Ext, this work includes a number of
updates, the most notable being that the DES Y3 data
cover roughly 3 times the sky area included in the Y1
analysis. To maximize the constraining power of our
cosmological data, we will additionally combine the DES
Y3 3 × 2 pt constraints with the following external data-
sets: baryon acoustic oscillations (BAOs) and redshift-
space distortion (RSD) measurements from the eBOSS,
6dF, and main galaxy sample (MGS) galaxy surveys [15],
the Pantheon type Ia supernova (SN) catalog [8], and the
Planck 2018 CMB data [51].
The paper is organized as follows: In Sec. II we describe

the DES Y3 data used in this analysis and the baseline
modeling of the observables. Sections III and IVare devoted
to a presentation of the extended models and the main
datasets exploited in this work, respectively. In Sec. V we
discuss the details of our analysis validation.We present our
main results in Sec. VI and conclude in Sec. VII.

II. DATA AND BASELINE MODELING

In this section we describe the DES data used in this
analysis and the likelihood used to perform parameter
estimation based on the angular two-point correlation
function (2PCF) summary statistics into which those data
are condensed.

A. Source and lens catalogs

The Dark Energy Survey is a 5000 deg2 photometric
galaxy survey which, over the course of six years, collected
data using the Dark Energy Camera [52], mounted on the
Víctor Blanco 4 m telescope at the Cerro Tololo Inter-
American Observatory in Chile. In this work we employ
data from the first three years of DES observations, which
constitute the DES Data Release 1 (DR1 [49]). Those data
were processed to produce a photometric catalog of
399 million objects with signal-to-noise ratio of ∼10
in r,i,z coadd images. For cosmological inference, we
further refine this catalog to produce a “gold” sample
[53] containing 319 million objects, extending to a limiting
magnitude of 23 in the i-band.
From the gold sample galaxies we select two samples:

“source” (background) galaxies, whose shear is used for
measurements of gravitational lensing, and “lens” (fore-
ground) galaxies, whose positions are recorded and used
for measurements of galaxy clustering. The source galaxy
sample is used to produce the DES Y3 shape catalog [54].
We measure galaxy shapes with the METACALIBRATION

pipeline [55,56], which uses r,i,z-band information to
infer objects’ ellipticity and other photometric properties,
employing updates to point spread function solutions [57],
astrometric solutions [53], and inverse-variance weighting
for the galaxies to improve upon a similar pipeline used
for the DES Y1 analysis [30]. Multiplicative shear bias is
calibrated using image simulations [58] and redshifts are
inferred using a self-organizing-map approach [59,60]
which connects wide and deep-field [61] galaxy measure-
ments using Balrog simulations [62]. The final DES Y3
shape catalog contains 100 million galaxies covering an
area of 4143 deg2, with a weighted effective number
density neff ¼ 5.9 per arcmin2 and corresponding shape
noise σe ¼ 0.26.
The lens galaxy sample that we use in this paper,

MagLim [63], is one of the two lens samples considered
in DES-Y3KP. The MagLim sample contains sources
selected to be in the redshift range 0.2 ≤ z ≤ 1.05 and is
divided into six tomographic bins with nominal edges
z ¼ ½0.20; 0.40; 0.55; 0.70; 0.85; 0.95; 1.05�. Uncertainties
in the photometric redshift estimator used to define these
bins cause the bins’ actual nðzÞ redshift distributions to
extend outside those bounds. The inferred lens redshift
distributions have been further validated using cross-
correlations between galaxies in MagLim with spectroscopic
galaxy samples [64]. Weights based on the correlation
between number density with survey properties mitigate the
impact of observing systematics [65]. References [65,66]
describe the sample’s validation and characterization in
more detail.
We follow DES-Y3KP in removing the two highest

redshift MagLim bins from our analysis, as studies after
unblinding the Λ=wCDM results revealed issues with the
sample at z > 0.85. These issues, which manifest as an
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inability of the model to consistently match the clustering
amplitude of galaxy clustering and galaxy-galaxy lensing
in the last two tomographic bins, were initially detected
because they contribute to poor Λ=wCDM model fits.
While this might be of particular interest to searches for
beyond-ΛCDM physics, investigation since suggests that
the issue is most plausibly caused by systematics related to
photometric calibration. Further discussion can be found in
Refs. [44,46,66]. Given these indications, we choose to
adopt a conservative approach of removing the impacted
MagLim bins from our analysis.

B. 2PCF: Measurements

The cosmological information contained in the lens
and source samples described above is then summarized
in three 2PCFs:

(i) Galaxy clustering: the autocorrelation of lens galaxy
positions wiðθÞ in each redshift bin i, i.e., the
fractional excess number of galaxy pairs of separa-
tion θ relative to the number of pairs of randomly
distributed points within our survey mask [65].

(ii) Cosmic shear: the autocorrelation of source galaxy
shapes within and between source redshift bins i, j,
of which there are two components ξi;j� ðθÞ, taking
the products of the ellipticity components of pairs of
galaxies, either adding (þ) or subtracting (−) the
component tangential to the line connecting the
galaxies and the component rotated by π=4 [67,68].

(iii) Galaxy-galaxy lensing: the mean tangential
ellipticity of source galaxy shapes around lens
galaxy positions γi;jt ðθÞ, for each pair of redshift
bins i, j [69].

Details of these measurements and the checks for potential
systematic effects in them are described in detail in
Refs. [65,67–69], and an overview of the full data vector
is given in Ref. [44]. We follow DES-Y3KP and refer to the
combined list of fwiðθÞ; ξij�ðθÞ; γijt ðθÞg, for all angles θ
and redshift bins i and j, as the “data vector.” Section II C
below has more details about the component pieces of the
data vector.
Each of these measurements is performed in a set of

20 logarithmic bins of angular separation between 2.5 and
250 arcmin using the software TREECORR [70]. We only use
a subset of these bins, removing angular scales where our
model is not sufficiently accurate, as discussed in Sec. II D.

C. 2PCF: Baseline modeling

Our baseline modeling methodology generally follows
that used in DES-Y3KP [44] and described in detail in the
methodology Y3 paper [71]. Notable differences from the
DES-Y3KP analysis include the use of a simpler nonlinear
alignment (NLA) intrinsic alignment model, as opposed
to the tidal alignment and tidal torquing (TATT) model as
our fiducial intrinsic alignment model, and not using the

shear-ratio likelihood [72] in most of our analysis. Below
we summarize the modeling used to compute the 3 × 2 pt
likelihood, as well as these differences.
As noted above, the Y3–3 × 2 pt analysis consists of a

set of 2PCF measurements describing the angular correla-
tion of lens galaxy positions and source galaxy shapes for
several redshift bins. We model the likelihood as Gaussian
in the data vector D,

lnLðDjΘÞ ¼ −
1

2
½ðD −MðΘÞÞTC−1ðD −MðΘÞÞ� þ L0;

ð1Þ

where Θ is the vector of cosmological and nuisance
parameters, C is the covariance, and L0 is a normalization
constant. The covariance is computed analytically using
CosmoLike [71] including CosmoCov [73]. The likelihood
and the covariance were validated in Ref. [74], where it
has been shown that, for the precision level attained by the
DES Y3 analysis, assuming a Gaussian likelihood with the
various assumptions involved in the computation of C are
all excellent approximations (see in particular Fig. 1 of
Ref. [74]). We sample the above likelihood to obtain
posterior and evidence estimates using the POLYCHORD

nested sampler [75,76], following guidelines for settings
described in Ref. [77]. The length of the fiducial data vector
D is 462 though for some models data points will be
removed to account for modeling uncertainties (see Table I).
The length of the parameter vector Θ for ΛCDM is 28
when fitting DES data alone (additional parameters are
introduced when combining with external data).
Full details of how the data vector D is theoretically

predicted can again be found in Refs. [44,71], but here we
give a brief overview. The 2PCF are computed from the
observed projected galaxy density contrast δg and the shear
field decomposed into E- and B-modes. The 2PCF forming

TABLE I. Number of 3 × 2 pt data points remaining after the
different sets of scale cuts used in this analysis. The fiducial cuts
are the same as those used in DES-Y3KP, linear cuts remove
additional points at small scales affected by nonlinear structure
growth, and linear þ Limber cuts remove data points both at
nonlinear scales and where non-Limber calculations are needed
to accurately model large-angle galaxy clustering. Unless other-
wise noted, whenever a comparison is shown between an
extended model and ΛCDM, the ΛCDM results will use scale
cuts matching those of the extended model.

Data points

Scale cuts ξþ ξ− γt w Total Used for extended models

Fiducial 166 61 192 43 462 w0 − wa, Neff , binned σ8ðzÞ
Linear 105 3 105 43 256 Neff −meff , Σ0 − μ0
Linear þ Limber 100 2 100 19 221 Ωk
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the data vector D can be expressed in terms of the angular
power spectra as

wiðθÞ ¼
X
l

2lþ 1

4π
Plðcos θÞCii

δgδg
ðlÞ;

γijt ðθÞ ¼
X
l

2lþ 1

4π

P2
lðcos θÞ

lðlþ 1Þ C
ij
δgE

ðlÞ;

ξij�ðθÞ ¼
X
l≥2

2lþ 1

4π

2ðGþ
l;2ðxÞ � G−

l;2ðxÞÞ
l2ðlþ 1Þ2

× ½Cij
EEðlÞ � Cij

BBðlÞ�; ð2Þ

where i, j denote redshift bins. Here Pl are the Legendre
polynomials of order l, Pm

l are the associated Legendre

polynomials, x ¼ cos θ, and the functions Gþ=−
l;m ðxÞ are a

combination of the associated Legendre polynomials
Pm
l ðxÞ and Pm

l−1ðxÞ and are given explicitly in Eq. (4.19)
of Ref. [78]. Following DES-Y3KP, we only consider the
autocorrelations wiðθÞ for each tomographic bin since in
the DES Y1 and Y3 analyses it was shown that the cross-
correlations do not add much constraining power and
would make our analysis much more susceptible to
systematic errors related to the modeling of magnification
and redshift distributions [14,63].
The angular power spectra CðlÞ that enter Eq. (2)

combine integrals over tracer distributions with astro-
physical contributions from intrinsic alignments (IAs),
magnification, and RSDs. The shear-shear (EE, BB) and
galaxy-shear (δgE) spectra are computed using the Limber
approximation and include magnification and IAs, but
neglect RSD. Galaxy-galaxy clustering (δgδg) is computed
with via non-Limber integrals with contributions from
both RSD and magnification. These calculations are
described below.
Using the Limber approximation [79] and assuming

spatial flatness, the angular power spectra for cosmic
shear and galaxy-galaxy lensing can be written in a general
form,

Cij
ABðlÞ ¼

Z
dχ

qiAðχÞqjBðχÞ
χ2

Pδ

�
k ¼ lþ 0.5

χ
; z

�
; ð3Þ

where fA;Bg ∈ fδg; κg and κ is the weak-lensing con-
vergence whose contributions to shear correlations will be
detailed below. Here, Pδðk; zÞ is the three-dimensional
matter power spectrum evaluated at wave number k and
redshift z. We use CAMB to compute the linear Pδðk; zÞ and
HALOFIT [80–82] to do nonlinear modeling. The radial
weight functions qiA;B are given by

qiκðχÞ ¼
3H2

0Ωmχ

2aðχÞ
Z

χh

χ
dχ0

�
χ0 − χ

χ0

�
niκðzðχ0ÞÞ

dz
dχ0

;

qiδgðχÞ ¼ biniδðzðχÞÞ
dz
dχ

: ð4Þ

Here H0 is the Hubble parameter today, Ωm is the ratio of
today’s matter density to today’s critical density, and aðχÞ is
the Universe’s scale factor at comoving distance χ. For
conciseness, we refer Refs. [83,84] for the full non-Limber
expressions used for Cij

δgδg
ðlÞ.

In the expression above, we adopt a linear galaxy bias
model to relate the galaxy density δg to the matter density:
δg ¼ biδ, with bi the galaxy bias in lens redshift bin i,
which we vary in the analysis. Furthermore, niκðzÞ and
niδðzÞ denote the redshift distributions of the different DES
Y3 redshift bins of source and lens galaxies, respectively,
normalized so that

R
dzniκ;δðzÞ ¼ 1.

Contributions to observed spectra from intrinsic align-
ments and magnification are included as follows:

Cij
EEðlÞ¼Cij

κκðlÞþCij
κIE

ðlÞþCji
κIE

ðlÞþCij
IEIE

ðlÞ;
Cij
BBðlÞ¼Cij

IBIB
ðlÞ;

Cij
δgE

ðlÞ¼Cij0
δgκ
ðlÞþCij0

δgIE
ðlÞþCiCjC

ij
κgκgðlÞþCiC

ij
κgIE

ðlÞ;
Cii
δgδg

ðlÞ¼Cii0
δgδg

ðlÞþ2CiCii
δgκg

ðlÞþCi2Cii
κgκgðlÞ: ð5Þ

Here IE=B refers to the E/B-modes of the IAs, the prime
denotes nonmagnified power spectra, κg refers to the
convergence of lens galaxies (the corresponding power
spectrum is computed using the first line of equation (4)
replacing niκðzÞ by niδðzÞ), and Ci are magnification con-
stants. We emphasize that, compared to the calculations that
we employ in practice, the expression for galaxy clustering
in Eq. (5) neglects contributions from RSD. These RSD
contributions, which depend on the linear growth factor
fðχÞ, are incorporated—along with magnification—in the
non-Limber calculation of Cii

δgδg
ðlÞ.

We now describe the IAs and magnification effects, as
well as their modeling, in more detail. IA refers to the fact
that galaxies tend to align because of their gravitational
environment, thus contributing to the cosmic shear signal.
Here, we adopt the nonlinear tidal alignment model as our
fiducial IA model [85,86]. The NLA model assumes that
intrinsic galaxy shapes are linearly proportional to the fully
nonlinear tidal field, calculated using the nonlinear power
spectrum. While this ansatz is not a fully consistent
nonlinear model, it is straightforward to calculate and
has been shown to more accurately describe observed
IAs than linear theory (see, e.g., Ref. [87]). Our fiducial
NLAmodel has two free parameters, a and η, which control
the amplitude and redshift dependence of IAs, respectively.
IA includes both gravitational-lensing-intrinsic (GI) and
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intrinsic-intrinsic (II) contributions, whose power spectra
are then given by

PGIðk;zÞ¼A1ðzÞPδðk;zÞ; PIIðk;zÞ¼A2
1ðzÞPδðk;zÞ: ð6Þ

The prefactor A1ðzÞ is

A1ðzÞ ¼ −aC̄1

ρcritΩm

DðzÞ
�
1þ z
1þ z0

�
η

; ð7Þ

where DðzÞ is the linear growth factor normalized to be
equal to ð1þ zÞ−1 at high redshifts, ρcrit is the critical
density, and C̄1 is a normalization constant, by convention
fixed at C̄1 ¼ 5 × 10−14 M−1

⊙ h−2 Mpc3. The IA angular
power spectra are then computed using Eq. (3) with the
kernel qiIðχÞ ¼ niκðzðχÞÞdz=dχ (see Ref. [68] for more
detailed discussion of the IA modeling and implementation
for DES Y3 cosmic shear).
Our decision to adopt the NLA model contrasts with the

DES-Y3KP Λ=wCDM analysis, which adopted a more
complicated TATT IA model. The systematic tests carried
out prior to the DES-Y3KP analysis motivated the use of
the TATT model because when analyzing synthetic data
containing tidal torquing effects of a size allowed by DES
Y1 constraints, cosmological constraints using the simpler
NLA model were found to be biased. However, the ΛCDM
analysis of the Y3-3 × 2 pt data has subsequently shown
preference for a generally lower amplitude of intrinsic
alignments, finding that the NLA model is sufficient for
unbiased modeling at the Y3 precision level. With the
benefit of these ΛCDM results, and the desire to limit the
number of nuisance parameters in our extended-model
analysis, we thus opt for the NLA model. We do however
run additional chains that use TATT, and prior to unblinding
we check if there is a preference for the TATT model over
NLA in any of the beyond-ΛCDM models. We use the
Fast-PT code [88] implemented in CosmoSIS in order to

TABLE II. Parameters and priors describing the baseline
cosmology, extended models, and nuisance parameters used in
this analysis. We quote the lower and upper limits of flat priors
and the mean and standard deviation of Gaussian priors. The
parameter w is fixed to −1 for all models other than wCDM and
w0 − wa, and for wCDM it uses the same prior as for w0. For the
Neff −meff model we fix the sum of active neutrino masses
to 0.06 eV.

Parameter Prior

Base cosmology
Ωm Flat (0.1, 0.9)
109As Flat (0.5, 5.0)
ns Flat (0.87, 1.07)
Ωb Flat (0.03, 0.07)
h Flat (0.55, 0.91)
103Ωνh2 Flat (0.60, 6.44)

0.005 < Ωbh2 < 0.040

Extended cosmology
w0; wa Flat w0 ∈ ð−3.0;−0.33Þ

wa ∈ ð−3.0; 3.0Þ
w0 þ wa < 0

Ωk Flat (−0.25, 0.25)
Neff Flat (1.0, 10.0)
Neff , meff Flat Neff ∈ ð3.044; 10Þ

meff ∈ ð0.0; 3.0Þ eV
Σ0, μ0 Flat Σ0; μ0 ∈ ð−1.5; 1.5Þ

μ0 > 2Σ0 þ 1

APlin
iði ∈ ½2; 4�Þ Flat (0.1, 3)

Lens galaxy bias
biði ∈ ½1; 4�Þ Flat (0.8, 3.0)

Lens magnification
C1 Fixed 0.42
C2 Fixed 0.30
C3 Fixed 1.76
C4 Fixed 1.94

Lens photo-z
Δz11 × 102 Gaussian (−0.9, 0.7)
Δz21 × 102 Gaussian (−3.5, 1.1)
Δz31 × 102 Gaussian (−0.5, 0.6)
Δz4l × 102 Gaussian (−0.7, 0.6)
σ1z;l Gaussian (0.98, 0.06)

σ2z;l Gaussian (1.31, 0.09)

σ3z;l Gaussian (0.87, 0.05)

σ4z;l Gaussian (0.92, 0.05)

Intrinsic alignment
a Flat (−5, 5)
η Flat (−5, 5)

Source photo-z
Δz1s × 102 Gaussian (0.0, 1.8)

(Table continued)

TABLE II. (Continued)

Parameter Prior

Δz2s × 102 Gaussian (0.0, 1.5)
Δz3s × 102 Gaussian (0.0, 1.1)
Δz4s × 102 Gaussian (0.0, 1.7)

Shear calibration
m1 × 102 Gaussian (−0.6, 0.9)
m2 × 102 Gaussian (−2.0, 0.8)
m3 × 102 Gaussian (−2.4, 0.8)
m4 × 102 Gaussian (−3.7, 0.8)

External data
τ (Planck) Flat (0.01, 0.8)
AP (Planck) Gaussian (1.0, 0.0025)
M (SN) Flat (−20;−18)
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compute both the NLA and TATT contributions, unless
specified otherwise.
As noted above, we include the contribution to galaxy

clustering from the magnification of the lens sample density
in Eq. (5) using magnification constants Ci. These constants
are determined by the selection function of the lens sample
tomographic bin such that the magnified number density is
related to the convergence experienced by lens galaxies
through δig;mag ¼ Ciκi. The prime in Eq. (5) indicates the
power spectrum unmodified by magnification. We fix the
coefficients Ci to values indicated in Table II, which were
determined in Ref. [89] using the Balrog image simulations
[62]. Note that in Sec. V we test the sensitivity of our
cosmology results to inaccuracies in these assumed values.
The baseline analysis of DES-Y3KP includes a shear

ratio likelihood. This quantity incorporates the ratio
between γt measurements with the same lens bin and
different shear bins [72]. While previously studied in the
context of constraining dark energy models [90], it has
more recently been found that the shear ratio’s particular
strength is its sensitivity to the redshift distribution of
source galaxies [91]. In all model extensions other than
binned σ8ðzÞ, we do not include this shear ratio like-
lihood. Recall that the motivation for including shear
ratio is to add additional geometric constraining power
which for instance helps reduce photometric redshift
uncertainties. However, simulated analyses for our
extended model showed that the inclusion or not of the
shear ratio likelihood had a minimal impact on 3 × 2 pt
constraints. Given this, and the lack of extended modeling
validation of that likelihood, we have opted to not include
it as part of our baseline analysis.

D. Scale cuts

As in the DES-Y3KP analysis, we define scales below
which we remove measurements from our analysis to
mitigate the limits of the 3 × 2 pt modeling. Modeling
uncertainties of measurements at small angular scales
may otherwise lead to systematic biases in cosmological
parameter estimates. We refer to this approach as scale
cuts. In the end the likelihood calculation in Eq. (1) only
uses 2PCF measurements that remain after such cuts.
Our baseline scale cuts are the same as those used for the
ΛCDM analysis of DES-Y3KP. As described in detail
in the DES Y3 methods paper [71], these cuts were
defined based on the iterative analysis of synthetic data.
Specifically, those data were a theoretical prediction of
the 2PCF observables that included two significant
systematic effects not included in our model: baryonic
feedback effects extracted from the OverWhelmingly
Large Simulations (OWLS) active galactic nuclei
(AGN) hydrodynamic simulations and nonlinear galaxy
bias. By repeatedly analyzing those synthetic data while
removing successively more small-angle data points, we

determined scale cuts at which the biases on Ωm and S8
due to each of the unmodeled systematics were below
0.3σ. This determines the fiducial scales used for the DES
Y3 3 × 2 pt analysis, where the number of data points for
each of the 2PCF is summarized in the first line of
Table I.7 These same cuts are used for the wCDM,
w0 − wa, Neff , and binned σ8ðzÞ models.
For several of the models studied in this paper, we have

chosen a stricter set of scale cuts than the fiducial case.
Specifically, for models with nonzeroΩk, at the time of this
analysis HALOFIT had not been sufficiently validated on
nonlinear scales8; for Neff −meff models, HALOFIT is
known to be not sufficiently well calibrated; and finally
the Σ0 − μ0 tests of gravity are only well defined on linear
scales. For these classes of models, we restrict our analysis
to purely linear scales (for nonzero curvature there will be
an additional scale cut, discussed below). To determine
those scales, we follow the procedure first applied in the
Planck 2015 analysis [93] and followed later in DES-
Y1Ext. We compute the difference between the nonlinear
and linear theory predictions of the 2PCF in the standard
ΛCDM model at a fiducial cosmology on scales left after
fiducial scale cuts. Using the respective data vector theory
predictions DNL and Dlin, and full error covariance of DES
Y3 C, we calculate the quantity

Δχ2 ≡ ðDNL −DlinÞTC−1ðDNL − DlinÞ ð8Þ

and identify the single data point that contributes most to
this quantity. We remove that data point and repeat the
process until Δχ2 < 1. This constitutes our set of linear
scales, used for Neff −meff and Σ0 − μ0. The resulting
linear scale cuts lead to a 3 × 2 pt data vector of 256
elements (see second line of Table I).
The third and final choice of scale cuts removes both

scales which are impacted by nonlinear structure growth
and those requiring non-Limber projection calculations to
accurately model galaxy clustering. This is relevant for the
Ωk analysis, because the accuracy of the fast non-Limber
method [83] used to model large-angle galaxy clustering
has not been tested for Ωk ≠ 0. The procedure to identify
these scales is the same as that described for linear scale
cuts above, except that the synthetic data vector Dlin is
replaced with DlinþLimb, which, in addition to having only
linear modeling for the matter power spectrum, is com-
puted using the Limber approximation at all angular
scales. The linear þ Limber cuts are thus slightly more
stringent than the linear-only cuts. Table I shows that

7Minimum and maximum scales used after the scale cuts
procedure are indicated in the CosmoSIS files shared as part of the
data release.

8Reference [92], which was released when this paper was in
final stages of preparation, represents a promising approach to
improve this.
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the resulting cuts lead to a 3 × 2 pt data vector of
221 elements that are then used in the Ωk analysis.
Note that the iterative nature of our scale-cut definition
causes the linear þ Limber cuts to remove additional
points from ξ�ðθÞ and γtðθÞ compared to the linear cuts,
even though non-Limber calculations are only used for
galaxy-clustering wðθÞ calculations.

E. Parameter space

The parameters and their priors used in our baseline
analysis match those of DES-Y3KP. The cosmological
parameters are

Θbase ¼ fΩm;Ωb; As; ns; h;Ωνh2g ð9Þ

(equivalently, Ωνh2 can be replaced by
P

mν), with the
neutrinos modeled as three degenerate species with equal
masses. The priors on these parameters are listed in the top
section of Table II. We adopt an additional prior requiring
0.005 < Ωbh2 < 0.040. This baryon-density prior is intro-
duced because we include a big bang nucleosynthesis
consistency condition which imposes a relation between
the physical baryon density Ωbh2, the relativistic degrees
of freedom Neff , and the helium abundance YHe [94].

9 This
consistency relation only alters calculations when Neff is
varied, but introduces the Ωbh2 prior for all models
because it relies on a table defined for a finite range of
physical baryon density and so rejects samples outside
that range.
We also vary a number of nuisance parameters to

describe systematic effects. The intrinsic alignment is
described by two parameters, a and η, and the linear
galaxy bias by one parameter bi for each of the lens bins;
these parameters are assigned flat priors. Additionally, each
lens bin has two nuisance parameters: one that controls the
mean of the photometric redshift distribution in redshift bin
i, Δzil , and another which stretches or compresses the nðzÞ
distribution in z, σiz;l. Each of the four source bins has a
photometric redshift uncertainty parameterΔzis, as well as a
shear calibration parameter mi.
As indicated at the bottom of Table II, we also vary the

optical depth τ along with a number of nuisance parameters
associated with the Planck likelihood, as described in
Sec. IVA, when using Planck data. When the Pantheon
supernovae likelihood is included, we additionally sample
over the absolute magnitude of the supernovae M, as
described in Sec. IV C.

III. BEYOND-ΛCDM MODELS

We now introduce the beyond-ΛCDM models con-
strained in this paper. For each, we introduce its physics
and parametrization and describe any alterations required to

the baseline approach for modeling 3 × 2 pt observables
and performing parameter estimation.

A. Dark energy: w0 −wa

We use the phenomenological model proposed in
[95,96], often referred to as the Chevallier-Polarski-
Linder parametrization, for a time-varying dark energy
equation of state,

wðaÞ ¼ w0 þ ð1 − aÞwa; ð10Þ

where a is the scale factor, and w0 and wa are two new
parameters. This is the most commonly considered para-
metrization of a dark energy equation of state with more
than one parameter and has been shown to provide a good
fit to a number of dynamical dark energy models that have a
more complete physical description [95].
We will also report constraints on the value of wðaÞ at the

so-called pivot redshift [97] zp ¼ a−1p − 1, wp ≡ wðapÞ.
Here ap is the scale factor where we have the strongest
constraints on wðaÞ and therefore where the value of the
equation of state and its derivative with respect to the scale
factor are uncorrelated. Using this parameter, Eq. (10) can
be rewritten as

wðaÞ ¼ wp þ ðap − aÞwa: ð11Þ

The value of the pivot scale factor is determined using the
marginalized parameter covariance as

ap ¼ 1þ Cw0wa

Cwawa

: ð12Þ

In the flat w0 − wa model, the expansion rate becomes

H2ðaÞ
H2

0

¼ Ωma−3 þ ð1 − ΩmÞa−3ð1þw0þwaÞe−3wað1−aÞ: ð13Þ

As described in Appendix A, we performed additional
validation tests to ensure that the use of HALOFIT in our
calculation of the nonlinear matter power spectrum is valid
for the w0 − wa model. We use the fiducial scale cuts for
this model (see Table I).

B. Curvature: Ωk

To define the curvature density Ωk, it is most convenient
to start from the Friedmann-Lemaître-Robertson-Walker
metric in the form

ds2 ¼ −dt2 þ a2½dχ2 þ r2ðχÞðdθ2 þ sin2 θdϕ2Þ�; ð14Þ

where χ is the comoving (radial) distance and a is the
scale factor. Then the angular-diameter distance rðχÞ is
defined as9http://parthenope.na.infn.it/.
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rðχÞ ¼

8>><
>>:

K−1=2 sin ðK1=2χÞ for K > 0

χ for K ¼ 0

jKj−1=2 sinh ðjKj1=2χÞ for K < 0;

ð15Þ

where K is the curvature term. A positively curved space
has K > 0, negatively curved corresponds to K < 0, and
flat space has K ¼ 0. With the curvature of arbitrary sign,
the expansion rate can be written as

H2ðaÞ
H2

0

¼ Ωma−3 þ ð1 − Ωm −ΩkÞ þΩka−2; ð16Þ

where Ωk ¼ −K=H2
0. It then follows that Ωk < 0 corre-

sponds to positive spatial curvature andΩk > 0 to negative.
As noted in Sec. II D, for the curved-universe analysis,

due to lack of validated modeling we use a conservative set
of scale cuts which avoid both nonlinear scales and the
large angular scales where the non-Limber calculation is
adopted to model galaxy clustering.10 For the angular scales
where the Limber approximation is used, we apply the
commonly used angular-diameter rescaling approximation
for the impact of curvature on line-of-sight projection,
which replaces χ in Eq. (3) with the angular-diameter
distance rðχÞ.

C. Extra relativistic degrees of freedom: Neff

We next consider a model that allows for new radiative
degrees of freedom in the early Universe, described by the
parameter Neff. This parameter relates contributions to the
energy density in radiation in the early Universe from
relativistic species to that of photons via

ρrad ¼
�
1þ Neff

7

8

�
Tν;0

Tγ;0

�
4
�
ργ: ð17Þ

Here ρrad and ργ are the comoving energy densities of
radiation and photons after electron-positron annihilation.
In the standard cosmological model, all contributions to
Neff come from neutrinos and its value is Neff ¼ 3.044,
corresponding to three neutrino species plus small correc-
tions due to their noninstantaneous decoupling from
photons [98,99].
We capture the effects of Neff by using CAMB’s pre-

dictions for its impact on the expansion history and
power spectra, using a modified version of the CosmoSIS

CAMB interface. We set the CAMB parameters so that each
of the three massive neutrino species is assigned a degen-
eracy [100] of 1

3
Neff . This means that varying Neff has a

continuous effect on the neutrino temperature Tν, with

ΔNeff ¼ 0 corresponding to the temperature if there are
no additional relativistic species beyond the standard
model. We do not apply any other modifications to the
fiducial model.

D. Massive sterile neutrinos: Neff −meff

We additionally constrain the properties of a light relic
particle with nonzero mass, modeled as single species of
thermal sterile neutrino. The properties of the sterile
neutrino are controlled by the parameters Neff and meff .
The impact of sterile neutrinos on CMB observables is
fairly similar to that of varying Neff alone, while its impact
on large-scale structure has a richer phenomenology.
Like active neutrinos, sterile neutrinos suppress large-scale
structure formation at scales smaller than a free-streaming
length scale (k > kfs), with the magnitude of that suppres-
sion at high k controlled by their contribution to cosmo-
logical energy density Ωνs. The free-streaming scale is set
by both the particle’s physical mass and temperature, and
the relationship between those properties and the param-
eters Neff and meff depend on the specifics of the model
considered. In this analysis, we choose to model the sterile
neutrino as a thermal relic, that is, a stable particle species
which was once in thermal equilibrium with standard
model particles but decoupled at an early time. With
this assumption, the particle’s physical mass is mth ¼
meffðΔNeffÞ−3=4 and in linear theory the free-streaming
scale is [101],

kfs ¼
0.8 hMpc−1ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

�
meff

ð1 eVÞΔNeff

�
: ð18Þ

While this thermal model is just one of several possible
choices one could make for describing sterile neutrinos, our
constraints will represent a more general search for new
physics. As is discussed in Refs. [101–104], this kind of
two-parameter Neff −meff model is sufficient to perform a
generic search for a population of stable, noninteracting
massive relic particles [103,104].
Here the parameter ΔNeff ≡ Neff − 3.044 determines the

temperature of the sterile neutrino, which is related to
the standard model temperature of active neutrinos via
Tνs ¼ ðΔNeffÞ1=4Tνa . Thus, ΔNeff ¼ 1 corresponds to a
sterile neutrino that thermalizes at the same temperature as
the active neutrinos, while lower Neff means the sterile
neutrinos are colder. The parameter meff is an effective
mass which captures how the sterile neutrino contributes to
the cosmological energy densities, defined so that

Ωνsh
2 ¼ meff

94.1 eV
: ð19Þ

When we consider sterile neutrinos the conversion factor
between the particle mass and Ωνh2 is slightly different

10This is a more conservative choice than the approach taken in
DES-Y1Ext, where Ωk constraints used the fiducial scale cuts as
the Limber approximation was used at all scales.
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from the 93.14 eV value used for active neutrinos. This is
because sterile neutrinos are assumed not to be affected
by electron-positron annihilation in the same way as active
neutrinos. Note that both versions of the Ων-to-mass
conversion factor encode a number of standard model
assumptions which cannot be disentangled from cosmo-
logical constraints on neutrino mass. Our measurements
thus serve as both a test of the mass of neutrinos and of
those assumptions. As with the Neff model described
above, we use CAMB along with a modified version of
the CosmoSIS CAMB interface to compute the impact of the
sterile neutrinos on expansion history and the linear matter
power spectrum.
We assume that active neutrino temperatures are at their

standard model value in the instantaneous decoup-
ling approximation, Tνa ¼ ð4=11Þ1=3Tγ, and following
the Planck 2018 cosmology analysis [11], we fix the active
neutrino mass to the minimum allowed by neutrino
oscillation experiments,

P
mν ¼ 0.06 eV. Additionally,

because the presence of massive light relics like sterile
neutrinos complicates the modeling of the nonlinear matter
power spectrum as well as galaxy bias [101,102,105,106]
and there are not readily available tools to account for the
impact of sterile neutrinos on nonlinear power spectrum
modeling (see, e.g., Refs. [107,108]), when constraining
Neff −meff we restrict our analysis to linear scales using the
scale-cut procedure described in Sec. II D.
Note that our fiducial prior has a lower bound of

ΔNeff ¼ 0, which means our parameter space will include
the small-ΔNeff regime where the sterile neutrino will be
indistinguishable from cold dark matter. As we will find
in Sec. V C, including this unconstrained region makes
parameter estimation more susceptible to projection effects
and thus less robust to the details of nuisance parameter
marginalization and the data noise realization. Given this,
in order to obtain a more robust set of constraints and to
allow more direct comparison with other studies, we report
Neff −meff constraints using two alternative priors: one
where the lower bound of the prior is raised to require
ΔNeff > 0.047, corresponding to the minimum temperature
for a fermion relic particle that was ever in thermal
equilibrium with standard model particles [101], as well
as the same model-specific prior used in Planck analyses,
requiring mth ≤ 10 eV.

E. Test of gravity on cosmological scales: Σ0 − μ0
We test gravity on cosmological scales by adopting

the common Σ, μ phenomenological parametrization pro-
posed and developed in Refs. [109–118]. This model has
recently been tested using CMB measurements by the
Planck satellite and weak-lensing data from surveys such as
the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLens), KiDS, and DES in Refs. [11,50,93,119–121].
In this approach, deviations from the gravitational physics
described by general relativity (GR) are introduced through

modifications to the Poisson and lensing equations which
then take the following form in Fourier space:

k2Ψ ¼ −4πGa2½1þ μða; kÞ�ðρδþ 3ðρþ PÞσÞ;
k2Φ ¼ −4πGa2½1þ Σða; kÞ�ð2ρδþ 3ðρþ PÞσÞ: ð20Þ

Here Ψ is the Newtonian gravitational potential, which
determines the gravitational interactions of massive par-
ticles,Φ is the Weyl potential with which massless particles
interact gravitationally, δ corresponds to density fluctua-
tions in the comoving gauge, ρ to matter density, and
ðPþ ρÞσ to the fluid anisotropic stress potential. The
functions Σða; kÞ and μða; kÞ represent deviations from
GR, with Σ ¼ μ ¼ 0 recovering the predictions of GR. This
parametrization is equivalent to modifications to the gravi-
tational constant G, and Σ=μ are sometimes denoted as
GΦ=Ψ, respectively.
We assume a time dependence following the energy

density of the effective dark energy in units of the critical
density ΩΛðaÞ normalized by its value today ΩΛ;0, as done
previously in Refs. [11,50,109,119,120],

Σða; kÞ ¼ Σ0

ΩΛðaÞ
ΩΛ;0

;

μða; kÞ ¼ μ0
ΩΛðaÞ
ΩΛ;0

: ð21Þ

This parametrization is designed to be sensitive to devia-
tions from GR that are associated with cosmic acceler-
ation. As is pointed out in, e.g., Ref. [122], these
assumptions may cause our Σ0 − μ0 parametrization to
lack sensitivity to some modified gravity signals that
could be captured by searches with less restrictive
assumptions. However, the parametrization of Eq. (21)
has the benefit of adding few new parameters, which
makes it easier to constrain them robustly. Variations of
the (Σ,μ) model with alternative assumptions about the
time and scale dependence of deviations from GR will be
explored in a follow-up paper [123].
This phenomenological approach is defined only in

linear theory, while possible approaches to define similar
functional forms of deviations from GR on all scales have
been proposed, e.g., in Ref. [124], allowing the use of halo-
model-based approaches as proposed in Refs. [125,126] for
(Σ, μ) models. However, these methods have not yet been
tested for the parametrization of (Σ, μ) considered here, so
we restrict our analysis of DES Y3 3 × 2 pt measurements
to linear scales by imposing scale cuts as described in
Sec. II D.
In order to model the impact of Σ0 − μ0 on the 2PCF,

we modify the CosmoSIS baseline pipeline to use the Weyl
potential power spectrum PΦΦðkÞ when computing weak-
lensing observables. This is in contrast to the fiducial
analysis, which assumes the Poisson equation,
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k2Φ ¼ 3

2
ΩmH2

0δ=a: ð22Þ

Although the impact of Σ0 can be computed simply
modifying the lensing kernel used for 2PCF computations
in Eq. (3) (as was done in DES-Y1Ext), we choose to use
the Weyl potential directly as it facilitates more flexible
applications to other parametrizations of modified gravity
and new physics affecting growth, as used in, e.g.,
Refs. [123,127].
To model 3 × 2 pt observables, we need both the Weyl

potential autocorrelation PΦΦðk; zÞ and its correlation with
the matter density PΦδðk; zÞ. We compute their linear
predictions using MGCAMB v3.0

11 [128], modifying its
interface with CosmoSIS. The corresponding nonlinear spec-
tra are then obtained using a nonlinear scaling factor,

PNL
ΦΦðk; zÞ ¼

PNL
δδ ðk; zÞ

PL
δδðk; zÞ

PL
ΦΦðk; zÞ; ð23Þ

where the NL and L superscripts refer, respectively, to the
HALOFIT nonlinear and linear predictions of Pðk; zÞ and
we use the same nonlinear boost to get the cross-power
spectrum PNL

Φδ ðk; zÞ.
We modify the ΛCDM modeling pipeline so that power

spectra of fields derived from the Weyl gravitational
potential, namely the convergence κ and magnification,
are computed directly using the projected Weyl potential
auto- and cross-power spectra. The angular power spectra
CðlÞ are computed using a version of Eq. (3) with
k4PΦΦðk; zÞ replacing Pδδðk; zÞ for CκκðlÞ. Similarly
k2PΦδðk; zÞ replaces Pδδðk; zÞ for CκδgðlÞ. In this formu-
lation, the lensing kernel from Eq. (4) instead reads

qiκðχÞ ¼ χ

Z
χh

χ
dχ0

�
χ0 − χ

χ0

�
niκðzðχ0ÞÞ

dz
dχ0

: ð24Þ

Appropriate adjustments must also be made for the model-
ing of galaxy clustering to account for contributions
from magnification as shown in Eq. (5). Additionally,
we compute the GI NLA intrinsic alignment contributions
by modifying Eq. (6) such that

PGIðk; zÞ ¼ A1ðzÞk2PΦδðk; zÞ; ð25Þ

used to compute CκIðlÞ using the lensing kernel in
Eq. (24). In a fully rigorous treatment, the modified
Newtonian potential Ψ should determine the alignments
of galaxies’ intrinsic shapes. However, we choose to model
the tidal alignment contributions [corresponding to the
I term in the GI and II power spectra of Eqs. (6) and (25)]

using the matter power spectrum Pδδðk; zÞ modified by μ,
by neglecting the impact of anisotropic stress. The angular
power spectra CðlÞ of Eq. (5) computed with the Weyl
gravitational potential are then converted into real-space
2PCFs ξ�ðθÞ, γtðθÞ, and wðθÞ following the same pro-
cedure as in ΛCDM.
We checked that this modified CosmoSIS pipeline

reproduces ΛCDM results, with negligible shifts in
parameter estimation, as shown in Appendix B. We note
that the matter power spectrum Pδδðk; zÞ computed by
MGCAMB shows an unexpected dependence on Σ0 at large
scales, for k < 10−2 Mpc=h−1. This dependence leads in
turn to a slight dependence of the clustering 2PCF wðθÞ
on Σ0 for θ above 100 arcmin, more significantly for the
highest redshift bins. Its impact on Σ0 constraints is
however negligible at DES Y3 3 × 2 pt sensitivity, with a
change in the posterior value computed with simulated
clustering measurements alone of 0.3% for Σ0 ¼ 1.5
compared to GR.
The CAMB dverk routine fails due to MGCAMB imple-

mentation of the evolution of perturbations, for a large set
of Σ0 − μ0 values satisfying

μ0 > 2Σ0 þ 1: ð26Þ

We thus impose a prior excluding this region of param-
eter space.
As opposed to other cosmological models, we will not

test for consistency of Σ0 − μ0 results against an alter-
native IA model such as TATT. Although its use has not
been fully validated against simulations for instance in
non-GR theories, the NLA model allows for amplitude
and redshift dependences and propagation of Σ0 − μ0
modification of gravity to IA as described above. We
therefore adopt the NLA model as in other models and as
in previous Σ0 − μ0 studies such as DES-Y1Ext [120,121].
However, to get the next-order terms, the perturbative
derivation of the TATT model in [129] assumes GR and
would need to be rederived to capture the tidal physics in
modified gravity theories with a similar level of generality.
Adopting the TATT model for the Σ0 − μ0 analysis would
amount to using a GR IA model which would accurately
describe IA in the case of Σ0 − μ0 consistent with 0 but
could potentially bias results if not. Additionally, we do
not make use of the Fast-PT algorithm to predict the IA
and galaxy bias models, and instead use the simple linear
galaxy bias (as validated in [71]) and the IA NLA model
using the matter and Weyl power spectra directly as
computed by MGCAMB. We note that we do not use the
linear alignment model, in which case the IA signal is
sourced by the linear Weyl and matter power spectra:
indeed, although nonlinear scales are removed through the
scale cuts procedure described in Sec. II D, we model
nonlinearities using HALOFIT so that nonlinear informa-
tion left over after scale cuts is modeled.11https://github.com/sfu-cosmo/MGCAMB.
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F. Binned σ8ðzÞ
Finally, we test ΛCDM predictions of the evolution of

structure growth without assuming a particular physical
mechanism by using what we will refer to as the binned
σ8ðzÞ model. This model introduces amplitudes APlin

i which
scale the linear matter power spectrum in redshift bins i
associated with our lens galaxy sample. For our fiducial
MagLim lens sample, the edges of the redshift ranges used to
define tomographic bins are [0, 0.4, 0.55, 0.7, 1.5]. In other
words, when we perform our model calculations, in the
range z ∈ ½0; 0.4Þ we multiply the linear matter power
spectrum by APlin

1 , in the range z ∈ ½0.4; 0.55Þ we multiply
PlinðkÞ by APlin

2 , and so on. As a model-agnostic test of
ΛCDM growth history, this is in a sense a successor to the
growth-geometry split analysis of Ref. [130].
Because it introduces step functions in the linear growth

factor, this parametrization implies delta function features
in the linear growth rate fðzÞ. These spikes have no impact
on the external RSD modeling because none of the fσ8
measurements in that likelihood fall on our z-bin bounda-
ries. We neglect their effect on RSD contributions to galaxy
clustering.12

In practice we fix APlin
1 ¼ 1 and sample over APlin

2–4.
Because our measurements are sensitive to the products
AsA

Plin
i , where As is the primordial power spectrum ampli-

tude, if we varied all four APlin
i amplitudes the parameters

would be completely degenerate with As. By fixing13 APlin
1 ,

we thus avoid those degeneracies and our parametrization
of binned σ8ðzÞ reads

Θσ8ðzÞ ∈ fAPlin
1 ≡ 1; APlin

2 ; APlin
3 ; APlin

4 g: ð27Þ

This parametrization lends itself to a physical interpreta-
tion: As controls the amplitude of structure observed in the
lowest redshift lens bin, while the binned σ8ðzÞ amplitudes
provide a consistency test of whether the time evolution
of the growth of structure is consistent with the ΛCDM
prediction

APlin
2 ¼ APlin

3 ¼ APlin
4 ¼ 1 ðΛCDMÞ: ð28Þ

We will additionally report constraints on a set of derived
parameters,14

σ½bin i�8 ≡ σ8

ffiffiffiffiffiffiffiffiffi
APlin
i

q
; ð29Þ

which correspond to the value of σ8 expected at redshift
z ¼ 0 based on the amplitude of structure in redshift bin i.
When we include both Planck and low-redshift mea-

surements of structures (from DES or external RSD data),
we treat the CMBmeasurements as an additional high-z bin
and introduce an additional amplitude APlin

CMB. In practice,
we implement this by passing the product APlin

CMBAs as the As

input to CAMB when computing CMB observables. To be
fully self-consistent, the amount of that lensing smoothing
of the CMB power spectra should account for the modu-
lation of the line-of-sight matter power spectrum by the
APlin
i parameters. For simplicity, we have chosen not to

model this. Instead, when we include CMB constraints for
the binned σ8ðzÞ model, we marginalize over the lensing
smoothing amplitude AL [131] (matching the parameter
used in Planck analyses) in order to remove late-time large
scale structure information from the CMB likelihood. We
neglect the dependence of the integrated Sachs-Wolfe effect
on late-time modified growth, as sensitivity to the effect is
limited by cosmic variance.
Note that the phenomenology probed by this APlin

i
parametrization is similar to a Σ0 − μ0 description of
modified gravity with fixed Σ ¼ 0 and μðzÞ defined as a
piecewise function of z. It is therefore comparable to
models studied in, e.g., Refs. [122,132,133]. The distinc-
tion between our binned σ8ðzÞ model and modified gravity
parametrizations is largely one of interpretation rather than
modeling specifics. Here we are framing binned σ8ðzÞ as a
consistency test of ΛCDM rather than a physical model,
so we use the same modeling choices as in Λ=wCDM,
including fiducial scale cuts and HALOFIT as our model
for the nonlinear matter power spectrum, in contrast to
the more conservative approach adopted in the Σ0 − μ0
model above.
In our binned σ8ðzÞ analysis we include the shear ratio

likelihood when analyzing DES 3 × 2 pt. The shear ratio
was forecasted to strengthen the constraints on the binned
σ8ðzÞ amplitudes relative to 3 × 2 pt alone. Because shear
ratio measurements probe the relative distances between a
given lens bin and different source bins, they isolate
geometric information and will be insensitive to the APlin

parameters. This means shear ratio measurements help
break degeneracies between the binned σ8ðzÞ amplitudes,
nuisance parameters related to photometric redshift uncer-
tainties, intrinsic alignments, and cosmological parameters

12A fully consistent calculation here would account for the
enhanced RSD contributions to wðθÞ. This effect could in
principle be used to empirically constrain the smoothness of
the linear growth factor’s redshift evolution, but we neglect it for
simplicity because its impact on overall constraining power is
likely to be small, and implementing it would require significant
updates to our modeling pipeline.

13The choice to fix the amplitude for the lowest redshift i ¼ 1
as opposed to some other bin was arbitrary. While a different
choice would affect the inferred values of the APlin

i parameters, the
resulting model would have the same degrees of freedom, so
would not affect the physical interpretation of the results—i.e.,
the inferred σ8 values.

14Note that the decision to include constraints on the derived
σ½bin i�8 parameters as part of the presentation of our binned σ8ðzÞ
model results was made after unblinding.
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which affect both geometry and growth (namely Ωm). As
we are treating binned σ8ðzÞ as a consistency test of ΛCDM
rather than a physical model, we argue that we can include
it without additional validation of the small-scale modeling.

IV. EXTERNAL DATA

We consider the DES 3 × 2 pt likelihood described
above in comparison to and in combination with measure-
ments from other cosmological experiments. We use the
same external measurements as in DES-Y3KP, using public
likelihoods from most constraining datasets available at
the time of this analysis. These include the following, as
summarized in Table III:

(i) CMB temperature and polarization anisotropies
measurements by the Planck satellite as described
in Sec. IVA,

(ii) distances and growth from 6dFGS, MGS, eBOSS
DR16 BAOs, and RSD data as described in
Sec. IV B,

(iii) supernovae (SNe) distance modulus from Pantheon
as described in Sec. IV C.

When performing combined analyses of these probes,
we assume they are uncorrelated (except for BAO and
RSD, whose correlations are taken into account in pub-
lished likelihoods) so we simply multiply their likelihoods.

A. Cosmic microwave background

The cosmic microwave background temperature and
polarization primary anisotropies carry information about
density and tensor perturbations at the time of the last
scattering surface. In addition, effects such as reionization
and gravitational lensing caused by large-scale structures
produce secondary anisotropies carrying information about
the evolution of the Universe since the CMB emission. In
recent decades, measurements of CMB anisotropies have
led to the most powerful existing constraints on ΛCDM
cosmological parameters.
In this paper we therefore use the Planck 2018 TTTEEE-

lowE likelihood presented in Ref. [11]. This likelihood
combines three components: a high-l likelihood based on
measurements of multipoles 30 ≤ l ≤ 2508 for the temper-
ature (TT) angular power spectrum and 30 ≤ l ≤ 1996 for

the TE and EE spectra (“plik”), and two low-l likelihoods
of the temperature TT (“commander”) and the polarization
EE (SimAll) spectra on multipoles 2 ≤ l ≤ 29. To facilitate
the study of how cosmological model extensions impact
the offset between S8 constraints from 3 × 2 pt and CMB
temperature and polarization, we do not include the CMB
lensing likelihood.
When analyzing data we use the full Planck likelihood

provided as part of the CosmoSIS standard library. This full
likelihood includes 47 nuisance parameters where 21
parameters are marginalized over, 13 of which have
Gaussian priors provided with the public Planck likelihood.
In the case of the Σ0 − μ0 model, in order to limit
computing time we instead use the Planck plik-lite like-
lihood, which includes the effects of Planck nuisance
parameter marginalization and only requires us to sample
the absolute calibration parameter AP. We have checked
that it gives equivalent results to using the full likelihood
in this extended model.
For simulated analyses of DES 3 × 2 pt combined with

external data, we use a simplified Planck likelihood based
on Ref. [134] using two Gaussian likelihoods for l < 30
and using the TTTEEE Planck plik-lite likelihood for
l ≥ 30. We also replace the power spectra measurements
with model predictions at our fiducial cosmological param-
eters. For both simulated and real analyses, when we
include CMB measurements we marginalize over the
optical depth to recombination τ with a flat prior in the
range [0.01, 0.8].

B. Baryon acoustic oscillations
and redshift-space distortions

Baryon acoustic oscillations in the early Universe
imprinted features in the matter distribution at a character-
istic scale which can be detected as an excess of galaxy
pairs separated by a certain distance in the local Universe.
By measuring the relationship between redshift and the
angular-diameter distance associated with that excess, we
can use BAOs as a standard ruler to constrain the expansion
history of the Universe.
We use the combinations of BAO likelihoods from

eBOSS Data Release (DR) 16 [135] to provide measure-
ments of the Hubble parameter HðziÞ and the evolution of
the comoving angular distance dAðziÞ. More specifically,
we use likelihoods from the reanalysis of BOSS DR12
luminous red galaxies (LRGs) (dropping its highest redshift
measurements), eBOSS LRGs, emission line galaxies
(ELGs), quasars (QSOs) and Lyman-α QSOs. These
BAO measurements are made at effective redshifts of
zeff ¼ 0.38, 0.51, 0.70, 0.84, 1.48, 2.33, respectively. We
additionally include BAO measurements from two lower
signal-to-noise galaxy samples, 6dFGS [136] and MGS
[137]. These likelihoods are based on measurements of the
quantity dVðzÞ≡ ½czð1þ zÞ2d2AðzÞ=HðzÞ�1=3 evaluated at

TABLE III. External data used as measurements of additional
observables: CMB, BAOs, RSD, SNe.

Observables Data

CMB
(Planck in text)

Planck 2018 TTTEEE-lowE (no lensing)

BAO eBOSS DR16: LRGs, ELGs, QSOs,
Lyman-α QSOsþ 6dFGSþMGS

RSD eBOSS DR16: LRGs, ELGs,
QSOsþMGS

SNe Pantheon sample (2018)
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effective redshifts of zeff ¼ 0.11 for 6dFGS and zeff ¼ 0.15
for MGS.
As an external constraint on the growth rate of structure,

we include the eBOSS DR16 redshift-space distortions
measurements. RSD likelihoods include constraints on the
growth of cosmic structure via constraints on the quantity
fðziÞσ8ðziÞ, where f is the linear growth rate. We use the
eBOSS DR16 RSD measurements including a reanalysis of
BOSS DR12 RSDmeasurements, LRGs, ELGs, and QSOs,
at the same redshifts as BAO measurements. We also use
the MGS RSD measurement from [138] at zeff ¼ 0.15.
When both BAO and RSD measurements from a given
sample are included, we account for their covariance using
the public eBOSS DR16 likelihoods.
It is worth noting that the RSD likelihoods we use are in

the form of marginalized constraints on the quantity fσ8 at
sample redshifts, and that those constraints are derived
quantities from analyses which assume a ΛCDM template
for RSD features in the galaxy distribution. When studying
models beyond-ΛCDM, care must be taken in using these
likelihoods, as it is possible that inaccuracies in that
template could lead to biases in beyond-ΛCDM cosmo-
logical parameter inferences. Studies of this in, e.g.,
Ref. [139] demonstrated that using GR-based templates
they were able to obtain unbiased fσ8 constraints for
modified gravity simulations, as long as the modified
gravity model did not induce scale-dependent structure
growth modifications. Given this, we follow the final
eBOSS cosmology analysis [15], which uses these same
RSD measurements to constrain wCDM, Ωk, w0 − wa,
Σ0 − μ0, and massive neutrino cosmologies, and proceed
with including RSD measurements among our external
likelihoods. Given the use of these measurements to
constrain neutrino mass (e.g., in [15]), we assume that
they are likely also safe to use for our Neff −meff model,
but we highlight that this assumption may be worth
investigating for future, more precise, analyses.

C. Supernovae

Type Ia supernovae are a key cosmological probe that
was originally used to discover the accelerated expansion
of the Universe. Here we adopt the Pantheon SN Ia sample
[8], which combines objects detected and followed up
by several different surveys (Pan-STARRS, Sloan Digital
Sky Survey, Supernova Legacy Survey). The resulting
sample contains 1048 SNe Ia spanning the redshift range
0.01 < z < 2.26.
The Pantheon likelihood assigns a Gaussian likelihood

to the measured SN distance moduli, μ ¼ 5 ln ½dL=10pc�. It
provides a full covariance of these measurements, account-
ing for cosmic variance and the impact of measurement
systematics. We model the distance modulus as

μ ¼ mB −M þ αx1 − βC þ ΔM þ ΔB: ð30Þ

Here, x1 and C are the light curve width and color,
respectively, ΔM is a distance correction based on the
host-galaxy mass of the SN, and ΔB is a distance correction
based on predicted biases from simulations. The calibration
parameters α, β, ΔM are fit to data as described in Ref. [8],
while ΔB is calibrated using simulations. The absolute
magnitude M is a nuisance parameter that we marginalize
over in our analysis with a flat prior −20 < M < −18.

V. ANALYSIS PROCEDURE AND VALIDATION

Our analysis procedure can be divided into five stages.
These steps, described in more detail below, proceed as
follows:
(1) We analyze a fiducial synthetic data vector—that is,

we analyze a noiseless model prediction at a fiducial
set of ΛCDM parameters as if it were data. In this
paper, the term “simulated analysis” will refer to this
kind of analysis of synthetic data (Sec. VA).

(2) We validate scale cuts and modeling choices by
analyzing a series of alternative simulated data
vectors that have been “contaminated” by systematics
or by modeling choices which are more complex that
those used in our baseline model (Sec. V B).

(3) We perform a set of analysis tests using the fiducial
synthetic data vector to study the robustness of
our results against changes in the model used for
parameter estimation (Sec. V C).

(4) We repeat the previous step’s robustness tests against
variations of the model for real data, without
unblinding the cosmology results. Once we com-
pleted these robustness tests, a draft of this paper and
the analysis plan documented in it underwent a stage
of DES internal review (Sec. V C).

(5) Finally, we reveal our cosmology results, assess
tension metrics, compute model comparison metrics,
and describe the results in Sec. VI.

This procedure is designed to ensure as far as possible that
decisions on how to structure the analysis are not influenced
by knowledge of how they affect the main results. Since the
data we are working with have already been unblinded for
theΛ=wCDMmodels in DES-Y3KP, we opted not to use the
two-point-function transformation blinding method [140].
Instead, we simply blinded at the parameter level, post-
processing chains to shift marginalized posterior means onto
fiducial values via unknown offsets. Additionally, until
preunblinding internal review was completed, we avoided
looking at comparisons between theory and model predic-
tions for observables, tension metrics between datasets, and
any model comparison statistics between extended cosmo-
logical models and ΛCDM.
Several analysis choices used in this work were adjusted

after ΛCDM unblinding, in line with changes made to the
analysis in DES-Y3KP. These changes include the choice
of the MagLim rather than the redMaGiC [65,141,142] lens
sample, and the removal of the two highest redshift MagLim
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lens bins (which would have been bins 5 and 6) from the
fiducial analysis. As noted in Sec. II C, we have also
adopted the simpler two-parameter NLA description of
intrinsic alignments instead of the five-parameter TATT
model used in DES-Y3KP. We made the choice to use NLA
largely because the DES-Y3KP ΛCDM analysis did not
find that the TATT model is favored over NLA. We
emphasize that, while these aspects of our analysis have
been shaped by findings for unblinded ΛCDM results,
these changes were frozen in before analyzing any data for
the beyond-ΛCDM models.

A. Fiducial synthetic data

We initially validate our analysis by performing a series
of analyses of synthetic measurements—that is, analyses of
the data vector predicted from our fiducial model, with no
noise. With the exception of the change in data vector, this
analysis is identical to our eventual analysis of real data: the
synthetic DES 3 × 2 pt data are generated using the same
redshift distributions used for the final analysis, and the
likelihood is evaluated using a covariance produced at
our fiducial cosmology using the same analytical calcu-
lations described in Ref. [74]. In addition to synthetic DES
3 × 2 pt measurements, we additionally produce synthetic
versions of the external likelihoods for simulated combined
analyses.
We begin with a baseline simulated analysis: using our

fiducial model, we analyze synthetic data vectors produced
using those same calculations. This can be thought of as a
“best case scenario” where our model calculations are
exactly correct so that we can estimate the expected
constraining power and the relationship between margin-
alized posteriors and parameters’ input values.
In some cases when constraints are weak, prior volume

effects cause marginalized confidence intervals for param-
eters to be offset from their input (ΛCDM) values. This
occurs because the prior in our full parameter space can be
highly nonuniform when projected onto certain cosmo-
logical variables. This occurs notably for the synthetic
Planck-only results, which prefer Ωk < 0 at 1.4σ. This
offset from flatness, which can be understood in terms of
the CMB’s well-known geometric degeneracy [143], is in
the same direction as what has been previously reported
for the analysis of real CMB data but at a lower signifi-
cance. The preference for Ωk < 0 goes away when the
Planck likelihood is combined with low-redshift geometric
likelihoods.
We also see offsets in the DES 3 × 2 pt and 3 × 2 ptþ

BAOþ RSDþ SN Neff −meff constraints, which is due to
a positive degeneracy between Neff and meff constraints for
the lower redshift probes, as well as degeneracies between
both of those parameters andH0. Adding CMB information
introduces a powerful constraint on Neff , breaking those
degeneracies and causing the marginalized posterior dis-
tribution for the all-data constraints to be more reflective of

the input parameter values. Given this concern about the
projection effects, for Neff −meff we will focus primarily
on constraints from DES Y3 3 × 2 pt and all external data
(i.e., BAOþ RSDþ SNþ Planck) rather than DES alone.
In the Σ0 − μ0 model, μ0 measurements by DES Y3

3 × 2 pt alone are prior dominated and so will not be
reported. We additionally note that a Σ0-S8 degeneracy
causes a slight offset for the DES-only Σ0 posterior, though
the resulting constraints are consistent with the input value.
The addition of external RSD or Planck data enable precise
measurements of μ0, in turn leading to more precise
constraints on Σ0.

B. Contaminated synthetic data

Next, we analyze synthetic 3 × 2 pt data that have been
contaminated by various effects. The goal here is to test
robustness of our results to modeling complexities and
systematic effects which are not included in our fiducial
model. To verify this, we compare the results of the analysis
of contaminated synthetic data to those from our baseline
simulated analysis, both computed in ΛCDM. This allows
us to quantify the impact these modeling uncertainties have
on parameter estimates and model comparison statistics
used to evaluate tensions with ΛCDM. The priority here—
and what we can evaluate most accurately, given the lack of
in-depth study of and available modeling tools for describ-
ing systematics in extended cosmological models—is to
assess whether unmodeled systematics are can produce a
false detection of tension with ΛCDM. Specifically, we
study three alterations to the synthetic data:

(i) Nonlinear biasþ baryons: A realization of baryonic
feedback and nonlinear galaxy bias is added to the
synthetic 3 × 2 pt observables. Baryonic feedback
effects are added using the method described in
Refs. [144,145] and are based on the OWLS hydro-
dynamic simulations [146,147] with large AGN
feedback according to the prescription of Ref. [148].
Nonlinear galaxy bias is modeled using an effective
one-loop description with renormalized nonlinear
bias parameters as in Refs. [149–152]. This syn-
thetic data are produced with the same contamina-
tions used in Ref. [71] to define scale cuts for DES-
Y3KP. Analyzing it allows us to verify that the scale
cuts defined for ΛCDM continue to protect against
these small-angle systematics in the beyond-ΛCDM
models we consider.

(ii) Euclid emulator: The HALOFIT computation for the
nonlinear, gravity-only matter power spectrum is
replaced with that of EUCLID EMULATOR [153].
Checking that this alternate nonlinear prescription
does not shift our results is a test of robustness
against inaccuracies of the small-scale power spec-
trum modeling.

(iii) Magnification 3σ offset: The magnification coeffi-
cients Ci [see Eq. (5)] are offset from their fiducial
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values by 3 times their uncertainty, where the latter is
determined in Ref. [89] using the Balrog simula-
tions. The coefficients used are C ¼ ½1.97; 1.74;
2.93; 2.97� compared to the fiducial coefficients
C ¼ ½0.42; 0.30; 1.76; 1.94�. This 3σ offset is de-
signed to demonstrate the robustness of results to
the amplitude of the magnification signal and
validate the decision to fix the C values at their
fiducial values.

To facilitate these tests we adopt the newly developed
fast importance sampling for model robustness evaluation
(FastISMoRE) scheme, which is presented in more detail in
Appendix C and Ref. [154]. Briefly, the approach exploits
the fact that if our analysis is robust against a given
systematic, the shift in posteriors should be small when
the data are contaminated with that effect. This allows us to
use the posterior from a baseline chain (run using uncon-
taminated synthetic 3 × 2 pt observables) as a proposal
distribution for estimating the posterior for a contaminated
data vector via importance sampling (IS). Doing this allows
us to quickly verify whether the change in posterior is
indeed negligible. If quality statistics indicate that the IS
posterior estimate is of good quality, it can be used to
quantify the effect of the systematic on parameter estimates
and model comparison statistics. If the estimate is poor,
this indicates we need to run a new chain to estimate the
contaminated posterior.
Once we have obtained reliable posterior estimates,

we assess shifts in the marginalized constraints on the
beyond-ΛCDM parameters. We quantify this following
Ref. [130], defining the marginalized posterior shift Δθ for
parameter Θ as

ΔΘ ¼ Θ̄A − Θ̄Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΘ̄A − Θlow68

A Þ2 þ ðΘup68
B − Θ̄BÞ2

q : ð31Þ

Here, Θ̄ is the parameter’s posterior-weighted mean, and
the labels A and B correspond to the baseline and alter-
native (contaminated) synthetic data vectors, defined
such that Θ̂A > Θ̂B. The parameter Θlow68

A is the lower
bound of the 68% confidence interval for posterior A, while
Θup68

B is the upper bound of the 68% confidence interval for
posterior B. Thus the denominator of Eq. (31) is an effective
1σ error for parameter Θ, accounting for possible asym-
metry in the marginalized posteriors. We consider a
parameter shift to be negligible if ΔΘ < 0.3.
We perform these checks for DES 3 × 2 pt and DES

3 × 2 ptþ BAOþ RSDþ SNþ Planck posteriors for
each beyond-ΛCDM model, as well as 3 × 2 ptþ BAOþ
RSDþ SN (leaving out Planck), using simulated external
data likelihoods produced at the same fiducial cosmology
as the synthetic DES data. Results are shown in the “Alt
data” rows of Fig. 1, with points and error bars indicating
the mean and marginalized 68% confidence interval for

each parameter. Where error bars are not visible, they are
smaller than the size of the data point. In that plot theNeff

ð0Þ
constraints are for the model which varies Neff only, while
Neff

ðmÞ shows the ΔNeff constraint from the Neff −meff
model. Points with ΔΘ > 0.3 are highlighted.
Nearly all shifts evaluated were below the 0.3σ thresh-

old, meaning these beyond-ΛCDM parameter estimates are
robust against each of the considered systematics. The only
exception to this occurs for the binned σ8ðzÞ model’s
response to changes in the assumed magnification param-
eter. For the binned σ8ðzÞ DES 3 × 2 pt results we see
ΔA

Plin
3

¼ 0.31, and for 3 × 2 ptþ BAOþ RSDþ SNþ
Planck binned σ8ðzÞ results we find ΔA

Plin
3

¼ 0.37. We

note that these numbers are close to the desired threshold,
especially relative to our sampling uncertainty of
ΔΘ � ∼0.04, and so are not very concerning.
We also check whether these contaminations affect

our assessment of whether an extended model is favored
relative to ΛCDM. We do this by comparing the values of
the suspiciousness model comparison statistic S, defined in
Appendix F, evaluated in our contaminated and baseline
simulated analyses. For a base model M0 (e.g., ΛCDM)
whose parameter space is a subspace of extended model
MX, we define suspiciousness so that ln S < 0 indicates a
preference for MX. Of the several model comparison
statistics that we will ultimately report as part of our
results, we use suspiciousness here because it is readily
calculable from importance-sampled posteriors. Figure 2
shows the changes produced by systematic contamination
in ln S relative to the expected amount of scatter, for DES
3 × 2 pt and DES 3 × 2 ptþ BAOþ RSDþ SNþ Planck
constraints. The largest shift occurs for Neff vs ΛCDM,
where analyzing the EUCLID EMULATOR synthetic data
shifts ln S by ∼1σ in the limit that posteriors are
Gaussian. We should therefore interpret model comparison
results for Neff with some caution. Otherwise, all system-
atics considered cause negligible changes in suspiciousness
and thus are unlikely to result in a false detection of tension
with ΛCDM.

C. Robustness to model variations

We additionally study how parameter constraints
respond to changes in our model. By comparing results
obtained using alternative modeling choices to those
obtained from our fiducial model, we assess the robustness
of our findings relative to those model variations. As
before, we quantify this comparison in terms of the
parameter shift ΔΘ defined in Eq. (31), and we consider
any shifts with ΔΘ < 0.3 to be negligible. The model
changes considered are as follows:

(i) TATT: We use a five-parameter TATT intrinsic
alignment model [129] instead of the two-parameter
NLA model used in the present baseline analysis.
This model, which was the fiducial IA model in
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DES-Y3KP, has significantly more flexibility to
describe IA scale and redshift dependence, allowing
it to capture IA from tidal alignment and tidal
torquing, as well as the response to the density-
weighted tidal field. We use the same parameters and
prior ranges as in DES-Y3KP. Comparison with an
analysis using TATT allows us to test the robustness
of our results against our choice of intrinsic align-
ment model. As explained in Sec. II C, for each of
the beyond-ΛCDM models we perform a preun-
blinding model comparison between TATTand NLA
to test whether there is tension with the choice of
NLA as the fiducial IA model for that cosmology.
Note that this set of tests are not performed for
Σ0 − μ0 because the TATT modeling tools are not

available for our modified gravity calculations (see
Sec. III E).

(ii) Varying XLens: We marginalize over a parameter
XLens which multiplies the galaxy bias terms appear-
ing in γtðθÞ calculations, thus allowing the galaxy-
galaxy lensing observables to have a different bias
parameter than galaxy clustering. Such an effect was
discovered after unblinding the ΛCDM 3 × 2 pt
analysis using the redMaGiC lens sample, and while
it is still under investigation, it is thought to be due to
an unaccounted for systematic related to lens sample
selection [142]. This effect motivated the choice
of MagLim over redMaGiC as the fiducial lens sample
in DES-Y3KP. While no evidence was found in
ΛCDM for XLens ≠ 1 for our data vector, which uses

FIG. 1. Simulated analysis constraints on beyond-ΛCDM model parameters, showing robustness against systematics and model
variations. Points and error bars show the mean and 68% confidence interval for marginalized parameter constraints, and points that are
offset from the baseline by more than 0.3σ, according to Eq. (31), are highlighted in yellow and red. To facilitate comparison between
rows, solid vertical lines and shaded regions show the location and 68% confidence interval of the baseline point for DES 3 × 2 pt and
DES 3 × 2 ptþ BAOþ RSDþ SNþ Planck results in blue and black, respectively. Dashed vertical lines show the ΛCDM values used

to generate the synthetic data vectors. We use Neff
ð0Þ to identify the effective number of relativistic degrees of freedom when no mass is

included in the model and Neff
ðmÞ for that parameter in the Neff −meff model. For parameters where the combination of all data (DES

3 × 2 pt and all external data) is much more constraining than DES 3 × 2 pt, a version of this plot with narrower axis ranges can be
found in Fig. 19 of Appendix D.
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the four-bin MagLim lens sample, we include results
marginalizing over parameter to test the robustness
of our beyond-ΛCDM constraints to the presence of
this kind of systematic in the real data analysis. Note
that a similar effect with independent XLens values
for each redshift bin is able to capture the issues with
the fifth and sixth MagLim bins which led to their
removal from the analysis. Studies in ΛCDM have
shown that the first four MagLim bins we analyze are
consistent with XLens ¼ 1 in this redshift-dependent
formulation as well [66,142]. Thus to limit the
parameter space of these tests, here we consider
only a single redshift-independent XLens parameter.
As an additional exploration of this effect, in
Appendix G we study the response of the extended
models to synthetic data produced with XLens ≠ 1.

(iii) Hyperrank: Instead of using the four Δzs photo-z
bias parameters of our fiducial model, we use the
hyperrank [155] method to marginalize over uncer-
tainties in the source sample redshift distributions.
This method uses three “rank” parameters to sample
an ensemble of 1000 realizations of source nðzÞ
histograms that were generated using a three-step
Dirichlet (3sDir) sampling method [59,156,157].
(Throughout this paper we will use “hyperrank”
as shorthand for what might more properly be
referred to as the 3sDir+hyperrank method.) Com-
pared to the fiducial approach, hyperrank captures
more information about uncertainties in the shapes
of those redshift distributions as well as correlations
between different source bins. Comparing con-
straints obtained using hyperrank to our fiducial
model will indicate how sensitive our results are to
our characterization of source photo-z uncertainties.

Note that in DES-Y3KP, it was found that using
hyperrank for ΛCDM produced a 0.53σ shift
in S8 (see Appendix E1 of that reference [44] and
our Appendix D 4).

Because we are using the TATT comparisons to evaluate
our choice of fiducial IA model (except for the Σ0 − μ0
model), we run TATT analyses for all three principal data
combinations (DES 3 × 2 pt alone, only low-redshift
probes; DES 3 × 2 ptþ BAOþ RSDþ SN, and all data
combined; DES 3 × 2 ptþ BAOþ RSDþ SNþ Planck).
We run XLens and hyperrank analyses for DES 3 × 2 pt
only, except for the Σ0 − μ0, binned σ8ðzÞ, and Neff −meff
models. This choice was motivated by non-negligible shifts
seen for binned σ8ðzÞ and Neff −meff in the blinded real
data tests for DES 3 × 2 pt alone. Additional chains were
run for Σ0 − μ0 as well because that model also primarily
affects structure growth.
Results showing the impact of these model variations on

simulated analyses are shown in the “Alt model” lines of
Fig. 1, and results for real data are shown in Fig. 3.15 For
synthetic and real data, other than for Neff −meff and
binned σ8ðzÞ, all shifts due to these model variations were
below 0.3σ. The non-negligible parameter shifts occurring
for Neff −meff and binned σ8ðzÞ have motivated adjust-
ments to analyses’ choices for those models. Further
detailed discussion of those shifts can be found for

FIG. 2. Impact of contamination by unmodeled systematics on the suspiciousness model comparison metric evaluated for
synthetic ΛCDM data. Panels show suspiciousness evaluated between different beyond-ΛCDMmodels and ΛCDM, with the marker
styles indicating different contaminations. Blue circular markers indicate the baseline case where the synthetic data are produced
using the same model as used for parameter estimation. Studying whether contaminations shift ln S toward more negative values
than the baseline measurement tells us whether they are likely to produce a false detection of beyond-ΛCDM physics. Shaded
regions indicate the expected �1σ scatter around the baseline for Gaussian posteriors, and the red dashed line denotes the value of
ln S that would produce a 1σ preference for the beyond-ΛCDMmodel (though as we discuss in Appendix F ln S is expected to follow
a χ2 distribution, such that the true uncertainty is more skewed toward negative values of ln S than the shaded regions, making the
test conservative). Error bars on points indicate sampling uncertainty. Results are shown for the analysis of DES 3 × 2 pt alone
and 3 × 2 ptþ BAOþ RSDþ SNþ Planck (all data).

15Before unblinding cosmological parameter estimates or
model comparisons with ΛCDM, at this stage we studied only
differences between the alternative and baseline chain constraints,
working with a version of Fig. 3 where baseline means were
subtracted from all numbers, causing all the points in the top row
to be on zero. The figure was updated after unblinding to show
the actual parameter values of the constraints.
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Neff −meff in Appendix D 2 and for binned σ8ðzÞ in
Appendix D 3, respectively, which we briefly summarize
here. First, the sensitivity of the Neff −meff constraints to
model variations seem to be caused by prior volume effects
associated with an unconstrained part of parameter space at
smallΔNeff . Since adjusting our prior to remove that part of
parameter space restores robustness, this motivates our
choice to report Neff −meff results using priors that require
either ΔNeff > 0.047 or mth < 10 eV, as noted at the end
of Sec. III D.
Second, for binned σ8ðzÞ the most concerning param-

eter shifts occur for hyperrank, which causes the APlin
i

amplitudes to change by ∼1–2σ relative to their baseline
model estimates. Given this, we report binned σ8ðzÞ
results for both the baseline and hyperrank versions of
the analysis, using their comparison as a rough estimate
for the impact of systematic uncertainties related to
photometric redshift estimates. We note that model var-
iations most severely impact inferences about σ8 in the
lowest redshift bin, which then propagates to affect APlin

i
parameters because they are defined relative to bin 1.

Importantly, the derived parameters σ½bin i�8 ≡ σ8½APlin
i �1=2,

which are more closely related to the observed amplitude
of LSS, are more robust to modeling variations especially
when we combine DES 3 × 2 pt with external data.

VI. RESULTS

We now show the principal results of our analysis. This
section is organized as follows: In Table IV, we show a
summary of marginalized constraints on individual param-
eters. In Secs. VI A–VI F, we report and discuss constraints
for each of the cosmological models studied in this work. In
Secs. VI G and VI H, we examine how these cosmological
models and other model variations impact estimates of S8
and Σmν, respectively. While discussions of results for
individual models touch on tensions and model compar-
isons, Secs. VI I and VI J present more details about the
definitions and determination of tension and model com-
parison statistics, respectively.
In this section, parameter estimates shown with two-

sided error bars report the mean and 68% confidence
interval of marginalized one-dimensional posteriors.
One-sided errors report 95% confidence bounds. Before
unblinding, we decided that we would report results from
combined datasets only if the p-value associated with the
suspiciousness tension metric, described in Appendix E
and Ref. [158], is greater than 0.01. We evaluate that
metric for two data combinations: DES 3 × 2 pt vs the
external low-redshift data combination BAOþ RSDþ SN,
and Planck vs the combination of all non-CMB data,
3 × 2 ptþ BAOþ RSDþ SN.

FIG. 3. Beyond-ΛCDM parameters constraints for real data and the impact of model variations. Points and error bars show the mean
and 68% confidence interval for marginalized constraints on extended-model parameters, and shifts larger than 0.3σ according to
Eq. (31) are highlighted in yellow and red. Dashed gray lines show parameter values that correspond to ΛCDM. Solid vertical lines and
shaded regions mark the DES 3 × 2 pt and combination of all data, DES 3 × 2 ptþ BAOþ RSDþ SNþ Planck baseline results, in
blue and black, respectively, to facilitate comparison between rows. No points are shown in second row of Σ0 and μ0 constraints because
of the lack of TATT IA model implementation within the modified gravity pipeline. A version of this plot with narrower axis ranges can
be found in Fig. 20 of Appendix D 1.
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A. Results: w0 −wa

We start with dynamical dark energy described by
parameters w0 and wa. The marginalized constraints are
shown in the left panel of Fig. 4. We find

w0≥−1.4; wa¼−0.9�1.2 DESY3

w0¼−0.95�0.08; wa¼−0.4þ0.4
−0.3 DESY3þExternal:

ð32Þ

DES Y3 3 × 2 pt data alone weakly constrain16 w0 and wa,
but are statistically consistent with the cosmological con-
stant values of ðw0; waÞ ¼ ð−1; 0Þ. When combined with
external data, the constraints tighten considerably. The
combined constraints find wa < 0 at about 1σ and are thus
consistent with the standard model. In the w0 − wa plane,
the DES 3 × 2 pt data alone have similar constraining
power to Planck alone. Additionally, 3 × 2 ptþ BAOþ
RSDþ SN (without Planck) produce constraints compa-
rable those from the combination of all data considered.
The pivot equation of state (see Sec. III A) is

wp ¼ −0.99þ0.28
−0.17 DESY3

¼ −1.03þ0.04
−0.03 DESY3þ External; ð33Þ

where for the DES Y3 3 × 2 pt and all-data constraints, the
pivot redshifts are zp ¼ 0.24 and zp ¼ 0.27, respectively.
Note that DES alone does give a two-sided constraint
on wp, unlike on w0. The right panel of Fig. 4 shows the
constraints in the ðwp; waÞ plane. The DES Y3 3 × 2 pt data
again qualitatively agree with CMB alone, but are some-
what more centered on the ΛCDM model values of
wp ¼ −1, wa ¼ 0. We note that the 3 × 2 pt wa constraints
are slightly tighter than the latest Pantheonþ supernovae
measurements [159], which report a 68% confidence
interval width of 2.8 on wa, compared to 2.3 from
DES Y3 3 × 2 pt.
Figure 5 presents a more detailed view of the most

powerful constraints in the w0 − wa plane, additionally
showing constraints from the external low-redshift data
(BAOþ RSDþ SN) alone and Planck combined with low-
redshift geometric data (BAOþ SN). Looking at individual
parameter constraints, we note that the marginalized
posterior mean for w0 is essentially the same for all data
combinations considered here, and that compared to con-
straints from BAOþ RSDþ SN alone, adding 3 × 2 pt
data causes the wa estimate to shift downward by about 1σ.
Adding Planck constraints to that moves the all-data wa
estimate slightly lower, but not by a significant amount,

TABLE IV. Marginalized constraints on beyond-ΛCDM
parameters for DES Y3 3 × 2 pt, all external data (Planckþ
BAOþ RSDþ SN), and all data (3 × 2 ptþ Planckþ BAOþ
RSDþ SN). Two-sided constraints report the mean and 68% con-
fidence interval for each parameter’s marginalized posterior. One-
sided constraints report 95% bounds.

DES
3 × 2 pt All external All data

wCDM w0 −0.94þ0.31
−0.18 −1.04þ0.03

−0.03 −1.03þ0.03
−0.03

w0-wa w0 ≥ −1.40 −0.94þ0.08
−0.08 −0.95þ0.08

−0.08

wa −0.94þ1.15
−1.15 −0.45þ0.36

−0.28 −0.38þ0.36
−0.28

wp −0.99þ0.28
−0.17 −1.04þ0.04

−0.03 −1.03þ0.04
−0.03

Ωk 102Ωk ≥ −16 0.08þ0.18
−0.18 0.09þ0.17

−0.17

Neff Neff ≤7.84 3.10þ0.16
−0.17 3.10þ0.15

−0.16

ΔNeff > 0.047 ΔNeff � � � ≤0.36 ≤0.34
meff (eV) � � � ≤0.18 ≤0.14

mth < 10 eV ΔNeff � � � ≤0.23 ≤0.28
meff (eV) � � � ≤0.42 ≤0.20

Σ0-μ0 Σ0 0.56þ0.37
−0.48 0.37þ0.12

−0.09 0.04þ0.05
−0.05

μ0 � � � 0.20þ0.22
−0.22 0.08þ0.21

−0.19

Binned σ8ðzÞ APlin
2

1.00þ0.14
−0.21 0.92þ0.14

−0.23 1.03þ0.11
−0.14

APlin
3

0.88þ0.14
−0.19 0.95þ0.17

−0.30 0.98þ0.11
−0.13

APlin
4

0.89þ0.20
−0.26 1.22þ0.17

−0.33 1.24þ0.13
−0.16

APlin
CMB

� � � 0.89þ0.10
−0.22 1.04þ0.04

−0.06

σ½bin 1�8
0.75þ0.05

−0.05 0.83þ0.09
−0.06 0.78þ0.02

−0.02

σ½bin 2�8
0.74þ0.06

−0.07 0.79þ0.06
−0.06 0.79þ0.04

−0.04

σ½bin 3�8
0.70þ0.06

−0.07 0.80þ0.07
−0.07 0.76þ0.04

−0.04

σ½bin4�8
0.70þ0.10

−0.09 0.90þ0.05
−0.04 0.86þ0.04

−0.05

σ½CMB�
8

� � � 0.78þ0.02
−0.02 0.79þ0.01

−0.01

Binned σ8ðzÞ,
hyperrank

APlin
2

1.16þ0.16
−0.16 0.92þ0.14

−0.23 1.28þ0.07
−0.09

APlin
3

1.07þ0.15
−0.17 0.95þ0.17

−0.30 1.17þ0.08
−0.10

APlin
4

0.85þ0.13
−0.24 1.22þ0.17

−0.33 1.51þ0.12
−0.14

APlin
CMB

� � � 0.89þ0.10
−0.22 1.26þ0.03

−0.04

σ½bin 1�8
0.73þ0.04

−0.04 0.83þ0.09
−0.06 0.72þ0.01

−0.01

σ½bin 2�8
0.78þ0.06

−0.06 0.79þ0.06
−0.06 0.81þ0.02

−0.02

σ½bin 3�8
0.75þ0.07

−0.06 0.80þ0.07
−0.07 0.77þ0.03

−0.03

σ½bin 4�8
0.67þ0.07

−0.09 0.90þ0.05
−0.04 0.88þ0.04

−0.04

σ½CMB�
8

� � � 0.78þ0.02
−0.02 0.80þ0.01

−0.01

16We report two-sided 3 × 2 pt-only constraints on wa because
its one-dimensional marginalized posterior is not bounded by the
wa priors, but note that the constraint is strongly influenced by the
intersection of the posterior with the upper w0 prior boundary.
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and produces constraints that are very similar to the
Planckþ BAOþ SN data combination. All constraints
are statistically consistent with ΛCDM parameter values.
Overall, the DES 3 × 2 pt data strengthen the case that

the ðw0; waÞ model parameters are in excellent agreement
with the ΛCDM values w0 ¼ −1, wa ¼ 0. We discuss the
comparison between the present results and DES Y1
3 × 2 pt constraints on w0 − wa [50] in Appendix H.

B. Results: Ωk

Figure 6 shows constraints on curvature in the Ωk–Ωm
plane. We see that curvature is not strongly constrained by
the DES Y3 3 × 2 pt data alone, and that the constraints on
curvature from all data (DES 3 × 2 ptþ BAOþ RSDþ
SNþ Planck) are identical to those from Planck combined
with low-redshift geometric probes (BAOþ SN). The DES
3 × 2 pt data do contribute constraining power when
combined with other low-redshift data by breaking degen-
eracies in the full parameter space. Specifically, when
combined with BAOþ RSDþ SN, DES 3 × 2 pt data
lower the upper bound on Ωk by constraining Ωm and
thus help to break a degeneracy between Ωm and Ωk. This
decreases the width of the marginalized 68% confidence
interval on Ωk by 20%.
We recover the well-documented (see, e.g., [11,160–166])

finding that constraints from Planck alone favor negative Ωk
at roughly three sigma and are significantly offset from
the low-redshift constraints. That offset is along the direction
of the primary CMB anisotropies’ geometric degeneracy

FIG. 4. Constraints on the dynamical dark energy w0 − wa model. The left panel shows the constraints on w0 and wa, while the right
panel shows constraints on the derived pivot value wp and again wa. Contours show 68% and 95% confidence regions. The pale blue
contours are DES 3 × 2 pt, the purple contours are the low-z combination of 3 × 2 ptþ BAOþ RSDþ SN, the open red contours are
for Planck, and the open black contours represent everything combined. The pivot redshifts derived for the wp–wa are 0.24 for DES
3 × 2 pt only, 0.21 for 3 × 2 ptþ BAOþ RSDþ SN, and 0.27 for all data constraints. The gray hatched region shows the part of
parameter space removed by the prior that requires w0 þ wa < 0.

FIG. 5. A more detailed look at how different data contribute
constraining power to w0 and wa. The purple contours showing
3 × 2 ptþ BAOþ RSDþ SN and black contours showing all-
data constraints are the same as those in Fig. 4. The green
contours show constraints from the external low-z data alone
(BAOþ RSDþ SN), while the pink contours show constraints
from Planck combined with low-redshift geometric probes only
(BAOþ SN). The gray hatched region shows the excluded region
where w0 þ wa > 0.
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[143], indicated in Fig. 6 with a gray dashed line,17 and when
that degeneracy is broken with low-redshift observables
the constraints shift to become consistent with Ωk ¼ 0.
Quantifying the tension between the Planck-only and
3 × 2 ptþ BAOþ RSDþ SN posteriors, we find the sus-
piciousness p-value to be exactly at our threshold of 0.01 for
combining data. Given this, we report constraints for the
combination of all the data, but additionally report the
constraints from 3 × 2 ptþ BAOþ RSDþ SN (without
Planck). The marginalized constraints on Ωk are

Ωk ≥−0.16 DESY3

¼ 0.001�0.002 DESY3þExternal

¼−0.03þ0.04
−0.03 DESY3þExternal;no CMB: ð34Þ

Compared to the combination of all external data, the
inclusion of 3 × 2 pt in the DES Y3 þ External constraints
listed above narrows the 68% confidence interval range by
only 6%. Compared to the eBOSS analysis of Ref. [167], in
which Ωk is measured from the combination of CMB, BAO,
and SN, our constraints are about 10% weaker, likely due to
differences in analysis procedures (for example, we vary
neutrino mass, while that analysis fixes it). Our “no CMB”
constraints are slightly tighter than those reported in
Ref. [168] from a different combination of low-redshift
probes.

C. Results: Neff

Much like curvature, the number of relativistic species
Neff is weakly constrained by DES 3 × 2 pt alone, but
combining the DES with external data leads to modest
improvements. The constraints are

Neff ≤ 7.8 DESY3

¼ 3.10þ0.15
−0.16 DESY3þ External: ð35Þ

Constraints on the number of relativistic species are
given in Fig. 7. The DES 3 × 2 pt and BAOþ RSDþ SN
constraints both individually peak around Neff ≃ 3, though
we caution that these constraints are mainly shaped by prior
projection effects. Both the 3 × 2 pt and BAOþ RSDþ
SN posteriors are unconstrained along Neff −Ωb and
Neff − h degeneracy directions. Given our choice of priors,
the upper bounds on Neff are shaped by the upper prior
bound on h, while the lower bound on Neff are determined
by the lower prior bound for Ωb. Both DES 3 × 2 pt and
RSD are sensitive to the amplitude of the power spectrum,
which is affected by Neff through changes in the redshift of
matter-radiation equality, while BAO is additionally sensi-
tive to a small phase shift caused by Neff’s impact on the
Silk damping scale. These probes’ posteriors have different
degeneracies between As and Neff , and the overlap between
them rules out small Neff values, while the upper bound is
still primarily determined by where the posterior intersects
the Ωb prior. The constraints are still consistent with the
standard model value of Neff . Once the 3 × 2 ptþ BAOþ
RSDþ SN data are combined with Planck, the overall
combined posterior shifts slightly compared to the Planck-
only constraints, but remain fully consistent with Neff ≃ 3.

D. Results: Neff −meff

We next consider the Neff −meff model. Recall, follow-
ing the discussion in Sec. V C, that this particular set of
constraints is prone to parameter-space projection effects in
the small-ΔNeff region, so our fiducial analysis imposes the
constraint ΔNeff > 0.047, where ΔNeff ≡ Neff − 3.044.

FIG. 6. Constraints on the curvature density Ωk and matter
density Ωm. The diagonal dashed gray line shows the direction of
the primary CMB anisotropies’ geometric degeneracy [143].

FIG. 7. Marginalized posterior on the number of relativistic
species Neff . The vertical dotted gray lines shows the standard
model value of Neff ¼ 3.044.

17The line is drawn for constant shift parameter R ∝ffiffiffiffiffiffiffiffiffiffiffi
Ωmh2

p
ð1þ z�ÞdAðz�Þ corresponding to the Planckþ BAO

constraints reported in Ref. [11], where z� is the redshift of
recombination.
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Making that assumption, and reporting the constraints only
for all data combined, we find

ΔNeff <0.34; meff <0.14 eV DESY3þExternal: ð36Þ
The constraints are shown in Fig. 8.
We also consider constraints for a prior requiring

ΔNeff > 0, but also mth < 10 eV. For this prior, the
constraints from all data combined are

ΔNeff <0.28; meff <0.20 eV DESY3þExternal: ð37Þ
This prior on the sterile neutrino’s thermal mass matches
the Planck 2018 analysis [11], which used the same CMB
likelihood as us, plus Planck lensing constraints (which
we do not include) and BOSS DR12 BAO to constrain
ΔNeff < 0.23 and meff < 0.65 eV. Thus, while we find
slightly weaker constraints on Neff , the inclusion of DES
3 × 2 pt and RSD effective measurements of the amplitude
of structure at low redshifts allows us to tighten the upper
bound on meff by about a factor of 3.
Another interesting, if less direct, comparison can be

made to the analysis of Ref. [101]. That work analyzed
the Planck data including lensing, the full-shape BOSS
DR12 measurement, and CFHTLens weak-lensing mea-
surements at fixed ΔNeff ¼ 0.047, to find the constraint
meff < 1.6 eV. They found that the weak-lensing measure-
ments were crucial to obtaining a tight constraint on meff .
While our results are not directly comparable (our meff
constraints would likely weaken if we performed our

analysis at fixed, small ΔNeff ), our findings lend further
support to the idea that precise cosmic shear measurements
of LSS can powerfully constrain the presence of light but
massive relic particles produced in the early Universe.

E. Results: Σ0 − μ0
Next, we show results of tests of gravity on cosmological

scales parametrized by Σ0 − μ0 in Fig. 9. As discussed in
Sec.VA,μ0 is not constrained byDESY33 × 2 pt alone and
so will not be reported. The Eq. (26) prior set on
Σ0 − μ0 is represented by a hatched area in the figure.
While the Planck-only contours are visibly offset from the
3 × 2 ptþ BAOþ RSDþ SNcombination, thesuspicious-
ness tension metric comparing the two posteriors has p ¼
0.02 (above the0.01 threshold), soweproceedwith reporting
results fromthecombinationof all data.Theseconstraints are

Σ0¼0.6�0.4 DESY3;

Σ0¼0.04�0.05; μ0¼0.08þ0.21
−0.19 DESY3þExternal; ð38Þ

the latter of which can be compared to the external-only
constraint,which isΣ0 ¼ 0.37þ0.12

−0.09 ; μ0 ¼ 0.20� 0.22. Thus
theadditionofDES3 × 2 ptdatabothtightenstheconstraints
on ðΣ0; μ0Þ andshifts themtobemoreconsistentwithgeneral
relativity.
The constraint on Σ0 from DES Y3 3 × 2 pt data alone is

limited by the linear scale cuts used for this model, which
actually results in the 3 × 2 pt-only bounds on Σ0 presented

FIG. 8. Constraints on the beyond-ΛCDMparameters of theNeff −meff model. The left plot shows results obtained using the fiducial prior
3.044 < Neff < 10, with axes spanning the full prior range. In it, the Planck and all-data posteriors reside entirely inside the mth > 10 eV
regionwhere sterile neutrinos behave likeCDM, shown in avery narrowgrayhatchedwedge along the left axis of the plot. The other contours
show constraints from DES 3 × 2 pt (blue), external low-redshift data from BAOþ RSDþ SN (dashed green), and 3 × 2 ptþ BAOþ
RSDþ SN (purple). The right panel shows chains runusing analternative priorwhereΔNeff > 0.047 andwith the plot range reduced tomore
clearly show the all-data (3 × 2 ptþ BAOþ RSDþ SNþ Planck) results. Because the DES 3 × 2 pt and DES 3 × 2 ptþ BAOþ
RSDþ SN chains have very few samples in the excluded region, the alternative prior has no effect on the purple and blue contours.
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here to be weaker than the comparable DES-Y1Ext result
by 40%. To understand this, recall from Sec. II D that we
define these linear scale cuts by iteratively removing small-
angle measurements until the difference between 3 × 2 pt
model predictions with and without nonlinear modeling are
deemed insignificant. We assess the significance of that
difference relative to the data covariance, which means that
as measurements get more precise this method produces
more stringent cuts. Quantitatively, Σ0 − μ0 constraints in the
present analysis are only based on 55% of the fiducial data
vector, while in DES-Y1Ext the linear cuts retained 73% of
the data points. The weakened Σ0 constraints imply that this

method for protecting against the Y3 measurements’ greater
sensitivity to nonlinear effects reduces the SNR available
for cosmology inference and indicates the need for a more
sophisticated method of accommodating for nonlinear mod-
eling uncertainties as data get more precise.
Given the offset of the Planck contour as well as

complementary of growth measurements from RSD, which
primarily constrain μ0, and 3 × 2 pt, which constrain Σ0, it
is interesting to report modified gravity constraints from
the combination of only low-redshift probes. This result
is shown in purple in Fig. 9, leading to measurements of
Σ0 − μ0 independent of CMB observables,

Σ0 ¼ −0.06þ0.09
−0.10 ; μ0 ¼ −0.4� 0.4

DESY3þ External; no CMB: ð39Þ

Results from the combined constraints is partly driven by
the BAOþ RSDþ SN measurement of μ0 ¼ −0.5þ0.4

−0.5 ,
indicating μ0 < 0 at 1σ significance. This is in contrast
to the results reported in Ref. [167], in which analysis of the
same BAOþ RSD data assuming a fixed background
cosmology produces μ0 constraints centered on zero.
To aid in the interpretation of these results, Fig. 10

shows how different data combinations break degeneracies
between the modified gravity parameters and S8. The fact
that lensing observables are sensitive to the product S8Σ0

limits the ability of DES 3 × 2 pt alone to constrain Σ0. By
constraining S8 and μ0, RSD measurements of the growth
rate of structure are able to break that degeneracy and thus
improve constraints on Σ0.
The behavior of the Planck-only contours can be under-

stood in terms of two relevant degeneracies. First, Planck’s
constraints on Σ0 mainly come from the impact of lensing,
which smooths the high-l peaks of the CMB power
spectra. (The integrated Sachs-Wolfe effect [169,170] also
introduces some sensitivity to Σ0, but cosmic variance

FIG. 9. Constraints on the Σ0 − μ0 modified gravity parameters,
with axis ranges reflecting the parameters’ prior ranges. The gray
hatched region shows where samples are excluded by the μ0 <
2Σ0 þ 1 requirement of MGCAMB: any overlap of contours with
that region is a reflection of smoothing done by GetDist.

FIG. 10. Examination of how RSD growth information, as part of the BAOþ RSDþ SN external low-redshift data combination,
breaks degeneracies between S8 and modified gravity parameters Σ0 and μ0 when combined with either DES 3 × 2 pt or Planck.
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affecting the low multipoles where that occurs limits its
constraining power.) That lensing signal, like DES cosmic
shear, is sensitive to the product S8Σ0, and thus leads S8-Σ0

degeneracy parallel to that seen for 3 × 2 pt. Second, μ0
adds a degree of freedom to the relationship between
CMB constraints on the primordial power spectrum ampli-
tude As and the amplitude of density fluctuations in the late
Universe. This leads to a positive degeneracy between S8
and μ0: for a given value of As, which is tightly constrained
by Planck, larger μ0 will enhance structure growth and
thus increase S8. Combining Planck with the BAOþ
RSDþ SN data allows the RSD observables’ direct meas-
urement of S8 break both of these degeneracies.
The fact that the Planck contours, either from Planck

alone or in combination with the BAOþ RSDþ SN low-
redshift data, are offset toward higher Σ0 than 3 × 2 pt
follows a trend seen for DES Y1 data in both DES-Y1Ext
and Ref. [11]. As noted in Ref. [11], this preference is
driven by the excess smoothing of high-l Planck mea-
surements that are captured by the phenomenological AL
parameter. These are the same features that pull the Planck-
only Ωk constraints toward negative values. When all data
are analyzed together, the Σ0 constraints are in agreement
with those from 3 × 2 pt, with the CMB measurements
contributing to tightening constraints primarily by breaking
the RSD posterior’s weak degeneracy between σ8 and μ0.

F. Results: Binned σ8ðzÞ
Finally, we report constraints on the binned σ8ðzÞmodel.

We begin by examining the set of derived parameters σ½bin i�8

[see Eqs. (27)–(29)], which correspond to the values of σ8
inferred from LSS observed in redshift bin i, and which we
showed in Sec. V C are more robust to model variations
than the sampled APlin

i parameters. These constraints are

σ½bin 1�8 ¼ 0.75þ0.05
−0.05 ;

σ½bin 2�8 ¼ 0.74þ0.06
−0.07 ;

σ½bin 3�8 ¼ 0.70þ0.06
−0.07 ; DESY3

σ½bin 4�8 ¼ 0.70þ0.10
−0.09 ; ð40Þ

and

σ½bin 1�8 ¼ 0.78þ0.02
−0.02 ;

σ½bin 2�8 ¼ 0.79þ0.04
−0.04 ;

σ½bin 3�8 ¼ 0.76þ0.04
−0.04 ; DESY3þ External

σ½bin 4�8 ¼ 0.86þ0.04
−0.05 ;

σ½CMB�
8 ¼ 0.792þ0.015

−0.010 : ð41Þ

Figure 11 presents these constraints in comparison to
ΛCDM constraints on σ8. In that figure, the set of lighter,

unfilled data points show how the σ½bin i�8 constraints change
when using the alternative hyperrank method of margin-
alizing over source galaxy photo-z uncertainties. We find
that hyperrank induces non-negligible but still small

(∼0.5σ) shifts in σ½bin i�8 for the 3 × 2 pt-only i ∈ f2; 3g
measurements, and all-data i ∈ f2;CMBg measurements,
while a much larger, almost 3σ shift occurs for the all-data

constraint on σ½bin 1�8 . As is discussed in more detail in
Appendices D 3 and D 4, the lack of robustness of the
lowest redshift is likely due to an interaction between the
source nðzÞ and IA modeling which is most significant at
low redshifts. In the same figure, we report additional
results to facilitate interpretation of how different structure
growth observables contribute to constraints. Namely, we
show the combination of DES data with only geometric
external data (3 × 2 ptþ BAOþ SN) shifts constraints
to slightly higher S8 in both ΛCDM and binned σ8, but
not as much as the 3 × 2 ptþ BAOþ RSDþ SN data

FIG. 11. Constraints on binned σ8ðzÞ compared to ΛCDM
constraints in the top row. Points and error bars show the
marginalized posterior mean and 68% confidence intervals.
Unfilled, lighter markers correspond to the same data as the
darker points with matching colors and shapes, but were obtained
using the hyperrank marginalization over uncertainties in
source galaxy redshift distributions. Shaded bands highlight
the location of the top row’s 3 × 2 pt and Planck ΛCDM points
for comparison.
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combination. Thus the combined analysis’ shift toward
higher σ8, especially in the highest redshift bin 4, seems to
be primarily driven by the RSD likelihood.
Figure 12 translates these results to the inferred growth

function σ8ðzÞ. That figure compares marginalized con-
straints when we vary the binned σ8ðzÞ amplitude param-
eters shown with data points at a few example redshifts,
to the 68% confidence bands obtained from ΛCDM fits to
DES 3 × 2 pt and all data (3 × 2 ptþ BAOþ RSDþ
SNþ Planck).
All measurements are within approximately 1σ of the

ΛCDM σ8 estimate. The fact that the DES-only constraints
on σ8ðzÞ are consistently lower than Planck and that our

combined constraints find σ½bin 4�8 to be higher than σ½bin i�8

in the other bins agrees with similar features seen in
Refs. [171–173]. In those works, analyses of DESI galaxies
cross-correlated with Planck lensing, eBOSS QSO cluster-
ing, and both of those observables combined with DES Y1
3 × 2 pt measurements, respectively, suggest that the
amplitude of structure at z ∼ 0.8 may be slightly higher
compared to lower redshift measurements, thus hinting at a
slower growth rate than expected in ΛCDM. However, the
trends seen in these references, as well as that in our work,
are only significant at the ∼1σ level and thus not strong
enough to motivate any kind of firm conclusion. We also
note that a similar trend is not found in the binned modified
gravity study of Ref. [122] using DES Y1 and BOSS DR12
LSS data. It will be interesting to monitor how new and
more precise data constrain the time evolution of the
amplitude of density fluctuations.
For completeness, we additionally report constraints

on the sampled amplitude parameters used to implement

this model, APlin
2 , APlin

3 , APlin
4 , and APlin

CMB [see Eq. (27)].
We emphasize that these constraints should be interpreted
with caution, because in Sec. V C we found that they are
not robust to a change in how we marginalize over our
source photo-z uncertainties. Particularly for the all-data
constraints, this occurs because these sampled amplitude
parameters are defined relative to bin 1, so the sensitivity to

hyperrank seen for σ½bin 1�8 propagates to APlin
i inferences for

higher redshift bins. Specifically, switching from our
fiducial analysis to one with the hyperrank nsðzÞ margin-
alization scheme produces shifts between 0.5 and 2σ shifts
in all of the amplitude parameters. The hyperrank model
constraints on these parameters can be found in Table IV.
The constraints on these parameters using our baseline
model are

APlin
2 ¼ 1.00þ0.14

−0.21 ;

APlin
3 ¼ 0.88þ0.14

−0.19 ; DESY3

APlin
4 ¼ 0.90þ0.20

−0.26 ; ð42Þ

and

APlin
2 ¼ 1.03þ0.11

−0.14 ;

APlin
3 ¼ 0.98þ0.11

−0.13 ; DESY3þ External

APlin
4 ¼ 1.24þ0.13

−0.16 ;

APlin
CMB ¼ 1.04þ0.04

−0.06 : ð43Þ

FIG. 12. Inferred σ8ðzÞ from ΛCDM (lines) and the binned σ8ðzÞ model (points). Lines and shaded bands show the mean and
68% confidence interval inferred from ΛCDM posteriors, with DES 3 × 2 ptþ shear ratio shown in blue and the combination of all data
(3 × 2 ptþ SRþ Planckþ BAOþ RSDþ SN) shown in black. Points with error bars show binned σ8ðzÞ results for the same data
combinations, plotted at an example redshift for each lens bin. For readability, the all-data (black) points have been shifted by a small
horizontal offset. Vertical dashed lines show the bin divisions used to define the binned σ8ðzÞ model’s APlin

i amplitudes. For binned
σ8ðzÞ, SR refers to the shear ratio likelihood included as part of the DES analysis for that model.
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G. Impact of model and analysis choices on S8
In line with studies exploring whether beyond-ΛCDM

models alleviate the tension between weak-lensing
and Planck S8 measurements (see Sec. I and, e.g.,
Refs. [41,174–188]), in Fig. 13 we compare constraints
on S8 obtained within a selection of cosmological models
and, for comparison, analysis choices within the ΛCDM
model. In that figure, points show the mean and 68% con-
fidence intervals of the marginalized S8 posterior, with
different colors and marker styles corresponding to results
from different sets of observables. We report constraints for
DES 3 × 2 pt (blue), the combination of DES and other
low-redshift probes (3 × 2 ptþ BAOþ RSDþ SN, pur-
ple), Planck alone (red), Planck combined with low-redshift
geometric probes BAOþ SN to break geometric degener-
acies (pink), and the combination of all data (3 × 2 ptþ
BAOþ RSDþ SNþ Planck, black). Blue and red vertical

lines and bands mark the location of the baseline ΛCDM
DES 3 × 2 pt and Planck constraints shown in the top row,
to indicate the level of offset between those measurements
and to facilitate comparisons with other rows.
The first group of S8 constraints shown are for beyond-

ΛCDM models. These include wCDM along with the
extended models studied in this paper, except for the binned
σ8ðzÞ model for which σ8 constraints were discussed above
in Sec. VI F. In these extended models, we see that the most
overlap between Planck and 3 × 2 pt S8 constraints occurs
for dynamical dark energy described by wCDM and
w0 − wa. For both ΛCDM and beyond-ΛCDM models,
we find that the combination of low-redshift probes, i.e.,
combining DES Y3 3 × 2 pt with BAO, RSD, and SN as
shown in purple, measure S8 to be more consistent with
Planck constraints than 3 × 2 pt alone. This repeats the same
finding of DES-Y3KP (see Figs. 14 and 15 of Ref. [44]).
The behavior occurs because the external geometric
(BAOþ SN) probes constrain Ωm to be at the higher end
of the range allowed by the 3 × 2 pt-only constraints. Given
the Ωm–σ8 degeneracy, this leads to a higher S8 value.
For comparison, additional blocks of points in Fig. 13

show how constraints on S8 are affected by changes to the
analysis choices while retaining the ΛCDM model, and the
impact of two extensions to ΛCDM which we label ad hoc
models. The ΛCDM analysis choice variations include
using the shear ratio likelihood, different scale cuts, the
more general TATT IA model, the hyperrank method for
marginalizing over source photo-z uncertainties, and fixing
neutrino mass. The ad hoc models include varying XLens,
which introduces a mismatch between the galaxy bias
affecting galaxy clustering and that affecting galaxy-galaxy
lensing (see its description as part of the robustness tests of
Sec. V C), and varying AL [131], which scales the amount
of lensing-related smoothing affecting the CMB temper-
ature and polarization power spectra (see Sec. III F and,
e.g., Ref. [11]). Both these ad hocmodels correspond to the
introduction of a parameter to explain features in the DES
Y3 3 × 2 pt and Planck data, respectively, and not new
physics as opposed to the beyond-ΛCDM models consid-
ered in this analysis. While XLens has little effect on the
3 × 2 pt constraints and thus on the 3 × 2pt-Planck com-
parison, varying AL leads to more consistent estimates of S8
across all probe combinations shown (see also [179,182]).

H. Impact of model choice on
P

mν

Next, we examine constraints on the sum of neutrino
masses

P
mν. While DES 3 × 2 pt data are not particularly

sensitive to this parameter, the fact that we vary Ωνh2 as
part of our baseline analysis allows us to study how its
bounds are impacted by the assumed cosmological model.
With this aim, Table V reports the 95% upper bound onP

mν from Planckþ BAOþ RSDþ SN with and without
DES 3 × 2 pt for several of the models considered in
this paper, while Fig. 14 shows the one-dimensional

FIG. 13. Constraints on S8 in different models and under
different analysis assumptions. Points and error bars show the
means and marginalized 68% confidence, and the shaded bands
mark the location of the top row’s ΛCDM baseline points for
3 × 2 pt and Planck. Missing points simply indicate chains that
were not run as part of other robustness tests. The rows with “SR”
in the label and those varying AL include shear ratio as part of the
DES 3 × 2 pt likelihood, all others do not. The Σ0 − μ0 3 × 2 pt
constraint of S8 ¼ 0.61þ0.09

−0.16 is cut off to improve the dynamic
range for other points in the plot.
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marginalized posterior from the combination of all data.
For all models other than Σ0 − μ0 and binned σ8ðzÞ,
including the DES 3 × 2 pt likelihood either has no effect
or slightly weakens the bounds on

P
mν.

Neutrino mass constraints have a strong dependence on
assumptions about the time evolution of dark energy, with
the all-data upper bound on

P
mν increasing relative to

the ΛCDM value by a factor of 1.4 for wCDM and 1.9
for w0 − wa. In contrast, Ωk and Neff have little impact.
Modifying gravity with Σ0 − μ0 weakens external data
constraints on neutrino mass by external data, but when
DES 3 × 2 pt is included the resulting constraint matches
that of ΛCDM. Relaxing assumptions about the evolution
of structure growth by binning σ8ðzÞ increases the bound by
a factor of 1.4.

I. Tension between DES and external data
for extended models

In Fig. 15 we report measures of tension between DES
3 × 2 pt and external low-redshift probes (BAOþ
RSDþ SN), as well as between the combination of all
low-redshift probes (3 × 2 ptþ BAOþ RSDþ SN) and
Planck. We evaluate the significance of tension using
three statistics, which are discussed in more detail in
Appendix E: the Bayes ratio R, the suspiciousness S,
and a p value that converts S into a tension probability.
We define these quantities such that lnR < 0 and ln S < 0
correspond to evidence of tension. The quantity
pðS; dBMDÞ, where BMD stands for “Bayesian model
dimensionality” [see Eq. (E6) for more details], approx-
imates the probability, assuming a null hypothesis of
agreement between datasets, that we will find a value of
ln S as low or lower than the observed value. Thus, small p
corresponds to stronger tension. This probability is
assessed using both S and the quantity dBMD, which is a
Bayesian estimate of the number of directions in parameter
space in which a tension could be meaningfully detected—
that is, which are constrained by both datasets independ-
ently. We show multiple statistics here because while R is
likely to be the most familiar to readers, it has an
undesirable sensitivity to the choice of flat prior ranges.
In contrast, S is insensitive to the prior range of well-
constrained parameters, and its significance assessed via
pðS; dBMDÞ is expected to agree with a number of other
proposed tension metrics [158].
We estimate lnR, ln S, and dBMD using the ANESTHETIC

software18 [189], which produces an ensemble of 200
realizations capturing the uncertainty introduced by sam-
pling variance. For lnR and ln S, in Fig. 15 we report the
mean of this ensemble and use error bars (which are
occasionally smaller than the data point) to show the
standard deviation. For the p-values, whose ensemble
distribution is significantly non-Gaussian, we report the
median and approximate its one-sigma sampling variance
errors using the 16% and 84% quantiles. We use the
threshold of pðS; dBMDÞ ≥ 0.01 as a requirement for
reporting combined constraints.
For all models and statistics, there is no indication of any

tension between DES 3 × 2 pt and the external low-redshift
probes (BAOþ RSDþ SN). This is also true for almost all
evaluations of tension between the combination of all low-
redshift probes 3 × 2 ptþ BAOþ RSDþ SN and Planck.
The only cases where we find significant tension are for
the Ωk and Σ0 − μ0 comparison of 3 × 2 ptþ BAOþ
RSDþ SN vs Planck, both of which have a significance
between 2σ and 3σ.
As was noted above in Sec. VI B, for Ωk the p-value

median is 0.010, exactly at our threshold for reporting
combined constraints. This merits further discussion,

FIG. 14. Marginalized posterior for the sum of neutrino masses
obtained from the analysis of DES 3 × 2 ptþ BAO þ RSDþ
SN+Planck in different cosmological models. The dotted vertical
gray line shows the minimum mass allowed by neutrino oscil-
lation measurements,

P
mν ¼ 0.06 eV, and the hatched area

shows the region excluded by the Ωνh2 > 0.006 prior.

TABLE V. Impact of the cosmological model on the 95% con-
fidence upper bound on the sum of neutrino masses. The “All
external” column reports constraints from the combination of
Planckþ BAO þ RSDþ SN, while “All data” additionally in-
cludes DES 3 × 2 pt constraints [3 × 2 ptþ SR in the case of
binned σ8ðzÞ and AL].

95% upper bound on
P

mν (eV)

Model All external All data

ΛCDM 0.14 0.14
wCDM 0.17 0.19
w0–wa 0.25 0.26
Ωk 0.16 0.15
Neff 0.14 0.16
Σ0–μ0 0.21 0.14
Binned σ8ðzÞ 0.30 0.20
AL 0.14 0.19

18https://github.com/williamjameshandley/anesthetic.
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because in addition to being the most significant measure of
tension reported, it is also the noisiest. The 16% and 84%
quantiles are 0.002 and 1.0, respectively.19 This means that at
an approximately 1σ level of certainty, our evaluation of
tension between Planck and low-redshift Ωk constraints
could plausibly be consistent with both a slightly greater-
than-3σ tension and with there being no tension at all.
This large scatter is driven by the small value of dBMD ¼
1.5� 1.6 (reporting the mean and standard deviation from
the sample variance estimate). This small dBMD means that
there is limited overlap in the parameter directions con-
strained by Planck and 3 × 2 ptþ BAOþ RSDþ SN,
making the assessment of tension extremely sensitive to
noise in the posterior estimates. To further contextualize this
finding, we note that the Planck-only preference for Ωk < 0
driving this tension signal has been the subject of extensive
discussion in the literature (see, e.g., [11,160–166]) which

highlights the fact that the interpretation of this tension can
depend on subtleties related the choice of priors, parameters
sampled, Planck likelihood calculation method, as well as
the relationship to features in the Planck power spectra also
captured by phenomenological parameter AL.
For modified gravity, we see a tension between Planck

and the other data that is likely driven by the same AL-like
features of the CMB power spectrum. For Σ0 − μ0, the
tension measurement is less significant and much less noisy
than for Ωk: the median suspiciousness p-value is 0.024
with 16% and 84% quantiles of 0.013 and 0.039.
Note that Fig. 15 does not show tension results for

the binned σ8ðzÞ model. This is because, as described
in Sec. III F, in that model we sample different sets of
parameters when fitting DES and Planck constraints
separately and in combination. This makes tension metrics
difficult to evaluate, so for simplicity we will show
combined all-data constraints on binned σ8ðzÞ without
checking a tension metric. This should be a reasonably
safe choice because that model’s APlin

i and APlin
CMB parameters

introduce enough modeling freedom to capture any
differences between observables.

FIG. 15. Measurements of tensions between datasets assuming various cosmological models and analysis variations. Blue circular
points denote tensions between DES 3 × 2 pt and low-z BAO, RSD, and SN data, while black diamonds show tensions between the
combination of all that low-z data (3 × 2 ptþ BAOþ RSDþ SN) to Planck CMB constraints. For all panels, points further to the
left indicate greater tension. The statistics lnR and ln S are the Bayesian evidence ratio and suspiciousness, respectively. Their points
and uncertainties reflect the mean and standard deviation of realizations estimating sample variance using the ANESTHETIC software,
and shaded regions correspond to substantial and strong evidence of tension according to the Jeffreys scale. (The Jeffreys scale is
relevant for suspiciousness because ln S can be interpreted as the value of lnR associated with the narrowest choice of uninformative
prior.) The quantity p measures the significance accounting for the number of constrained parameters via the Bayesian model
dimensionality dBMD. In the plot, p-value errors indicate the 0.16 and 0.84 quantiles of the sample variance realizations,
points indicate the mean, and the shaded regions highlight probabilities associated with 1σ, 2σ, and 3σ tension. If error bars are not
seen, they are smaller than the size of the marker. Further information and definitions of these tension metrics can be found in
Appendix E.

19As we will discuss in Appendix E, we assign p ¼ 1 to
realizations with dBMD < 0, reasoning that there can be no
tension measured if there are no shared parameters in the two
datasets’ independent constraints.
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J. Assessing the preference for extended models
relative to ΛCDM

Figure 16 shows several model comparison statistics. We
show a variety of metrics here because it allows us to
compare the results of different model comparison tests and
to account for the fact that readers may have different
preferences regarding which of these tests are most familiar
or interpretable. Points further to the left of each subpanel
indicate ΛCDM to be more disfavored with respect to the
extended model, while those on the right side of the panels
favor ΛCDM and disfavor the extension. Definitions of
these metrics and details about how they are computed can
be found in Appendix F, though we will summarize them
here. The metrics include the Bayesian evidence ratio R
and suspiciousness S, both defined so that lnR < 0 and
ln S < 0 indicates that the data disfavor ΛCDM. We also
report the ratio of the change in the maximum posterior
goodness of fit to the number of added parameters,
Δχ2=Δk, Δ Akaike information criterion (ΔAIC) which

is an information-theory derived metric based on Δχ2 with
a penalty for adding parameters, and Δ deviance informa-
tion criterion (ΔDIC) which is related toΔAIC but adjusted
for the number of parameters constrained by the data.
For suspiciousness, we report two p-values converting

ln S to probabilities: pðS; dBMDÞ, in which dBMD uses
Bayesian model dimensionality to quantify the number
of additional parameters constrained in the beyond-ΛCDM
analysis, and pðS;ΔkÞ which instead simply uses the
number of additional sampled parameters Δk (e.g., Δk ¼ 1

for Ωk, Δk ¼ 2 for w0 − wa, etc.). The model comparison
definition of S can be shown to be equivalent to the change
in posterior-averaged log-likelihood for different models
(see Ref. [154], and for the analogous relation in the case of
data tensions, see Ref. [19]). This means pðS;ΔkÞ can be
viewed as a Bayesian analog to evaluating the probability
of the best-fit Δχ2=Δk.
Like Δχ2=Δk, the information provided by ln S

for model comparison is inherently asymmetric: the

FIG. 16. Model comparison metrics evaluated between pairs of nested models as listed on the right-hand side. All pairs are arranged so
that the model listed first has more parameters. In all panels, points further to the left indicate more of a preference for the extended
model. Blue points report metrics based on DES Y3–3 × 2 pt constraints alone, while black points are for DES Y3–3 × 2 pt combined
with the Planck, BAO, RSD, and SN likelihoods. For the Bayes ratio lnR and suspiciousness ln S, error bars report the standard
deviation associated with sampling variance and shaded regions show regions of substantial and strong preference for the extended
parameter space according to the Jeffreys scale. The two sets of p-values evaluate the significance of the ln S results assuming a change
in degree of freedom associated with the additional number of sampled parameters Δk in the extended model and the Bayesian model
dimensionality dBMD. The p-value points correspond to the mean estimate for sampling variance realizations, the uncertainties
correspond to the 0.16 and 0.84 quantiles, and the shaded regions denote probabilities corresponding to 1σ, 2σ, and ≥ 3σ. For the change
in maximum posterior goodness of fit Δχ2, errors reflect the propagated standard deviations of 15 maximum a posteriori probability
(MAP) estimates performed for each chain, and shaded regions have boundaries at Δχ2=Δk ¼ −1, −2, and −3. For the information
criterion statistics ΔAIC and ΔDIC, uncertainties reflect the same MAP estimate scatter, and the shaded regions are where model
likelihoods quantified by Akaike weights (see, e.g., Ref. [190]) match the probabilities associated with the lnR Jeffreys scale
boundaries. Definitions and more information about these model comparison statistics can be found in Appendix F.
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“hardening” of ln S against prior choice means that, while it
can be used to quantify the significance of preference for an
extended model, it will never definitively favor the model
with fewer parameters. This is in contrast to lnR, for which
tight constraints around ΛCDM parameter values relative
to the prior range will cause the extended model to be
definitively disfavored.
Examining R, we find that none of the extended models

are significantly preferred against ΛCDM, with the com-
bined data usually mildly or definitively favoring ΛCDM.
The only exception to this is for Neff −meff when we
impose an upper bound on the sterile neutrino’s thermal
mass, where according to the Jeffreys scale we find a
substantial (but not strong) preference for the extended
model. The preference for ΛCDM reaches a particularly
decisive level in the binned σ8ðzÞ case, unsurprisingly as it
is a phenomenological model adding several parameters
without much enhancing the overall fit to data. Considering
model variations while assumingΛCDM, we find that there
is neither a preference for varying neutrino mass nor for
varying the additional TATT IA parameters. Relative to the
Neff −meff results, the preference against varying active
neutrino mass is comparable to that against Neff −meff
when the ΔNeff > 0.047 prior is used, but that the
sterile neutrino model is more favored when we use the
mth < 10 eV prior. For the ad hoc models, fixing XLens is
favored over varying it, in line with previous studies of the
MagLim lens sample, and that there is strong but not
significant preference for varying AL, in line with previous
Planck analyses [11,182,191].
Turning our attention to ln S, we see that panel generally

reports values lower than lnR, reflecting the expectation
that suspiciousness is not able to significantly favor ΛCDM
over extended models. When assessing the significance of
S measurements using the associated p-values, we find
qualitative agreement with the evidence ratio findings.
For both the main set of beyond-ΛCDM models and
model variations within ΛCDM, most preferences for the
extended models over ΛCDM are less than 1σ significance,
and all are less than 2σ. The strong lnR evidence for
Neff −meff with mth < 10 eV translates via pðS;ΔkÞ to
a preference of slightly over 1σ significance.20 The largest
shift between R and S values occurs for the binned σ8ðzÞ
model, particularly for the baseline model’s all-data result.
However, given the large number of added parameters, the
p-values report that preference for binned σ8ðzÞ remains
insignificant, at less than 2σ.
The ΔAIC roughly tracks the evidence ratio, and the

Δχ2 and ΔDIC the suspiciousness, as expected from the
respective definitions.

The overall model comparison conclusion is that none of
the models considered offers a compelling alternative to
ΛCDM in explaining the data.

VII. CONCLUSIONS

We have presented constraints on extensions to the
ΛCDM cosmological model from DES Y3 measurements
of cosmic shear, galaxy-galaxy lensing, and clustering
(3 × 2 pt summary statistics) in addition to state-of-the-
art external data.We investigated how such extensions affect
the modeling of 3 × 2 pt observables, and validated the
analysis using simulated and blinded real data to ensure that
known sources of systematic error cannot lead to a false
detection of beyond-ΛCDM cosmology. This work allows
us to obtain robust and precise constraints on beyond-
ΛCDM cosmology thanks to the unprecedented statistical
power of the DES Y3 galaxy METACALIBRATION shape and
MagLim lens catalogs. Our analysis indicates no significant
deviations fromΛCDMand its precision is primarily limited
by the need for further theoretical developments.
We first expand the exploration of dark energy properties

by constraining time dependence of its equation of state.
While constraints from DES 3 × 2 pt alone do not con-
tribute significantly to w0 − wa information compared
combination of all external data, their precision is compa-
rable to those from other individual cosmological probes.
The precision of constraints from DES Y3 3 × 2 pt on
w0 − wa is comparable to that of Planck alone, and our wa
constraints are slightly tighter than the latest measurements
from Pantheonþ alone [159]. Combining datasets yields
precise estimates for w0 − wa which are consistent with a
cosmological constant, with the constraining power from
measurements of only low-redshift 3 × 2 ptþ BAOþ
RSDþ SN probes comparable to data combinations
including CMB observables.
DES 3 × 2 pt measurements contribute to constraints

on the curvature density of the Universe Ωk mainly by
constraining Ωm, which helps break a degeneracy between
Ωm and Ωk when 3 × 2 pt data are combined with
BAOþ RSDþ SN, leading to a 20% improvement on
curvature constraints that can be obtained from low-redshift
probes. While this low-redshift measurement of Ωk is an
order of magnitude weaker than constraints including CMB
observables, it is an interesting independent check, given
the much-discussed ∼3σ tension between Planck and BAO
curvature constraints, which we recover. We find combined
constraints to be compatible with flatness, whether or not
Planck likelihoods are included in the analysis. The
constraining power contributed by DES measurements to
this study is limited by the lack of validated nonlinear LSS
modeling and non-Limber projection calculations for non-
flat geometry.
Next, we constrain two models sensitive to additional

relativistic particle species in the early Universe. We find
that DES 3 × 2 pt measurements have little impact on

20For that model, pðS; dBMDÞ is not reported because the prior
on mth restricts the parameter space in a way that causes the
Bayesian model dimensionality of the Neff −meff posterior to
become smaller than that of ΛCDM, causing the p-value to
become undefined.
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inferences about changes to the number of relativistic
species parametrized by Neff, but that they are a powerful
tool for constraining the impact of light relic particles with
nonzero mass on the evolution of large-scale structure.
We explore this by constraining a species of sterile
neutrinos with effective mass meff and a temperature set
by Neff. As in the case when the parameter is varied alone,
Neff is primarily constrained by CMB observables,
while growth information from DES Y3 3 × 2 pt and
external RSD data allows us to tightly constrain meff .
In doing this, our combined analysis of all data improves
upon the best available constraints on meff by a factor of 3,
finding meff < 0.20 eV. This constraining power is
limited by a lack of validated small-scale modeling, which
requires us to apply conservative linear scale cuts to the
3 × 2 pt measurements. Given this, we stress that modeling
advances such as those being developed in, e.g.,
Refs. [101,102,107,108] will be key to enabling more
precise constraints, and that, excitingly, more powerful
constraints are attainable even with existing data.
We also test gravity on cosmological scales measuring

the Σ0 − μ0 parameters. The most interesting constraints for
this model come from the combination of multiple observ-
ables. In particular, the complementary approach of DES
3 × 2 pt and external RSD measurements to measuring
large-scale structures allows us to break degeneracies
between the modified gravity parameters and S8. Their
combination thus gives tight constraints, particularly on Σ0,
resulting in consistency with general relativity. We find that
Planck temperature and polarization constraints prefer
slightly higher values of Σ0 than either 3 × 2 pt alone or
the combination of all low-redshift probes, likely driven by
the high-l feature of the CMB power spectra that drives the
offset seen in the Ωk analysis. When all data are analyzed
together the resulting constraints remain consistent with GR.
As with sterile neutrinos, the constraining power contributed
by DES 3 × 2 pt is also limited by our use of linear scale
cuts. In fact, because the increased precision 3 × 2 pt
measurements causes our procedure for defining linear
scale cuts to remove a larger fraction of data points in Y3
compared to Y1, constraints placed on Σ0 by 3 × 2 pt alone
actually weaken compared to the similar analysis in DES-
Y1Ext. Looking ahead to DES Y6 and next-generation
surveys, this underlines the need for more sophisticated
methods of accounting for nonlinear modeling uncertainties
when performing cosmological tests of gravity.
Finally, we perform a more generic test of ΛCDM’s

predictions for structure growth via a binned σ8ðzÞ model,
in which we introduce amplitude parameters that allow
the normalization of the matter power spectrum to vary
independently in four redshift bins defined by the lens
galaxy sample. While constraints on the sampled amplitude
parameters are not robust to changes in how we account for
source galaxy photometric redshift uncertainties, the σ8
values inferred separately for each redshift bin are more

robust, especially for the higher redshift bins when 3 × 2 pt
constraints are combined with external data. This analysis
finds no significant deviation from the prediction ofΛCDM
and highlights the importance of carefully accounting for
the impact of photo-z uncertainties when investigated
beyond-ΛCDM parametrizations which affect the growth
of structure.
In summary, we have conducted robust tests of extensions

to ΛCDM using the unprecedentedly precise DES Y3
3 × 2 pt measurements in combination with other state-of-
the-art cosmological data, while underlining challenges that
will need to be addressed for futurewide field galaxy surveys
to further test the laws and contents of the Universe. We
ultimately detect no significant preference for any of the
extended models studied in our analysis. Thus, ΛCDM
remains the favored model to describe our data.

Data supplementing this paper, including chains, scale
cuts, and numerical versions of summary plots, will be
available online as part of the DES Y3 data release [192].
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l’Espai (IEEC/CSIC), Institut de Física d’Altes Energies,
Lawrence Berkeley National Laboratory, Ludwig-
Maximilians Universität München and the associated
Excellence Cluster Universe, University of Michigan,
NSF’s NOIRLab, University of Nottingham, The Ohio
State University, University of Pennsylvania, University of
Portsmouth, SLAC National Accelerator Laboratory,
Stanford University, University of Sussex, Texas A&M
University, and the OzDES Membership Consortium.
Based in part on observations at Cerro Tololo Inter-
American Observatory at NSF’s NOIRLab (NOIRLab
Prop. ID 2012B-0001; PI: J. Frieman), which is managed
by the Association of Universities for Research in
Astronomy (AURA) under a cooperative agreement with
the National Science Foundation. The DES data manage-
ment system is supported by the National Science
Foundation under Grants No. AST-1138766 and
No. AST-1536171. The DES participants from Spanish
institutions are partially supported by MICINN under
Grants No. ESP2017-89838, No. PGC2018-094773,
No. PGC2018-102021, No. SEV-2016-0588, No. SEV-
2016-0597, and No. MDM-2015-0509, some of which
include ERDF funds from the European Union. IFAE is
partially funded by the CERCA program of the Generalitat
de Catalunya. Research leading to these results has received
funding from the European Research Council under
the European Union’s Seventh Framework Program
(FP7/2007-2013) including ERC Grant Agreements
No. 240672, No. 291329, and No. 306478. We acknowl-
edge support from the Brazilian Instituto Nacional de
Ciência e Tecnologia (INCT) do e-Universo (CNPq
Grant No. 465376/2014-2). This manuscript has been
co-authored by employees of Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the
U.S. Department of Energy, Office of Science, Office of
High Energy Physics.

APPENDIX A: HALOFIT VALIDATION FOR w0 −wa

We model the matter power spectrum by using CAMB

[199,200] to compute the linear matter power spectrum and
the HALOFIT semianalytic fitting formula from Ref. [81]
(with the prescription from Ref. [82] for massive neutrinos)
to compute nonlinear corrections. The HALOFIT fitting
formula depends on the linear matter power spectrum

and a subset of cosmology parameters and was developed
based on fits to wCDM N-body simulations. While those
simulations include cosmological models with w ≠ 1, they
do not include cases where the dark energy equation of
state varies with time.
To validate the use of HALOFIT to model the nonlinear

matter power spectrum in our w0 − wa model, we note that
Casarini et al. [212] provide a recipe for computing the
nonlinear power spectrum Pðk; zÞ for the w0 − wa model
given modeling ingredients for wCDM. That scheme works
by identifying an effective wCDMmodel for each redshift z
for a given w0 − wa cosmology, chosen so weffðzÞ matches
the distance from redshift z to that of last scattering. Using
N-body simulations, Casarini et al. [212] show that this
mapping can be used to accurately compute nonlinear
matter power spectra in w0 − wa cosmologies. While
employing the Casarini mapping is not practical for our
full analysis because it is too computationally intensive, we
can use it for validation. To do this, we use the Casarini
prescription to compute the nonlinear matter power
spectrum for a grid of cosmologies in spanning our two-
dimensional w0 − wa prior range. We then compare pre-
dictions for the 3 × 2 pt data using our fiducial pipeline to
those using the Casarini nonlinear power spectra. For each
w0 − wa grid point, we evaluate Δχ2 between our fiducial
and the Casarini model predictions and show the results
in Fig. 17. Differences between these calculations have
Δχ2 < 0.24 for all allowed values of w0 and wa, with the
largest differences occurring in the high-w0, low-wa part of
parameter space. For all regions where wa > −2.5, this

FIG. 17. Validation of HALOFIT for nonlinear modeling in
w0 − wa, showing the Δχ2 difference between the 3 × 2 pt data
vector computed with the fiducial pipeline vs one where the
Casarini [212] method has been used to compute the nonlinear
matter power spectrum. The colored heat map shows the
interpolation between points sampled in a grid (black circles)
in the w0 − wa plane. The white region in the upper right reflects
the excluded region where w0 þ wa > 0. Δχ2 ≪ 1 across the full
space, indicating that the modeling of HALOFIT is sufficient.
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difference is Δχ2 < 0.15. Based on these results, we
conclude that our fiducial model using HALOFIT is accurate
enough to perform our w0 − wa analysis with our fiducial
scale cuts.
We posit that a significant driver of the Casarini weffðzÞ

mapping’s success in modeling nonlinear power for
w0 − wa comes from the fact that it correctly accounts
for the impact of dynamic dark energy on the linear growth
factor. Thus, the fact that we are correctly computing the
linear matter power spectrum for the w0 − wa cosmology
allows us to reach this accuracy even if we are not explicitly
accounting for the wa parameter in HALOFIT.

APPENDIX B: VALIDATION OF WEYL
POTENTIAL PIPELINE

As an additional validation of the modeling pipeline
used to constrain the modified gravity Σ0 − μ0 model, we
compare parameter estimates in ΛCDM for the baseline
CosmoSIS pipeline used in DES Y3 3 × 2 pt analyses to the
pipeline modified to use the Weyl potential to model
lensing-related quantities (see Sec. III E for more details).
Figure 18 shows ΛCDM constraints obtained by analyzing
3 × 2 pt data using the same linear scale cuts applied for the
Σ0 − μ0 analyses. That figure shows the results for the
baseline pipeline in black and the Weyl pipeline in blue.
Differences are negligible for the estimated cosmological
parameters Ωm and S8.

APPENDIX C: THE FASTISMORE FRAMEWORK
FOR ROBUSTNESS TESTS

The FastISMoRE framework used for the model robust-
ness tests described in Sec. V B is at its core an application
of importance sampling for performing validation tests of
the robustness against systematics. Importance sampling is
a method to quickly estimate a target distribution pðΘÞ
by using samples from a proposal distribution qðΘÞ
reweighted by the ratio pðΘÞ=qðΘÞ ∝ Lp=Lq (see, e.g.,
Ref. [213]). The FastISMoRE framework consists of
several parts: the infrastructure for performing fast IS
posterior estimates, code for computing quality statistics
for that estimate, as well as for how the IS procedure
contributes to sampling variance, and guidelines for using
those metrics based on a number of simulated analyses.
These tools will be made publicly available and docu-
mented in more detail in an upcoming publication,
Ref. [154].
The accuracy of an IS estimate depends on whether the

samples drawn from the proposal distribution cover the
relevant parameter space of the target distribution with high
enough density. In our application for robustness tests,
the proposal distribution is the posterior of our baseline
simulated analysis and the target is the posterior for a
synthetic data vector contaminated with a systematic that
is not included in the analysis model, as described in
Sec. V B. Given this, chains will only be required if a
contamination produces a significant change in the pos-
terior. For cases where IS can be used, this method allows
the impact of a systematic to be assessed in seconds, as
opposed to the thousands of core hours required to run
a chain.
We quantify the performance of IS posterior estimates

using Kish’s effective sample size (ESS) as

ESS ¼ ðPiwiÞ2P
iw

2
i

; ðC1Þ

where wi is the total weight of each sample. Assuming this
approximates the true effective sample size (for a discus-
sion on the validity of this approximation, see [214]),
one can estimate the standard error on the mean θ̄ of the
parameter of interest θ by using σθ̄ ≈ σθ=

ffiffiffiffiffiffiffiffiffi
ESS

p
, where σθ is

the standard deviation of the posterior. The uncertainty on
the parameter mean shift is then estimated as

σΔθ̄ ≲ σθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ESSbase
þ 1

ESScont

s
; ðC2Þ

where ESSbase is the effective sample size of the baseline
chain and ESScont is the effective sample size of the
IS-estimated contaminated samples. For the analysis of
contaminated synthetic data described in Sec. V B of this
paper, we found ESScont > 150 for all validation tests such

FIG. 18. Constraints on Ωm and S8 in ΛCDM, showing 68%
and 95% confidence limits from the baseline DES Y3 CosmoSIS
pipeline in black and the modified version using the Weyl
potential for the lensing predictions in blue. These results are
obtained using 3 × 2 pt measurements for the same linear scale
cuts used to obtain Σ0 − μ0 constraints.
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that the uncertainty on the parameter mean shifts are at
most 0.08σ. Thus all of our systematics tests pass the IS
quality requirements.
We also employ the FastISMoRE framework to assess

the impact of systematics on model comparison metrics
between ΛCDM and a beyond-ΛCDM models. To assess
how suspiciousness (see Appendix F) ln S is affected by
contamination from systematics, we must compare quan-
tities derived from four chains: a baseline (B) and alter-
native (contaminated) synthetic data (A) chain for both the
extended model (X) and ΛCDM (0). As will be shown in
Ref. [154], the change in ln S due to systematic contami-
nation can be written in terms of the within-model
differences between the baseline (B) and alternative (A)
synthetic data,

Δ ln SX0 ¼ ln SAX0 − ln SBX0 ðC3Þ

¼ ln SXAB − ln S0AB: ðC4Þ

Here, we use Scab to denote suspiciousness between a and b,
keeping c fixed, defined so ln S < 0 indicates a preference
for a. This rearrangement makes the calculation more
tractable, as the quantities SXAB and S0AB are easily computed
using importance sampling.

APPENDIX D: ADDITIONAL VALIDATION
PLOTS AND DISCUSSION

Here we provide additional information to supplement
the validation test results presented in Sec. V.

1. All-data robustness plots

We begin by showing plots complementing Fig. 1 of
Sec. V B and Fig. 3 of Sec. V C, which show the impact of
data vector contamination and model variations on the
combined 3 × 2 ptþ BAOþ RSDþ SNþ Planck con-
straints. Since those all-data constraints are much more
constraining than the DES 3 × 2 pt alone for some
models, the effects of data vector contamination and
model variations on the combined constraints are not
clearly visible in plots in the main body of the text, whose
ranges are set to show the 3 × 2 pt-only constraints. To
facilitate closer examination, here we include versions
of those plots showing only the all-data constraints.
Figure 19 shows an all-data-only version simulated
analysis plot, while Fig. 20 shows the real data response
to model variations.
In both plots, we additionally show the results of

the robustness tests for Neff −meff when the priors
requiring ΔNeff > 0.047 or mth < 10 eV are applied.
We set the meff axis range to show those results clearly,
cutting off the fiducial prior points which were shown
in Sec. V C to have non-negligible shifts. For these

alternative Neff −meff priors, the nonlinear bias and
baryon contamination produces a shift Δmeff

¼ −0.33,
which is only slightly above and within sampling vari-
ance of the 0.3 threshold.

FIG. 19. Constraints on beyond-ΛCDM model parameters for
the same simulated analyses studied in Fig. 1 of Sec. V B, but
with narrower axis ranges for models where all data are much
more constraining than DES 3 × 2 pt. Points and error bars show
the mean and 68% confidence interval for marginalized con-
straints on extended-model parameters. Yellow and red highlights
indicate shifts larger than 0.3σ according to Eq. (31). Vertical
dashed lines show the input, ΛCDM parameter values, while
solid vertical lines and shaded regions show the location of the
baseline results. For the effective number of radiative degrees of

freedom, Neff
ð0Þ is the constraint for the model with no sterile

neutrino mass, and Neff
ðmÞ shows the constraints for the

Neff −meff model. For Neff −meff we additionally show results
using the alternative prior ΔNeff > 0.047, which are less subject
to projection effects and thus more robust than posteriors
produced using the fiducial Neff −meff prior.

FIG. 20. Real all-data constraints for the same analyses
presented in Fig. 3 of Sec. V C, but with narrower axis ranges
for parameters where all data are much more constraining than
DES 3 × 2 pt. Points and error bars show the mean and
68% confidence interval for marginalized constraints on
extended-model parameters, yellow and red highlights indicate
shifts larger than 0.3σ, and shaded regions indicate the location of
the baseline results.
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2. Robustness investigation: Neff −meff

In the robustness tests of Sec. V C, we noted that
Neff −meff parameter constraints shifted significantly in
response to several model variations. Here we provide
further description of these non-negligible parameter shifts
and argue that they are likely the result of prior volume
effects associated with an unconstrained region of param-
eter space at smallΔNeff . ForNeff −meff, recall that wewill
be primarily focused on results from all data (DES
3 × 2 ptþ BAOþ RSDþ SNþ Planck) rather than DES
3 × 2 pt-only results.
Of the parameter shifts that are above our desired

threshold for Neff −meff, those produced by the TATT
model variation are the least significant and are not very
concerning. For the simulated analysis, switching to TATT
causes Δmeff

¼ 0.37. This change in meff is not concerning,
both because it is only marginally over our threshold, and
because our simulated constraints on meff are one-sided
upper bounds so that this shift can be interpreted as being
simply due to weakened constraining power in a more
complicated IA model. When these tests were repeated
for real data, shifts in the constraints on both Neff and meff
were negligible.
The XLens and hyperrank tests have a more dramatic

impact on the Neff −meff constraints from all data. For the
analysis of real data, varying XLens causes Δmeff

¼ −0.41,
while using hyperrank causes ΔNeff

¼ 0.91 and, strikingly,
Δmeff

¼ −18. To understand this behavior, we note that the
upper bound on meff for all data is largely determined by
how the posterior is shaped in the low-ΔNeff region of
parameter space where meff has no impact on observables
because the sterile neutrinos are indistinguishable from
cold dark matter. Because CMB measurements provide
tight upper bounds onΔNeff , a significant fraction of the all
data posterior occupies this region of parameter space. The
flatness of the likelihood in themeff direction whenΔNeff is
low (independent of what data are considered) implies that
the marginalized constraints on both Neff and meff are
highly susceptible to the details of how the higher-dimen-
sional posterior projects those parameter directions. Given
this, our all-data Neff −meff constraints may be highly
sensitive to the choice of nuisance parameters, and the data
noise realization may produce large shifts in meff that do
not necessarily carry physical information. As we describe
in Appendix D 4, hyperrank causes hard-to-characterize
changes to the posterior shape even in ΛCDM, so it is
plausible that the dramatic Δmeff

produced by hyperrank is
related to this kind of parameter-space projection.
This prior-volume-effect hypothesis is supported by

the fact that our results become more robust when we
apply priors to remove the unconstrained low-ΔNeff
region. We consider two such priors. We run additional
(real data) chains raising the lower bound on Neff to
require ΔNeff > 0.047, and additionally we consider a cut
on the physical sterile neutrino mass, assuming a thermal

relic model, mth < 10 eV. This mth cut matches the prior
used for Neff −meff in the Planck 2018 analysis [11].
Plots showing these shifts for all-data constraints with
the alternative ΔNeff priors can be found above in
Figs. 19 and 20.
Requiring ΔNeff > 0.047 leads to negligible shifts

between the all-data constraints from the hyperrank and
the baseline models, as well as between the baseline and
varying XLens. Requiring mth < 10 eV, which is the prior
matching the Planck 2018 analysis, results in negligible
shifts due to XLens and hyperrank-vs-baseline shifts of
ΔðNeff ;meffÞ ¼ ð−0.26;−0.39Þ, only slightly above our 0.3σ
threshold. For comparison, we also consider simulated
Neff −meff analyses of all data combined, postprocessing
the chains to enforce the alternative priors rather than
running new chains. For simulated all-data analyses with
fiducial priors, XLens producesΔðNeff ;meffÞ ¼ ð−0.71;þ0.57Þ
and hyperrank produces ð−0.27;þ0.39Þ, while with the
alternate priors hyperrank causes negligible shifts and XLens
produces a shift of ΔNeff

∼ 0.5. While this latter shift is
non-negligible, it is not concerning given the robustness of
the real data results, especially noting that the postprocess-
ing used for these synthetic data tests results in significant
sampling uncertainty.
To lend further support to the idea that the dramatic shift

in the all-data Neff −meff constraints (particularly meff )
when using hyperrank is a prior volume effect, we study
the profile likelihood for meff in Fig. 21. The profile
likelihood shows the maximum likelihood in 20 bins of
sampled meff values. For the fiducial Neff −meff priors, we
see in the top panel that, while the hyperrank maximum
sampled likelihood drops at large meff , the hyperrank
model does not produce a better fit to the data than the
baseline chain in the small meff regime. The lower panel
shows the same profile for chains run with a prior requiring
ΔNeff > 0.047. In that panel, the hyperrank and baseline
profile likelihoods remain fairly similar as meff increases.
This suggests that the drop seen for the hyperrank chain in
the top panel is due to a lack of chain samples exploring
the high meff , rather than a dramatically worse fit. This
supports the idea that the differences between the mar-
ginalized hyperrank and baseline posteriors are driven by
parameter-space projection effects.
Overall, these studies support the conclusion that our

Neff −meff constraints are significantly more stable against
model changes when a prior is applied to remove the
unconstrained small-ΔNeff region. This motivates our
choice to focus on results reported for Neff −meff con-
straints obtained with the ΔNeff > 0.047 and mth < 10 eV
priors rather than those obtained with the fiducial prior.

3. Robustness investigation: Binned σ8ðzÞ
Here we describe and investigate non-negligible shifts in

the binned σ8ðzÞ parameters due to the hyperrank and XLens
model variations studied in Sec. V C. The only >0.3σ shift
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produced by varying XLens, ΔA
Plin
3

¼ 0.36 for DES 3 × 2 pt

alone is not far above our threshold, so is not concerning.
We thus focus primarily on the impact of the hyperrank
approach to parametrizing source galaxy redshift uncer-
tainties. For the real data 3 × 2 pt-only analysis, using
hyperrank leads to parameter shifts of ΔðAPlin

2
;A

Plin
3

Þ ¼
ðþ0.72;þ0.84Þ, while analyzing all data produces even
more significant parameter shifts: ΔðAPlin

2
;A

Plin
3

;A
Plin
4

Þ ¼
ðþ1.73;þ1.36;þ1.42Þ.
A detailed characterization of what is driving the

low-redshift amplitude shifts is beyond the scope of this
paper, though we present some exploratory investigation in
Appendix D 4. What these findings clearly highlight is that
source photo-z uncertainties and our method of accounting
for them can have a significant impact on inferences about
the growth of LSS over time, especially when constraining
models that, like our binned σ8ðzÞ parametrization, add
degrees of freedom beyond what is expected for ΛCDM.
While in principle the hyperrank method should provide a

more complete description of photo-z uncertainties than
the baseline Δzs nuisance parameters, without additional
validation we are not confident in switching our main
analysis to use it for binned σ8ðzÞ. Given this ambiguity, we
choose to report for binned σ8ðzÞ constraints and model
comparisons for both our baseline model and for hyper-
rank. Showing results from both analyses will roughly
quantify the size of the photo-z-related systematic uncer-
tainties. Note that this means that, if we find tension with
ΛCDM in one but not both of these binned σ8ðzÞ analyses,
we will not be able to definitively claim a discovery of
nonstandard large-scale structure growth.
To further characterize what we can or cannot say

robustly about our binned σ8ðzÞ inferences, we repeat

these validation tests21 for the derived parameters σ½bin i�8

defined in Eq. (29). Recall that σ½bin i�8 are more closely
related to the amplitude of large-scale structures observed
separately in each redshift bin than the sampled APlin

i
amplitudes, which are defined relative to the amplitude
in the lowest redshift bin. When real data are analyzed,

model variations still produce non-negligible σ½bin i�8 shifts,
as can be seen in Fig. 22, but these are smaller than those
found for the sampled APlin

i parameters. The shift for the
lowest redshift bin shifts in response to varying XLens are
only slightly above the 0.3σ threshold, withΔ

σ½bin�
8 1

¼ −0.42
and −0.39 for DES 3 × 2 pt and all data, respectively.
For hyperrank, the non-negligible shifts for 3 × 2 pt-only
are Δðσ½bin 2�

8
;σ½bin 3�

8
Þ ¼ ðþ0.47;þ0.64Þ, while for all data

they are Δðσ½bin 1�
8

;σ½bin 2�
8

;σ½CMB�
8

Þ ¼ ð−2.72;þ0.52;þ0.60Þ. For

3 × 2 ptþ BAOþ RSDþ SN (leaving out Planck),

FIG. 21. Profile likelihood for all-data Neff −meff chains,
comparing baseline and hyperrank. Lines show the maximum
likelihood found for a chain sample in each of 20 bins of meff
values. The upper panel shows results for the fiducial Neff −meff
priors, and the lower panel shows results for chains run with the
alternative ΔNeff > 0.047 prior. The fact that hyperrank does not
produce a better fit to the data than the baseline at small meff
supports the idea that shift inmeff constraints for hyperrank is due
to parameter-space projection effects rather than an actual strong
preference for small meff values.

FIG. 22. Impact of model variations on the derived parameters

σ½bin i�8 ≡ σ8½APlin
i �1=2. Plot formatting matches that of Fig. 3 and all

data (in black) refers to DES 3 × 2 ptþ SRþ BAO þ RSDþ
SNþ Planck.

21Note that these redefined amplitude parameters, and thus
these additional robustness tests, were explored after unblinding.
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the only non-negligible shift is Δ
σ½bin 1�
8

¼ −0.73, and sim-

ilarly 3 × 2 ptþ BAOþ SN (DES combined with only
geometric external data) is Δ

σ½bin 1�
8

¼ −0.62.
Thus, we see that when we combine 3 × 2 pt with

external constraints, the source photo-z marginalization
scheme primarily contributes systematic uncertainty to the
LSS amplitude measured for the lowest redshift bin. The
fact that the sampled APlin

i parameters are defined relative to
bin 1 is thus why those amplitudes are strongly affected by

the change to hyperrank. Our study of the σ½bin i�8 derived
parameters shows that when we combine DES 3 × 2 pt
measurements with other low-redshift geometric probes,
we are in fact able to make fairly robust inferences
of binned σ8ðzÞ for the redshift ranges corresponding to
bins 2–4.

4. Hyperrank discussion

In our model robustness validation tests, for both
Neff −meff and for binned σ8ðzÞ we found that using the
hyperrank [155] method to marginalize over source photo-z
uncertainties, as opposed to the fiducial Δzs mean-shift
nuisance parameters, caused non-negligible shifts in the
beyond-ΛCDM parameter posteriors. Here we present
some additional investigation into that behavior. To place
these studies in context, we illustrate that switching to
hyperrank can have non-negligible impacts on parameter
estimation even in ΛCDM. The method’s impact on shear-
only analysis has been thoroughly studied and the DES Y3
cosmic shear results were found to be robust to this model
variation [67]. However, in DES-Y3KP it was found that
switching to hyperrank produces a 0.53σ shift in S8.
Figure 23 further illustrates this behavior by showing the

ΛCDM constraints on S8 and the mean redshift of a subset
of source bins for various iterations of our analysis choices.
In that figure, solid red and black lines show ΛCDM
posteriors on the photo-z bias nuisance parameters for the
baseline settings in this work (black, using NLA as the IA
model and not including shear ratio) and in the ΛCDM
analysis of DES-Y3KP (red, TATT IA model, including
shear ratio). The shaded pink contours show the results for
the hyperrank chain that was run as part of robustness tests
in DES-Y3KP (with TATT and shear ratio), while dashed
purple contours and shaded blue contours show hyperrank
chains run as part of this paper’s beyond-ΛCDM studies
(with NLA), with and without including the shear ratio
likelihood, respectively. We see that all of the hyperrank
chains have multimodal posteriors, and that there are
significant qualitative differences between the various
hyperrank chains compared. The choice of IA model has
the largest impact on the shape of these posteriors, but even
comparing the two NLA chains (blue shaded and purple
dashed), including or not including shear ratio can also
cause non-negligible posterior shifts. Notably, we find that
these model variations have a more significant impact on S8

estimates when hyperrank is used than in the baseline Δz
approach to marginalizing photo-z uncertainties.
These effects can be understood in terms of interactions

between IA parameters and details of the shape of the
source redshift distribution. The contribution of IA to
measured cosmic shear becomes fractionally more impor-
tant at low source galaxy redshifts where lensing con-
tributions are smaller. Additionally, the IA signal depends
on the projection of n2sðzÞ onto the sky, while lensing
depends on the square of the projected nsðzÞ. Together,
these two effects mean that IA calculations are more
sensitive to the detailed shape of the source galaxy
redshift distribution, and thus that different hyperrank
nsðzÞ realizations can have very different IA kernels,
especially depending on their low-z features. While
including or not including the shear ratio likelihood does
not significantly impact the cosmology constraints in the
baseline 3 × 2 pt analysis, this choice does have an
impact on the IA parameter constraints and thus affects
the posterior when hyperrank is used.
If this behavior is occurring in ΛCDM, it is perhaps

not surprising that hyperrank causes significant shifts
in the APlin amplitudes when we allow σ8 to vary
independently in different redshift bins. We explored
whether specific features in the nðzÞ distributions
sampled by hyperrank correlate with the binned σ8ðzÞ
amplitude parameters and thus might be driving the
shifts we see. Unfortunately, this investigation did not
yield any further insights.

FIG. 23. Comparison of baseline and hyperrank chain poste-
riors for S8 and shifts in mean source bin redshift around the
fiducial nsðzÞmeans for bins 1 and 2. This is a 3 × 2 pt version of
the plot shown for shear only in Fig. 17 of Ref. [67].
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APPENDIX E: METRICS FOR ASSESSING
TENSION BETWEEN DATASETS

In Sec. VI I, we employ three different tension metrics to
assess agreement between datasets: the Bayes ratio R,
suspiciousness S, and a p-value computed from S and the
Bayesian model dimensionality dBMD. The Bayes ratio R is
defined for independent datasets A and B and for their
combination AB as [215]

R≡ ZAB

ZAZB
; ðE1Þ

where

ZD ≡ PðDjMÞ ¼
Z

dΘLðDjΘ;MÞπðΘjMÞ ðE2Þ

is the Bayesian evidence. In that expression, L is the
likelihood of observing the data given model M and
parameter values Θ, and π is the prior probability of those
parameters given the model. In effect R can be viewed as a
hypothesis test assessing the odds of both datasets being
described with a single set of parameters (ZAB) as opposed
to two independent sets of parameters (ZAZB). Smaller
values of R indicate stronger evidence of tension between
measurements from datasets A and B. When using lnR the
strength of the tension is usually interpreted using the
Jeffreys scale [216], where lnR < −2.3 is considered
“strong” tension with approximately 10∶1 odds, −2.3 <
lnR < −1.2 is considered “substantial” tension with
approximately 3∶1 odds, and lnR > −1.2 indicates the
datasets are in agreement. This interpretation of odds is
only correct in the context where one of the models being
considered is correct and where the priors accurately
characterize prior beliefs on the parameters. As is discussed
in, e.g., Refs. [158,217,218], the value of lnR depends
strongly on the choice of parameter prior ranges, so when
interpreting tension assessed with the Bayes ratio, one
should check the robustness of conclusions under reason-
able changes to those priors. The fact that we use wide,
uninformative priors therefore makes lnR somewhat
ambiguous to interpret as a tension metric for this work.
Given this, we additionally report tension using the

Bayesian suspiciousness S [217]. Like the Bayes ratio,
suspiciousness measures tension between posteriors in
our full sampled parameter space, but removes the prior
dependence by dividing R by the information ratio I,

ln S ¼ lnR − ln I: ðE3Þ

The information ratio quantifies the probability of data A
and B given the prior width and is defined as

ln I ≡DA þDB −DAB; ðE4Þ

where D≡ R
P lnðP=πÞdθ is the Kullback-Leibler diver-

gence [219] from the prior π to the posterior P for a given
dataset. One can interpret the suspiciousness as a posterior-
averaged goodness-of-fit statistic between the combined vs
independent datasets A and B [19].
As with the Bayes ratio, more negative values of ln S

indicate stronger evidence of tension, while positive values
indicate agreement between datasets. To further quantify the
strength of tension or agreement, we can use the fact that if
both datasets come from the same set of parameters and
there is some choice of parameters in which the posterior
is roughly Gaussian, the quantity dBMD − 2 ln S follows
approximately a χ2dBMD

probability distribution, where dBMD

counts the number of parameter dimensions constrained by
both posteriors A and B [217]. We use this information to
compute a p-value estimating the probability of finding a
value of ln S as small or smaller than the measured value if
the two datasets are actually in agreement.
For each chain we assess dBMD using the Bayesian model

dimensionality [220], which estimates the number of
parameters constrained by a given posterior. It is equal to

d ¼ 2ðhðlnLÞ2i − hlnLi2Þ; ðE5Þ

where again angled brackets refer to the posterior-weighted
average. We compute the number of parameters that are
independently constrained by both datasets A and B as

dBMD ¼ dA þ dB − dAB; ðE6Þ

where the dAB term avoids double-counting parameters.
We evaluate the survival function,

pðS; dBMDÞ ¼
Z

∞

dBMD−2 ln S
χ2dBMD

ðxÞdx: ðE7Þ

There are several other metrics one could use to assess
tensions between datasets, including but not limited to
parameter difference distributions [221,222] and eigenten-
sions [223]. It was shown in Ref. [158] that all of these
metrics give results in agreement with ln S when quantify-
ing tensions. We therefore focus on S, which has the
advantage of requiring no additional computation after
running the chains.

APPENDIX F: MODEL COMPARISON METRICS

In Sec. VI J we perform a number of model comparison
tests to assess whether data favor any extensions to ΛCDM
over that cosmological standard model. Here we present
definitions of the metrics used to assess those comparisons,
divided into two categories: Bayesian quantities depending
on the posterior distribution in the full parameter space
and those depending on MAP estimates. To define these
metrics, let us consider two models: a baseline model M0
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and a model which extends it,MX, such that the parameter
space of M0 is a subspace of MX ’s parameter space.

1. Bayesian quantities

The Bayesian quantities are analogous to those used to
evaluate tensions between datasets. We define the Bayes
ratio by comparing the Bayesian evidence evaluated in
these different models but with matching data via

R ¼ Z0

ZX
: ðF1Þ

Suspiciousness S and an associated pðS; dBMDÞ are defined
in the similar way to Eqs. (E3)–(E7), but with M0

replacing all quantities associated with the AB joint
constraints and MX replacing the sums where contribu-
tions from datasets A and B are included separately. That is
to say, the definition of S in Eq. (E3) still holds, but with a
single dataset used in all parts of the evaluation and

ln I ≡DX −D0; ðF2Þ

and similarly,

dBMD ≡ dX − d0: ðF3Þ

One challenge of using ln S for model comparison is that
the number of additional constrained parameters dBMD is
typically small, such that noise in the estimate of dBMD can
have a large impact on pðS; dBMDÞ. Specifically, if we let
Δk be the number of parameters that are in MX but not in
M0, then dBMD ≤ Δk. Most of the models we consider
have Δk ¼ 1 or 2, meaning that if the additional extended-
model X parameters are not well constrained, dBMD can be
very small. If we could make a noiseless estimate of dBMD,
this quantity would approach zero in the limit of completely
unconstrained beyond-ΛCDM parameters. In practice,
sampling variance can cause the estimates made in
Eqs. (E5) and (E6) to return values of dBMD < 0. This
complicates interpretation of pðS; dBMDÞ [Eq. (E7)],
because the χ2 probability distribution is undefined for
negative numbers of degrees of freedom. For estimates
where this happens we report pðS; dBMDÞ ¼ 1, reasoning
that if the added parameters of MX are unconstrained, no
tension with M0 can be found.
Given the ambiguity of this determination, we addition-

ally report a tension probability using the number of added
parameters Δk instead of dBMD: pðS;ΔkÞ. This ensures we
avoid scenarios where the probability distribution for S is
undefined. In addition to being less subject to sampling
error, pðS;ΔkÞ has a benefit for interpretation, since it
can be viewed as a Bayesian likelihood ratio test. As will
be shown in Ref. [154], we can interpret the model
comparison formulation of suspiciousness as the change
in posterior-averaged goodness of fit, 2 ln S ¼ hχ2Xi − hχ20i.

This means pðS;ΔkÞ, which evaluates this change relative
to the expected improvement from additional model free-
dom, serves as a Bayesian analog of the more traditional χ2

test statistic that compares the goodness-of-fit at the two
models’ maximum likelihood points. Further connections
can be made to more traditional information criteria-based
model comparison statistics, where for limiting cases the
suspiciousness can be interpreted as analogous to ΔDIC,
but with a lesser penalty applied for additional model
parameters. This is explored in greater detail in Ref. [154].

2. MAP-based statistics

In our large parameter space, MAP estimates from nested
sampler chains are subject to significant sampling error and
so cannot be accurately determined by simply selecting the
sample with the highest posterior from a chain. To estimate
the maximum posterior, we therefore perform additional
maximization as follows. For each chain, we select the 15
samples with the highest reported posteriors. Starting at
each of those 15 points, we run two iterative optimization
searches to maximize the posterior using the CosmoSIS

maxlike sampler, which is an interface to the scipy.optimize
function [193], using the Broyden-Fletcher-Goldfarb-
Shannon [224–227] optimization algorithm. Of the result-
ing 15 MAP estimates, we select the one with the highest
posterior. Based on limited studies for simulated analyses
we find this produces reasonably accurate estimates of the
maximum posterior probability (the error on χ2 is probably
less than about 0.5, though we have not quantified this
rigorously), but still very noisy estimates of the associated
parameter values. Given this, we use the maximum
posterior estimates for model comparison statistics, but
we do not report MAP parameter values.
We use the MAP posterior estimates to compute the

model comparison statistics Δχ2, ΔAIC, and ΔDIC. The
quantity χ2 here measures the goodness of fit at the best-fit
point in parameter space,

χ2 ¼ −2 lnLmax: ðF4Þ

In practice we focus on the quantity Δχ2=Δk, where
Δχ2 ¼ χ2X − χ20 andΔk is the change in modeling degrees
of freedom between models MX and M0. The Akaike
information criterion is defined as [228]

AIC ¼ −2 lnLmax þ 2k; ðF5Þ
where k is the number of model parameters. The deviance
information criterion is defined by [229]

DIC ¼ −2 lnLmax þ 2pDIC; ðF6Þ
with pDIC ¼ 2 lnLmax − 2hlnLi: ðF7Þ

Note that here we follow Ref. [230] in using a MAP-based
calculation of the DIC statistic, rather than an alternative
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definition where pDIC is instead equal to the Bayesian model
dimensionality defined in Eq. (E5) [see, e.g., Eq. (7.10) in
Ref. [231]]. This is motivated by the fact that theMAP-based
calculation is not affected by the instabilities for small dBMD
described in the text below Eq. (F3).
The numbers reported for MAP-based quantities in

Sec. VI J rely on a slightly different definitions than those
given above. This is because we would like to consider
agreement with the Gaussian priors on DES nuisance
parameters in addition to the 3 × 2 pt and external like-
lihoods to assess goodness of fit. For example, if model
MX could get an excellent fit to the 3 × 2 pt measure-
ments, but as a consequence required shear calibration
parameters mi to take extreme values compared to the
principled priors made as part of the METACALIBRATION

analysis, we would not want to consider that model favored
overM0. To account for this, when computingΔχ2, ΔAIC,
and ΔDIC, we treat the Gaussian priors as effectively part
of the likelihood. In practice what this means is that we
evaluate them using the maximum posterior P instead of
the maximum likelihood L and introduce a correction to
account for differences in the flat prior contributions
between models MX and M0.
To derive what the flat prior correction should be, we

write the posterior P for data d, model M, and parameters
Θ as

PðΘjd;MÞ ¼ LðdjΘ;MÞGðΘjMÞπflatðMÞ
ZðdjMÞ ; ðF8Þ

where L is the likelihood, G is the product of the various of
Gaussian priors on nuisance parameters, and πflat is the Θ-
independent contribution to the prior from all flat priors.
For the purpose of our model comparison statistics, we
would like to define goodness-of-fit quantities like
Eqs. (F4), (F5), and (F6), but depending on the product
LG in place of just L. The fact that πflat does not depend on
Θ means that the best fit defined for LπG will be the same
vector ΘMAP

M which maximizes P. Suppressing arguments
for conciseness, we note that a χ2 -like posterior-based
goodness of fit for model MX is

½χ2P �X ¼ −2 ln ðLMAP
X GMAP

X Þ − 2 ln πflatX ðF9Þ

≡ ½χ2LG�X − 2 ln πflatX : ðF10Þ

Model comparison between MX and M0 therefore
involves the comparison

Δχ2LG ≡ ½χ2LG�X − ½χ2LG�0 ðF11Þ

¼ ½χ2P�X − ½χ2P�0 þ 2 ln πflatX − 2 ln πflat0 : ðF12Þ

Using this expression, the Δχ2 model comparison statistic
reported in the main body of this paper is computed as

Δχ2 ≡ −2ðlnPMAP
X − lnPMAP

0 Þ ðF13Þ

þ 2ðln πflatX − ln πflat0 Þ: ðF14Þ

Similar calculations for AIC and DIC result in the same flat
prior correction term.

APPENDIX G: TESTING BEYOND-ΛCDM
MODEL RESPONSE TO XLens

We can use a synthetic data study similar to those in
Sec. V B to assess how beyond-ΛCDM models respond
to a synthetic 3 × 2 pt data vector produced with the
redshift-independent parameter XLens ≠ 1. As described
in Sec. V C, the parameter XLens describes a mismatch
between the galaxy bias detected by galaxy clustering vs
that from galaxy-galaxy lensing. This is of interest because
such a mismatch was found in the 3 × 2 pt results for the
alternative redMaGiC lens sample studied in DES-Y3KP:
when XLens is included in the redMaGiC 3 × 2 pt analysis, its
preferred value is significantly less than the fiducial value
of one. The effect is thought to be caused by residual
systematics related to the lens sample selection and remains
a topic of active investigation. This indication of residual
systematics ultimately motivated the choice of MagLim over
redMaGiC as the fiducial lens sample for DES-Y3KP, as this
XLens effect is not present for the four-bin MagLim sample we
are using for the analysis in this paper. Given this, we
emphasize that this investigation is performed to under-
stand the effects of such a systematic in extended-model
spaces, rather than as a validation test that our analysis
must pass.
The test proceeds as follows: We generate a simulated

data vector with XLens ¼ 0.89, which approximates the
preferred value from the redMaGiC analysis. We then fit the
XLens-contaminated synthetic data with our beyond-ΛCDM
models to see how they respond. Note that we use full
Markov chain Monte Carlo chains for this as the
FastISMoRE results indicated that the posterior shifts
introduced by the XLens contamination were too large to
be accurately captured through importance sampling.
Estimated model comparison metrics between ΛCDM

and our extended models for such a contaminated data
vector are shown in Fig. 24. Compared to the baseline
simulated analysis, the XLens contamination causes model
comparison metrics to shift slightly in favor of extended
models relative to ΛCDM, but none of these shifts are
enough to cause an extended model to be strongly preferred
to ΛCDM. Compare this to the Δχ2 ∼ 18 found when
fitting a ΛCDMþ XLens model (the correct model for the
contamination). This change in χ2 is comparable to, if a bit
smaller than, theΔχ2 ∼ 25 improvement found when fitting
the redMaGiC 3 × 2 pt data in DES-Y3KP. The wCDM
model shows perhaps the greatest sensitivity, and we do
see >1σ shifts upward in the marginalized posterior on w
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when contaminated with XLens, which roughly agrees with
the behavior seen in DES-Y3KP where the original
redMaGiC sample preferred w > −1 (cf. Fig. 12 of DES-
Y3KP), in contrast to the fiducial MagLim sample. These
findings are not unexpected. As was discussed in DES-
Y3KP, the XLens effect seen for the initial Y3 redMaGiC

analysis appears to be much more consistent with a lens
sample systematic than with new physics. The study
presented here supports this, finding that the observed
effect cannot be easily reproduced using the beyond-
ΛCDM models considered here.

APPENDIX H: COMPARISON OF Y1
and Y3 w0 −wa CONSTRAINTS

Figure 25 shows a comparison between the DES Y3
3 × 2 pt constraints on the w0 − wa dynamic dark energy
parameters reported above in the body of the text to those
previously published in DES-Y1Ext [50]. In that figure, the
blue filled contour shows same result presented for DES Y3
3 × 2 pt constraints in Fig. 4 of the main body of this paper,
while the black contours show the 68% and 95% confidence
regions for the posterior estimate presented in DES-Y1Ext.
We see that there is little change between our Y3 w0 − wa
results and those reported in the comparable DES Y1
analysis, although the modeling and analysis choices are
similar in both cases.
One analysis choice that has an impact on this compari-

son is the sampler used for parameter estimation: we use

POLYCHORD in the present analysis while MULTINEST was
used in the DES-Y1Ext analysis. To assess the impact of
differences in this sampler choice on w0 − wa constraints
we reanalyze the DES Y3 3 × 2 pt data using the same
MULTINEST sampler [204–206] settings used in DES-
Y1Ext, but keep all other analysis choices the same as
in our fiducial Y3 analysis. One of the main motivations for
switching to using the POLYCHORD sampler for DES Y3
analyses was that MULTINEST tends to undersample pos-
terior tails [77], an effect which seems to be exacerbated in
directions of parameter space where the posterior is more
non-Gaussian. The impact of this undersampling is clearly
visible for the 3 × 2 pt w0 − wa constraints in Fig. 25, with
the dashed red MULTINEST contours suggesting tighter
constraints than the (more correct) blue POLYCHORD con-
tours and than the DES-Y1Ext MULTINEST constraints.
Quantitatively, MULTINEST underestimates the width of the
DES Y3 3 × 2 pt marginalized 68% and 96% confidence
intervals for wp by 7% and 21%, respectively, compared to
the same quantities estimated using POLYCHORD. This
suggests that the Y1 3 × 2 pt w0 − wa constraints may
be at least somewhat artificially tightened due to the use of
MULTINEST.

FIG. 25. Comparison between the DES Y3 and Y1 3 × 2 pt
constraints on dynamic dark energy parameters. Dashed red
contours show that analyzing the Y3 data with MULTINEST

sampler settings matching those used in Y1 artificially narrows
the Y3 posterior estimate.

FIG. 24. Model comparison metrics when run on a synthetic
data vector produced with XLens ¼ 0.89. Points mark the median
of 200 sampling variance estimates output by ANESTHETIC, and
error bars (smaller than the points in most cases here) show the
16% and 84% quantiles.
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