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The kinetic Sunyaev-Zeldovich (kSZ) effect will be an important source of cosmological and
astrophysical information in upcoming surveys of the cosmic microwave background (CMB). However,
the kSZ effect will also act as the dominant source of noise for several other measurements that use small
angular scales in CMB temperature maps, since its blackbody nature implies that standard component
separation techniques cannot be used to remove it from observed maps. In this paper, we explore the idea of
“de-kSZing”: constructing a template for the late-time kSZ effect using external surveys of large-scale
structure, and then subtracting this template from CMB temperature maps in order to remove some portion
of the kSZ signal. After building intuition for general aspects of the de-kSZing procedure, we perform
forecasts for the de-kSZing efficiency of several large-scale structure surveys, including BOSS, DESI,
Roman, MegaMapper, and PUMA. We also highlight potential applications of de-kSZing to cosmological
constraints from the CMB temperature power spectrum, CMB lensing reconstruction, and the moving-lens
effect. While our forecasts predict achievable de-kSZing efficiencies of 10%–20% at best, these results are
specific to the de-kSZing formalism adopted in this work, and we expect that higher efficiencies are
possible using improved versions of this formalism.

DOI: 10.1103/PhysRevD.107.083502

I. INTRODUCTION

The “primary” fluctuations of the cosmic microwave
background (CMB), which encode the properties of the
universe during the recombination era, have played a key
role in the establishment of our current cosmological
model. “Secondary” fluctuations, created by processes
occurring after recombination, are now attracting signifi-
cant theoretical and observational interest, as they can in
principle be used to probe numerous aspects of astrophys-
ics and fundamental physics.
In particular, much recent interest has been focused on

the various incarnations of the Sunyaev-Zeldovich (SZ)
effect ([1–4]; see Ref. [5] for a recent review), by which
CMB photons scatter off of free electrons associated with
massive dark matter halos. The thermal SZ (tSZ) effect,

generated by thermal motions of electrons within a halo,
distorts the CMB blackbody spectrum and probes the
pressure of those electrons. The kinetic SZ (kSZ) effect,
generated by bulk motion of the electrons, leads to addi-
tional small-scale CMB anisotropies and is sensitive to a
combination of large-scale velocity flows and the spatial
distribution of electrons. The polarized SZ (pSZ) effect,
generated by a quadrupole in the radiation field observed
by the scatterer (and therefore sensitive to the various
effects that can contribute to that quadrupole), induces
linear polarization in the scattered photons. Higher-order
corrections to these effects also have distinctive signatures
and a variety of applications (e.g. [6–8]).
These effects are interesting signals in many contexts,

but in other contexts, they represent sources of bias
and/or noise that degrade our ability to make useful
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measurements. A significant portion of the tSZ effect can be
removed from observed CMB maps thanks to its nonblack-
body spectral shape, but the (blackbody) kSZ effect cannot be
removed in thisway, and is expected to dominate the observed
temperature fluctuations at l≳ 4000 after non-blackbody
signals have been filtered out. For sufficiently high-resolution
observations, reconstruction of gravitational lensing of the
CMB will make use of temperature fluctuations at these
scales, and the kSZ effect can significantly bias this
reconstruction [9,10], affecting its ability to constrain neu-
trino mass, dark energy, and dark matter (e.g. [11,12]).
Furthermore, kSZ fluctuations at small scales add noise to
measurements of the Silk-damped regime of the primary
CMB, which can be used to probe the effective number of
free-streaming speciesNeff , the primordial helium abundance
Yp, and the spectrum of primordial scalar perturbations. The
kSZ effect also acts as noise for measurements of other CMB
secondaries, such as the moving-lens effect [13–15].
This situation is analogous to gravitational lensing of the

CMB, which is both a physically interesting signal and a
source of bias and noise for other measurements (including
primordial gravitational waves, acoustic oscillations in the
primary CMB, and lensing itself). In the lensing case,
methods to “delens” CMB temperature and polarization
maps have been extensively investigated [16–20], applied
to recent CMB observations [21–25], and integrated into
the core analysis pipelines that are being developed for
upcoming surveys [26]. “Internal” de-lensing uses lensing
maps reconstructed from a CMB survey to remove lensing
effects from temperature and polarization maps from the
same survey, while “external” delensing uses an external
dataset to estimate a lensing map that is used to delens the
observed CMB.
In this work, we investigate the prospects for external

“de-kSZing” of CMB temperature maps, whereby an
external galaxy survey is used to construct a template
for the kSZ effect, which is then subtracted from the
observed maps. Specifically, we consider the portion of
the kSZ effect sourced by the post-reionization universe
(the “late-time” kSZ effect), since this is expected to
either dominate over the kSZ signal from reionization or
be comparable to it, depending on the models that are
assumed [10]. Following Refs. [27,28],1 we construct a
template by using a galaxy survey to reconstruct the
large-scale velocity field, and multiplying by a linear
reconstruction of the electron density field; this forms a
template for the electron momentum field, which can then
be projected along the line of sight to yield an estimate of
the kSZ-induced CMB temperature fluctuations. While
Refs. [27,28] explored the prospect of cross-correlating this
template with the CMB in order to measure the kSZ effect
for probing baryons in the warm-hot intergalactic medium,

our motivation here is to use the template to remove some
portion of the kSZ effect from CMB observations.
The bulk of our paper is concerned with assessing the

performance of kSZ templates constructed from galaxy
surveys with different properties, and performing an initial
exploration of several possible applications of de-kSZing
with external data: namely, constraining cosmological
parameters using the CMB damping tail, improving the
reconstruction of gravitational lensing, and measuring halo
profiles using the moving-lens effect. While our overall
conclusion is that it will be challenging to obtain significant
benefits from de-kSZing within the formalism adopted in
this work, it is likely that modifications to this formalism
could yield substantial improvements, and we discuss this
further in the final section of the paper.
Note that we will use the term “kSZ effect” to refer only

to the late-time kSZ effect in the body of the paper; we will
briefly discuss the implications of de-kSZing the late-time
kSZ effect on the measurement of the kSZ signal from
reionization at the end of Sec. VA.
This paper is organized as follows. In Sec. II, we review

the main theoretical expressions used to describe the kSZ
effect, as well as our formalism for constructing kSZ
templates from galaxy surveys and how we model the
relevant quantities. In Sec. III, we build intuition for the
ability of different kSZ templates to capture a given fraction
of the true kSZ signal, by enumerating the relevant redshifts
and halo masses (III A), the separate impacts of the velocity
and electron density templates (III B), and the influence
of redshift uncertainties in the input galaxy survey (III D).
In Sec. IV, we forecast the usefulness of specific galaxy
surveys for de-kSZing, including BOSS, DESI, the Roman
Space Telescope, the MegaMapper proposal, and the
PUMA 21 cm intensity mapping proposal. In Sec. V, we
discuss the potential of de-kSZing to improve measure-
ments of cosmological parameters, CMB lensing, and the
moving lens effect. Finally, we discuss plausible improved
versions of de-kSZing and conclude in Sec. VI.
The appendices discuss the impact of shot noise in the

galaxy survey used to construct the template (Appendix A),
the details of our halo model approach to modeling the
signal and templates (Appendix B), the halo occupation
distribution models we assume in our computations
(Appendix C), our approach to modeling 21 cm intensity
mapping surveys (Appendix D), and further details of our
CMB forecasts (Appendices E–F).

II. THEORY

A. Review of the kSZ effect

The kSZ effect adds the following contribution to the
observed CMB temperature at sky location n̂ (e.g. [30]):

TkSZðn̂Þ ¼
Z

χ�

0

dχK̃ðz½χ�Þqrðn̂; χ; z½χ�Þ: ð1Þ1See also Ref. [29] for a fully 3-dimensional formalism for
kSZ templates.

SIMON FOREMAN et al. PHYS. REV. D 107, 083502 (2023)

083502-2



In this expression, χ is comoving distance, χ� corresponds
to the earliest epoch we wish to include in our calculations
of the kSZ effect, qr is the radial (i.e. line-of-sight)
component of the momentum of the free electrons at
location ðn̂; χÞ and redshift z½χ�, and K̃ðzÞ is a radial weight
function that captures the scattering of CMB photons by
these electrons. In this work, we are only concerned with
the post-reionization kSZ effect, so we take χ� to be the
comoving distance to the end of reionization, at z ≈ 6.
The electron momentum is well approximated by

qrðx; zÞ ≈ vrðx; zÞδeðx; zÞ; ð2Þ

where vr is the radial component of the velocity field and δe
is the electron density contrast. At the large scales where
the velocity field has the majority of its power, it can be
treated as curl-free, such that

vrðk; zÞ ¼ iμvðk; zÞ; ð3Þ

where μ is the cosine of the angle between k and the line of
sight. Furthermore, at large scales, v is linearly related to
the matter density contrast δm via

δmðkÞ ¼
k

faH
vðkÞ; ð4Þ

omitting the redshift arguments for brevity. Note that the
electron momentum is given in full by qr ¼ vr þ vrδe, but
the vr term is far subdominant on nonlinear scales (where
δe ≫ 1) [30]. The radial weight function is

K̃ðzÞ≡ −TCMBn̄e;0σTð1þ zÞ2e−τðzÞ; ð5Þ

where TCMB is the mean CMB temperature, n̄e;0 is the mean
electron number density at redshift zero, σT is the cross
section for Thomson scattering, and τðzÞ is the spatially
averaged optical depth to redshift z. We take τðzÞ ≈ 0 after
reionization.
In the Limber approximation [31,32], the angular power

spectrum of TkSZ evaluates to

CkSZ
l ¼

Z
χ�

0

dχ
χ2

K̃ðz½χ�Þ2Pqrqr

�
lþ 1=2

χ
; z½χ�

�
; ð6Þ

where Pqrqr is the 3D power spectrum of qr, given by

PqrqrðkS; zÞ ≈
Z

d3kL
ð2πÞ3 PvrvrðkL; zÞPeeðkS; zÞ ð7Þ

¼ 1

6π2

�Z
dkLk2LPvvðkL; zÞ

�
PeeðkS; zÞ: ð8Þ

In writing Eq. (7), we have neglected the connected four-
point function hvrδevrδei, and only retained the dominant

“squeezed” contribution to the power spectrum, arising
from the large-scale (kL) velocity power and small-scale
(kS) electron density power. The accuracy of these approx-
imations has been argued both analytically [30,33] and
using simulations [30,34,35].2

B. Constructing templates from galaxy surveys

Given a galaxy density contrast δsg observed (in redshift
space, hence the superscript “s”) by a galaxy survey, one
can construct a template for the expected kSZ contribution
to the observed CMB temperature.3 First, one forms the
following estimates for vr and δe from δsg:

ηðk; zÞ≡ iμ
Pgvðk; μ; zÞ
Ptot
ggðk; μ; zÞ

δsgðk; zÞ; ð10Þ

ϵðk; zÞ≡ Pgeðk; μ; zÞ
Ptot
ggðk; μ; zÞ

δsgðk; zÞ: ð11Þ

The redshift-space galaxy power spectrum Ptot
ggðk; μ; zÞ is

defined to include the effect of shot noise (assumed to be
Poissonian in this work),

Ptot
ggðk; μ; zÞ≡ Pggðk; μ; zÞ þ

1

n̄gðzÞ
; ð12Þ

such that η and ϵ are Wiener-filtered quantities that
downweight noise-dominated modes of δsg. We will discuss
our approach to modeling the power spectra needed for
Eqs. (10)–(11) in Sec. II C.
One then forms an estimate for the line-of-sight electron

momentum field,

2Often in the literature, the squeezed limit (kL ≪ kS) is not
taken when writing Eq. (7), but kL is still assumed to be in the
linear regime, in which case Eq. (7) becomes

PqrqrðkSÞ ≈ ðfaHÞ2
Z

d3kL
ð2πÞ3 PmmðkLÞPeeðjkS − kLjÞ

×
kSðkS − 2kLμLÞð1 − μ2LÞ
k2Lðk2S þ k2L − 2kSkLμLÞ

: ð9Þ

If Eq. (9) is used when computing CkSZ
l instead of Eq. (7), the

results differ by 30% at l ¼ 1000 and by less than 5% at
l> 4000. We use Eq. (7) in our computations, to enable us to
compare the results with the templates described in Sec. II B,
which also assume the squeezed limit.

3Similar formalisms for kSZ templates were previously pre-
sented in Refs. [27,28,33]. Reference [27] computed Pge and Pgg
using a linear bias model and Ref. [28] effectively assumed that
Pge ¼ 1, while we use a more detailed halo model approach
based on Ref. [33], described in Sec. II C and Appendix B. Also,
in contrast with Refs. [27,33], we account for linear redshift-
space distortions in the galaxy density when constructing our
electron-density and velocity templates.
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q̂rðx; zÞ ¼ ηðx; zÞϵðx; zÞ; ð13Þ

and computes a line-of-sight projection using the kSZ
radial weight function, analogous with Eq. (1):

T̂kSZðn̂Þ ¼
Z

χ�

0

dχK̃ðz½χ�Þq̂rðn̂; χ; z½χ�Þ: ð14Þ

The cross-correlation between the template T̂kSZ and the
true signal TkSZ will depend on the 3D cross power
spectrum between q̂r and qr. Under the same assumptions
applied to Eq. (7), this evaluates to

Pq̂rqrðkS; μS; zÞ

≈
Z

d3kL
ð2πÞ3 PvrηðkL; μL; zÞPeϵðkS; μS; zÞ ð15Þ

¼ 1

4π2

�Z
dkLk2L

Z
1

−1
dμLμ2L

PgvðkL; μL; zÞ2
Ptot
ggðkL; μL; zÞ

�

×
PgeðkS; μS; zÞ2
Ptot
ggðkS; μS; zÞ

: ð16Þ

Redshift-space distortions in the observed galaxy density
contrast δsg imply that Pvrη and Peϵ both depend on the
angle with respect to the line of sight, through μL and μS
respectively. On the large scales that dominate the velocity
contribution, redshift-distortions are approximately
described by the Kaiser factor δsgðk; μÞ ∝ ðbg þ fμ2Þ [36].
On the other hand, at the scales relevant for the electron
density contribution, there will be “Finger of God” damp-
ing of large-μS power caused by velocity dispersions on
small scales [37]. However, the angular power spectrum of
the template is a line-of-sight projection weighted by the
kSZ weight function from Eq. (5), and the width and
smoothness of this weight function will largely suppress
the influence of large-μS modes on the final result (e.g.
[38,39]). This, it will not be necessary to include the Finger
of God effect in our computations. We may then write the
angular power spectrum derived from the q̂r-qr cross-
correlation as

Cq̂rqr
l ¼

Z
χ�

0

dχ
χ2

K̃ðz½χ�Þ2Pq̂rqr

�
lþ 1=2

χ
; 0; z½χ�

�
; ð17Þ

following the Limber approximation in setting μS ¼ 0 [32].
A short calculation shows that the auto spectrum of the

template T̂kSZ is also given by Eqs. (16)–(17). However, in
this case we must revisit the approximation that the
connected four-point function can be neglected: the power
spectrum of q̂r is related to the trispectrum of δsg, which has
several contributions from the shot noise of the correspond-
ing galaxy sample. We can write this as

Cq̂r q̂r
l ¼ Cq̂rqr

l þ Cshot
l ; ð18Þ

with Cshot
l including all four-point shot noise terms. In

the approximation of Poissonian shot noise, these
contributions depend on the mean number density of
the sample, along with the galaxy power spectrum and
bispectrum (e.g. [40,41]). In Appendix A, we estimate
the dominant such contributions, finding that the added
power to a kSZ template can be as high as several tens
of percents of the reconstructed kSZ power for a few of
the surveys we consider. We do not include these terms
in the computations in the body of the paper, but note
that they should be accounted for in detailed de-kSZing
analyses, and we refer the reader to Appendix A for
more details.

C. Modeling

For modeling the various auto- and cross-power spectra
defined in the previous two subsections, we follow the
halo model approach of Ref. [33]. We briefly summarize
this approach here, with further details contained in
Appendix B. We use the public HMVEC code for our
computations.4

In the halo model, all matter is assumed to belong to
bound, spherical halos. Correlation functions of matter may
be computed once several ingredients are specified: the
halo mass function, mass-dependent halo bias, and mass-
dependent halo density profile. Correlation functions of
galaxies additionally require models for how central and
satellite galaxies occupy halos of a given mass, and the
average spatial distribution of satellite galaxies with in a
halo; similarly, predictions involving the electron number
density require a model for the electron density profile
within halos. Two-point correlations are composed of a
“two-halo term,” describing correlations between points
located in different halos, and a “one-halo term,” corre-
sponding to two points located within the same halo.
In our calculations, we use the Sheth-Tormen halo mass

function and halo bias [42], and a Navarro-Frenk-White
(NFW) density profile [43] with the concentration-mass
relation from Ref. [44]. Electron density power spectra are
computed by replacing the NFW profile with an electron
profile model based on hydrodynamical simulations from
Ref. [45]; in particular, we use the model including AGN
feedback as a baseline. Following Ref. [46], we truncate the
electron profile at a maximum radius chosen so that the
enclosed gas mass is the same as for a NFW profile
truncated at rcut ¼ r200c. To describe galaxy clustering,
we use the halo occupation distribution (HOD) formalism
(e.g. [47]), with specific HOD models introduced when
they are used later in the paper.

4https://github.com/simonsobs/hmvec.
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Finally, we use linear expressions for power spectra
involving velocities, since only the large-scale velocity
power will enter our results:

PvvðkÞ ¼
�
faH
k

�
2

PmðkÞ; ð19Þ

Pgvðk; μÞ ¼
faH
k

ðbg þ fμ2ÞPmðkÞ; ð20Þ

where bg is computed within the halo model and the
z-dependence is left implicit.

III. INTUITION

Our ability to remove the late-time kSZ signal from
observed CMB maps will clearly depend on how much of
the true kSZ signal is captured by a given template. In this
section, we build intuition for the relationship between a
template’s properties and its performance in a de-kSZing
procedure.

A. Relevant redshifts and halo masses

We begin with Fig. 1, which visualizes the relative
contribution to the kSZ auto power from different redshifts

and halo masses. Specifically, we rewrite Eq. (6), Eq. (8),
and the halo model expression for Pee as

CkSZ
l ¼

Z
z�

0

dz
Z

d logmh
d2CkSZ

l

dzd logmh
ð21Þ

and plot the integrand of this expression, normalized to
unity at its peak, for several representative l values. (See
Appendix B 3 for the details of how this is computed.) We
show contours enclosing regions of the z −mh plane that
contribute 50%, 75%, and 90% of the total signal. We also
translate the redshift axis into the corresponding wave
numbers probed in the Limber approximation [k ≈ l=χðzÞ].
We find that 50% of the signal is generally localized to

z≲ 2 and 12.5≲ log10ðmh=M⊙Þ≲ 15, while 75% of the
signal arises from z≲ 3. The overall tilt of the contours
stems from the fact that there are fewer higher-mass halos
at higher redshift, so the contribution to CkSZ

l from higher
redshifts is naturally concentrated at lower halo masses.
The ranges of redshift and halo mass that dominate the

kSZ signal depend strongly on the halo mass function. The
electron-momentum power spectrum Pqrqr is proportional
to the electron density power spectrum Pee [recall Eq. (8)];
in the regime where this is dominated by the one-halo term,
if we approximate ugasðk;mh; zÞ ≈ 1, Eq. (B10) shows that

FIG. 1. Relative contribution to the kSZ angular power spectrum CkSZ
l from different redshifts and halo masses, with each panel

corresponding to the indicated l value. The right-hand axis of each plot denotes the comoving wave numbers that are relevant at a given
redshift in the Limber approximation (k ≈ l=χ½z�). The color scale of each panel is normalized to have a maximum value of unity. The
contours enclose regions than contribute 50%, 75%, and 90% of the value of CkSZ

l at the given l. We find that 50% the kSZ power
generally comes from z ≲ 2 and 12.5≲ log10ðmh=M⊙Þ≲ 15, implying that galaxy surveys focusing on these redshifts and halo masses
are best suited for constructing kSZ templates.
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Pee ∝
R
d logmhm3

hnðmh; zÞ. The integrand of this expres-
sion peaks in the range 13.5 < log10ðmh=M⊙Þ < 14.5 for
0.5 < z < 2, with width Δ log10ðmh=M⊙Þ of order
unity; furthermore, this integral declines sharply with
redshift, with roughly a factor of 40 difference between
z ¼ 1 and z ¼ 3. The assumed electron density profile
also has an important effect: in the model from Ref. [45],
the profile is strongly suppressed at r≳ 2R200ðmh; zÞ,
implying that the one-halo kSZ power from a halo with
mass mh will be suppressed at wave numbers k satisfying
k≳ 2=R200ðmh; zÞ.5 Thus, there is an effective (redshift-
dependent) maximum k to which a mass-mh halo will
contribute significant kSZ power, and since R200 grows
with halo mass, this maximum k will be smaller for more
massive halos. We can see this in Fig. 1: lower l values
probe a higher maximum halo mass. In summary, the
redshifts and halo masses that dominate the kSZ signal can
mostly be understood in terms of (1) the abundance of halos
of different masses at a given redshift, and (2) the spatial
extent of the free electrons associated with each halo.
Overall, these results indicate that a galaxy survey (or

combination of surveys) with broad coverage in redshift
and halo mass will be necessary to construct a high-fidelity
kSZ template. For example, a sample of emission-line
galaxies (ELGs) would likely miss a significant part of
the kSZ signal, since ELGs generally occupy halos with
much lower mass (i.e. mh ∼ 1012M⊙ [48–51]) than where
the bulk of the kSZ contribution comes from. (We will
explore specific galaxy samples, including ELGs, later in
the paper.) Also, it will likely be challenging to recover
more than roughly 80% of the kSZ signal unless one has
access to a survey probing very low-mass (mh ≲ 1011.5M⊙)
halos at higher redshifts (such as a 21 cm intensity mapping
survey [52,53]), and is able to combine it with measure-
ments of higher-mass halos.

B. Importance of electron density
and velocity templates

1. Electron density template

The accuracies of the electron density template and
velocity template both determine the fraction of true kSZ
power captured by the kSZ template. We investigate the
electron template in this subsection and the velocity
template in Sec. III B 2.
To assess the fidelity of the electron template, we

compute the squared correlation coefficient between δsg
and δe, for purely transverse (μS ¼ 0) modes:

r2geðk; zÞ ¼
PgeðkS; 0; zÞ2

Ptot
ggðkS; 0; zÞPeeðkS; zÞ

: ð22Þ

We compute this quantity for a family of fictional galaxy
surveys which have the following HOD model:

N̄cðmhÞ ¼
1

2

�
1þ erf

�
logmh − logmcut

σlogm

��
; ð23Þ

N̄sðmhÞ ¼
�
mh −mcut

10βmcut

�
α

: ð24Þ

This is a simplified version of the HOD from Ref. [54],
with the amplitude of the satellite occupation parametrized
relative to the lower mass cutoffmcut, to separate the effects
of changing mcut and this amplitude. For this exercise,
we fix σlogm ¼ 0.3 and α ¼ 1, and examine the effects of
varying mcut and β. The influence of these parameters on
the central and satellite occupations is visualized in Fig. 2.
In Fig. 3, we plot r2ge as a function of z, at the k values

relevant for the Limber approximation (k ≈ l=χ½z�) at two
different l values. We vary β between 0 and 2, noting that
β ≈ 1 is a typical value found in real or simulated galaxy
samples (e.g. [51,54–56]). We also vary the galaxy number
density n̄g, taken to be redshift-independent, and derive the
corresponding (redshift-dependent) lower mass cutoff mcut

FIG. 2. Mean central occupation (upper panel) and satellite
occupation (lower panel) for the HOD model used to investigate
the electron density template in Sec. III B 1. In both panels,
different colors denote different values of the lower mass cutoff
mcut, while in the lower panel, different line styles denote
different values for β, which controls the relative amplitude of
N̄c and N̄s. This figure can be used in tandem with Fig. 3 to gain
intuition for how the properties of the HOD influence the fidelity
of the electron density template that goes into a kSZ template.

5To see this mathematically, recall that the one-halo term
depends on the Fourier transform of the density profile, ugasðkÞ ∝R
drr2ρgasðkÞ sinðkrÞ=kr, and for a top-hat density profile with

maximum radius rmax, this evaluates to ugasðkÞ ∝ k−3j1ðkrmaxÞ,
which has its first zero at k ≈ 4.5r−1max and is strongly suppressed
at higher k.
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by solving Eq. (B4). The resultingmcut values are shown in
the lower panels of the figure.
The shapes of the curves in Fig. 3 can be interpreted in

terms of whether the one-halo or two-halo term dominates.
In particular, there are two noteworthy trends:

(i) At higher redshift, the g-e correlation improves with
increasing n̄g (and decreasing mcut). This is because,
in the angular power spectrum, higher z corresponds
to lower k, where the two-halo term is more
important. At sufficiently low k (i.e. high z and
low l), the two-halo term completely dominates and
perfect cross-correlation can be achieved, although
the (angular) kSZ power will also have some
sensitivity to lower z where the correlation is worse.
The correlation is noticeably worse for β ¼ 0 than
for β ¼ 1 or 2, because β ¼ 0 implies a particularly
large amplitude for the one-halo term, moving the
pure-two-halo regime to lower k.

(ii) In the one-halo regime (low z, high k), a high-fidelity
electron template is achievable for sufficiently high
galaxy number density. In this regime, lower values
of β result in a better template, because a higher
satellite fraction implies a better measurement of the
distribution of satellites within the halo, which will
trace the distribution of electrons if the satellite
profile and gas profile are similar.

2. Velocity template

Next, we assess the performance of the template for
large-scale velocities. We do so by computing the ratio of
the velocity factors in Eqs. (16) and (8):

RgvðzÞ≡ 3

2

R
dkLk2L

R
1
−1 dμLμ

2
L
PgvðkL;μL;zÞ2
Ptot
ggðkL;μL;zÞR

dkLk2LPvvðkL; zÞ
: ð25Þ

FIG. 3. An exploration of how accurate a template for the electron density δe can be constructed by Wiener-filtering the observed
galaxy density δsg. We plot the squared correlation coefficient between δsg and δe, assuming different parameters in the simplified HOD
model from Eqs. (23)–(24). Curves in the upper and middle rows are evaluated at k ¼ l=χ½z� for l ¼ 2000 or 8000, while the lower row
shows the redshift-dependent minimum mass mcut corresponding to the galaxy number density indicated in each column. In both the
two-halo-dominated regime (at sufficiently high z and low k) and the one-halo-dominated regime (at low z and high k), a high-fidelity
electron template is achievable if the input galaxy survey is sufficiently dense.
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This is analogous to a correlation coefficient between δsg
and v, but is more relevant to the kSZ template than a
standard correlation coefficient, since it directly reflects the
redshift-dependent suppression of kSZ template power due
to the properties of the velocity template.
Figure 4 shows RgvðzÞ computed using the same HOD

model as in Sec. III B 1, showing only the β ¼ 1 case
for simplicity. The inclusion of RSD slightly boosts the
power in the velocity template thanks to the Kaiser factor
increasing the signal-to-shot-noise ratio in Ptot

gg. For
n̄g ¼ 10−4 Mpc−3, the accuracy of the velocity template
can degrade the fraction of the kSZ power captured by the
kSZ template by tens of percents, but for higher number
densities, a comparison with Fig. 3 reveals that the electron
template will be the dominant factor in the performance
of the kSZ template.

3. Combination

Figure 5 shows the auto power spectrum of the kSZ
template constructed using the same HOD as the curves in
Fig. 4, as a ratio to the true kSZ power. As expected, we
find better performance at lower multipoles, because these
multipoles probe larger physical scales and higher redshifts
where the electron template is more accurate. The accuracy
decreases at higher multipoles, but can still reach several
tens of percents of the true kSZ power if a dense enough
galaxy survey is used.
These general investigations provide context for survey-

specific forecasts that we will present in Sec. IV.

C. Accuracy of model for galaxy-electron
cross power spectrum

The kSZ template in Sec. II B requires input models for
Pgv, Pge, and Ptot

gg. Since we only require Pgv on quasilinear
scales, it will be relatively straightforward to model, while
Ptot
gg is directly measurable from the associated galaxy

survey. On the other hand, the modeling of Pge is expected
to be considerably more uncertain. This uncertainty leads to
what is known as the “optical depth degeneracy” in kSZ
studies (e.g., [57]) and is a limiting factor, for example, in
using the reconstructed velocities from the kSZ effect as a
probe of the growth rate of structure. Here, we consider
what impact uncertainties in the assumed form of Pge will
have on a de-kSZing procedure.
Specifically, we are interested in the power spectrum of

the kSZ effect that remains in a temperature map after a
template has been subtracted off. This angular power
spectrum, of T̂de-kSZ ≡ TkSZ − T̂kSZ, evaluates to

Cde-kSZ
l ¼ CkSZ

l − 2Cq̂rqr
l þ Cq̂r q̂r

l ; ð26Þ

where CkSZ
l is given by Eq. (6), Cq̂rqr

l is given by Eq. (17),

and Cq̂r q̂r
l is equal to Cq̂rqr

l if the assumed Pge is exactly
correct.
We can relax this assumption by writing the assumed

spectrum as a sum of the true spectrum and an error term:

Pmodel
ge ðk; μ; zÞ ¼ Pgeðk; μ; zÞ þ ΔPgeðk; μ; zÞ: ð27Þ

Repeating the derivations of Pq̂rqr [recall Eq. (16)]
and Pq̂r q̂r , we find that using Pmodel

ge instead of Pge in the

FIG. 4. Correlation-coefficient-like quantity, defined in
Eq. (25), for the observed galaxy density and large-scale velocity
field, reflecting the impact of the velocity template on the kSZ
template. Different curves are computed as in Fig. 3 with β ¼ 1,
with faint lines ignoring the effects of RSD. For lower galaxy
number density, the velocity template fidelity can degrade the
kSZ template fidelity by a few tens of percents, while for higher
number density, the electron template fidelity will mostly
determine the fraction of true kSZ power that can be captured
by the kSZ template.

FIG. 5. Ratio of kSZ template power spectrum and true kSZ
power spectrum, with the same line colors as Fig. 4. As expected,
a template constructed from a denser galaxy survey captures a
higher fraction of the true kSZ power, with better performance at
lower multipoles that probe larger physical scales.
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construction of the electron density templates will change
each spectrum like so:

ΔPq̂rqrðkS; μS; zÞ

¼ 1

4π2

�Z
dkLk2L

Z
1

−1
dμLμ2L

PgvðkL; μL; zÞ2
Ptot
ggðkL; μL; zÞ

�

×
PgeðkS; μS; zÞΔPgeðkS; μS; zÞ

Ptot
ggðkS; μS; zÞ

; ð28Þ

ΔPq̂r q̂rðkS; μS; zÞ

¼ 1

4π2

�Z
dkLk2L

Z
1

−1
dμLμ2L

PgvðkL; μL; zÞ2
Ptot
ggðkL; μL; zÞ

�

×

�
2PgeðkS; μS; zÞΔPgeðkS; μS; zÞ

Ptot
ggðkS; μS; zÞ

þ ΔPgeðkS; μS; zÞ2
Ptot
ggðkS; μS; zÞ

�
: ð29Þ

If we compute ΔCde-kSZ
l by combining these expressions,

the definitions of Cq̂rqr
l and Cq̂r q̂r

l , and Eq. (26), we find that
the term linear in ΔPge cancels out, such that the leading
effect of ΔPge on Cde-kSZ

l is of order ΔP2
ge. As a concrete

example, if ΔPge ≈ αPge where α is a constant, then the
fractional impact on Cde-kSZ

l is

ΔCde-kSZ
l

Cde-kSZ
l

≈
α2Cq̂r q̂r

l

CkSZ
l − Cq̂r q̂r

l

: ð30Þ

This mild dependence on errors in Pge, along with
prospects for externally constraining it using e.g. dispersion
measures of fast radio bursts [57], is a promising indication
that modeling of the galaxy-electron cross power spectrum
will not be a serious impediment to template-based
de-kSZing.

D. Redshift precision

Thus far, we have assumed that the galaxy survey used
for the template has negligible redshift uncertainty, but we
can also consider surveys for which this uncertainty may be
substantial. Specific examples include photometric surveys
such as the Dark Energy Survey [58] and the Vera Rubin
Observatory’s Legacy Survey of Space and Time (LSST;
[59]), or the SPHEREx satellite [60] which is expected to
acquire redshifts with a wide range of uncertainties [60].
We will not attempt detailed forecasts for such surveys in

this work, but instead present a simple computation that
indicates what we might expect. Under the assumption that
the uncertainty on each measured redshift is Gaussian, the
galaxy power spectrum is multiplied by two powers of a
Gaussian kernel

WΔzðk; μ; zÞ ¼ exp

�
−
σ2zk2μ2c2

2HðzÞ2
�
; ð31Þ

while cross spectra between galaxies and another field are
multiplied by a single power (e.g. [33]):

Pggðk; μ; zÞ → Pggðk; μ; zÞWΔzðk; μ; zÞ2;
Pgeðk; μ; zÞ → Pgeðk; μ; zÞWΔzðk; μ; zÞ;
Pgvðk; μ; zÞ → Pgvðk; μ; zÞWΔzðk; μ; zÞ: ð32Þ

Since the redshift kernel for the kSZ effect is quite broad,
one might expect that redshift errors would not have a
strong effect on a kSZ template, as is the case when
constructing templates for the integrated Sachs-Wolfe
effect (e.g. [61]), for example. However, this intuition does
not hold in this case, because our kSZ template involves a
product of separate 3D templates for velocity and electron
density, and low-μ modes of this product are affected by
higher-μ modes of each component template. In particular,
in the squeezed limit we have assumed for the kSZ effect in
Eq. (16), the effect of redshift uncertainties on higher-μ
modes of the velocity template propagates into the final
projected kSZ template.
In Fig. 6, we show how different levels of redshift

uncertainty affect CkSZ;template
l computed using the HOD

FIG. 6. Impact of galaxy redshift uncertainties on a kSZ template
constructed using those galaxies. Each curve is computed with the
HOD from Sec. III B 1 with β ¼ 1 and with the specified Gaussian
redshift uncertainty, and has been divided by the corresponding
template power spectrum assuming perfectly measured redshifts.
Solid curves assume n̄g ¼ 10−4 Mpc−3, while dashed curves
assume n̄g ¼ 10−2 Mpc−3. For σz=ð1þ zÞ ¼ 0.03, which is the
target for the Vera Rubin Observatory’s LSST, and for which
SPHEREx will obtain a galaxy sample with n̄g ∼Oð10−4Þ Mpc−3

at z ∼ 1, significant suppression of the kSZ template power is
expected. This motivates our focus on spectroscopic and 21 cm
surveys in this work.
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from Sec. III B 1 with β ¼ 1 and n̄g ¼ 10−4 Mpc−3 (solid
lines) or 10−2 Mpc−3 (dashed lines). For σz=ð1þzÞ¼0.03,
which is the target for LSST [62], the kSZ template
power is suppressed at l ¼ 2000 by 85% (70%) for
n̄g ¼ 10−4 Mpc−3 (10−2 Mpc−3), and more than 90% for
l≳ 2500 (5000). SPHEREx is expected to achieve a
galaxy number density of Oð10−4ÞMpc−3 at z∼1 with
σz=ð1þzÞ∼0.03 [60], implying a similar suppression of
kSZ template power for a SPHEREx-based template. For
this reason, we will focus on spectroscopic surveys, which
have σz=ð1þ zÞ ∼Oð0.001Þ (e.g. [63]), or 21 cm surveys
with equivalent redshift precision, for the remainder of
this work.

IV. FORECASTS

In this section, we investigate the amount of kSZ power
that can be recovered when different large-scale structure
surveys are used to construct kSZ templates using the
procedure in Sec. II B. As discussed in Sec. III, we will find
that the ranges of redshift and halo mass probed, along with
the number density of the galaxy sample, play an important
role in the performance of the templates.

A. Spectroscopic surveys

First, we consider a representative set of spectroscopic
galaxy surveys: BOSS, DESI, the High Latitude
Spectroscopic Survey of the Roman Space Telescope,
and the MegaMapper proposal. We state our assumptions
about each survey, and their implications for kSZ
reconstruction, in the following subsections. As a visual
aid for these discussions, in Fig. 7 we plot the HOD model
assumed for each survey at a representative redshift.
Further details about HOD modeling are included in
Appendix C. Our main results are summarized in Figs. 8
and 9, where we show the angular power spectrum of each
kSZ template normalized to the true kSZ power spectrum,
along with the linear galaxy bias and number density
assumed for each survey.

1. BOSS

BOSS (the Baryon Oscillation Spectroscopic Survey
[64]) measured the redshifts of 1.5 million luminous red
galaxies (LRGs) over 0.4≲ z≲ 0.7 and 10000 deg2. We
use the HOD from Ref. [56], which was jointly fit to the
projected correlation function and void probability function
measured from a subset of the BOSS CMASS sample
spanning 0.46≲ z≲ 0.57. We use this HOD over the full
BOSS redshift range, where it predicts a roughly constant
number density of n̄g ≈ 10−4 Mpc−3 and a linear bias
ranging from 1.9 at z ¼ 0.4 to 2.2 at z ¼ 0.7.
Figure 8 shows that the corresponding kSZ template can

recover at most 7% of the total kSZ power at l ≈ 3000, and
even less at lower and higher multipoles. This is consistent

with our intuition from Sec. III: Fig. 5 showed that a survey
with n̄g ≈ 10−4 Mpc−3 over 0 < z < 6 and a BOSS-like
HOD can reproduce at most 30% of the true kSZ power for
l≳ 2000, but BOSS covers a considerably smaller redshift
range than what is significant for kSZ (recall Fig. 1), so we
would expect a correspondingly smaller fraction of the kSZ
power to be captured by the template.

2. DESI

DESI (the Dark Energy Spectroscopic Instrument [63])
is an ongoing survey project with the goal of measuring
roughly 30 million spectroscopic galaxy and quasar red-
shifts over 14000 deg2. We separately consider the
planned Bright Galaxy Sample (BGS), which will have
number density greater than BOSS for z≲ 0.4; the LRG
sample over 0.6≲ z≲ 1; the emission-line galaxy (ELG)
sample over 0.6≲ z≲ 1.6; and the quasar (QSO) cluster-
ing sample over 0.6≲ z≲ 1.8. In some cases, we adjust a
given HOD model or two-halo contribution to agree with
the expected galaxy number density or linear bias, and we
describe these adjustments below.
BGS: We use the HOD from Ref. [55], which is fit to a

mock galaxy catalog with the same apparent magnitude
threshold as the BGS sample. Specifically, the authors fit
their 5 free HOD parameters to the clustering of galaxy
subsamples corresponding to different absolute magnitudes.

FIG. 7. HOD models for the spectroscopic surveys we forecast
for in Sec. IVA. Specifically, we show the sum of central and
satellite occupations, evaluated at a representative redshift for
each survey. For visual clarity, we plot the models in two separate
panels. These models are described in detail in Sec. IVA and
Appendix C.
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We use the parameter fits corresponding to 0.1Mr − 5 logh ¼
−20.5, motivated by evidence from Ref. [65] that the
distribution of absolute magnitudes of BGS targets peaks
at this value. However, we rescale the minimum halo mass
and normalization of the satellite occupation by a redshift-
dependent prefactor such that the predicted mean galaxy
density matches the forecast values from Ref. [63] (see
Appendix C 2). We also rescale the predicted two-halo term
of the power spectrum to agree with the linear bias assumed
for BGS in Ref. [63] in the low-k limit.
LRGs: We use the LRGHOD fromRef. [51], which was fit

to galaxies selected from the IllustrisTNG simulation accord-
ing to color cuts corresponding to the LRG sample. As with

our BGS model, we rescale the HOD such that the
mean galaxy density matches the LRG target density of
1.5 × 10−4 Mpc−3 quoted in Ref. [51]. We use the linear
bias predicted by thismodel, which ranges from2.2 at z ¼ 0.6
to 2.4 at z ¼ 1. If we instead rescale the HOD to match the
galaxy number density used for forecasting in Ref. [63],
or rescale the two-halo term to match the linear bias used in
that work, the end result for CkSZ;template

l can change by up to
75%at lowermultipoles, but never exceeds 6%of the true kSZ
power spectrum. We have also compared with results from
using a different HOD fit to imaging of LRG targets in
Ref. [66], and found that CkSZ;template

l is around 20% higher,
which is not sufficient to qualitatively change our conclusions.

FIG. 8. Assumed number density (upper panel) and linear bias
(middle panel) for BOSS and various clustering samples from
DESI, along with forecasts for the ratio of kSZ template power
spectrum and true kSZ power spectrum for templates constructed
from each sample (lower panel). The DESI QSO template
recovers less than 1% of the true kSZ power, so we do not
show it in the lower panel. Overall, the amount of kSZ power that
can be recovered by these templates is limited by the halo masses
and redshift range probed by each galaxy sample, along with
galaxy shot noise that restricts access to smaller-scale modes.

FIG. 9. Same as Fig. 8, but for kSZ templates constructed
from the combination of BOSS and DESI (blue dashed), the Hα
emitter sample from the Roman Space Telescope (orange dot-
dashed), the Lyman-break galaxy sample from MegaMapper
(gray dot-dot-dashed), and an idealistic combination of all of
the above (solid black) that assumes identical sky coverage for
each survey. The first three samples are mostly limited to
recovering 20% or less of the true kSZ power, while the
combination of all of them can recover 35% at l ≈ 1000 and
between 15% and 25% for l ≳ 2000.
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ELGs: We use the ELG HOD from Ref. [51], which is
based on the “high-mass quenched” ELG model from
Ref. [49] and which was also fit to galaxies selected from
the IllustrisTNG simulation. We use the galaxy density
(∼1.5 × 10−4 Mpc−3) and linear bias (ranging from 1.3 at
z ¼ 0.65 to 2.0 at z ¼ 1.65) predicted by this model. In
contrast to other HODs described above, the expected
number of centrals in the ELG model peaks in lower-mass
halos (mh ∼ 1012M⊙) and declines at higher halo masses,6

reflecting the expectation that star formation is quenched in
higher-mass halos and therefore these halos are less likely
to host ELGs as their central galaxy (e.g. [48–51]). Using
the galaxy density and linear bias from Ref. [63] decreases
CkSZ;template
l by roughly 30%, while using a parametrized

version of the HOD from Ref. [67] changes it by around a
factor of 2, but as with the LRGs, this does not alter the
nature of our conclusions.
QSOs: We use the error-function–based HOD from

Ref. [49], with the best-fit parameters fit to eBOSS quasar
clustering but with the lower halo mass threshold and
satellite fraction normalization adjusted to match the QSO
number density given in Ref. [63], and with the 2-halo
term rescaled to match the linear bias from Ref. [63] in the
low-k limit. Due to the low expected QSO number density
(≲10−5 Mpc−3), the QSO sample contributes negligibly
to a reconstruction of the late-time kSZ signal, recovering
less than 1% of the true kSZ power, so we do not show
the corresponding template in Fig. 8 or discuss the QSO
sample further.
Among the different DESI samples, Fig. 8 shows that a

template constructed from the LRGs captures the largest
fraction of kSZ power, because its combination of halo
mass range and redshift range is best matched to the ranges
relevant for kSZ. However, for the same reasons as BOSS,
DESI LRGs can still only recover a small fraction of kSZ
power. The ranges of halo mass and/or redshift are less
optimal for the other samples, which fare even worse.
Finally, Fig. 9 shows that a combination of all BOSS and
DESI samples could recover around 10%–20% of the true
kSZ power over a wide range of multipoles.

3. Roman

The Roman Space Telescope [68] is a planned multi-
purpose satellite with cosmology among its scientific
drivers. In particular, the Roman High Latitude
Spectroscopic Survey will obtain redshifts for 12 million
ELGs over 2000 deg2, using Hα emission over 1 < z < 2
and [OIII] emission over 1 < z < 3 [69]. We only consider
the Hα sample in this work, due to its higher number

density and more relevant redshift range for construction of
a kSZ template.
For an HOD, we use a parametrized fit to the HOD

measured from a mock ELG catalog generated from the
GALACTICUS semianalytical model applied to the UNIT

N-body simulation [70]. This model has a similar form
to the DESI ELG used above, but with a central occupa-
tion that peaks at slightly lower halo masses and with
a lower satellite fraction. We rescale the amplitudes of
both the central and satellite occupations to match the
Hα number densities from Ref. [69] corresponding to
fluxes >1016 erg s−1 cm−2 and dust attenuation parameter
AV ¼ 1.65, matching the catalog from Ref. [70]. We also
rescale the 2-halo term such that the linear bias agrees with
that in Ref. [69] (bðzÞ ¼ 1þ 0.5z) in the low-k limit.
Figure 9 shows that the corresponding kSZ template can

recover 7% of the kSZ power at l ≈ 1000, declining to less
than 1% at l≳ 3500. Despite the relatively high ELG
number density projected for the Roman Hα sample, the
corresponding halo masses are too low and the redshift
range is too high to capture a significant part of the kSZ
signal. The de-kSZing efficiency exhibits a minimum at
l ≈ 6000, which corresponds to spatial scales in the regime
where neither the two-halo nor one-halo terms are dom-
inant at the relevant redshifts.
In principle, one may also consider the Euclid satellite,

which will perform its own spectroscopic survey of Hα
emitters. However, Table 3 of Ref. [71] indicates that this
sample will have a lower number density than Roman and
similar linear bias, so a kSZ template built from Euclid’s
Hα sample is not expected to fare any better than what we
have forecast for Roman.

4. MegaMapper

The MegaMapper [72] is a proposed ground-based
telescope outfitted with DESI fiber-positioning technology
that would target Lyman-break galaxies (LBGs) and
Lyman-alpha emitters over 2 < z < 5 using imaging from
the Vera Rubin Observatory’s Legacy Survey of Space and
Time. We perform a forecast using the HOD for LBGs
obtained from early observations of roughly 6 × 105

objects by the Hyper Suprime-Cam [73]. In particular,
we use their “linear HOD model” fit at z ≈ 3.8 using
galaxies with threshold apparent magnitude mth

UV ¼ 24.5,
which is the same limiting magnitude assumed for the
“idealized sample” from Ref. [74]. The galaxy number
density and linear bias predicted by this model are very
close to the values used for forecasting in Refs. [72,74] (the
number density ranges from 5 × 10−3 Mpc−3 at z ¼ 2 to
10−5 Mpc−3 at z ¼ 5, and the bias ranges from 2.5 at z ¼ 2
to 7 at z ¼ 5), so we use them as is.
Fig. 9 shows that the corresponding kSZ template

can recover roughly 15% of kSZ power at l ≈ 1000 and
less than 10% at 1500≲ l≲ 14000. As with the Roman
forecast discussed above, the minimum at l≲ 4000 is due

6This feature of the central galaxy occupation for DESI ELGs
is not visible in Fig. 7 because we have plotted the sum of the
central and satellite occupations, but a peak at mh ∼ 1012M⊙ is
visible in the Roman (Hα) HOD plotted in the lower panel, for
which the satellite occupation has lower amplitude.
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to the transition between the two-halo and one-halo
regimes, where the performance of the halo model frame-
work is known to be particularly poor in general [75,76].
The high linear bias of LBGs enhances the template’s
performance at lower l (where the two-halo term is more
important) compared to other samples, while the perfor-
mance at higher l (into the pure one-halo regime) also
shows promise.

5. Combination:
BOSS+DESI+Roman+MegaMapper

The solid black line in the lower panel of Fig. 9 shows
the kSZ template that results in combining the templates
from BOSS, DESI, Roman, and MegaMapper, using
only the dominant survey at a given redshift rather than
optimally combining templates at redshifts where surveys
overlap. (For these forecasts, only a small loss of
information is incurred by using this suboptimal combi-
nation.) Note that we assume identical sky coverage of
each survey when forming this combination, which will
not be true in practice. With this caveat, we find that even
this combination can recover roughly 35% of the late-
time kSZ power at l ∼ 1000, between 20% and 25% for
2000≲ l≲ 6000, and between 15% and 20% at higher
multipoles.

B. 21 cm intensity mapping

Postreionization large-scale structure can also be
measured via 21 cm emission from neutral hydrogen
(e.g. [77–79]). In this subsection, we consider the
PUMA (Packed Ultra-wideband Mapping Array [80,81])
proposal for a next-generation 21 cm intensity mapping
project, intended to map LSS over 0.3 < z < 6. We also
comment on other 21 cm projects below.
Our forecasts follow a similar procedure to those for

spectroscopic surveys, but with several distinctions
(see Appendix D for more details). Our chosen “HOD”
model does not parametrize the occupation statistics of
galaxies in halos, but instead makes use of a model for the
relation between neutral hydrogen (HI) mass and halo
mass in a given halo, following Refs. [52,82]. In par-
ticular, we perform forecasts that assume either the
mHIðmhÞ relation fit to the IllustrisTNG simulations in
Ref. [52], or the parametrized function from Ref. [82] that
was fit to observations of HI in resolved galaxies at z ∼ 0,
constraints on the mean HI density at z ∼ 1, and properties
of damped Lyman-α absorbers at z≳ 2. We show these
two options in Fig. 10. We also assume the HI density profile
within a halo is given by the fitting formula from Ref. [52],
again determined from IllustrisTNG; we show in
Appendix D 4 that using the exponential HI profile from
Ref. [82] changes our forecasts negligibly at low l and by
tens of percents at higher l, which is subdominant to the
impact of the mHIðmhÞ relation.

For the noise power of the HI auto spectrum, we add the
(scale-dependent) instrumental noise power spectrum from
Ref. [78] to the intrinsic shot noise of 21 cm emitters,
computed using an updated version of the model from
Ref. [83]. To ease comparisons with the surveys from
Sec. IVA, we show an “effective number density” n̄eff ,
equal to the inverse of the 21 cm instrumentalþ shot noise
power spectrum, in Fig. 11. We consider configurations of
PUMA with 32000 or 5000 dishes (“PUMA-32k” and
“PUMA-5k” respectively, as considered in Refs. [78,81]).
The effective number density decreases at higher k⊥ due
to the (redshift-dependent) finite angular resolution of the
instrument. For PUMA-5k, the instrumental noise domi-
nates over the shot noise, and the former increases with
redshift due to the higher system temperature at lower
frequencies, such that n̄eff decreases at higher redshift. For
PUMA-32k, the instrumental and shot noise both contrib-
ute to the total noise, with the former increasing and the
latter decreasing at higher redshifts, leading to the observed
nonmonotonic behavior of n̄eff with redshift.
Finally, Galactic and extragalactic foregrounds are

expected to prevent certain Fourier modes of the HI
distribution from being observed, and we account for this

FIG. 10. The two HI mass-halo mass relations that we use in
our forecasts for 21 cm intensity mapping surveys: the relation
from Ref. [52] (blue solid lines), which was fit to the IllustrisTNG
simulation over 0 < z < 5, and that from Ref. [82] (orange
dashed lines), which was jointly fit to a variety of low- and high-
redshift observations of neutral hydrogen. Halos with masses
relevant to the kSZ effect (mh ∼ 1013.5M⊙) contain more HI if the
former relation is true, such that a kSZ template constructed from
a 21 cm survey would have higher fidelity than if the latter
relation is true.
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by assuming that modes with kk < 0.03 Mpc−1 or within a
“foreground wedge” (see e.g. [84–86]) defined by 3 times
the width of a PUMA dish’s primary beam (following
Ref. [78]) will be inaccessible. (We will comment on the
impact of these assumptions below.) Note that the loss of
low-kk modes in the 21 cmmaps does not imply that the kSZ
template’s angular power spectrum has negligible amplitude,
because the template is constructed from a quadratic
combination of 21 cm maps; see Appendix D 3 for more
discussion on this point.
We show the resulting kSZ template forecasts in Fig. 12.

In the complete absence of foregrounds, a template from
PUMA-32k would be able to recover ∼45% of the true kSZ
power at l ≈ 1000, ∼20% at l ≈ 2500, and less at higher
multipoles. This strong performance compared to the
spectroscopic surveys from Sec. IVA is due to the high
sensitivity of PUMA-32k (equivalent to very low shot
noise) shown in Fig. 11. The results at higher multipoles are
strongly dependent on the form of themHIðmhÞ relation: the
relation from Ref. [52] ascribes more HI to halo masses
relevant for kSZ, and therefore results in a better kSZ
template, than the relation from Ref. [82].

Accounting for the loss of low-kk modes due to fore-
grounds, the fraction of recovered kSZ power drops to
roughly 20%, and also accounting for 21 cm signal loss
within the foreground wedge reduces the recovered kSZ
power to less than 10%. Note that the detrimental effect
of the foreground wedge can in principle be completely
removed with sufficiently accurate characterization of the
21 cm telescope and careful analysis (e.g. [87]), or via
machine learning methods [88]. Also, low-kk modes can in
principle be recovered with various reconstruction tech-
niques (e.g. [41,89,90]). However, modes recovered in this
way will have different noise properties than those assumed
in our forecasts, so we leave it to future work to assess their
impact on a 21 cm -based kSZ template.

FIG. 11. For ease of comparison with our forecasts for
spectroscopic galaxy surveys, we translate the expected noise
in a 21 cm survey, which has contributions from both the intrinsic
shot noise of 21 cm emitters and instrumental noise, into an
“effective shot noise” n̄eff which varies with redshift and trans-
verse wave number k⊥. This decreases at high k⊥ due to the
telescope’s finite angular resolution. For PUMA-32k, the non-
monotonicity with redshift at low k⊥ is due to the competing
influence of intrinsic shot noise and instrumental noise, which
scale oppositely with redshift, while for PUMA-5k, instrumental
noise is dominant.

FIG. 12. Ratio of kSZ template power spectrum and true kSZ
power spectrum for templates constructed from 32000-dish
(upper panel) and 5000-dish (lower panel) versions of the
proposed PUMA 21 cm intensity mapping survey. Shaded bands
denote uncertainty related to the choice of HI mass-halo mass
relation in the forecasts, computed using either of the two options
from Fig. 10. In the absence of foregrounds (blue), the template
performance at lower multipoles exceeds our forecasts for
spectroscopic galaxy surveys, but when we include the loss of
low-kk modes due to spectrally-smooth foregrounds (orange) and
leakage of these foreground into the “foreground wedge” (gray),
the template’s performance is significantly degraded. Further-
more, as explained in the main text and Appendix D 4, the
amplitude of the full-foreground forecasts is sensitive to the
precise assumptions made about foregrounds, so the gray bands
should only be taken as a rough indication.
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As expected, PUMA-5k fares worse than PUMA-32k,
due to its lower sensitivity and worse angular resolution
(which prevents it from accessing higher-l modes). At
l ≈ 1000, PUMA-5k could recover 25% of the kSZ power
in the absence of foregrounds, 10% if low-kk modes are
lost, and 6% if wedge modes are also lost. The performance
of the kSZ template also degrades more quickly with l than
for PUMA-32k.
We have carried out forecasts for the HIRAX [91] and

CHORD [92] instruments, but found that neither could
recover more than 5% of the true kSZ power even in the
absence of foregrounds, so we have not shown them
in Fig. 12.
In these forecasts, we have followed Ref. [78] in our

assumptions about 21 cm foreground cleaning, but we note
that different assumptions can lead to significant variations
in the gray curves in Fig. 12. In Appendix D 4, we explore
different choices for the minimum accessible kk and the
extent of the foreground wedge, and we find that the
performance of the ensuing kSZ template can vary by as
much as a factor of 10 (at low l) or 5 (at higher l), mostly
in the downward direction (in no case do the analogs of the
gray curves exceed the orange curves plotted in Fig. 12).
The reader should thus bear in mind that the gray band
shown in Fig. 12 is only roughly indicative of the template
performance with a full treatment of foregrounds.
A further source of uncertainty in these forecasts is

the stochasticity of the distribution of neutral hydrogen,
which we have assumed is solely attributable to the dis-
creteness of 21 cm-emitting objects. Reference [93] has
recently used hydrodynamical simulations to show that
the stochasticity of the HI density can far exceed the

Poissonian approximation at z ¼ 0 but is of the same order
as this approximation at z ¼ 1. We leave it to future work
to incorporate more accurate estimates of HI stochasticity
into our forecasts.

V. APPLICATIONS

The kSZ effect constitutes the dominant contribution
to the CMB black-body anisotropies on small scales
(l≳ 4000) and, for the next-generation Stage-3 and
Stage-4 CMB experiments [94–97], is expected to be only
within a factor ∼2 smaller than the frequency-dependent
CMB foregrounds, the cosmic infrared background (CIB)
and the thermal SZ (tSZ) effects, after standard harmonic-
space internal linear combination (ILC) cleaning [98]. For
futuristic lower-noise CMB experiments like CMB-HD, the
kSZ effect will likely dominate the CMB signal due to
better cleaning of frequency-dependent foregrounds [99].
The removal of the kSZ effect via de-kSZing discussed in
this paper hence may allow a significant reduction of the
observed small-scale CMB variance.
In Fig. 13, we demonstrate the reduction of the total

ILC-cleaned CMB variance by removing the (late-time)
kSZ contribution. We describe our implementation of the
ILC and the CMB forecasts in Appendix E. The left
panel demonstrates the fractional reduction of the CMB
variance at l ¼ 5000 for the CMB-S4 and CMB-HD
surveys as a function of the fractional kSZ power spectrum
amplitude that remains after de- kSZing (assuming that a
scale-independent fraction of the amplitude is removed).
The right panel demonstrates the same reduction for a range
of CMB multipoles satisfying l ∈ ½1; 20000�. In particular,
for futuristic surveys such as CMB-HD, de-kSZing can

FIG. 13. Reducing the CMB variance via de-kSZing. Left panel: reduction of the CMB temperature variance at multipole l ¼ 5000
for the CMB-S4 and CMB-HD surveys as a function of fractional residual kSZ power spectrum amplitude after de-kSZing. The CMB
variance is reduced by 5% (10%) for 50% (90%) kSZ removal for CMB-S4 and by 20% (60%) for 60% (90%) kSZ removal for CMB-
HD. Right panel: The CMB variance as a function of l for varying levels of residual kSZ power spectrum amplitude from 10% to 100%.
The reduction of the CMB variance is marginal for CMB-S4, while future experiments such as CMB-HD can potentially significantly
benefit from de-kSZing. Our forecasts for lines labeled CMB-S4 and CMB-HD include CMB foregrounds from CIB and tSZ after ILC-
cleaning, as well as the reionization kSZ [e.g. [100]], which is not removed. Forecasts for lines labeled “CMB-HD (only kSZ)” include
only the late-time and reionization kSZ as foregrounds for CMB-HD, and indicate that the benefit of de-kSZing would be much greater
if frequency-dependent foregrounds could be cleaned much better than currently available ILC techniques.
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lead to a ∼20% reduction of the CMB variance if ∼60% of
the kSZ signal can be removed. We also show forecasts for
CMB-HD that omit frequency-dependent foregrounds, as a
proxy for a case where these foregrounds can be cleaned
extremely efficiently; in this case, de-kSZing allows for a
substantial reduction in temperature variance, particularly
at higher multipoles.
In this section, we briefly highlight various ways in which

de-kSZing may improve cosmological inference, leaving a
more detailed analysis to future work. We envision a de-
kSZing procedure in which a kSZ template T̂kSZ is sub-
tracted from an observed temperature map. Based on the
results in Sec. IV, we approximate this procedure as
removing a scale-independent fraction of kSZ power, and
examine the consequences of such a reduction. We find that
significant gains in cosmological inference generally require
de-kSZing to perform better than the detailed forecasts from
Sec. IV, and we take this as motivation to explore improve-
ments to the de-kSZing formalism used in this paper.

A. Improving parameter constraints
from the CMB power spectrum

The small-scale primary CMB anisotropies are exponen-
tially suppressed due to Silk damping. The angular scale
of this damping is determined by the expansion rate of
the Universe and the free electron density before recom-
bination, which are in turn sensitive to cosmological
parameters such as the number of free-streaming species
Neff , the baryon density Ωb, and the Helium abundance Yp.
De-kSZing can improve the measurement precision of the
CMB damping tail, in principle leading to improved
parameter constraints. Unfortunately, for the cases we
have examined, including polarization information, these
improvements turn out to be quite mild: even assuming
90% de-kSZing efficiency, we find that the uncertainty on
determinations of Neff and Ωb decreases by no more than
10% (see Fig. 14).
For our forecasts in Fig. 14, we used the publicly

available forecasting software FISHERLENS
7 [20], and con-

sidered a cosmological model with parameters fΩch2;
Ωbh2; θs; τ; As; ns; Neffg with fiducial values set to match
the parameters determined by Planck [23]. Here, Ωch2 is
the physical cold dark matter density, Ωbh2 is the physical
baryon density, θs is the angle subtended by the acoustic
scale, τ is the Thomson optical depth to recombination, As
is the primordial scalar fluctuation amplitude, and ns is the
primordial scalar fluctuation slope. We define the informa-
tion matrix with elements given by

Fij ¼
X
l1;l2

X
WXYZ

∂CXY
l1

∂λi

h
CovXY;WZ

l1l2

i
−1 ∂CWZ

l2

∂λj
: ð33Þ

where λi are the cosmological parameters.We include lensed
TT, TE, EE, and dd spectra, where Cdd

l ¼ lðlþ 1ÞCϕϕ
l is

the lensing deflection spectrum. We set the range of multi-
poles considered in our analysis tol ∈ ½30; 104� and describe
our modeling of the foregrounds and noise in Appendix E.
The covariances include the lensing-induced non-Gaussian
contributions as introduced in Ref. [20], which we calculate
using FisherLens. We set the sky fraction as fsky ¼ 0.5.
We also included a prior on τwith στ ¼ 0.007, similar towhat
has been achieved by Planck [101].
Another observable of the CMB power spectrum is the

kSZ effect from reionization. In this paper we focused our
attention on the portion of the kSZ effect that is caused by
the ionized gas in moving massive halos in the relatively
recent universe, at z≲ 2, but CMB maps also contain the
signatures of the kSZ effect during reionization at
6≲ z≲ 12, originating mainly from the motions of ionized
bubbles of the intergalactic medium as reionization pro-
gresses. The power spectrum of this effect has both the
same spectral dependence (as a function of electromagnetic
frequency) and a very similar power spectrum shape (as a
function of l) as that of the late-time kSZ. Its amplitude is
also expected to be comparable. If a significant fraction of
the late-time kSZ could be removed using the methods that
we have explored, this could in principle help isolate the
earlier effect and thereby reduce the resulting uncertainty
on the duration of reionization, which is the property to
which the kSZ power spectrum is most sensitive [e.g.,
[102–104]]. This would be achieved both by removing part
of the highly degenerate signal power spectrum from low
redshift, and, less significantly, by reducing the power
spectrum variance. Finally, removing some of the late-time
kSZ could help the search for signatures of reionization

FIG. 14. Improvement from de-kSZing on measurement errors
on two example cosmological parameters: baryon density Ωb and
number of free-streaming species Neff . We find 50% de-kSZing
with CMB-S4 (solid orange) may improve errors on these
parameters by around a percent, while CMB-HD (solid blue)
can obtain 3% to 5% improvement for similar de-kSZing effi-
ciency.We also demonstrate the power de-kSZing in the absence of
frequency-dependent foregrounds with the dashed blue curves.

7https://github.com/ctrendafilova/FisherLens.
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kSZ by using the four-point function [105]. Although one
of the main advantages of this method is in helping to
distinguish the late-time and reionization signals, reducing
the late-time four-point signal by de-kSZing would only
help in the use of this four-point method to study reioniza-
tion in a new way.

B. Measurement of other CMB secondaries

1. CMB lensing

Reducing the CMB temperature variance induced by
kSZ also improves lensing reconstruction. In Fig. 15,
we demonstrate the reduction of the TT-TT lensing
quadratic-estimator noise (upper panels, dotted curves)
together with the improvement on the minimum-variance
noise from combining all lensing quadratic estimators
(solid curves). Here, we use the class_delens software
[14] and assume a CMB-HD-like survey including CIB
and tSZ foregrounds after ILC-cleaning, as well as the
reionization kSZ. The TT-TT lensing quadratic-estimator
reconstruction noise is given by [106]

NTT−TT
l ¼ ð2lþ 1Þ

"X
l1l2

jfTTl1ll2 j2
2C̃TT

l1
C̃TT
l2

#−1
; ð34Þ

where fTTl1ll2 is the optimal filter for the full-sky CMB

lensing TT-TT quadratic estimator [106] and C̃TT
l is the

observed CMB temperature spectrum. Performing lensing
reconstruction on CMB maps after de-kSZing the CMB
temperature would hence reduce the reconstruction noise,
increasing the fidelity of lensing measurements.
Temperature will be the dominant lensing channel for pre-

S4 experiments, such as the Simons Observatory [94,95].
At CMB-S4 noise levels, however, the benefit of de-kSZing
for reconstructing large-scale lensing modes will be much
less, due to the subdominant contribution of the TT-TT
estimator to the minimum variance lensing estimator,

Nmv
l ¼ 1P

αβðN−1
l Þαβ ; ð35Þ

where N is the covariance of all quadratic estimators from
temperature and polarization maps. In particular, on scales
l≲ 104, the minimum-variance lensing reconstruction is
dominated by the EB-EB quadratic estimator [106], which is
not improved by de-kSZing. On the other hand, when
reconstructing the smaller-scale (l≳ 104) lensing modes,
the TT-TT estimator plays a more significant role, sug-
gesting that de-kSZing can be important for improving
small-scale CMB lensing reconstruction in the future.8

FIG. 15. Upper panels: improvement of the lensing-reconstruction TT-TT quadratic-estimator noise (dotted curves) together with the
improvement on the minimum-variance noise from combining all temperature and polarization quadratic-estimators (solid curves).
Lower panels: lensing convergence power spectra (solid black). The error bars shown are from the diagonal terms of the minimum-
variance lensing reconstruction noise. We use the class_delens software [14] and consider a CMB-HD-like survey throughout. Left
panels: we include all significant foregrounds (CIB and tSZ, after ILC-cleaning, as well as the reionization kSZ) to demonstrate the
power of de-kSZing in the presence of frequency dependent foregrounds. Right panels: we include only the kSZ foreground (both late-
time and reionization). De-kSZing improves the TT-TT lensing reconstruction noise at all scales, while the minimum-variance noise is
only improved at smaller scales where the TT-TT estimator contributes significantly to the minimum-variance lensing reconstruction.

8Note also that de-kSZing can potentially reduce the kSZ-
induced biases on the lensing reconstruction calculated in
Refs. [9,107,108], and the corresponding bias on delensed
B-modes discussed in Ref. [109].

SUBTRACTING THE KINETIC SUNYAEV-ZELDOVICH EFFECT … PHYS. REV. D 107, 083502 (2023)

083502-17



We find that for a CMB-HD-like survey, the TT-TT lensing
quadratic-estimator noise decreases by ∼15% on small
scales if ∼30% of the kSZ signal can be removed.
Small-scale CMB lensing reconstruction has applica-

tions including cosmological parameter inference, distin-
guishing between different dark-matter models [11],
constraining high-redshift astrophysics, and validating
galaxy weak-lensing shear measurements [110].

2. Moving-lens effect

Reducing the CMB variance on small scales can improve
the measurement precision of cluster and halo profiles
from several CMB secondaries. In Fig. 16, we consider the
moving-lens effect [13–15] as a concrete example. In the
moving-lens effect, a halo with peculiar motion transverse
to the line of sight creates a small-scale dipolar temperature
anisotropy centered on the halo’s location on the sky. If we
use r⊥ to denote the transverse proper distance from the
halo center, and define x⊥ ≡ r⊥=rs where rs is the halo
scale radius, the moving lens signal in the dimensionless
CMB temperature Θ≡ ΔT=TCMB is

ΘMLðx⊥Þ ¼ −a0vb;⊥ ·Mðx⊥Þ; ð36Þ

where vb;⊥, is the halo’s transverse velocity. The prefactor a0
and moving-lens profileMðx⊥Þ depend on the halo density
profile; assuming an NFW profile, they evaluate to [14]

a0 ≡ 16πGρsr2s
c3

; ð37Þ

Mðx⊥Þ≡ x⊥
2x2⊥

����� 2sec−1ðx⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffi
x2⊥ − 1

p ����þ ln
�
x2⊥
4

��
; ð38Þ

where

ρs ¼
M
4πr3s

�
−

rvir
rs þ rvir

− ln

�
rs þ rvir

rs

��
: ð39Þ

Here, we forecast the measurement precision on the angle-
averaged moving-lens signal of a 1014 solar-mass halo, in x⊥
bins with width Δx⊥ ¼ 0.5 and taking the fiducial density
profile to be NFW. For this forecast, we use the optimal
matched filter derived in Ref. [14], applied separately to each
x⊥ bin to enable a measurement of the radially binned
moving lens signal (see Appendix F for details).
De-kSZing reduces the observed CMB variance C̃TT

l on
scales where the moving-lens reconstruction noise gets its
dominant contribution. The uncertainty bands in Fig. 16 are
scaled to match the net uncertainty anticipated from
measurements of 5 × 104 halos of the same mass at redshift
z ¼ 1, roughly representative of the number of cluster-size
halos probed by recent and upcoming imaging surveys
[111]. The improvement in the uncertainty in a given bin
can be seen as a function of the residual kSZ power

remaining in the CMB maps after de-kSZing. We find that
∼50% removal of the kSZ effect can lead up to ∼30%
improvement of the measurement of the moving-lens signal
at a given distance from the halo center, depending on the
survey systematics and other foregrounds.
Unlike kSZ or other Sunyaev Zel’dovich effects, the

moving-lens effect is purely gravitational and can be used
to probe quantities such as the growth rate of cosmological
structure [15], for example, without depending on the
modeling of the electron gas. De-kSZing would not only
boost the detection significance of the moving-lens effect
but also potentially increase the prospects to perform
cosmological and astrophysical inference with this prom-
ising observable.

VI. CONCLUSION

In this paper, we have explored the prospects for
“de-kSZing” the cosmic microwave background: construct-
ing a template for the late-time kinetic Sunyaev-Zeldovich
effect using a galaxy or 21 cm survey, and subtracting this
template from observed CMB temperature maps. The
template is constructed following the procedure from
Refs. [27,28,33]: separate templates for the small-scale
electron density and large-scale velocity field are formed
by Wiener-filtering the observed galaxy density; these

FIG. 16. Improvement on the measurement accuracy of the
moving-lens profile. The error bars are scaled to match the net
uncertainty anticipated from measurements of 5 × 104 halos of
the same mass (M ¼ 1014M⊙) at redshift z ¼ 1 using CMB-HD
(considering only the kSZ foreground). Different bins in x ¼ r=rs
are calculated by filtering the CMB around halos in radial bins
with radial distance x from the halo center with width Δx ≃ 0.5.
The improvement in the measurement error of the halo profile at a
given x-bin can be seen as a function of the residual kSZ (in
percentage) in the CMB maps after de-kSZing. The degrading
effect of different foregrounds on the detection and characteri-
zation of the moving-lens effect could depend on the statistics
used in the analysis, which may determine the benefit of de-
kSZing in practice.
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templates are combined into an estimate of the electron
momentum field; and this combination is projected along
the line of sight, using the theoretical kSZ redshift kernel, to
form an estimate of kSZ-induced temperature fluctuations
in the CMB. We have identified the properties of the input
galaxy survey that most strongly determine the fidelity of
the associated kSZ template: redshift and halo mass cover-
age (Sec. III A) and galaxy number density (Sec. III B).
We have also carried out detailed forecasts for a number

of recent, upcoming, or proposed surveys, assessing the
ability of each survey to provide a template that could be
used for de-kSZing. Since redshift uncertainties in photo-
metric surveys will significantly degrade the usefulness of
such a template (Sec. III D), we have focused on spectro-
scopic and 21 cm surveys in our forecasts.
The combination of BOSS and several of DESI’s

planned samples could in principle yield a template that
captures 10%–20% of the total kSZ power, while templates
derived from the Hα emission-line galaxy sample from the
Roman Space Telescope or the Lyman-break galaxy sample
from the proposed MegaMapper telescope can capture no
more than 10% of the kSZ power at l≳ 1500 (Fig. 9).
Once foreground contamination is accounted for, our
forecasts indicate that the proposed PUMA 21 cm intensity
mapping survey can do no better than the combination of
BOSS and DESI, although uncertainty in modeling of the
21 cm signal on small scales, along with the achievable
level of foreground cleaning, makes this conclusion rather
uncertain (Fig. 12). Table I provides representative numbers
for the surveys we have considered.
However, we emphasize that we have only performed

an initial exploration of a specific de-kSZing procedure in
this work, and we expect that alternative procedures can
yield significant improvements to the results we have
presented here. With this in mind, we have highlighted

several applications of the idea of de-kSZing, all of which
rely on the associated reduction of the small-scale variance
in CMB temperature maps: better recovery of cosmological
information from the CMB damping tail (Sec. VA); lower
noise inmeasurements ofCMB lensing at small scales, which
can be used to test models for dark matter (Sec. V B 1); and
more precise measurements of the moving-lens effect, which
can be used to probe the cosmic growth rate and the properties
of dark matter halos (Sec. V B 2).
Motivated by these applications, there are several path-

ways toward an improved de-kSZing procedure that would
be worth pursuing:

(i) Different surveys (or combinations of surveys) could
be used for the velocity and electron density
templates, which would make better use of the
properties of each survey. In particular, photometric
redshift errors would be tolerable if a photometric
survey was only used for the electron density
template. As a concrete example, the LSST Y10
Gold lens sample is estimated9 to have a number
density of 4 × 10−3 Mpc−3 for 0.5 < z < 2. Assum-
ing that this sample is used for the electron template
but that the velocity template comes from a sample
with n̄g ∼ 10−4 Mpc−3, we infer from Figs. 4–5 that
a de-kSZing efficiency of roughly 40% at l> 3000
may be achievable. More detailed forecasts will be
needed to confirm this conclusion, however.

(ii) Extra weights could be applied to the input galaxy
survey to optimize the correlation of the kSZ
template with the true kSZ fluctuations (in a stat-
istical sense). For example, if halo mass estimates
for each galaxy are available, different mass bins
could be weighted differently (e.g. [112,113]) in
order to better account for the mass- and redshift-
dependence of the kSZ signal (recall Fig. 1). The
expected improvement would depend on the accu-
racy of the halo masses, which would determine the
number of mass bins that could be used.

(iii) Tomographic reconstruction of large-scale velocities
using the kSZ effect [33,35,114–121] could possibly
be integrated into a de-kSZing procedure as a way
to improve upon an external velocity template. This
would have the advantage of constructing the
velocity template from small-scale modes of the
galaxy density (along with small-scale CMB tem-
perature modes), but will introduce higher-point
biases and noise contributions that would need to
be accounted for, since the velocity template will
then be quadratic (∼δsgT) instead of linear (∼δsg).
This procedure would be analogous to iterative
delensing of CMB polarization [122].

TABLE I. Representative de-kSZing efficiencies for kSZ tem-
plates constructed from the surveys considered in this work. See
Sec. IV for discussions of important caveats associated with these
numbers; in particular, the “all of the above” line only applies to
the overlapping sky footprints of the surveys it combines, and the
PUMA-32k numbers are highly uncertain due to modeling
uncertainties in the HI distribution at small scales and the
achievable level of foreground cleaning in 21 cm surveys. De-
kSZing procedures that improve upon that presented in this work
could potentially improve these efficiencies substantially.

De-kSZing Efficiency (%)

Survey l ¼ 1000 l ¼ 4000 l ¼ 8000

BOSSþ DESI 15 17 8
Roman (Hα) 7 <1 <1
MegaMapper 13 4 7
All of the above 35 21 15

PUMA-32k 10 4 <1

9This estimate is based on a total angular number density of
48 arcmin−2 over 18000 deg2, and a galaxy redshift distribution
of dN=dz ∝ z2 exp½−ðz=0.28Þ0.9� [62].
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(iv) Rather than viewing de-kSZing as a subtraction
procedure, it may be possible to use Bayesian
(e.g. [123]) or machine learning (e.g. [124,125])
techniques to jointly estimate the statistics of the
kSZ effect, the primary CMB, and/or other CMB
secondaries. The former approach would allow for
uncertainties in the procedure and data to be ac-
counted for more systematically, while the latter may
be able to exploit features of the kSZ signal (such as
non-Gaussian information) that are not incorporated
in our template construction. We note, however, that
either approach would likely require significant
computing power.

We leave these possibilities to future work.
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APPENDIX A: SHOT NOISE CONTRIBUTIONS
TO kSZ TEMPLATE AUTO SPECTRUM

The kSZ template described in Sec. II B is related to a
product of filtered copies of an observed galaxy density
contrast δg, and therefore the autocorrelation of the template
is sensitive to the four-point function of δg. (For simplicity,
we neglect the impact of redshift-space distortions in this
appendix, and therefore use δg instead of δsg.) This four-point
function contains several contributions from the shot noise
in δg; in Fourier space and for Poissonian shot noise, these
contributions are given by (e.g. [40,41])

hδgðk1Þδgðk2Þδgðk3Þδgðk4Þishot ¼ ð2πÞ3δDðk1 þ k2 þ k3 þ k4Þ½S4 þ S3;1 þ S2;2 þ S2;1;1� ðA1Þ

where

S4 ¼
1

n̄3g
;

S3;1 ¼
1

n̄2g
½Pggðk1Þ þ Pggðk2Þ þ Pggðk3Þ þ Pggðk4Þ�;

S2;2 ¼
1

n̄2g
½Pggðjk1 þ k2jÞ þ Pggðjk1 þ k3jÞ þ Pggðjk1 þ k4jÞ�;

S2;1;1 ¼
1

n̄g
½Bgggðk1 þ k2; k3; k4Þ þ Bgggðk1 þ k3; k2; k4Þ þ Bgggðk1 þ k4; k2; k3Þ

þ Bgggðk2 þ k3; k1; k4Þ þ Bgggðk2 þ k4; k1; k3Þ þ Bgggðk3 þ k4; k1; k2Þ� ðA2Þ

and we have omitted the redshift-dependence and the arguments of the S functions for brevity. Each contribution arises from a
different subset of points taken to be at zero lag in the position-space correlation function: S4 is when all four points are at the
same spatial location; S3;1 is when three points are at the same location and one is elsewhere; S2;2 is when two pairs of points
are each at the same location, but the pairs are not colocated; and S2;1;1 is when two points are at the same location, while the
other two points are each at different locations.
The power spectrum of the electron momentum template in Eq. (13) evaluates to

hq̂rðk1Þq̂rðk2Þi ¼
�Z

d3k01
ð2πÞ3 ηðk

0
1Þϵðk1 − k01Þ

Z
d3k02
ð2πÞ3 ηðk

0
2Þϵðk2 − k02Þ

	

¼ ð−1Þ
Z

d3k01
ð2πÞ3

Z
d3k02
ð2πÞ3 μ

0
1μ

0
2

Pgvðk01Þ
Ptot
ggðk01Þ

Pgvðk02Þ
Ptot
ggðk02Þ

Pgeðjk1 − k01jÞ
Ptot
ggðjk1 − k01jÞ

Pgeðjk2 − k02jÞ
Ptot
ggðjk2 − k02jÞ

× hδgðk01Þδgðk1 − k01Þδgðk02Þδgðk02 − k2Þi; ðA3Þ
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and combined with Eqs. (A1) and (A2), this yields

Pq̂r q̂rðk1Þ ¼ ð−1Þ
Z

d3k01
ð2πÞ3

Z
d3k02
ð2πÞ3 μ

0
1μ

0
2

Pgvðk01Þ
Ptot
ggðk01Þ

Pgvðk02Þ
Ptot
ggðk02Þ

Pgeðjk1 − k01jÞ
Ptot
ggðjk1 − k01jÞ

Pgeðjk1 þ k02jÞ
Ptot
ggðjk1 þ k02jÞ

½Ŝ4 þ Ŝ3;1 þ Ŝ2;2 þ Ŝ2;1;1�; ðA4Þ

where

Ŝ4 ¼
1

n̄3g
;

Ŝ3;1 ¼
1

n̄2g
½Pggðk01Þ þ Pggðjk1 − k01jÞ þ Pggðk02Þ þ Pggðjk1 þ k02jÞ�;

Ŝ2;2 ¼
1

n̄2g
½Pggðk1Þ þ Pggðjk01 þ k02jÞ þ Pggðjk01 − k1 − k02jÞ�;

Ŝ2;1;1 ¼
1

n̄g
½Bgggðk1; k02;−k1 − k02Þ þ Bgggðk01 þ k02; k1 − k01;−k1 − k02Þ þ Bgggðk01 − k1 − k02; k1 − k01; k

0
2Þ

þ Bgggðk1 − k01 þ k02; k
0
1;−k1 − k02Þ þ Bgggð−k01 − k02; k

0
1; k

0
2Þ þ Bgggð−k1; k01; k1 − k01Þ�: ðA5Þ

In the squeezed limit (k01; k
0
2 ≪ k1), many of these terms

will integrate to zero in Eq. (A4), because they have no
dependence on either μ01 or μ02 but are integrated against
μ01μ

0
2. (Physically, this reflects the fact that the kSZ effect is

sensitive to the line-of-sight component of the large-scale
velocity, and the angular average of this is zero.) However,
terms that involve the sum k01 þ k02 may contribute non-
negligibly. In particular, such terms involve power at larger
scales than one might naively expect, because it is possible

to have jk01 þ k02j ≪ k01; k
0
2 if k01 and k02 are similar in

magnitude and antialigned.10

In Fig. 17, we evaluate the two dominant terms of this
type in the squeezed limit, and compare them to the
Gaussian contribution to Pq̂r q̂r . Specifically, we compute

FIG. 17. The two dominant shot-noise contributions to the auto power spectrum of the electron momentum template q̂r, plotted as
ratios to the Gaussian (i.e. reconstructed kSZ signal) contribution to Pq̂r q̂r . Solid lines denote the contribution that involves the galaxy
power spectrum [Eq. (A6)], while dashed lines correspond to the contribution related to the galaxy bispectrum (Eq. (A7). Different
colors denote different spectroscopic surveys, described in Sec. IVA. With the exception of DESI BGS, these shot-noise contributions
are less than ∼25% of the template power at l ¼ 2000 and less than ∼40% at l ¼ 8000. While subdominant to the desired signal in the
template, this shot-noise-induced power should be accounted for in future de-kSZing analyses.

10In Ref. [41], these terms were found to significantly affect the
precision with which long-wavelength modes of δg can be
reconstructed with a quadratic estimator.
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Pshot;P
q̂rq̂r

ðkÞ ¼ ð−1Þ
Z

d3k01
ð2πÞ3

Z
d3k02
ð2πÞ3 μ

0
1μ

0
2

Pgvðk01Þ
Ptot
ggðk01Þ

Pgvðk02Þ
Ptot
ggðk02Þ

�
PgeðkÞ
Ptot
ggðkÞ

�
2 1

n̄2g
Pggðjk01 þ k02jÞ ðA6Þ

and

Pshot;B
q̂rq̂r

ðkÞ ¼ ð−1Þ
Z

d3k01
ð2πÞ3

Z
d3k02
ð2πÞ3 μ

0
1μ

0
2

Pgvðk01Þ
Ptot
ggðk01Þ

Pgvðk02Þ
Ptot
ggðk02Þ

�
PgeðkÞ
Ptot
ggðkÞ

�
2 1

n̄g
Bgggð−k01 − k02; k

0
1; k

0
2Þ; ðA7Þ

and compare with Eq. (16), ignoring redshift-space dis-
tortions:

PGaus
q̂rqr

ðkÞ ¼ 1

6π2

�Z
dkLk2L

PgvðkLÞ2
Ptot
ggðkLÞ

�
PgeðkÞ2
Ptot
ggðkÞ

: ðA8Þ

We evaluate the various power spectra using the halo model
framework described in the main text and Appendix B, for
each of the spectroscopic surveys considered in Sec. IVA.
We numerically compute Eqs. (A6) and (A7) using the
Monte Carlo integration algorithm described in Ref. [126],
as implemented in the VEGAS Python package [127].
For most of the surveys we consider, these shot noise

contributions are below 25% of the Gaussian contribution
at l ¼ 2000 and below 40% at l ¼ 8000. (A noteworthy
exception is the “shot, B” contribution for the DESI BGS
sample, which strongly increases at the higher-redshift
edge of the BGS sample, z ≈ 0.4, at l ¼ 8000; this is
caused by the decreasing number density of the BGS
sample at this redshift, combined with the overall higher
amplitude of the galaxy bispectrum in the BGS redshift
range compared to the higher redshifts covered by the other
surveys.) These numbers can be interpreted as upper
bounds on the amount of power in a kSZ template that
arises from shot noise in the galaxy sample instead of
reconstructed kSZ signal. Future modeling related to
applications of de-kSZing will need to account for this.

APPENDIX B: DETAILS OF HALO MODEL

In this appendix, we provide more details of the halo
model approach we use to model quantities related to
spectroscopic surveys. The galaxy power spectrum, elec-
tron power spectra, integrand of the kSZ angular power
spectrum [see Eq. (21)], and galaxy bispectrum are discussed
in Sec. B 1, B 2, B 3, and B 4 respectively. For brevity, we
have omitted redshift arguments in Sec. B 1, B 2, and B 4.

1. Galaxy power spectrum

Our formalism is based on Ref. [33]. The galaxy power
spectrum is a sum of two-halo, one-halo, and shot
noise terms,

Pggðk; μÞ ¼ P2h
ggðk; μÞ þ P1h

ggðkÞ þ Pshot
gg : ðB1Þ

As stated in the main text, we do not include Finger of God
damping in our computations, and therefore the one-halo
term has no μ-dependence.11 The two-halo term is given by

P2h
ggðk; μÞ ¼ ½bgðkÞ þ fμ2�2PlinðkÞ; ðB2Þ

where Plin is the linear matter power spectrum and the
prefactor incorporates the leading effect of redshift space
distortions at large scales. The linear bias bg is given by

bgðkÞ¼
1

n̄g

Z
dmhnðmhÞbhðmhÞ½N̄cðmhÞþN̄sðmhÞusðk;mhÞ�

ðB3Þ

where nðmhÞ is the halo mass function, bhðmhÞ is the
halo bias, N̄c and N̄s are the mean central and satellite
occupation numbers, us is the Fourier transform of the
assumed profile of satellite galaxies, and the mean galaxy
number density n̄g is

n̄g ¼
Z

dmhnðmhÞ½N̄cðmhÞ þ N̄sðmhÞ�: ðB4Þ

The one-halo term is

P1h
ggðkÞ ¼

1

n̄2g

Z
dmh nðmhÞ½2hNcðmhÞNsðmhÞiusðk;mhÞ

þ hNsðmhÞ½NsðmhÞ − 1�iusðk;mhÞ2�:
ðB5Þ

The expectation values of halo occupation numbers depend
on what is assumed about correlations between numbers
of central and satellite galaxies within a given halo. We use
the “minimally correlated” assumption from Ref. [33], in
which the central and satellite occupation numbers are
independent Poisson random variables; this yields

hNcðmhÞNsðmhÞi ¼ N̄cðmhÞN̄sðmhÞ;
hNsðmhÞ½NsðmhÞ − 1�i ¼ N̄sðmhÞ2: ðB6Þ

11See Ref. [128] for a formalism that consistently includes the
Finger of God effect in a halo model framework.
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In specific HOD models where a central-satellite correla-
tion is assumed, we implement this correlation by including
N̄cðmhÞ as a prefactor in the model for N̄sðmhÞ, ensuring
that N̄s ¼ 0 if N̄c ¼ 0 at a given halo mass.
Finally, the shot noise term is given by

Pshot
gg ¼ 1

n̄g
: ðB7Þ

2. Electron power spectra

In this paper, as in Ref. [33], we assume that free
electrons trace the gas within halos, such that we can
describe electron distributions using the standard halo
model for matter, but with the matter density profile
replaced with the gas profile. The electron density power
spectrum is then given by

PeeðkÞ ¼ P2h
ee ðkÞ þ P1h

ee ðkÞ; ðB8Þ

with

P2h
ee ðkÞ ¼

�Z
dmhnðmhÞbhðmhÞ

mh

ρ̄m
ugasðk;mhÞ

�
2

PlinðkÞ

ðB9Þ

and

P1h
ee ðkÞ ¼

Z
dmhnðmhÞ

�
mh

ρ̄m

�
2

jugasðk;mhÞj2: ðB10Þ

Similarly, the galaxy-electron cross power spectrum is

Pgeðk; μÞ ¼ P2h
geðk; μÞ þ P1h

geðkÞ; ðB11Þ

with

P2h
geðk;μÞ ¼ ½bgðkÞ þ fμ2�

×

�Z
dmhnðmhÞbhðmhÞ

mh

ρ̄m
ugasðk;mhÞ

�
PlinðkÞ

ðB12Þ

and

P1h
geðkÞ ¼

Z
dmhnðmhÞ

mh

ρ̄m
ugasðk;mhÞ

×
N̄cðmhÞ þ N̄sðmhÞusðk;mhÞ

n̄g
: ðB13Þ

Note that these quantities refer to the correlation between
the observed galaxy density (which is affected by redshift
space distortions) and the “true” electron density (which
has no RSD contribution).

3. Integrand of kSZ angular power spectrum

It is helpful to rewrite CkSZ
l as an integral over redshift

and halo mass, so that we can compare the relative
contributions from different ranges of these two quantities
(see Fig. 1). Combining Eqs. (6) and (8), and changing
variables from χ to z, we can write

CkSZ
l ¼

Z
z�

0

dz
dχ
dz

1

χ½z�2 K̃ðzÞ2 1

6π2

�Z
dkLk2LPvvðkL; zÞ

�
Pee

�
lþ 1=2
χ½z� ; z

�
: ðB14Þ

We can further rewrite Pee as

Peeðk; zÞ ¼
Z

d logmhmh

�
dP2h

ee ðk; zÞ
dmh

þ dP1h
ee ðk; zÞ
dmh

�
ðB15Þ

with

dP2h
ee ðk; zÞ
dmh

¼ 2nðmhÞbhðmhÞ
mh

ρ̄m
ugasðk;mhÞ

�Z
mh

mh;min

dm0
hnðm0

hÞbhðm0
hÞ
m0

h

ρ̄m
ugasðk;m0

hÞ
�
PlinðkÞ; ðB16Þ

dP1h
ee ðk; zÞ
dmh

¼ nðmhÞ
�
mh

ρ̄m

�
2

jugasðk;mhÞj2: ðB17Þ

Thus, we can finally write

CkSZ
l ¼

Z
z�

0

dz
Z

d logmh
d2CkSZ

l

dzd logmh
ðB18Þ
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with

d2CkSZ
l

dzd logmh
¼ dχ

dz
1

χ½z�2 K̃ðzÞ2 1

6π2

�Z
dkL k2LPvvðkL; zÞ

�
mh

�
dP2h

ee ðk; zÞ
dmh

þ dP1h
ee ðk; zÞ
dmh

�
; ðB19Þ

and the terms in parentheses given by Eqs. (B16)–(B17).

4. Galaxy bispectrum

To compute the shot noise contribution to the power
spectrum of a kSZ template, we also need to compute the
galaxy bispectrum (see Appendix A). This is a function of
three 3D wave vectors ðk1; k2; k3Þ constrained such that
k1 þ k2 þ k3 ¼ 0; in the absence of redshift space dis-
tortions (which we ignore for simplicity), the resulting
triangle can be specified by 3 numbers, which we choose to
be the magnitudes of each wave vector. The halo model
description of the galaxy bispectrum can then be written
as (e.g. [129])

Bgggðk1; k2; k3Þ ¼ B3h
gggðk1; k2; k3Þ þ B2h

gggðk1; k2; k3Þ
þ B1h

gggðk1; k2; k3Þ: ðB20Þ

There is also a shot noise contribution, but we do not
require this for our calculations in Appendix A, so we have
not written it above.

The three-halo term is

B3h
gggðk1; k2; k3Þ ¼ beffðk1Þbeffðk2Þbeffðk3ÞBtreeðk1; k2; k3Þ;

ðB21Þ

where the matter bispectrum at leading order (“tree-level”)
in perturbation theory is

Btreeðk1; k2; k3Þ ¼ 2F2ðk1; k2ÞPlinðk1ÞPlinðk2Þ þ 2 perms

ðB22Þ

and the symmetrized F2 kernel is

F2ðk1;k2Þ¼
5

7
þ1

2
k̂1 · k̂2

�
k1
k2
þk2
k1

�
þ2

7
ðk̂1 · k̂2Þ2: ðB23Þ

The two-halo term is

B2h
gggðk1; k2; k3Þ ¼

�
1

n̄2g

Z
dmhnðmhÞbhðmhÞfhNcðmhÞNsðmhÞiðusðk1; mhÞ þ usðk2; mhÞÞ

þ hNsðmhÞ½NsðmhÞ − 1�iusðk1; mhÞusðk2; mhÞg
�
beffðk3ÞPlinðk3Þ þ 2 perms; ðB24Þ

while the one-halo term is

B1h
gggðk1; k2; k3Þ ¼

1

n̄3g

Z
dmhnðmhÞfhNcðmhÞNsðmhÞðNsðmhÞ − 1Þiðusðk1; mhÞusðk2; mhÞ þ 2 permsÞ

þ hNsðmhÞðNsðmhÞ − 1ÞðNsðmhÞ − 2Þiusðk1; mhÞusðk2; mhÞusðk3; mhÞg: ðB25Þ

For independent Poisson-distributed numbers of centrals and satellites, the expectation values in Eq. (B25) are given by

hNcðmhÞNsðmhÞðNsðmhÞ − 1Þi ¼ N̄cðmhÞN̄sðmhÞ2; hNsðmhÞðNsðmhÞ − 1ÞðNsðmhÞ − 2Þi ¼ N̄sðmhÞ3: ðB26Þ

APPENDIX C: HALO OCCUPATION MODELING

In this section, we record the details of the HOD models
used for the survey-specific forecasts in Sec. IV. Note that
we write parameters with dimension of mass either in
h−1M⊙ or M⊙ units, depending on what was used in the
original reference, but we translate all parameters to M⊙
units in our numerical computations in this work.

1. BOSS

For BOSS, we use the following 5-parameter HOD from
Ref. [56]:

N̄cðmhÞ ¼
1

2

�
1þ erf

�
logmh − logMmin

σlogM

��
; ðC1Þ
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N̄sðmhÞ ¼ N̄cðmhÞ
�
M
M1

�
α

e−Mcut=mh ; ðC2Þ

with the best-fit parameter values from the joint fit to the
projected correlation function (wp) and void probability
function (P0):

Mmin¼1013.18h−1M⊙; σlogM¼0.55;

M1¼1014.28h−1M⊙; α¼1.12; Mcut¼104.87h−1M⊙:

ðC3Þ

2. DESI BGS

For the DESI BGS sample, we use the HOD from
Ref. [55] with the assumption that the scatter set by the
σlogM parameter is Gaussian:

N̄cðmhÞ ¼
1

2

�
1þ erf

�
logmh − R logMmin

σlogM

��
; ðC4Þ

N̄sðmhÞ ¼ N̄cðmhÞ
�
mh −M0

ðM0
1ÞR

�
α

; ðC5Þ

with fitted parameter values corresponding to absolute
r-band magnitude 0.1Mr − 5 log h ¼ −20.5:

Mmin ¼ 1012.2h−1M⊙; σlogM ¼ 0.15;

M0
1 ¼ 1013.5h−1M⊙; α¼ 1.05; M0 ¼ 1012h−1M⊙:

ðC6Þ

We fix R by demanding that the n̄g expression in Eq. (B4)
evaluates to the value computed from Table 2.5 of Ref. [63]
over 0.05 ≤ z ≤ 0.45. The resulting R values are well fit
by RðzÞ ¼ 0.88þ 0.23zþ 0.76z2.

3. DESI LRG

For the DESI LRG sample, we use the HOD from
Ref. [51]:

N̄cðmhÞ ¼
fic
2
erfc

�
R logMcut − logmhffiffiffi

2
p

σlogM

�
; ðC7Þ

N̄sðmhÞ ¼ N̄cðmhÞ
�
mh − κMcut

MR
1

�
α

; ðC8Þ

with

Mcut¼1012.7h−1M⊙; σlogM¼0.2; M1¼1013.6h−1M⊙;

α¼1.15; κ¼0.08; fic¼0.8: ðC9Þ

We fix R such that n̄g evaluates to the target density of
5 × 10−4 Mpc−3 quoted in Ref. [51] over 0.6 ≤ z ≤ 1.1.

The resulting R values are well fit by RðzÞ ¼
1.05 − 0.033z.

4. DESI ELG

For the DESI ELG sample, we use the HOD from
Ref. [51]:

N̄cðmhÞ ¼ R



2AϕðlogmhÞΦðlogmhÞ

þ 1

2Q

�
1þ erf

�
logmh − logMcut

0.01

���
; ðC10Þ

N̄sðmhÞ ¼ R

�
mh − κMcut

M1

�
α

; ðC11Þ

where

ϕðlogmhÞ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2M

p exp
�
−
ðlogmh− logMcutÞ2

2σ2M

�
; ðC12Þ

ΦðlogmhÞ ¼
1

2

�
1þ erf

�
γ
logmh − logMcutffiffiffi

2
p

σM

��
; ðC13Þ

A ¼ pmax −
1

Q
ðC14Þ

and

pmax ¼ 0.075; Q ¼ 95; Mcut ¼ 1011.9h−1M⊙;

σM ¼ 0.5; γ ¼ 5; M1 ¼ 1014.2h−1M⊙;

α ¼ 0.65; κ ¼ 1.35: ðC15Þ

We use R ¼ 1 for our baseline modeling, but in cases
where we wish to ensure that the predicted number density
matches a desired input, we fix R appropriately at each
redshift.

5. DESI QSO

For the DESI QSO sample, we use the error-function–
based HOD from Ref. [49]:

N̄cðmhÞ ¼
1

2
pmaxerfc

�
R logMc − logmhffiffiffi

2
p

logðeÞσM

�
; ðC16Þ

N̄sðmhÞ ¼
�
mh − κMc

ðM0
1ÞR

�
α

; ðC17Þ

with

Mc¼1012.21h−1M⊙; σM¼0.6; M1¼1014.09h−1M⊙;

κ¼1.0; α¼0.39; pmax¼0.033: ðC18Þ
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We fix R such that n̄g evaluates to the QSO density given in
Ref. [63] over 0.65 ≤ z ≤ 1.85. The resulting R values are
well fit by RðzÞ ¼ 1.16 − 0.040z.

6. Roman

For the Hα sample of ELGs from the Roman High
Latitude Spectroscopic Survey, we fit the following para-
metrized model to measurements from the mock catalog
in Ref. [70]:

N̄cðmhÞ ¼ R



A1 exp

�
−
ðlogmh − logMcÞ2

2σ2logM

�

þ A2

�
1þ erf

�
logmh − logMc

σlogM

���
;

N̄sðmhÞ ¼
8<
:

RA2ðmh
M1
Þα1 ; mh < M1;

RA2ðmh
M1
Þα2 ; mh ≥ M1:

ðC19Þ

The central occupation is composed of a peak with
amplitude A1 at mh ¼ Mc and a smooth transition to a
plateau with amplitude 2A2 at higher masses, while the
satellite occupation is a broken power law with tilt α1 for
mh < M1 and α2 for mh ≥ M1. Note that the measured
HODs from Ref. [70] typically have a double-peaked
structure as a function of halo mass, but the higher-mass
peak is typically weaker and its physical origin is somewhat
unclear, so our parametrization only incorporates the lower-
mass peak. We fix the free parameters to approximately
match the measurements shown in Fig. 8 of Ref. [70] for
1.0 < z < 1.1, AV ¼ 1.65, flin;1 ¼ 10−16 erg s−1 cm−2, and
flin;2R ¼ 0.5, resulting in

A1 ¼ 0.2; A2 ¼ 0.01; Mc ¼ 11.9M⊙; σlogM ¼ 0.2;

M1 ¼ 12.3M⊙; α1 ¼ 2.5; α2 ¼ 0.5: ðC20Þ

We fix R by such that the predicted galaxy number
density matches that from Ref. [69] corresponding to
fluxes >1016 erg s−1 cm−2 and dust attenuation para-
meter AV ¼ 1.65. The resulting R values are well fit by
RðzÞ ¼ 5.41 − 2.77z.

7. MegaMapper

For the MegaMapper LBG sample, we use the “linear
HOD model” from Ref. [73]:

N̄cðmhÞ ¼
1

2

�
1þ erf

�
logmh − logMminffiffiffi

2
p

σlogM

��
; ðC21Þ

N̄sðmhÞ ¼ N̄cðmhÞ
�
mh −Mcut

Msat

�
α

: ðC22Þ

We use the best-fit parameters corresponding to z ≈ 3.8
with mth

UV ¼ 24.5:

Mmin ¼ Mcut ¼ 1012.22M⊙; σlogM ¼ 0.2;

Msat ¼ 1014.23M⊙; α ¼ 1.0: ðC23Þ

Note that we have chosen to set Mcut equal to Mmin,
which differs from the choice made in Ref. [73], but
the precise value of Mcut has a minimal impact on our
results.

APPENDIX D: MODELING FOR 21 cm
INTENSITY MAPPING

In this appendix, we provide the details of our approach
to modeling 21 cm observations of large-scale structure.

1. Halo model

a. Formalism

The halo model framework we use for modeling the
distribution of HI generally follows that in Appendix B,
with a few differences adapted from the formalism in
Ref. [128]. HI halo models are often written as predictions
for the statistics of the observed brightness temperature, but
for consistency with our other forecasts, we write predic-
tions for the HI overdensity instead of the brightness
temperature fluctuations. In this approach, the halo occu-
pation functions N̄cðmhÞ and N̄sðmhÞ are replaced by a HI
mass-halo mass relation mHIðmhÞ, and a HI-specific halo
density profile uHI is used, such that the linear bias from
Eq. (B3) transforms into

bHIðkÞ ¼
1

ρ̄HI

Z
dmhnðmhÞbhðmhÞmHIðmhÞuHIðk;mhÞ

ðD1Þ

and the one-halo term from Eq. (B5) becomes

P1h
HIðkÞ ¼

1

ρ̄2HI

Z
dmhnðmhÞmHIðmhÞ2uHIðk;mhÞ2; ðD2Þ

where

ρ̄HI ¼
Z

dmh nðmhÞmHIðmhÞ: ðD3Þ

Note that the two-halo term in Eq. (B2) retains the
same form.

b. HI mass-halo mass relation

For the HI mass-halo mass relation mHIðmh; zÞ, we
consider two fitting functions from the literature. The first
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is from Ref. [52], and has been fit to measurements of HI
from the IllustrisTNG simulations:

mHIðmhÞ ¼ m0

�
mh

mmin

�
α

exp

�
−
�
mmin

mh

�
0.35

�
; ðD4Þ

with the best-fit “FoF-SO” values for α,m0, andmmin listed
for z ¼ 0 to 5 in their Table 1.
The second is from Ref. [82], and has been fit to a

variety of HI observations (resolved low-redshift galaxies,
intensity-mapping determinations of the mean HI density,
and higher-redshift damped Lyman-α absorbers):

mHIðmh; zÞ

¼ αfH;cmh

�
mh

1011h−1M⊙

�
β

exp

�
−
�

vc;0
vcðmh; zÞ

�
3
�
;

ðD5Þ

with fH;c ¼ Ωbð1 − YpÞ=Ωm, halo virial velocity vcðmhÞ
given by

vcðmh; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmh

rvirðmh; zÞ

s
; ðD6Þ

and best-fit parameters

α¼0.09; log
�

vc;0
kms−1

�
¼1.56; β¼−0.58: ðD7Þ

c. HI density profile

Likewise, we consider two forms of the HI density
profile. The first, which we use for our main computations,
is from Ref. [52]:

ρHIðr;mh; zÞ ¼
ρ0
rα�

exp

�
−
r0
r

�
; ðD8Þ

using the best-fit parameters for z ¼ 0 to 5 and m ¼
109h−1M⊙ to 1015h−1M⊙ listed in their Table 2. We
numerically evaluate a fast Fourier transform of this profile
to obtain uHIðk;mh; zÞ.
The second profile is from Ref. [82]:

ρHIðr;mh; zÞ ¼ ρ0ðmh; zÞ exp
�
−

r
rsðmh; zÞ

�
; ðD9Þ

with halo scale radius rsðmh; zÞ ¼ rvirðmh; zÞ=cHIðmh; zÞ
using an HI-specific concentration-mass relation:

cHIðmh; zÞ ¼ cHI;0

�
mh

1011M⊙

�
−0.109 4

ð1þ zÞγ ; ðD10Þ

with

cHI;0 ¼ 28.65; γ ¼ 1.45: ðD11Þ

The normalization ρ0ðmh; zÞ is fixed so that the HI mass
enclosed within the virial radius is equal to mHIðmh; zÞ. In
Fourier space, the normalized profile uHI is then given by

uHIðk;mh; zÞ ¼
2

½1þ k2rsðmh; zÞ2�2
: ðD12Þ

In Appendix D 4, we compare the results if either of these
profiles is used.

2. Instrumental noise

In 21 cm intensity mapping, the dominant noise in
measurements of the power spectrum is typically the
instrumental noise associated with finite observing time
and properties of the instrument, rather than the intrinsic
shot noise of 21 cm -emitting objects. Thus, we replace the
shot power term in Eq. (12) with an “effective” shot noise
that includes both instrumental and Poisson contributions:

Pshot;eff
HI ðk⊥; zÞ ¼

PNðk⊥; zÞ
T̄HIðzÞ2

þ 1

nHIðzÞ
: ðD13Þ

The instrumental noise PN is associated with 21 cm
brightness temperature fluctuations, such that dividing it
by T̄HIðzÞ2 converts into the noise power spectrum asso-
ciated with the HI overdensity. We compute the noise
power spectrum for PUMA, mean brightness temperature,
and intrinsic shot noise as described in the appendices
of Ref. [78] and implemented in the PUMANOISE code.12

From Eq. (D13), we can define an effective number density
n̄effðk⊥; zÞ≡ Pshot;eff

HI ðk⊥; zÞ−1, which we plot in Fig. 11.

3. Foregrounds

The need to remove bright foregrounds, dominated
by Galactic synchrotron emission and extragalactic radio
sources, from 21 cm observations is expected to impose
two restrictions on the modes that are available for
cosmological analysis13:
(1) Modes with jkkj < kkmin will be indistinguish-

able from smooth-spectrum foregrounds, and will

12https://github.com/slosar/PUMANoise.
13We note that observational and methodological work is under-

way to understand in more detail which modes will be eliminated
by 21 cm foreground cleaning and how to incorporate this into
forecasts (e.g. [130]), but in this work we adopt assumptions which
have been motivated by previous studies [79]. We also note that
reconstruction techniques are under developmentwhich could allow
for the recovery of foreground-obscured modes (e.g. [41,89,90]),
but such reconstructedmodeswill have different noise thandirectly-
observed modes, so we only consider directly observed modes in
this work.
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therefore be filtered out. We use kkmin ¼ 0.03 Mpc,
following Ref. [131], who found that an optimal
foreground cleaning approach imposed kkmin ≈
0.02h−1 Mpc when applied to simulations.

(2) In interferometric observations, spectrally-smooth
foreground power will leak beyond pure low-kk
modes into higher-kk modes in a baseline-dependent
way, creating a so-called “foreground wedge” of
contamination (e.g. [84–86]). This is described by
jkkj < βðzÞk⊥ where

βðzÞ≡ χðzÞHðzÞ
cð1þ zÞ sin θwðzÞ: ðD14Þ

The extent of the contamination is set by θwðzÞ, the
maximum angle away from the receiver’s phase
center at which a spectrally smooth sky signal can
contaminate higher-kk modes. Following Ref. [78],
we set this to 3 times the width of the PUMA
primary beam, i.e. θwðzÞ ¼ 3 × 1.2λðzÞ=Deff , with
λðzÞ≡ 21ð1þ zÞ cm and Deff ¼ 5 m. We explore
our sensitivity to this choice, and the choice of kkmin,
in Appendix D 4.

These restrictions will apply separately to templates for
velocity and electron density fields constructed from
21 cm observations. However, the total kSZ template is
constructed from the product of these templates [recall
Eqs. (10)–(11) and (13)], which becomes a convolution in
Fourier space:

q̂rðkS; zÞ ¼
Z
kL

ηðkL; zÞϵðkS − kL; zÞ: ðD15Þ

Thus, low-kk modes of q̂rðkS; zÞ are not obscured by
foregrounds, since they can be sourced by pairs of η and
ϵmodes whose line-of-sight wave numbers are individually
much larger (i.e. it is possible that jkSkj < kkmin while
having jkLkj and jkSk − kLkj both greater than kkmin). We
will omit redshift arguments in what follows.
To implement these foreground restrictions in compu-

tations, we start by recalling the cross power spectrum of q̂r
and qr from Eq. (15), prior to taking the squeezed limit
of Peϵ (the discussion below also applies to the autospec-
trum of q̂r):

Pq̂rqrðkSÞ ≈
Z

d3kL
ð2πÞ3 PvrηðkLÞPeϵðkS − kLÞ: ðD16Þ

We must set the integrand to zero outside of the region
defined by the union of the following four conditions:

jkLkj> kkmin; jkLk − kSkj > kkmin;

jkLkj> βkL⊥; jkSk − kLkj> βjkS⊥ − kL⊥j: ðD17Þ

With kLk ¼ kLμL and kL⊥ ¼ kL
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2L

p
and analogously

for kS, and also defining cosϕ⊥ ≡ k̂S⊥ · k̂L⊥, the fourth
condition can be written as cosϕ⊥ > γðkS; μS; kL; μLÞ,
where

γðkS; μS; kL; μLÞ

≡ β2½ð1 − μ2SÞk2S þ ð1 − μ2LÞk2L� − ðμSkS − μLkLÞ2
2β2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2S

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2L

p
kSkL

:

ðD18Þ

We can integrate this constraint out of Eq. (D16) by
approximating PeϵðkS − kLÞ ≈ PeϵðkSÞ and using

C⊥ðkS; μS; kL; μLÞ≡
Z

2π

0

dϕ⊥Θðcosϕ⊥ − γÞ

¼
8<
:

2π; γ ≤ −1;
2cos−1γ; −1 < γ < 1;

0; γ ≥ 1;

ðD19Þ

where Θð� � �Þ is a step function. Meanwhile, the first three
conditions in Eq. (D17) are equivalent to setting the
integrand to zero if any of the following conditions are
satisfied:

jμLj<
kkmin

kL
; jkLμL−kSμSj<kkmin; jμLj<

βffiffiffiffiffiffiffiffiffiffiffiffi
1þβ2

p ;

ðD20Þ

and we enforce these numerically when evaluating
Eq. (D16).
Finally, we compute Cq̂rqr

l in the Limber approximation,
which requires taking the μS → 0 limit of Eq. (D16):

P21 cm
q̂rqr

ðkS; 0Þ ¼
1

8π3

Z
dkLk2L

Z
1

−1
dμLμ2L

PgvðkL; μLÞ2
Ptot
ggðkL; μLÞ

PgeðkS; 0Þ2
Ptot
ggðkS; 0Þ

C⊥ðkS; 0; kL; μLÞCkðkS; 0; kL; μLÞ; ðD21Þ

where CkðkS; μS; kL; μLÞ implements the conditions in Eq. (D20). Note that we take the μS → 0 limit after
accounting for foreground mode cuts as described above, and therefore we only consider modes of q̂r that survive
these cuts.
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FIG. 18. Forecasts for kSZ templates constructed from 21 cm intensity mapping measurements from PUMA, comparing our baseline
forecasts that assume the simulation-based HI density profile from Ref. [52] (left panels) with forecasts that use the exponential profile
from Ref. [82] (right panels). The choice of HI profile has negligible effect at lower multipoles, while it can affect the results by as much
as 30% (70%) for PUMA-32k (PUMA-5k) at l ∼ 10000.

FIG. 19. Dependence of a 21 cm -based kSZ template on assumptions about foreground cleaning. For simplicity, we only show results
assuming the HI mass-halo mass relation and HI density profile from Ref. [52]. Different columns show different assumptions about the
minimum kk that can be cleaned of foregrounds, while different line styles of the gray curves show different assumptions about the
severity of the foreground wedge. We find a factor of 5 (at higher l) to 10 (at lower l) difference between the most optimistic and
pessimistic cases that include the wedge.
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4. Dependence of forecasts on HI profile
and foreground cuts

In Fig. 18, we compare kSZ template forecasts assum-
ing the simulation-based HI profile from Ref. [52] with
those assuming the exponential profile from Ref. [82].
We find that this choice does not qualitatively change
the results: in particular, we see a negligible change at
l≲ 2000 that becomes more important at larger multi-
poles, with as much as a 10% (15%) change in the
results for PUMA-32k (PUMA-5k) at l ∼ 4000, and a
30% (70%) change at l ∼ 10000. This uncertainty in our
forecasts is subdominant to that from the uncertain form
of the mHIðmhÞ relation (this uncertainty is also lower at
lower multipoles).
In Fig. 19, we explore how our forecasts depend on

assumptions about 21 cm foregrounds. Each column corre-
sponds to a different choice of kkmin, while the different line
styles for the gray curves denote different assumptions about
the foreground wedge: an angular extent of 3 times the
primary beam width of a single 6 m dish, 1 times the primary
beam width (a more optimistic case), or the full sky visible
above the horizon (a more pessimistic case). Between the
most optimistic and pessimistic assumptions for the gray
curves, we find roughly an order of magnitude variation
at l ∼ 1000 and a factor of 5 at l ∼ 10000, indicating
that the performance of a 21 cm -based kSZ template will be
very sensitive to the level of foreground cleaning.

APPENDIX E: CMB FORECASTS

We model the CMB noise including the pink and white
noise components as

Nl¼Δ2
T exp

�
lðlþ1Þ θ

2
FWHM

8 logð2Þ
�
½1þðlknee=lÞαknee � ðE1Þ

where we set the beam full-width half-maximum (FWHM),
the temperature noise RMS ΔT , and the fαknee;lkneeg
parameters which model the effect of the Earth’s atmos-
phere to match upcoming experiments as given in Table II.
The contributions to the signal in the millimeter

wavelength include clustered CIB, Poisson CIB and
tSZ foregrounds, and the black-body late-time kSZ
following Ref. [132] based on fits to data from
Ref. [133]. We do not include the correlation between
tSZ and CIB. We also include radio sources in the 39, 93
and 145 GHz channels, using the flux-limit-dependent
radio-source power model from Ref. [134]. For CMB-S4,
we assume flux limits of 10, 7 and 10 mJy, respectively in
those channels. For CMB-HD, we assume flux limits of 2,
1 and 1 mJy respectively. In addition, we include the
lensed CMB black-body contribution which we calculate
using CAMB [135], and the kSZ signal from reionization
following Ref. [100].

We calculate the total covariance between two frequency
channels at each multipole l, Cij

l , taking into account the
signal components correlated across frequencies, as well as
the uncorrelated beam-deconvolved noise, indexed by i.
The resulting minimum-variance standard ILC noise for the
black-body signal (lensed CMBþ kSZ) including all other
contributions is then given by

Nl ¼
�X

ij

ðC−1Þijl
�
−1
: ðE2Þ

APPENDIX F: FORECASTS FOR
MOVING-LENS SIGNAL

Reference [14] derives an optimal matched filter for
measuring transverse velocities with the moving-lens
effect, assuming a known form for the halo density profile.
In Sec. V B 2, we present a forecast that uses a modified
form of this procedure to obtain binned information about
the moving-lens profile (and therefore the halo density
profile) itself. The impact of the moving-lens effect on the
CMB has been written in Eqs. (36)–(39).
In the form derived in Ref. [14], an optimal filter Ψ̃i

for the moving-lens signal along transverse direction i is
given by

Ψ̃ið l!Þ ¼ σi
M̃ið l!Þ
C̃TT
l

; ðF1Þ

where i is either of two unit vectors, which we call x̂
and ŷ, which span the x⊥ plane. We have written Mx ¼
x̂ ·M and My ¼ ŷ ·M. The measurement noise σi is
given by

σi ¼ a−20

Z
d2l
ð2πÞ2 jΨ̃iðlÞj2C̃TT

l : ðF2Þ

TABLE II. Inputs to ILC noise for the CMB configurations. We
have chosen the temperature noise RMS and the beam parameters
to approximately match CMB-S4 and CMB-HD. We account
for the effect of Earth’s atmosphere by setting lknee ¼ 100
and αknee ¼ −3. We define the polarization noise as
ΔE ¼ ΔB ¼ ffiffiffi

2
p

ΔT .

Beam FWHM Noise RMS (μK-arcmin)

S4 HD S4 HD

39 GHz 5.10 0.940 12.4 3.4
93 GHz 2.20 0.420 2.0 0.7
145 GHz 1.40 0.250 2.0 0.8
225 GHz 1.00 0.170 6.9 2.0
280 GHz 0.90 0.130 16.7 2.7
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In our binned forecasts, we use the same approach, but
for a bin centered at x⊥j, we suppose that we have applied
a circular ring mask Rjðx⊥Þ with outer (inner) radius
x⊥j þ Δx⊥=2 (x⊥j − Δx⊥=2) around the halo center, such

that M̃iðlÞ in the numerator of Eq. (F1) is the harmonic
transform of Rjðx⊥ÞMiðx⊥Þ instead of Miðx⊥Þ. We then
compute the modified measurement noise using Eq. (F2),
taking σ ≡ σx ¼ σy. Our results are demonstrated in Fig. 16.
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