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In this work, we propose polarimetry experiments to search for low-mass (sub-eV) bosonic field dark
matter, including axions and axionlike particles. We show that a polarimetry configuration consisting of a
thick birefringent solid inside a Fabry-Pérot cavity is exceptionally sensitive to scalar field dark matter,
which may cause oscillatory variations in the solid’s thickness and refractive index. In addition, we show
that a reconfiguration of this polarimetry experiment, in which two quarter-wave plates are placed inside
the Fabry-Pérot cavity instead of a thick birefringent solid, is very sensitive to axionlike particles. We
investigate the possibility of using cross-correlation of twin polarimeters to increase the sensitivity of the
experiment, which in turn could allow us to explore unexplored parts of the parameter space and potentially
detect a signal in either dark matter scenario.
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I. INTRODUCTION

The ΛCDM (Lambda-cold dark matter) model [1], also
known as the Standard Model of cosmology, is a six-
parameter model that fits all available data with a high
degree of precision and concisely summarizes our current
knowledge of the history and composition of the universe.
According to the ΛCDM model, the majority of the present
Universe consists of a combination of dark energy (68%),
dark matter (DM) (27%), and baryons (5%), such as
nucleons. The many DM theories and possible interactions
with the Standard Model make for a diffuse but active
search effort, as DM’s unknown Nature remains one of the
most pressing issues in modern physics.
Weakly interacting massive particles (WIMPs) were

the most promising candidates for DM during the course
of the previous few decades. However, a number of very
sensitive detectors [2–4], have yet to detect such particles
and future upgrades will be limited by the solar neutrino
background [5]. In addition, the Large Hadron Collider has
set stringent limits on supersymmetry, the theoretical under-
pinning for massive particles with weak interactions [6].
In recent years, the concept of searching for sub-eV-mass

DM candidates has attracted considerable attention.
Numerous well-motivated candidates of this sort exist,
including the canonical axion, axionlike particles (ALPs),
and dilatons, which may all manifest as a coherently

oscillating classical field. In this paper, we concentrate
on scalar field DM [7,8] and pseudoscalar axionlike
particles [9–12]. The search for scalar-field DM, axionlike
particles, and quantum gravity are examples of recent
revolutionary concepts in laser interferometry’s direct
application to physics that goes beyond the gravitational
field [13–17].
This work presents a way to utilize polarimetry with

high sensitivity in order to identify potential couplings
of scalar field DM and axionlike particles. In 1979,
E. Iacopini and E. Zavattini published seminal work
with the objective of determining how to detect vacuum
magnetic birefringence [18,19] with polarimetry [20].
Unlike Michelson interferometry, which looks for the
relative displacement of two orthogonal arms, polarimetry
is sensitive to the relative phase variation of two orthogo-
nal polarization components. Today, the scheme is still
used for measuring minute birefringence [21], and it
provides the highest sensitivity for measuring the vacuum
magnetic birefringence [22].
In the polarimetry setup proposed in this paper, an

oscillating scalar or pseudoscalar DM field is expected
to produce a relative phase modulation between the two
orthogonal polarizations at the same frequency as the field
oscillation, which could be detected. Low-mass bosonic
dark matter is assumed to have a long coherence length
(relative to the measurement apparatus’ dimensions) [23],
such that two identical polarimeters close together would
measure the same signal and may be cross-correlated in a
search for these dark-matter fields.
The paper structure is as follows: In Sec. II, we

recapitulate how scalar DM may cause thickness changes
in highly birefringent materials, and how the axionlike field
interacts with polarized light. These two distinct coupling

*EjlliA@cardiff.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 083035 (2023)

2470-0010=2023=107(8)=083035(11) 083035-1 Published by the American Physical Society

https://orcid.org/0000-0002-4149-4532
https://orcid.org/0000-0003-4227-8214
https://orcid.org/0000-0001-8922-7794
https://orcid.org/0000-0003-2771-8816
https://orcid.org/0000-0002-0797-3943
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.083035&domain=pdf&date_stamp=2023-04-28
https://doi.org/10.1103/PhysRevD.107.083035
https://doi.org/10.1103/PhysRevD.107.083035
https://doi.org/10.1103/PhysRevD.107.083035
https://doi.org/10.1103/PhysRevD.107.083035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


mechanisms would both produce a signal in a polarimeter
setup. In Sec. III, we investigate these two scenarios by
analytically calculating the dark matter-induced phase
difference in a polarimeter with a Fabry-Pérot cavity. We
also evaluate the expected polarimeter noise in Sec. IV. In
Sec. V, we present projections of the experiment’s inte-
grated sensitivity for both cross-correlation of twin polar-
imeters and a single polarimeter. Lastly, in Sec. VI, we
summarise our findings and discuss DM searches using
polarimetry in the context of other direct searches.

II. THEORY

A. Scalar field DM

A light scalar field with a mass (10−21 < mϕ < 10 eV)
created in the early universe would manifest in the present
day as an oscillating classical field [23,24]:

ϕðt; r⃗Þ ¼ ϕ0 cosðωϕt − k⃗ϕ · r⃗Þ; ð1Þ

where ωϕ ¼ ðmϕc2Þ=ℏ is the angular Compton

frequency, k⃗ϕ ¼ ðmϕv⃗obsÞ=ℏ the wave vector and v⃗obs is
the velocity relative to the observer, and the amplitude
ϕ0 ¼ ðℏ ffiffiffiffiffiffiffiffiffiffiffiffi

2ρlocal
p Þ=ðmϕcÞ, where ρlocal is the local DM

density. If other components of dark matter are present,
the amplitude of the oscillatory field could be much
smaller [25,26]. We thus assume that the local dark matter
density is fully made up of the undiscovered field.
Fields like this could couple to the electromagnetic part

of the Standard Model; the simplest such couplings are
linear in ϕ [27,28]:

Lint ¼
ϕ

Λγ

FμνFμν

4
−

ϕ

Λe
meψ̄eψe; ð2Þ

where Fμν is the electromagnetic field tensor, ψe is the
electron wave function, and Λγ and Λe are the electro-
magnetic and electronic coupling constants, respectively.
These additional terms entail corrections to electromagnetic
interactions that are not present in the Standard Model. The
corrections can be effected by considering the electron
mass and the fine structure constant to be coupled to the
scalar field

α0 ¼ α

�
1þ ϕ

Λγ

�
; m0

e ¼ me

�
1þ ϕ

Λe

�
: ð3Þ

The size and refractive properties of solids depend on the
fine structure constant and the electron mass. We consider
the effect of scalar field DM on the optical parameter

β ¼ 2πdΔn
λ

; ð4Þ

which is the difference in the accumulated phase between
orthogonal polarizations in radians, where d is the extent
of the solid along the optical path, Δn ¼ ne − no is the

intrinsic birefringence of the solid (i.e., the difference of the
refractive indices for the two orthogonal polarizations) and
λ is the wavelength of light. Relative changes in β are the
sum of relative changes in d and Δn

δβ

β
¼ δd

d
þ δΔn

Δn
; ð5Þ

to first order. The size of a solid is proportional to the
atomic Bohr radius, i.e., d ∝ aB ¼ 1=ðmeαÞ [29], where α
is the fine structure constant and me is the electron mass
and therefore [13]

δd
d

¼ −
�
δα

α
þ δme

me

��
1 −

ω2

ω2
0

�−1
ð6Þ

where we assume a high mechanical quality factor of the
fundamental longitudinal vibrational resonance of the solid
ω0 (i.e., weak damping) [15]. The refractive index depends
on the electronic resonances of the solid. If we only
consider frequencies far away from the nearest electronic
resonance ωϕ ≪ ωe, the index of refraction is approxi-
mately inversely proportional to the electronic resonance of
the solid, i.e., 1=n ∝ ωe ∝ meα

2, and so [13]

Δn
n

≈ C

�
2
δα

α
þ δme

me

�
; ð7Þ

where C ¼ ω=n · ∂n=∂ω takes into account the chromatic
dispersion [see [13] for a more careful consideration of the
approximations used in deriving Eqs. (6), (7)].
In summary, we thus expect that in the presence of a

hypothetical scalar field there will be oscillatory changes of
the parameter β:

δβ

β
¼ ϕ0 cosðωϕt − k⃗ϕ · r⃗Þ

×

2
64

�
1
Λγ
þ 1

Λe

�
���1 − �

ωϕ

ω0

�
2
���þ C

�
1

Λe
þ 2

Λγ

�375: ð8Þ

B. Polarization rotation due to axion DM

Light pseudoscalar fields, including the axion and other
axionlike particles, manifest themselves as an oscillating
classical field, analogous to the scalar case [27,30–33]:

aðt; r⃗Þ ¼ a0 cosðωat − k⃗ϕ · r⃗Þ; ð9Þ

where ωa ¼ ðmac2Þ=ℏ is the angular Compton
frequency for an axion mass ma, the amplitude
a0 ¼ ðℏ ffiffiffiffiffiffiffiffiffiffiffiffi

2ρlocal
p Þ=ðmacÞ, and the other variables are the
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same as for Eq. (1). We again assume the undiscovered field
accounts for all of the local dark matter density.
We consider the coupling of the axion to the photon field

parametrized by gaγ [34]

Lint ¼
a
gaγ

FμνF̃μν

4
ð10Þ

where F̃μν ¼ ϵμνρσFρσ . Due to this coupling of photons
with the axion field, there would be a difference in the
phase velocity of right- and left-handed circularly polarized
light [35]:

v↻;↺ ≈ 1� gaγ _a

2k
: ð11Þ

Therefore, the right- and left-hand circular polarization
components of light accumulate a relative phase difference,
which produces a rotation of the plane of polarization of
linearly polarized light by an angle [17]

ρðt; τÞ ¼ gaγ
2

½aðtÞ − aðt − τÞ�; ð12Þ

for light propagating between times t − τ and t. For
propagation times τ ≪ 1=ωa, we have

ρðωa; τ; tÞ ≈ gaγa0ωaτ sinðωatÞ; ð13Þ

to first order.

III. METHOD

A. Polarimetry setup for scalar field DM

In this section, we present an analytical calculation that
shows how thickness variations of a birefringent optical
element in a polarimeter, induced by scalar field DM, would
produce a measurable phase difference between orthogonal
polarization components of laser light (see Fig. 1).
To represent the optical field including its polarization,

the Jones matrix formalism is used. After passing through a
polarizer, the input laser light will be in the following state

E ¼ E0e−iðkz−ωtÞ ·
�
1

0

�
ð14Þ

where E0 is the electric field’s initial magnitude. The Jones
matrix of a birefringent solid with an optic axis oriented at
an angle ϕ relative to the input polarization is

Bðβ;ϕÞ ¼ OðϕÞ ·
�
e
1
2
iβ 0

0 e−
1
2
iβ

�
·Oð−ϕÞ

where OðϕÞ is the rotation matrix:

OðϕÞ ¼
�
cosðϕÞ − sinðϕÞ
sinðϕÞ cosðϕÞ

�
:

A photoelastic modulator (PEM) and an analyzer are
represented by the Jones matrices H and A, respectively,

H ¼
�

1 iη

iη 1

�
; A ¼

�
1 0

0 1

�
:

If the birefringent solid has an optic axis oriented at an
angle of ϕ ¼ π=4, and the total phase-induced difference is
β ¼ nπ þ δβ, n ∈ Z, where δβ ≪ 1 represents the phase
modulation due to solid thickness and refractive index
variation, the electric field after multiple reflections in the
Fabry-Pérot cavity is as follows:

Eout ¼
�
Eout;0

Eout;⊥

�

¼ Te
iφ
2

X∞
n¼0

�
ReiφB2

�
β;
π

4

�	
n
·B

�
β;
π

4

�
· E

¼ Te
iφ
2

�
I − ReiφB2

�
β;
π

4

�	
−1

·B

�
β;
π

4

�
· E

where φ is the round-trip phase shift of light propagating
between the two-cavity mirrors, R is the reflectance of
the mirrors, T is the transmittance of the mirrors, and
I represents the identity matrix.
The heterodyne method involves placing a PEM next to

an analyzer oriented at 45° with respect to the input
polarization (see Fig. 1). The electric field at the extin-
guished port of the analyzer is

Eext ¼ A ·H · Eout: ð15Þ

The following equation is used to compute the extin-
guished intensity: Iext ¼ jEextj2. The expression for relative
intensity, taking into consideration the extinction ratio σ of
the two polarizers, is

FIG. 1. The proposed polarimetry scheme for measuring the
oscillation of scalar field dark matter using a birefringent medium
in a Fabry-Pérot cavity. M1=M2 are mirrors that delimit the
Fabry-Pérot cavity, and PDT/PDE are the photodiodes in
the transmission and in the extinction port of the analyzer,
respectively.
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Iext

I0
¼ T2

1− 2R cosφþR2

×

�
σ2 þ η2 þ η δβ

ð1− R2Þ
1− 2R cosφþ R2

þO½ðδβÞ2�
�
ð16Þ

where δβ represents the phase difference due to the
birefringent solid thickness and refractive index variation,
and ηðtÞ ¼ η0 cosð2πνPEMtÞ and σ represent the extinction
of the crossed polarizers. The term linear in ηðtÞ is the
heterodyne signal, which is used to detect the effect of
interest. Furthermore, we must consider that the Fabry-Pérot
cavity operates as a low-pass first-order filter for a time-
dependent signal such as the one induced by scalar field
DM. Specifically, the transfer function of a Fabry-Pérot
cavity for a time-dependent ellipticity signal is [36]

hTðνÞ ¼
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2 − 2R cos 2πντ
p

ϕTðνÞ ¼ arctan

�
R sin 2πντ

1 − R cos 2πντ

	
; ð17Þ

where ν is the frequency of the signal, τ ¼ 2=c
R
L
0 ndL is

one round trip time in the cavity, and n, L, and c are the
refractive index, the length of the cavity, and the speed of
light, respectively.
The input laser light should be kept resonant in the

Fabry-Pérot cavity, such that φ ¼ 0, using e.g. the Pound-
Drever-Hall method. The signal from the photodiode at the
extinguished port can be demodulated at the frequency
νPEM, and the magnitude of the phase shift jδβj can then be
inferred:

jδβðνÞj ¼ I ext
νPEMðνÞ

NI0η0hTðνÞ
; ð18Þ

where N ¼ 2=ð1 − RÞ is the cavity buildup and I ext
νPEMðtÞ is

the demodulated signal of the extinguished intensity at
frequency νPEM.

B. Polarimetry for axion DM

We now consider the case of pseudoscalar axionlike DM
and show how such a field may produce an observable
signal in a polarimeter.
The Jones matrix (on a linear basis) for the propagation

of light that parametrizes the rotation of its plane of
polarization in the presence of an axion field is given by

Aγðt; τÞ ≈
�

1 −ρðt; τÞ=2
ρðt; τÞ=2 1

�
; ð19Þ

for angles ρ ≪ 1. We first consider a setup where polarized
laser light is injected into an empty Fabry-Pérot cavity,

without any optical elements inside. The rotation of the
plane of polarization of the light inside the cavity due to an
axion field is

Eout ¼
X∞
n¼0

½eiφðAγðρÞ ·MÞ2�n · Teiφ=2AγðρÞ · E

¼ Teiφ=2

ð1 − ReiφÞAγðρÞ · E

to first order, where M ¼ ð−r
0

0
rÞ is the Jones matrix

representing the reflection of a mirror for normal incidence
and φ is the round trip phase shift.
We note that over a round trip the element

ðAγðt; τÞ ·MÞ2 ¼ RI, where R ¼ r2 is the reflectance of
the mirror and I is the identity matrix. Therefore, when the
light is resonant with the cavity, the axion-induced
polarization polarization rotation, also known as dichro-
ism, cancels out over round trips.
To eliminate this cancellation effect caused by the round

trip, two quarter-wave plates (QWPs) can be placed next to
the mirrors at either end of the cavity, as shown in Fig. 2.
This is similar to the approaches in [17,34]. The fast axes of
the QWPs must be aligned at an angle of ϕ ¼ ð0; π=2Þ with
respect to the input polarization plane. In this configuration,
the polarization rotation due to the axion field will accu-
mulate over multiple round trips. A quarter-wave plate with
its fast axis aligned with the incident polarization is
represented by the matrixQ ¼ Bðπ=2; 0Þ. The quarter-wave
plate would cause the rotation effect on the polarization of
light passing through it to become elliptical:

Q ·Aγ ·Q · E ¼ Ẽ0

�
1

− iρ
2

�
; ð20Þ

where Ẽ0 ¼ E0e−iζ is the amplitude of the electric field with
an overall phase ζ.
The electric field at the exit of the Fabry-Pérot cavity

including the QWPs is

FIG. 2. The proposed polarimetry scheme for sensing the
coupling of the axion field to photons by using a Fabry-Pérot
cavity and two quarter-wave plates (QWP1 and QWP2). PDT/
PDE are the photodiodes in the transmission and in the extinction
port of the analyzer, respectively, and M1=M2 are mirrors that
delimit the Fabry-Pérot cavity.
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Eout ¼ Te
iφ
2

X∞
n¼0

½eiφðQ ·AγðρÞ ·Q ·MÞ2�n

·Q ·AγðρÞ ·Q · E

¼ Te
iφ
2 ½I − eiφðQ ·AγðρÞ ·Q ·MÞ2�−1

·Q ·AγðρÞ ·Q · E:

Using the heterodyne technique and taking into account
the extinction ratio of the two polarizers, the intensity of the
field at the extinguished port relative to the input intensity is

Iext

I0
ðρÞ ≈ σ2 þ η2 − 2Nη

ρ

2
þO½ρ2�: ð21Þ

When the frequency response [see Eq. (17)] is taken into
consideration, the phase shift due to the axion that can be
measured is

jρðνÞj ¼ Iext
νPEMðνÞ

NhTðνÞI0η0
: ð22Þ

This expression shows that with the addition of the two
quarter-wave plates, the phase shift between orthogonal
polarizations induced by an axion field builds over multiple
cavity trips N. The accumulated signal takes the form of
elliptical polarization of the output light.
Eqs. (18) and (22) show that a polarimeter can be used

for a direct search for both scalar and pseudoscalar dark
matter, by configuring the device either as in Fig. 1 or as
in Fig. 2.
The approach presented here shares similarities with the

method described in Nagano et al. [35] for detecting axion
dark matter using interferometric gravitational wave detec-
tors. However, our method differs in the use of quarter-wave
plates to accumulate the rotation induced by axion dark
matter over multiple round trips and subsequently convert it
into ellipticity for detection through polarimetry [34].

IV. NOISE BUDGET

We carried out a preliminary study of noises that can
limit the performance of the proposed polarimetry experi-
ment, such as shot noise, Johnson noise, seismic noise, and
limitations due to optical aberrations. The intrinsic noises
that will limit the sensitivity can be calculated from
Eqs. (18), (22) as follows:

SP ¼
SIext

νPEM

I0η0
: ð23Þ

There are different effects that generate noises that add in
quadrature to the SIext

νPEM
, which can all be expressed in

terms of the extinguished intensity Iext.

A. Shot noise

Let us begin by analyzing the spectral density of the
intrinsic RMS noise that is caused by the photodiode’s
direct current idc

iðshotÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2eidc

p
; ð24Þ

measured in ampere=
ffiffiffiffiffiffiffiffiffiffi
hertz

p
. Note that iðshotÞ is indepen-

dent of frequency and the direct current in the photodiode is
iDC ¼ qI0η20=2, where q is the efficiency of the detector
PDE in units of A/W. The well-known extinction ratio of
two crossed polarizers introduces an additional component
in the detected DC power, which is expressed as I0σ2. The
extinction ratio of the polarizers is taken into account,
which can be as low as σ2 ≈ 10−7. This leads to an
expression for the shot-noise spectral densities of the light

power IðshotÞ and in the ellipticity SðshotÞβ :

IðshotÞ ¼ iðshotÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eI0
q

�
σ2 þ η20

2

�s
; ð25Þ

and

SðshotÞβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e
qI0

�
σ2 þ η20=2

η20

�s
: ð26Þ

B. Electronic noise and RIN

Other noises that affect the spectral densities of ellipticity
noise include Johnson noise of the photodiode transimpe-
dance G,

IðJÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4kBT
q2G

s
; SðJÞP ¼

ffiffiffiffiffiffiffiffiffiffiffi
4kBT
G

r
1

qI0η0
; ð27Þ

the photodiode dark current

IðdarkÞ ¼ idark
q

; with SðdarkÞP ¼ idark
qI0η0

; ð28Þ

and the frequency-dependent relative intensity noise NðRINÞ
ν

of the light emerging from the cavity is estimated as:

IðRINÞν ¼ I0N
ðRINÞ
ν ; ð29Þ

giving

SðRINÞP ¼ NðRINÞ
νm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2 þ η20=2Þ2 þ ðη20=2Þ2

p
η0

: ð30Þ
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C. Seismic noise

Seismic noise could be significant in the proposed
polarimetry scheme for detecting scalar field DM
(Fig. 1) if the back and front surfaces of the birefringent
crystal are not parallel and the point of incidence of the
laser beam on the solid varies. In this situation, the laser
light will scan various solid thicknesses, thereby generating
unwanted polarization phase noise. If the optical compo-
nents of the polarimeter are installed on a perfectly rigid
platform, the seismic disturbance should have no effect on
their relative position. Nevertheless, the coherence length
of seismic noise above 1.5 Hz reduces to 1–16 m [37],
which would mean the cavity mirrors do experience a
differential displacement.
To estimate the coupling of seismic noise into the

polarimeter, we consider our birefringent solid to have
uniform birefringence and a small wedge, θ. We assume the
solid’s transverse position relative to the incidence of the
laser beam is randomly modulated by the seismic noise δr.
Further, we assume that the seismic noise is broadband and
has the same magnitude in all directions. The coupling of
the seismic noise to birefringence noise in the polarimeter
can then be calculated using the wedge angle θ as follows:

SðseismicÞ
P ¼ 2π

N δr θ
λ

ΔnγðL; fÞ ð31Þ

Here, Δn is the birefringence of the solid, N is the cavity
build-up, and γðL; fÞ represents the two-point correlation
of the seismic noise at the laser and the solid separated by a
distance L as a function of frequency. This correlation is
defined here such that if the seismic displacement of the
birefringent solid and the laser beam are correlated, γ ¼ 0,
which means the relative displacement of the laser and solid
is zero. For γ ¼ 1 the relative displacement is completely
uncorrelated and noise coupling is at its maximum.
We assume the operational parameters for the polarim-

eter have the values detailed in Table I, which are typical
operating characteristics for a polarimetry setup [22]. We
estimate a shot noise that is greater than both the electronic
noise and the RIN, with a magnitude of SðtotÞshot ≈ 6 × 10−10.
The total ellipticity noise is expected to be limited by the

sum in quadrature of shot noise and seismic noise:

SðtotÞP ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðshotÞP

2 þ SðseismicÞ
P

2 þ SðRINÞP
2 þ SðdarkÞP

2
q

ð32Þ

where shot and seismic noise are expected to be the
dominant noises in the total noise budget.
In Fig. 3 we show the phase noise sensitivities for a

signal-to-noise ratio (SNR) of 1, limited by shot noise
and seismic noise. The seismic phase noise amplitude
plotted in blue corresponds to the noise as mitigated through
a two-stage seismic isolation platform and a single silica
pendulum suspension, which is part of the seismic
isolation and suspension system used at the advanced

Laser Interferometer Gravitational-Wave Observatory
(aLIGO) [39,40]. From this figure, we can clearly see that
at sub-Hertz frequencies, seismic noise becomes the dom-
inant factor in our proposed scheme.

D. Optical aberrations

In order to maintain the required sensitivity, the Fabry-
Pérot cavity must be kept on resonance with the laser light,
and the light at the extinguished port of the analyzer must
be kept to a minimum. To satisfy both these conditions in
the polarimetry configuration for scalar field DM (Fig. 1), it
is necessary that the total relative phase induced by the
birefringent solid is β ¼ nπ, n ∈ Z. On the other hand, in
the configuration for axionlike particles (Fig. 2), the total
relative phase retardation imparted by the QWPs must be
exactly π=2.

TABLE I. Relevant characteristics of the proposed polarimetry
setups.

Input power I0 1 W

PDE quantum efficiency q 0.7 A=W
PDE gain G 106 Ω
Extinction ratio σ2 2 × 10−7

Dark noise idark 25 fArms=
ffiffiffiffiffiffi
Hz

p
Modulation amplitude η0 1.5 × 10−3

Modulation frequency νPEM 50 kHz
RIN [22,38] NðRINÞ

νPEM
3 × 10−7=

ffiffiffiffiffiffi
Hz

p
Seismic noise coupling γ 0.1
Cavity build-up N 20 000
Solid/QWP wedge θ 1 μrad
Yttrium Vanadate C 12 × 10−3

Sapphire C 6.6 × 10−3

FIG. 3. A projection of two forms of sensitivity phase noise
(SNR ¼ 1) expected in the proposed polarimetry experiment are
shown in this figure: shot and seismic sensitivity phase noises.
For calculating the curves in this plot, we used Eq. (31), and the
parameters on Table I. The seismic phase noise amplitude plotted
in blue corresponds to the noise as mitigated through a two-stage
seismic isolation platform and a single silica pendulum suspen-
sion, which is part of the seismic isolation and suspension system
used at the advanced Laser Interferometer Gravitational-Wave
Observatory (aLIGO) [39,40].
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Given these constraints, control over thermal effects is
required in both cases since these impact the optical path
length inside birefringent solids. The presence of a nonzero
thermal optical coefficient dn=dT ≠ 0 causes changes in the
refractive index of an optic due to the absorption of optical
power in the substrate and in the coatings. This results in the
formation of a thermal gradient inside the optic, creating an
optical aberration called thermal lensing. In addition, due to
the nonzero thermal expansion coefficient χ, the surface of a
heated optic expands along the optical axis and induces a
further change in the optical path length known as thermo-
elastic deformation. The total variation of the optical path
due to these effects is calculated as [41,42]

δðndÞ ¼
�
dn
dT

ΔT þ χð1þ ϵÞðn − 1ÞΔT
�
d ð33Þ

where ϵ represents Poisson’s ratio. However, the contribu-
tion from thermoelastic deformation is usually small com-
pared to that from thermal lensing [41]. A crystal placed
inside a Fabry-Pérot cavity with thermal lensing in its
antireflection (AR) coatings and substrates presents a
problem similar to those encountered in e.g. interferometric
gravitational-wave detectors, and we use the analysis meth-
ods and solutions used in those instruments for this work.
In order to estimate the thermal lensing and the related

variation in the optical path length inside the crystal in the
proposed polarimetry configurations, finite element analysis
simulations based on the Hello-Vinet theory [43] have been
carried out with FINESSE 3 [44]. For these calculations, we
assumed the input laser light to be purely in the fundamental
Hermite-Gauss 00 mode with a beam radius of w ∼ 1 cm.
We performed simulations for two different birefringent
materials; yttrium vanadate and sapphire, where the dimen-
sions of the solid were set to 5 cm in thickness and 10 cm
in width.
In Fig. 4, we show the simulated optical path difference

due to thermal effects [as given by Eq. (33)] for both
materials for the ordinary and extraordinary axes. We
considered an input power of 1 W and a cavity buildup of
4000. It can be seen from these results that the thermally
produced optical path difference (OPD) difference
between the center and edge of the beam will be less
than 1 μm. An OPD less than or of the order of 1 μm can
be compensated by a specialized thermal actuator, like a
CO2 laser projector or a ring heater [42,45,46].
Because the thermal effects can affect the optical path

length along the ordinary and extraordinary optic axis
differently, the solid’s birefringence parameter will
change: β ¼ nπ þ δβT, where δβT can range from 0 to
π=2. The correction that needs to be effected to compen-
sate, (δβT), will depend on the differential OPD between
the extraordinary and ordinary axes. However, as we only
need to correct the relative OPD to the nearest integer

multiple of the wavelength, the needed correction is by
definition less than 1 μm.
For the configuration for axionlike particles, we estimate

that the QWPs have a bulk absorption that is more than two
orders of magnitude lower than that of the thick birefringent
solid, which could easily be compensated for.

E. Calibration

The phase and amplitude response of a polarimeter can
be accurately calibrated using the Cotton-Mouton effect,
that is the magnetic birefringence of gases. The birefrin-
gence generated in a gas at pressure p by a magnetic field
Bext is given by the expression:

Δn ¼ nk − n⊥ ¼ ΔnuB2
extp; ð34Þ

where Δnu is the unitary birefringence at 1 atmosphere of
pressure and 1 Tof the magnetic field. Typical values ofΔnu
range from about 2.2 × 10−16 T−2 atm−1 for He to about
−2.3 × 10−12 T−2 atm−1 for O2 and to ≈10−11 T−2 atm−1

for a few other simple molecules [22,48]. By filling the
vacuum system housing the experiment with, e.g., O2, and
applying a magnetic field over some length of the cavity,
accurate calibration can be performed.

V. PROSPECTS

A. Scalar field DM

In the proposed polarimeter setup for detecting scalar
field DM, the sensitivity is defined by δβ=β. From the noise
budget, we see that the condition where the shot noise

readout phase is the dominant noise, i.e. δβ ¼ SðtotÞP ≈ 6 ×
10−10=

ffiffiffiffiffiffi
Hz

p
can be achieved. The sensitivity to scalar field

DM can be improved by increasing β ¼ 2πdeffΔn=λ. The
effective length of the solid deff in the cavity depends on the

FIG. 4. Simulated optical path difference as a function of the
optic’s radial coordinate generated by thermal lensing for
Yttrium-Vanadate and Sapphire, assuming a bulk absorption of
100 pm=cm [47]: r ¼ 0 represents the center of the solid where
the incident beam enters.
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product of the solid thickness and the average number of
round trips in the cavity. We evaluate the dependence of β
on the experimental conditions:

βðνÞ ¼ 2π
dðνÞΔn

λ
NhT

¼ 2πdΔn
λ

2

ðT þ PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ðTþPÞ2 sin
2πντ

q
≈
2πdΔn

λ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ 4sin2πντ

p for T ≪ P: ð35Þ

In this approximation, we have assumed that absorption
is the main loss, limiting the number of round trips, i.e.,
P ≫ T, which would be the case for this experiment.
Losses that may occur in the cavity are due to imperfections
of the AR coating and the solid’s bulk absorption loss
P ¼ PAR þ μd, where μ is the linear absorption coefficient
of the bulk. The sensitivity to scalar-field DM is

δβ

β
¼ SðtotÞP λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ 4sin2πντ

p

2πdΔn
: ð36Þ

According to the equation above, the sensitivity depends
on the performance of the polarimeter, parameterized by

SðtotÞP , and the properties of the solid. Specifically, the
sensitivity scales linearly with the differential optical path
dΔn and the total absorption caused by the solid P. As a
consequence of this, if coating loss is the dominant effect,
the sensitivity will be proportional to the birefringence of
the material as well as its thickness. If, on the other hand,
the bulk absorption contributes the majority of the total
loss, the sensitivity will not improve with increased thick-
ness. Therefore, the cross-over point between sensitivity
gain due to increased thickness and loss due to bulk
absorption will be the most important consideration when
choosing the optimal solid thickness.
Figure 5 shows the expected δβ=β sensitivity as a

function of crystal thickness and frequency for two types
of birefringent crystals: sapphire (Δn ¼ 0.008) and pure
yttrium vanadate (Δn ¼ 0.208) crystals. These calculations
were made using a linear bulk absorption coefficient of
100 ppm=cm [47], and a AR coating of 25 ppm per
incidence. We have used a Fabry-Pérot cavity length of
30 cm and a thickness of 5 cm for the birefringent solid.
Because bulk absorption increases linearly with crystal
thickness, a crystal thicker than 5 cm would not yield a
meaningful improvement.
Prospects for scalar field DM are shown in Fig. 6, with

electromagnetic coupling (bottom) and electron coupling
(top) for a 5-cm yttrium vanadate. The black dashed lines
represent the improved sensitivity through integration
for the coherence time of DM, while the red dashed
lines represent the integration using twin polarimeters

cross-correlated for a total of one year. Existing constraints
from other interferometry experiments [14,15,49,50] are
shown for comparison.

B. Axion DM

To calculate the sensitivity to Axion DM, we must
estimate the sensitivity of a polarimeter including two thin
quarter-wave plates inside a Fabry-Pérot cavity. A quarter
wave plate, constructed as a zero-order wave plate (where
the relative phase retardation is π=2 rather than an integer
multiple thereof) can be very thin, so bulk absorption can be
assumed to be less than 10 ppm. Thus, the losses caused by
the AR coating of the two wave plates will be the most
significant effect. With 25 ppm loss per surface, two quarter-
wave plates will contribute to 100 ppm loss per trip. Given
that the losses exceed the mirrors’ transmittance P ≫ T, the
losses that occur in the cavity are P ¼ PAR þ μd ≈ PAR.
The sensitivity as described by Eq. (22) is evaluated as
follows:

jρðνÞj ¼ SðtotÞP

NhTðνÞ

≈SðtotÞP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
ARþ 4sin2πντ

p
2

for TþP� <PAR ð37Þ

FIG. 5. Upper panel: sensitivity of the polarimeter Eq. (36) as a
function of the crystal thickness for sapphire (Δn ¼ 0.008) and
pure yttrium vanadate (Δn ¼ 0.208) with absorption of
P ¼ 100 ppm=cm. Bottom panel, sensitivity Eq. (36) of yttrium
vanadate (YVO4) crystals and sapphire as a function of frequency
for a d ¼ 5 cm thick crystal.
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where P� is the sum of all the other absorption in the
polarimeter. Considering Eq. (13), the projected sensitivity
in terms of the axion-photon coupling constant as a function
of the axion frequency is

gαγ ¼
SðtotÞP

2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
AR þ 4sin2ðπνaτÞ

2ρlocal

s
; ð38Þ

where τ is the cavity round-trip travel time. Figure 7 shows
the polarimeter sensitivity for an integration time up to the
coherence time of the axion (tint ¼ 106=νa), and using twin
polarimeters with a one-year cross-correlation time for two
identical polarimeters with 5-meter cavities, each configured
as shown in Fig. 2. Existing constraints from the solar CERN
Axion Solar Telescope (CAST) [51], the design sensitivity
for Any Light Particle Search (ALPSII) [52], and the

quantum-enhanced interferometry detector [17] are shown
for comparison.

VI. DISCUSSION AND CONCLUSION

We propose the use of polarimetry for direct searches for
axionlike particles and for low-mass scalar-field dark matter.
Projections of realistic sensitivities of the proposed polar-
imetry techniques were made and it was found that such
experiments would be more sensitive than existing experi-
ments for a wide range of possible DM particle masses.
We showed that scalar field DM interacting with a highly

birefringent crystal (yttrium vanadate or sapphire) drives
thickness and refractive index variation of the crystal at the
frequency of the scalar field. This, in turn, produces
differential phase oscillations between orthogonal polariza-
tion components of light traversing the crystal. If the
birefringent crystal is placed in a Fabry-Pérot cavity, these
differential phase oscillations between polarization compo-
nents can be measured with a polarimeter at high sensitivity
using a heterodyne readout technique. The amplification of
the signal affected by the Fabry-Pérot cavity is limited by
absorption in the birefringent crystal. Regardless, with a
5 cm-thick birefringent yttrium vanadate crystal, the polar-
imetry instrument could probe an unexplored region of the
scalar field DM parameter space at DM masses ranging
from ð10−15–10−9Þ eV and frequencies of 1 Hz to 200 kHz,
beyond existing constraints [14,15,50]. As the sensitivity
scales linearly with the solid bulk absorption, potential
technological advances that allow the production of purer
crystals with less bulk absorption could significantly
improve the sensitivity of the proposed polarimetry method.

FIG. 6. Prospects for sensitivity to scalar field dark matter using
polarimetry with a 30-centimeter-long Fabry-Pérot cavity and a
5-centimeter-thick yttrium vanadate birefringent crystal are
shown; the lines give the upper sensitivity in terms of the electron
coupling constant (upper panel) and photon coupling constant
(bottom panel), as a function of scalar field mass. The black
dashed/dotted-dashed lines represent the integrated sensitivity
over the coherence time of dark matter, while the red dashed/
dotted-dashed lines represent one year of integration using twin
polarimetry and cross-correlation. Existing constraints from other
interferometry experiments are [14,15,49,50] are also shown.

FIG. 7. Sensitivity of the proposed experiment to the axion-
photon coupling coefficient for time integration up to the ALPs
coherence time (black solid line) and using twin polarimeters
with a one-year integration time (red dashed). We evaluated the
sensitivity of the proposed polarimetry experiment with two
quarter-wave plates near the mirrors of a 5-meter-long cavity,
with 20 kW circulating power and limited by shot-noise. For
comparison, the existing constraints from CAST [51] (blue) and
the design sensitivity for ALPS II [52] (green) and the quantum-
enhanced interferometry detector [17] (dotted dashed) are shown.
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The same polarimetry setup, reconfigured with two
quarter-wave plates placed near the mirrors instead of a
thick birefringent solid, could be used to search for axion-
like particles with masses ranging from ð10−15–10−8Þ eV
and frequencies ranging from 1 Hz to 2.5 MHz. Axionlike
particles may be present in a galactic halo; if so, they will
manifest themselves by annihilating and producing photons
in a polarimeter. This would result in a phase oscillation
between the orthogonal polarizations of light. For the
axionlike field, the sensitivity will be limited by the AR
coating of the QWPs, which will limit the amplification
factor of the Fabry-Pérot cavity. Even a 5 m-cavity
polarimeter, easily made as a tabletop prototype, has the
potential to surpass the sensitivity of CAST [51] in the
ALPs mass range of 10−15 eV all the way up to 10−9 eV.
The sensitivity can be improved by using a longer cavity.
This would improve the signal-to-noise ratio at low
frequencies but would limit the sensitive bandwidth, thus
decreasing the sensitivity to high axion masses.
Moreover, existing gravitational wave facilities might be

modified to function as kilometer-scale polarimeters for DM
searches similar to the one proposed in [34]. The polarim-
eter setup would be easy to integrate into GW detectors with
minimal changes, and the sensitivity would be five to seven
orders of magnitude better than the CAST constraints. The
current gravitational-wave facilities would offer great infra-
structure for the building of axion polarimetry as they
already possess vacuum systems, cutting-edge suspensions,
and powerful lasers. The third-generation gravitational-
wave facilities would then not only be able to detect
GWs from distant regions of the cosmos [53,54], but would
also enable a potential detection of dark matter using the
same facility.

In both instances, at sub-Hertz frequencies, we estimate
that the sensitivity restrictions will mostly be dominated by
seismic and 1=f noises rather than quantum noises. We
must also consider the effect of possible spurious birefrin-
gence, which could arise due to, e.g., birefringence of the
mirrors. Compensating for static birefringence caused by
the Fabry-Pèrot mirrors is feasible by rotating the axis of
the birefringent medium. Effective minimization of the
effect of birefringent imperfections in both quarter wave
plates and birefringent solids can be achieved, as exem-
plified in the research on polarimetry by Zavattini et al.
(2022) [21]. Furthermore, while wide band birefringence
noise caused by the mirrors has the potential to limit
sensitivity, it has been found to be directly proportional to
the cavity build-up factor and is dominant only at high
build-up factors as reported [21], which is above typical
build-up levels consider in this paper. Importantly, for both
of the dark matter scenarios considered, our proposal is to
use cross-correlation, which would have these detectors
look for the expected coherent spatial harmonic oscillation
modes of dark matter candidates.
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