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We investigate the collision-induced flavor instability in homogeneous, isotropic, dense neutrino gases
in the two-flavor mixing scenario with energy-dependent scattering. We uncover a simple expression of the
growth rate of this instability in terms of the flavor-decohering collision rates and the electron lepton
number distribution of the neutrino. This growth rate is common to the neutrinos and antineutrinos of
different energies, and is independent of the mass splitting and vacuum-mixing angle of the neutrino, the
matter density, and the neutrino density, although the initial amplitude of the unstable oscillation mode can
be suppressed by a large matter density. Our results suggest that neutrinos are likely to experience collision-
induced flavor conversions deep inside a core-collapse supernova even when both the fast and slow
collective flavor oscillations are suppressed.
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I. INTRODUCTION

Neutrinos help shape the physical and chemical evolu-
tion of the early universe, core-collapse supernovae, and
neutron star mergers where they are copiously produced.
Flavor oscillations, which alter the flavor composition of
the neutrinos (see, e.g., Ref. [1] for a review), can have a
significant impact on the physical conditions in these
interesting astrophysical environments. In addition to the
well-known vacuum oscillations [2,3] and the Mikheyev-
Smirnov-Wolfenstein (MSW) effect [4,5], the ambient
neutrinos further change the refraction of the neutrinos
in these extreme environments [6–8]. As a result, the dense
neutrino gas can experience a collective flavor transforma-
tion because of the tight coupling among the neutrinos
themselves [9–11]. (See, e.g., Ref. [12,13] for reviews on
this topic and the references therein.) It has been shown that
the so-called fast-flavor conversions, a special type of
collective flavor transformation that arises on the scales
of centimeters to meters, can take place near or even below
the neutrino-decoupling layer of a neutrino-emission com-
pact object [14,15]. (See also Ref. [16] for a review and the
references therein.) An interesting recent development in

the research of collective neutrino oscillations is that
neutrino collisions, which are usually thought to damp
neutrino oscillations, are shown to be able to induce flavor
conversions [17–26].
In this work, we focus on the collision-induced flavor

conversions in homogeneous and isotropic neutrino gases.
We first follow the pioneering work of Johns [20] and solve
the flavor evolution in a monoenergetic neutrino gas. By
comparing the numerical and analytical solutions, we dem-
onstrate the dependence of the collision-induced instability
on the effective mixing angle and the density of the neutrino
(Sec. II). We then consider the effect of energy-dependent
neutrino scattering and derive a simple expression for the
exponential growth rate of the collision-induced flavor
instability for which we also provide a few illustrative
numerical examples (Sec. III). We conclude by summarizing
our results and discussing their implications (Sec. IV).

II. MONOENERGETIC NEUTRINO GAS

A. Physics model

The flavor content of a dense neutrino gas can be
represented by the flavor density matrix ρ whose diagonal
elements are the neutrino occupancies in different weak-
interaction states and the off-diagonal elements are the
coherences among those states [27]. For a homogeneous
and isotropic environment, the flavor evolution of the
neutrino gas can be solved from the following equation:

_ρ ¼ −i½H; ρ� þ C; ð1Þ
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where H and C are the flavor-evolution Hamiltonian and
the collision term for the neutrino, respectively. In the
two-flavor mixing scenario, say between the e and x
flavors, one can expand ρ in terms of the 2 × 2 identity
matrix σ0 and the Pauli matrices σi (i ¼ 1; 2; 3) so that

ρ ∝ σ0P0 þ P · σ; ð2Þ
where P is the flavor polarization (Bloch) vector, and P0 is
proportional to the total density of the e and x flavor
neutrinos. The corresponding quantities ρ̄, P̄0, and P̄ can be
defined for the antineutrinos in a similar way.
We first consider a monoenergetic neutrino gas of a

single-vacuum oscillation frequency ω ¼ Δm2=2E, where
Δm2 and E are the mass-squared difference and energy
of the neutrino, respectively. We assume a minimal colli-
sional model that damps the flavor coherence without
changing the particle numbers [28]. In this model,
Eq. (1) simplifies as

_P ¼ ωB × Pþ μD × P − ΓP⊥; ð3aÞ

_̄P ¼ −ωB × P̄þ μD × P̄ − Γ̄P̄⊥; ð3bÞ

where B ¼ ðs2θ; 0;−c2θÞ in the flavor basis with s2θ ¼
sinð2θÞ and c2θ ¼ cosð2θÞ, respectively, μ ¼ ffiffiffi

2
p

GFn0ν is the
strength of the neutrino self-coupling potential, D ¼ P − P̄,
P⊥ ¼ ðP1; P2; 0Þ and P̄⊥ ¼ ðP̄1; P̄2; 0Þ represent the flavor
coherences of the neutrino and antineutrino, respectively, and
Γ and Γ̄ are the corresponding flavor-decohering neutrino
collision rates. As in Ref. [20], we approximate the matter
suppression on collective neutrino oscillations by a small
effective mixing angle θ [29]. We also choose a nominal
neutrino densityn0ν tomakeP and P̄ dimensionless.We focus
on the physical environments where both the matter density
and the neutrino density are so large that θ, ω=μ, Γ=μ, and
Γ̄=μ are all much less than 1.
As concrete examples, we solve Eq. (3) numerically

with the initial conditions Pðt ¼ 0Þ ¼ Pini ¼ ð0; 0; 1Þ and
P̄ini ¼ ð0; 0; 0.8Þ and with ω ¼ 0.6 km−1, Γ ¼ 1 km−1,
Γ̄ ¼ 0.5 km−1, and three combinations of θ and μ: (θ0,
μ0), (10θ0, μ0) and (θ0, 10μ0), where θ0 ¼ 10−5 and
μ0 ¼ 105 km−1, respectively. We plot in Fig. 1 the survival
probabilities of νe and ν̄e, which are computed as

Pνeνe ¼
1þ P3=Pini

3

2
and P ν̄eν̄e ¼

1þ P̄3=P̄ini
3

2
; ð4Þ

respectively, as well as the magnitude of the flavor
coherence

S ¼ P1 − iP2 ð5Þ

of the neutrino.

In all three cases, the neutrino gases experience flavor
conversions νe → νx and ν̄e → ν̄x between 35 and 50 μs.
While the gases start with an excess of νe and ν̄e, they end
up with more νx and ν̄x. The exponential growth of jSj
between 20 and 40 μs confirms that the flavor conversions
are indeed due to some flavor instability [20]. The growth
rate of jSj is largely independent of θ or μ when S is small.
However, the flavor conversions are delayed by a smaller θ
and/or a larger value of μ, which represent a larger matter
density and a larger neutrino density, respectively.
Although we plot the evolution of the neutrino gases up

to 100 μs in Fig. 1 for the completeness of the solution, one
should note Eq. (3) is valid only in the linear regime.
Additional terms that change the populations of different
neutrino species must be included for the complete treat-
ment in the nonlinear regime. When included, these terms
bring νe and ν̄e back to the equilibrium values after the
collision-induced flavor conversion subsides [20].

B. Collision-induced flavor instability

To understand the dependence of the collision-induced
flavor instability on θ and μ, we linearize Eq. (3) when S
and S̄ are small [20,25]:

i
d
dt

�
S

S̄

�
≈ ωs2θ

�−Pini
3

P̄ini
3

�
þ Λ

�
S

S̄

�
; ð6Þ

FIG. 1. Survival probabilities of the electron flavor neutrino
(upper panel) and antineutrino (middle panel) and the flavor
coherence of the neutrino (bottom panel) as functions of time in
the monoenergetic neutrino gases with three combinations of the
effective mixing angle θ and the neutrino self-coupling strength μ
(as labeled), where θ0 ¼ 10−5 and μ0 ¼ 105 km−1. Horizontal
dotted lines in the bottom panel represent jQ0;1j in these scenarios
(with two of them overlapping with each other), and the slant
dotted lines are jQþ;1e−iΩþtj [see Eq. (12)].
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where

Λ ¼
�−ωc2θ − μP̄ini

3 − iΓ μPini
3

−μP̄ini
3 ωc2θ þ μPini

3 − iΓ̄

�
: ð7Þ

Equation (6) has the solution

�
SðtÞ
S̄ðtÞ

�
¼ Q0 þQþe−iΩþt þQ−e−iΩ−t; ð8Þ

where

Q0 ¼ −ωs2θΛ−1
�−Pini

3

P̄ini
3

�
; ð9Þ

while Ω� and Q� are the eigenvalues and eigenvectors of
Λ, respectively. The amplitudes of Q� are constrained by
the initial condition

0 ¼
�
Sð0Þ
S̄ð0Þ

�
¼ Q0 þQþ þQ− ð10Þ

or, equivalently,

ωs2θ

�−Pini
3

P̄ini
3

�
¼ ΩþQþ þ Ω−Q−: ð11Þ

In the lowest nonvanishing orders of θ, ω=μ, Γ=μ, and Γ̄=μ,
we find

Ωþ ≈ μD3 − i
�
Pini
3 Γ̄ − P̄ini

3 Γ
D3

�
; ð12aÞ

Ω− ≈ −ω
�
Pini
3 þ P̄ini

3

D3

�
− i

�
Pini
3 Γ − P̄ini

3 Γ̄
D3

�
; ð12bÞ

Q0 ≈
−2ωθðPini

3 þ P̄ini
3 Þ

ωðPini
3 þ P̄ini

3 Þ þ iðΓPini
3 − Γ̄P̄ini

3 Þ
�
Pini
3

P̄ini
3

�
; ð12cÞ

Qþ ≈
4ωθPini

3 P̄ini
3

ΩþD3

�
1

1

�
; ð12dÞ

Q− ≈ −
2ωθðPini

3 þ P̄ini
3 Þ

Ω−D3

�
Pini
3

P̄ini
3

�
; ð12eÞ

whereD3 ¼ P3 − P̄3 is approximately a constant of motion
for Eq. (3) when θ ≪ 1. The expressions ofΩ� in the above
equation agree with those in Ref. [25], and they correspond
to the possible two types of flavor instability pointed out
in Ref. [20].
We note that Qþ ∝ θω=μ and Q− is independent of μ. In

the above numerical examples, the plus mode is unstable
with the exponential growth rate:

γþ ≈
ΓP̄ini

3 − Γ̄Pini
3

D3

; ð13Þ

and the minus mode has a exponential damping rate:

γ− ≈ −
ΓPini

3 − Γ̄P̄ini
3

D3

: ð14Þ

The dependence of Qþ on θ and μ explains the apparent
delay of the flavor conversions for a small effective mixing
angle and/or a large neutrino density. This dependence also
implies that a very tight error tolerance is required to solve
Eq. (3) numerically when both θ and ω=μ are small.
We have chosen Γ̄ < Γ in the above examples. However,

the electron antineutrinos tend to have larger average
energy than the neutrinos and, therefore, can have a larger
effective collision rate Γ̄. As we will see in the next section,
the minus mode can become unstable when the energy
dependence of the collision rates is taken into account.

III. NEUTRINO GAS WITH A CONTINUOUS
ENERGY SPECTRUM

A. Linear stability analysis

For a homogeneous, isotropic neutrino gas with a
continuous energy spectrum, Eq. (3) is generalized to

_Pω ¼ ðωBþLþ μDÞ × Pω − ΓωP⊥
ω : ð15Þ

Here we have restored the matter potential L ¼ ð0; 0; λÞ ¼
ð0; 0; ffiffiffi

2
p

GFneÞ, where ne is the net electron density. We
adopt the flavor isospin notation [30] with

P̄ω ¼ −P−ω; ð16Þ

so that

D ¼
Z

∞

−∞
Pωdω: ð17Þ

The flavor instability of the neutrino gas can be obtained by
linearizing Eq. (15) when jSωj ≪ 1 [31]:

i _Sω ¼ −ðωc2θ þ iΓωÞSω − μgðωÞ
Z

∞

−∞
Sω0dω0; ð18Þ

where

gðωÞ ¼ Pini
ω;3 ð19Þ

is the initial neutrino electron lepton number (νELN)
distribution or the flavor(-difference) distribution of the
neutrino. The total νELN

D3 ≈
Z

∞

−∞
gðωÞdω ð20Þ

is approximately a constant of motion for Eq. (15)
when both λ and μ are much larger than ω. As usual, we
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have dropped a term in Eq. (18) which is proportional to
λþ μD3 by choosing an appropriate corotating frame [30].
Applying the collective oscillation ansatz SωðtÞ ¼ Qωe−iΩt

to Eq. (18), we obtain

ΩQω ¼ −ðωc2θ þ iΓωÞQω − μCgðωÞ ð21Þ

or

Qω ¼ −
μCgðωÞ

Ωþ ωc2θ þ iΓω
; ð22Þ

where

C ¼
Z

∞

−∞
Qωdω: ð23Þ

Substituting Eq. (22) into Eq. (23) we obtain

Z
∞

−∞

gðωÞdω
Ωþ ωc2θ þ iΓω

¼ −
1

μ
ð24Þ

or

Z
∞

−∞

gðωÞðωP þ ωc2θÞdω
ðωP þ ωc2θÞ2 þ ðγ þ ΓωÞ2

¼ −
1

μ
; ð25aÞ

and

Z
∞

−∞

gðωÞðγ þ ΓωÞdω
ðωP þ ωc2θÞ2 þ ðγ þ ΓωÞ2

¼ 0; ð25bÞ

where Ω ¼ ωP þ iγ. Because Ω is the only quantity in the
left-hand side of Eq. (24) that depends on μ, and because γ
is expected to be of the same order as typical Γω, we assume
ωP ∝ μ in the large-μ limit and obtain the following
solution for Eq. (25):

ωP ≈ −μD3 ð26Þ

and

γ ≈ −
1

D3

Z
∞

−∞
gðωÞΓωdω: ð27Þ

In other words, the exponential growth rate of the collision-
induced flavor instability, when it exists, is the negative
average of the flavor-decohering collision rates of the
neutrinos weighted by the νELN distribution.
To make connection with the monoenergetic case, we

define

Γ ¼
R
∞
0 gðωÞΓωdωR
∞
0 gðωÞdω and Γ̄ ¼

R
0
−∞ gðωÞΓωdωR
0
−∞ gðωÞdω ð28Þ

as the effective collision rates for the neutrinos and the
antineutrinos, respectively, which are represented by the
total polarization vectors

P ¼
Z

∞

0

Pωdω and P̄ ¼ −
Z

0

−∞
Pωdω: ð29Þ

With these definitions, Eq. (27) bears the same form as
Eq. (14) and corresponds to the minus mode in the
monoenergetic limit.
The monoenergetic limit provides an interesting explan-

ation for the seemingly counterintuitive phenomenon that
neutrino collisions can lead to flavor instability in a dense
neutrino gas. It is true that neutrino collisions tend to reduce
the flavor coherences of both the neutrinos and antineu-
trinos which are represented by the magnitudes of P⊥ and
P̄⊥, respectively. When the effective collision rate of ν̄e is
sufficiently larger than that of νe, P̄⊥ shrinks faster than P⊥,
which results in a net increase of D⊥ ¼ P⊥ − P̄⊥ when
there are more νe than ν̄e initially. In a very dense neutrino
gas, both P and P̄ are locked in the antialigned orientations
and their evolution is mainly driven by D ¼ P − P̄ [see
Eq. (3)]. An increase of D⊥ implies a further tilt away of D
and, therefore, both P and P̄ from their original directions,
which is the cause of the flavor instability.
Equation (27) shows that the existence of the collision-

induced flavor instability requires a crossing in the νELN
distribution gðωÞ because the neutrino collision rates Γω

are always positive. This is reminiscent of a similar
condition in the case of a collisionless neutrino gas [32]
and is a special case of the general requirement for the
flavor instability [33]. In addition, the growth rate of
this instability depends only on the shape of the νELN
distribution gðωÞ and the decohering neutrino collision
rates Γω. It is independent of the matter density, the
neutrino density, and the neutrino mass splitting when
both μ and λ are large.

B. Numerical examples

As illustrative examples, we consider the Fermi-Dirac
distribution for the initial neutrino energy spectrum with

gðωÞ ∝
�
E4=½expðE=TνeÞ þ 1� if ω > 0;

−E4=½expðE=T ν̄eÞ þ 1� if ω < 0;
ð30Þ

where EðωÞ ¼ jΔm2=2ωj, and the extra factor of E2 stems
from dE=dω. We normalize the initial νELN distribution by
the following conditions:Z

∞

0

gðωÞdω ¼ 1 and
Z

0

−∞
gðωÞdω ¼ −0.8: ð31Þ

We choose Tνe ¼ 4 MeV and T ν̄e ¼ 5 MeV, which give
the initial average energies hEνei ≈ 12.6 MeV and hEν̄ei≈
15.8 MeV, respectively. We discretize the energy spectrum
of the neutrino (as well as that of the antineutrino) into
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400 equal-sized bins between 0 and 80 MeV and solve
Eq. (15) numerically for three combinations of λ and μ:
ðμ0=10; μ0=10Þ, ðμ0=2; μ0=10Þ, and ðμ0=10; μ0=2Þ with
μ0 ¼ 105 km−1. We also choose Δm2 ¼ Δm2

atm ≈ 2.5×
10−3 eV−2, θ ¼ θ13 ≈ 0.15, and1

Γω ¼ 1 km−1
�

E
10 MeV

�
2

: ð32Þ

In Fig. 2 we plot the neutrino survival probability Pνν and
the flavor coherence S of the 15.1-MeV neutrino in all three
cases. We also plot these quantities for various neutrino
energies in the case with λ ¼ μ ¼ μ0=10 in Fig. 3. We note
that, similar to fast-flavor conversions [14,15], the flavor
conversions in these neutrino gases are independent of Δm2

when jωj ≪ μ. Unlike typical fast-flavor conversions, how-
ever, collision-induced flavor conversions can depend on the
neutrino energy through the energy-dependent collision rates
Γω. Because we assume the same collision rate for νe and ν̄e
of the same energy, bothPνν and S are virtually the same for
both the neutrino and the antineutrino.
As in the monoenergetic gases, the flavor coherences of

the neutrinos in a dense gas with a continuous energy
spectrum experience exponential growth induced by the

collision. As a comparison, we plot in the lower panels of
Figs. 2 and 3 the exponential function eγt=1000 as the
dotted line, where γ ≈ 2.59 km−1 is solved from Eq. (27).
This exponential growth rate is independent of the matter
density or the neutrino density (Fig. 2). Increasing the
matter density has a similar effect as decreasing the
effective mixing angle in the monoenergetic case, both
of which decrease the initial flavor coherences. Unlike the
monoenergetic case, however, increasing the neutrino
density has little impact on the initial flavor coherences.
This shows that the collective unstable mode here is like the
minus mode in the monoenergetic case where the initial
amplitude is also independent of μ [see Eq. (12)].
Figure 3 shows that although all the neutrinos of different

energies behave similarly when the flavor coherences are
small, this unison seems to fall apart in the nonlinear
regime. The neutrinos of the lowest energies experience
only a slight flavor conversion between 10 and 20 μs
and are restored to their original flavors afterwards. The
neutrinos of the highest energies, however, approach a
complete flavor depolarization which is represented by
Pνν ¼ 1=2. The flavor coherences of most of the neutrinos,
however, do fall off at the same rate γ0 which is also
determined by Eq. (27) except with gðωÞ replaced by the
final νELN distribution

gfinðωÞ ¼ lim
t→∞

Pω;3ðtÞ: ð33Þ

In Fig. 4 we plot the final neutrino survival probability
PννðEÞ (at 30 μs) as well as the third components of the
polarization vectors of both neutrinos and antineutrinos

FIG. 2. Similar to Fig. 1 but for the 15.1-MeV neutrino in the
neutrino gas with a continuous energy spectrum. The results for
three combinations of the strength of the matter potential λ and
that of the neutrino potential μ (as labeled) are shown as the solid,
dashed, and dotted-dashed curves, respectively, two of which
largely overlap with each other. The survival probabilities of the
neutrino and the antineutrino are virtually the same and are
not plotted separately. The slanted dotted line in the bottom
panel represents a pure exponential growing function ∼eγt with
γ ≈ 2.59 km−1 predicted by Eq. (27). The slanted dotted-
dashed line represents an exponential decay function ∼eγ0t with
γ0 ≈ −0.553 km−1 which is determined by Eq. (27) with the final
νELN distribution.

FIG. 3. Similar to Fig. 2 but for the case μ ¼ λ ¼ 0.1μ0 only
and for the neutrinos with energies from 0.1 MeV (darkest solid
curves) to 75.1 MeV (lightest solid curves) with an increment of
5 MeV (as labeled).

1For the neutrinos with energies much less than 1 GeV, their
rates of collision with nucleons are proportional to E2. Interested
readers can refer to, e.g., Ref. [20] for an estimate of these rates.
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(rescaled by the largest value of Pini
3 ). All three test cases

with different matter and neutrino densities achieve the
same PννðEÞ, P3ðEÞ, and P̄3ðEÞ in the end.
As in the case of the monoenergetic neutrino gases, we

plot the evolution of the neutrino gas beyond the linear
regime only for the completeness of the solution. In a real
astrophysical environment, however, neutrino emissions
and absorptions that change the populations of the neutrino
species must be included, which are likely to bring the νe
and ν̄e densities back to their equilibrium values [20].

IV. DISCUSSION AND CONCLUSIONS

Wehave analyzed the collision-induced flavor instabilities
in the dense, homogeneous, and isotropic neutrino gas with a
single energy as well as that with a continuous energy
spectrum. While there are two collective modes (�) in the
monoenergetic case, it seems that only the minus mode sur-
vives in the neutrino gas with a continuous energy spectrum.
We showed that the exponential growth rate of the collision-
induced collective mode is determined by an average of
the flavor-decohering collision rates. [See Eq. (27).] This
implies that a crossed νELN energy distribution is required
for the collision-induced collective mode to be unstable.

This condition is a special case of the general requirement for
the existence of the flavor instability [33]. In a very dense
neutrino gas, the collision-induced flavor instability is
independent of the mass splitting, the vacuum-mixing angle,
and the density of the neutrino. A large matter density has no
impact on the exponential growth rate of the collective mode
either, although it suppresses its initial amplitude as in the
case of collisionless flavor instabilities [29].
Although we focused on the homogeneous and isotropic

neutrino gases in this work, collision-induced instabilities
can well exist in inhomogeneous and anisotropic envi-
ronments [26] and even interact with fast-flavor conver-
sions under appropriate conditions [20,23–25,34,35].
However, it is important to note that collision-induced
flavor conversions can occur without the crossing of the
angular distribution of the νELN which is required for fast-
flavor instabilities [36,37]. In addition, collision-induced
flavor conversions can take place near the surface of or
even inside the proto-neutron star where the normal/slow
collective flavor oscillations are suppressed by the large
matter density and the neutrino density [29,38,39]. We
would like to point out that the expression of its exponential
growth rate suggests that the collision-induced flavor
instability may not exist in the neutron star merger
environment. This is because ν̄e has both a larger abun-
dance and a harder spectrum than νe in such an environ-
ment (see, e.g., Ref. [40]) which results in an exponential
damping of the collective mode. Of course, more detailed
research is needed to ascertain the actual impact of
collision-induced flavor conversions in real astrophysical
environments. For example, a high neutron-to-proton ratio
can bump up the effective νe collision rate and changes the
picture completely.
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