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The method of time-delay interferometry (TDI) is proposed to cancel the laser noise in space-borne
gravitational-wave detectors. Among all different TDI combinations, the most commonly used ones are the
orthogonal channels A, E, and T, where A and E are signal-sensitive and T is signal-insensitive. Meanwhile,
for the detection of stochastic gravitational-wave background, one needs to introduce the overlap reduction
function to characterize the correlation between channels. For the calculation of overlap reduction function,
it is often convenient to work in the low-frequency approximation, and assuming the equal-arm Michelson
channels. However, if one wishes to work on the overlap reduction function of A=E channels, then the low-
frequency approximation fails. We derive the exact form of overlap reduction function for A=E channels.
Based on the overlap reduction function, we calculate the sensitivity curves of TianQin, TianQin Iþ II, and
TianQinþ LISA. We conclude that the detection sensitivity calculated with A=E channels is mostly
consistent with that obtained from the equal-arm Michelson channels.
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I. INTRODUCTION

A stochastic gravitational-wave (GW) background
(SGWB) is formed by the incoherent superposition of plenty
of unresolved GWs [1–3]. Especially, SGWB will become
foreground when exceeding the detector noise level [4,5].
The origin of SGWB can be generally divided into astro-
physics and cosmology [6,7]. The astrophysical-origin
contains nearby objects, among which the Galactic double
white dwarf (DWD) is predicted to produce an anisotropic
foreground [8,9]. The cosmological-origin is related to the
physical processes of the early Universe, and the cosmo-
logical SGWB is generally considered to be highly isotropic
unless there is a specific physical mechanism [10].
Currently, the laser interferometry is applied to detect

GWs.The typical laser interferometer is equal-armMichelson
consisting of four laser links. The equal-arm Michelson has
been employed for ground-based GW detectors [11,12],
where the laser noise experiences the same delays in the
links and hence cancels. Unlike ground-based GW detectors,
space-borne GW detectors have unequal armlengths due to
the movement of satellites [13,14]. Thus, it is hardly to
construct an equal-arm Michelson for space-borne GW
detectors, and the laser noise will dominate the detector
noise [15]. To cancel the laser noise in the unequal-arm
detectors, Tinto et al. [16,17] proposed the time delay

interferometry (TDI) technique adopting specific combina-
tions of laser links.Amongall possibleTDI combinations, the
TDI channel A, E, and T are the most commonly used, and
they form the orthogonal channel group AET. In the GW
detection, A=E channels are sensitive to GWs, while T
channel works effectively for monitoring the detector noise.
Depending on whether more than one detector works at

the same time, two different detection strategies are raised.
One is cross-correlation method [18–21], which is applied
to the scenario that multiple detectors are employed to
detect a common SGWB. Under the assumption that the
noise of two detectors is uncorrelated, one can distinguish
the SGWB signal from the detector noise by correlating the
outputs from two detectors. The other one is null-channel
method [22,23], which is proposed for a single detector.
In this method, detector noise is monitored by the null
channel, so that the SGWB signal can be extracted by
autocorrelating the output from the detector.
When employing the above two methods to detect

SGWB, the key is the auto- or cross-correlation of the
detector channel. To indicate the correlation, one needs to
introduce the frequency-dependent correlation coefficient
of SGWB signals, i.e., overlap reduction function (ORF)
[20,21]. ORF is determined by: (i) detector orientation;
(ii) detector separation, which denotes the distance between
the GWmeasurement locations of the detector channel. For
the equal-arm Michelson consisting of one laser interfer-
ence site, the detector separation can be directly defined as*huyiming@sysu.edu.cn
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the distance between the interference site of both equal-arm
Michelsons. However, A=E channels contain multiple
laser interference sites due to their construction [24], it
is nontrivial to define the detector separation. Then by
simplifying A=E channels to two orthogonal equal-arm
Michelsons under the low-frequency approximation,
Seto et al. calculated the ORF for multiple triangular
detectors [25]. Splitting the TDI channel into component
links, Hu et al. derived the ORF for any TDI channel without
low-frequency approximation, based on which they calcu-
lated the ORF of A=E channels for TianQinþ LISA [26].
ORF only involves the correlation between the detector

channel, for which if one wants to demonstrate the
detection capability, the detector noise level also needs
to be considered. In general, detector noise level is
characterized by noise power spectral density (PSD).
Then based on the ORF and noise PSD, the sky-average
sensitivity curve is introduced [27]. Furthermore, the
improvement in sensitivity that comes from the accumu-
lation of correlation time and integrating over frequency
also should be illustrated for SGWB detection [28].
Therefore, two more appropriate sensitivity curves, namely
power-law integrated sensitivity (PLIS) curve [29] and
peak-integrated sensitivity (PIS) curve [30] are proposed.
This paper aims to investigate the impacts of A=E

channels on SGWB detection. First, we select a reference
interference site for the detector channel, then the distance
between the reference interference sites can be defined as the
detector separation. Following this rule, one can calculate
the ORF for any channel. Next, for TianQin, TianQin Iþ II
and TianQinþ LISA, we calculate the ORFs of the equal-
arm Michelson and A=E channels without low-frequency
approximation, respectively. Based on the ORFs, we further
draw the corresponding PLIS and PIS curves. We find that
the sensitivity curve of A=E channels is basically consistent
with that of the equal-arm Michelson.
The outline of this paper is as follows. In Sec. II, we

introduce the strength of SGWB. The channel response
to SGWB is discussed in Sec. III. The ORF is derived
in Sec. IV. Sec. V and VI are applied to assess SGWB
detection. Our conclusions are discussed in Sec. VII.
In addition, we show the response to GW for equal-arm
Michelson in Appendix A. The discussion on the ORF
and noise level for channels are in Appendix B and
Appendix C, respectively. The derivation for cross-
correlation and null-channel methods is shown in
Appendix D.

II. STRENGTH OF STOCHASTIC
GRAVITATIONAL-WAVE BACKGROUND

In our work, we focus on stationary, unpolarized and
Gaussian SGWB. Then the statistical properties of the
SGWB can be characterized by the dimensionless energy
spectral density ΩgwðfÞ, which is normalized by the critical
energy density ρc [31]:

ΩgwðfÞ ¼
1

ρc

dρgw
dðln fÞ ; ð1Þ

where ρc ≡ 3H2
0c

2=ð8πGÞ with the light speed c, the
gravitational constant G, and the Hubble constant H0.
In general, we can adopt h20Ωgw rather than Ωgw to
remove the measurement uncertainty of H0, where H0 ¼
h0 × 100 km s−1 Mpc−1. dρgw denotes the GW energy
density ρgw stored in the frequency segment df, and in
terms of the transverse-traceless metric perturbation
habðt; x⃗Þ, GW energy density can be defined as [32,33]

ρgw ¼ c2

32πG
h _habðt; x⃗Þ _habðt; x⃗Þi; ð2Þ

where hi indicates averaging over several wavelengths or
periods of the GW.
Since the SGWB is a collection of a large number of

GWs, the transverse-traceless metric perturbation of the
SGWB can be expanded as a superposition of the GW with
wave vector k̂:

habðt; x⃗Þ ¼
Z

∞

−∞
df

Z
S2
dΩ̂k̂h̃abðf; k̂Þei2πf½t−k̂·x⃗ðtÞ=c�; ð3Þ

where habðt; x⃗Þ ¼ habðt − k̂ · x⃗=c; 0⃗Þ. In terms of polariza-
tion modes P ¼ þ;× and polarization tensors ePabðk̂Þ,
the Fourier amplitude h̃abðf; k̂Þ can be expressed
as: h̃abðf; k̂Þ ¼

P
P¼þ;× h̃Pðf; k̂ÞePabðk̂Þ. The amplitude

h̃Pðf; k̂Þ is a random value with zero-mean, and the
conjugate symmetry of Fourier transform holds:
h̃Pðf; k̂Þ ¼ h̃�Pð−f; k̂Þ.
Assuming SGWB is stationary, the PSD of SGWB in

propagation direction k̂ can be defined by

hh̃Pðf; k̂Þh̃�P0 ðf0; k̂0Þi ¼ 1

4
δðf − f0ÞδPP0δ2ðk̂ − k̂0ÞPhðf; k̂Þ;

ð4Þ

where the factor of 1=4 agrees with the one-sided PSD and
the contribution of each polarization. The PSD Phðf; k̂Þ
is factorized by angular distribution Phðk̂Þ and spectral
density H̄ðfÞ∶ Phðf; k̂Þ ¼ Phðk̂ÞH̄ðfÞ. The spectral den-
sity can be further normalized by the reference frequency:
H̄ðfÞ ¼ H̄ðfrefÞðf=frefÞϵ, where the power-law index ϵ
depends on the origin of SGWB [34]. For an anisotropic
SGWB, angular distribution Phðk̂Þ is usually decomposed
into spherical harmonics [35]:

Phðk̂Þ ¼
X∞
l¼0

Xl

m¼−l
PlmYlmðk̂Þ: ð5Þ
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Furthermore, the sum of Ph in all directions is the one-
sided strain PSD ShðfÞ of SGWB:

ShðfÞ ¼
Z
S2
dΩ̂k̂Phðf; k̂Þ; ð6Þ

and for an unpolarized SGWB:

Sþh ðfÞ ¼ S×h ðfÞ ¼
1

2
ShðfÞ: ð7Þ

Then in terms of Eq. (3), Eq. (4) and Eq. (6), the energy
density of SGWB can be calculated by

ρgw ¼ c2

32πG

Z
∞

−∞
df

Z
∞

−∞
df0

Z
S2
dΩ̂k̂

Z
S02

dΩk̂0

× 4π2
X
PP0

hh̃Pðf; k̂Þh̃�P0 ðf0; k̂0ÞiePabðk̂ÞeabP0 ðk̂0Þ

× ei2π½ðf−f0Þt−ðk̂−k̂
0Þ·x⃗ðtÞ=c�

¼ πc2

4G

Z
∞

0

dff2ShðfÞ; ð8Þ

Combined with Eq. (1) and Eq. (8), the energy spectral
density ΩgwðfÞ can be converted to ShðfÞ through

ΩgwðfÞ ¼
2π2

3H2
0

f3ShðfÞ: ð9Þ

Note that in some studies, ShðfÞ only contains the con-
tribution of one polarization, so the factor of 2 on the
molecule of Eq. (9) turns to 4 [36].

III. CHANNEL RESPONSE TO STOCHASTIC
GRAVITATIONAL-WAVE BACKGROUND

In this section, we further discuss the response of
channels to SGWB on the detector. Generally speaking,
the channel response to SGWB always changes due to
detector motion. However, it is reasonable to assume that
the response is nearly unchanged within a sufficiently
short period ½t0 − T=2; t0 þ T=2�. Then with the help of
short-term Fourier transform, the SGWB signal that is a
convolution of the metric perturbation habðt; x⃗Þ and the
impulse response Dabðt; x⃗Þ can be expressed as [37]:

hðt; t0Þ ¼ Dab½t; x⃗ðt0Þ� � hab½t; x⃗ðt0Þ�

¼
X

P¼þ;×

Z
∞

−∞
df

Z
S2
dΩ̂k̂F

Pðf; k̂; t0Þh̃Pðf; k̂Þ

× ei2πf½t−k̂·x⃗ðt0Þ=c�; ð10Þ

where x⃗ labels the location where GW measurement
occurs. The response function can be decomposed as
FPðf; k̂; t0Þ ¼ ePabðk̂ÞFabðf; k̂; t0Þ with

Fabðf; k̂; t0Þ ¼
Z

t0þT=2

t0−T=2
dτ

Z
d3y⃗Dab½τ; y⃗ðt0Þ�

× e−i2πf½τ−k̂·y⃗ðt0Þ=c�; ð11Þ

and the frequency domain signal is expressed as

h̃ðf; t0Þ ¼
Z
S2
dΩ̂k̂

X
P¼þ;×

FPðf; k̂; t0Þh̃Pðf; k̂Þe−i2πfk̂·x⃗ðt0Þ=c:

ð12Þ

For ground-based GW detectors [11,12], the equal-arm
Michelson can be employed to detect GWs because the
armlength keeps unchanged. When it comes to space-borne
detectors [13,14], the armlength is difficult to be main-
tained and the TDI channel is introduced to cancel the laser
noise [22,23,38]. However, to facilitate the discussion for
the impacts of the TDI channel A/E on SGWB detection,
we will construct both the equal-arm Michelson and A=E
channels in the same regular triangle detector.
As shown in Fig. 1, we can construct an equal-arm

Michelson by a vertex and two adjacent edges. Following
this rule, the equal-armMichelson channel group M1M2M3

can be constructed based on the corner satellite A0, B0

and C0, respectively. In addition, by defining the round trip
of the laser in one arm as two-way tracking, the equal-arm
Michelson consists of two different two-way trackings.
Then the response functions of channel group M1M2M3

can be written as

FP
M1
ðf;k̂;t0Þ¼FP

II½f;k̂;û1ðt0Þ�−FP
II½f;k̂;û2ðt0Þ�;

FP
M2
ðf;k̂;t0Þ¼FP

II½f;k̂;û3ðt0Þ�−FP
II½f;k̂;−û1ðt0Þ�;

FP
M3
ðf;k̂;t0Þ¼FP

II½f;k̂;−û2ðt0Þ�−FP
II½f;k̂;−û3ðt0Þ�; ð13Þ

FIG. 1. Schematic diagram of a regular triangle detector.
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where FP
II is the response function of the two-way tracking,

and A0B0

���! ¼ Lû1, A0C0

���! ¼ Lû2, B0C0

���! ¼ Lû3 with the
armlength L. More details are shown in Appendix A.
In terms of the two responses of the same equal-arm

Michelson with a time delay of 2L=c, the response function
of TDI Michelson X can be obtained by

FP
Xðf; k̂; t0Þ ¼ FP

M1
ðf; k̂; t0Þ − FP

M1
ðf; k̂; t0 − 2L=cÞ

¼ ð1 − e−i2f=f� ÞFP
M1
ðf; k̂; t0Þ: ð14Þ

Following the cyclic substitution, the response functions of
Y and Z are

FP
Yðf; k̂; t0Þ ¼ ð1 − e−i2f=f� ÞFP

M2
ðf; k̂; t0Þ;

FP
Zðf; k̂; t0Þ ¼ ð1 − e−i2f=f� ÞFP

M3
ðf; k̂; t0Þ: ð15Þ

Furthermore, the orthogonal channel group AET can be
formed by channel group XYZ [24,39,40]:

A ¼ 1ffiffiffi
2

p ðZ − XÞ;

E ¼ 1ffiffiffi
6

p ðX − 2Yþ ZÞ;

T ¼ 1ffiffiffi
3

p ðXþ Yþ ZÞ: ð16Þ

Note that, the correlation between channel X, Y and Z is not
taken into account in Eq. (16). Considering this correlation,
Adams et al. [41,42] provide a new construction for
channel group AET. In this work, we still adopt Eq. (16)
which is more widely used.
Through the above construction, there will be multiple

laser interference sites in channel A, E, and T. In order to
derive the response functions of channel group AET, one
needs to calculate the corresponding SGWB signals based
on Eq. (12):

h̃Aðf; t0Þ ¼
1ffiffiffi
2

p ðh̃Zðf; t0Þ − h̃Xðf; t0ÞÞ

¼
X

P¼þ;×

Z
S2
dΩ̂k̂

1ffiffiffi
2

p
h
FP
Zðf; k̂; t0Þe−i2πfk̂·OC0

⟶ ðt0Þ=c − FP
Xðf; k̂; t0Þe−i2πfk̂·OA0

⟶
ðt0Þ=c

i
h̃Pðf; k̂Þ

¼
X

P¼þ;×

Z
S2
dΩ̂k̂F

P
Aðf; k̂; t0Þh̃Pðf; k̂Þe−i2πfk̂·OA0

⟶ ðt0Þ=c;

h̃Eðf; t0Þ ¼
1ffiffiffi
6

p ðh̃Xðf; t0Þ − 2h̃Yðf; t0Þ þ h̃Zðf; t0ÞÞ

¼
X

P¼þ;×

Z
S2
dΩ̂k̂F

P
Eðf; k̂; t0Þh̃Pðf; k̂Þe−i2πfk̂·OA0

⟶ ðt0Þ=c;

h̃Tðf; t0Þ ¼
1ffiffiffi
3

p ðh̃Xðf; t0Þ þ h̃Yðf; t0Þ þ h̃Zðf; t0ÞÞ

¼
X

P¼þ;×

Z
S2
dΩ̂k̂F

P
Tðf; k̂; t0Þh̃Pðf; k̂Þe−i2πfk̂·OA0

⟶ ðt0Þ=c; ð17Þ

where the vertex A0 is selected to the reference interference site. Then the response functions are

FP
Aðf; k̂; t0Þ ¼

1ffiffiffi
2

p
h
FP
Zðf; k̂; t0Þe−i2πfk̂·A0C0

⟶ ðt0Þ=c − FP
Xðf; k̂; t0Þ

i
;

FP
Eðf; k̂; t0Þ ¼

1ffiffiffi
6

p
h
FP
Xðf; k̂; t0Þ − 2FP

Yðf; k̂; t0Þe−i2πfk̂·A0B0

⟶ ðt0Þ=c þ FP
Zðf; k̂; t0Þe−i2πfk̂·A0C0

⟶ ðt0Þ=c
i
;

FP
Tðf; k̂; t0Þ ¼

1ffiffiffi
3

p
h
FP
Xðf; k̂; t0Þ þ FP

Yðf; k̂; t0Þe−i2πfk̂·A0B0

⟶ ðt0Þ=c þ FP
Zðf; k̂; t0Þe−i2πfk̂·A0C0

⟶ ðt0Þ=c
i
: ð18Þ
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Similarly, one can also construct channel group A0E0T0 for another regular triangle detector with the response functions:

FP
A0 ðf; k̂; t0Þ ¼

1ffiffiffi
2

p
h
FP
Z0 ðf; k̂; t0Þe−i2πfk̂·A0

0
C0
0

⟶
ðt0Þ=c − FP

X0 ðf; k̂; t0Þ
i
;

FP
E0 ðf; k̂; t0Þ ¼

1ffiffiffi
6

p
h
FP
X0 ðf; k̂; t0Þ − 2FP

Y0 ðf; k̂; t0Þe−i2πfk̂·A0
0
B0
0

⟶
ðt0Þ=c þ FP

Z0 ðf; k̂; t0Þe−i2πfk̂·A0
0
C0
0

⟶
ðt0Þ=c

i
;

FP
T0 ðf; k̂; t0Þ ¼

1ffiffiffi
3

p
h
FP
X0 ðf; k̂; t0Þ þ FP

Y0 ðf; k̂; t0Þe−i2πfk̂·A0
0
B0
0

⟶
ðt0Þ=c þ FP

Z0 ðf; k̂; t0Þe−i2πfk̂·A0
0
C0
0

⟶
ðt0Þ=c

i
; ð19Þ

where A0
0, B

0
0, C

0
0 are the vertexes, and A0

0 is the reference interference site.

For the same detector, there is no correlation between the
responses of A, E, and T to SGWB, and T is the null
channel where the response to SGWB is highly suppressed.
More details are shown in Appendix B.

IV. OVERLAP REDUCTION FUNCTION

In order to characterize the statistical properties of
SGWB signal, one can introduce the correlation PSD1:

hh̃Iðf; t0Þh̃�Jðf0; t0Þi ¼
1

2
δðf − f0ÞPhIJðf; t0Þ; ð20Þ

where

PhIJðf; t0Þ ¼ ϒIJðf; t0ÞShðfÞ: ð21Þ

Then we can connect the PSDs of SGWB and SGWB
signal through the universal ORFϒIJ, which is independent
of SGWB spectral density HðfÞ:

ϒIJðf; t0Þ ¼
R
S2 dΩ̂k̂YIJðf; k̂; t0ÞPhðk̂ÞR

S2 dΩ̂k̂Phðk̂Þ
: ð22Þ

The geometric factor specifies the correlation between the
responses of channel I and J to SGWB:

YIJðf; k̂; t0Þ ¼
1

2

X
P¼þ;×

FP
I ðf; k̂; t0ÞFP�

J ðf; k̂; t0Þ

× e−i2πfk̂·½x⃗Iðt0Þ−x⃗Jðt0Þ�=c; ð23Þ

where x⃗I;J denotes the laser interference sites of channel I
and J.
For an isotropic SGWB, the universal ORF turns to the

classical ORF:

ΓIJðf; t0Þ ¼
1

4π

Z
S2
dΩ̂k̂YIJðf; k̂; t0Þ: ð24Þ

For the case of the channel A and A0 mentioned above,
the ORF

ΓAA0 ðf; t0Þ ¼
1

8π

X
P¼þ;×

Z
S2
dΩ̂k̂F

P
Aðf; k̂; t0ÞFP�

A0 ðf; k̂; t0Þ

× e−i2πfk̂·A
0
0
A0

⟶
ðt0Þ=c; ð25Þ

where A0
0A0 denotes the detector separation. Especially, the

ORF of one channel reduces to the transfer function RðfÞ.
In the situation that ORF changes over time, we need to
further define the time-averaged ORF for the total corre-
lation time T tot [43]:

Γ̄IJðfÞ ¼
1

T tot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
T tot

0

dtjΓ̂IJðf; t0Þj2
s

: ð26Þ

For TianQin Iþ II and TianQinþ LISA, one can con-
struct four pairs of channels for cross-correlation detection,
then the total ORF of TianQin Iþ II and TianQinþ LISA
is defined as [25]

ΓIJtotðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I;J

jΓ̄IJðfÞj2
s

; ð27Þ

where I and J label a pair of orthogonal equal-arm
Michelsons or A=E channels, i.e., ΓMMtot

or ΓAEtot
. Next,

we will demonstrate the calculation of the ORF for TianQin
Iþ II and TianQinþ LISA, respectively. And as a short-
hand label, we might employ TQ for TianQin, TT for
TianQin Iþ II, TL for TianQinþ LISA in the figures and
equations.
For TianQin Iþ II, since the orbital planes of TianQin

and TianQin II will be perpendicular to each other all
the time, the total ORF will not change over time under
the low-frequency approximation [25]. However, if low-
frequency approximation fails, the total ORF will be
affected by the launch times of two detectors, i.e., the
initial angles of TianQin and TianQin II [43]. We denote the
initial angular difference between TianQin and TianQin II
with γ0, and show the total ORF of A=E channels within1The autocorrelation PSD PhI is a real function.
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one orbital period of TianQin in Fig. 2. We find that the
optimal ORF will be obtained when γ0 ¼ ð2nþ 1Þπ with
n ¼ 0; 1; 2…, i.e., the launch time difference between
TianQin and TianQin II should be set to the semi-integer
multiple of the orbital period. However, our previous work
concluded that for the equal-arm Michelson, the launch
time difference should be an integer multiple of the orbital
period.2 Note that, there must be an overlap in the operation
periods of TianQin and TianQin II, or the correlation time
will drop to 0. Because the nominal working mode of
TianQin is set to “threemonths onþ threemonths off”, one
needs to extend the operating time so that TianQin and
TianQin II will run simultaneously for sufficient time.
As for TianQinþ LISA, the angle between the orbital

planes of TianQin and LISA will change periodically in a
cycle of about one year [43]. Besides, under the premise of
LISA operating throughout the year, the TianQinþ LISA
configuration can perform cross-correlation detection only
when TianQin is running. In terms of the nominal working
mode of TianQin, we show the ORF of TianQinþ LISA
throughout one year with low-frequency approximation in
Fig. 3. The top and bottom panels are the results of the
equal-arm Michelson and A=E channels, respectively,
where the dashed part indicates that TianQin is off duty.
Meanwhile, we mark the perihelion with blue dot.3

The primary and secondary peaks of both ORFs occur at
t ¼ 0.176; 0.676 yr, on which TianQin is off. Furthermore,
since the orbital period of LISA is about 100 times that of
TianQin, regardless of the initial angle of TianQin, the total
ORF of TianQinþ LISA will not change after one year of
cross-correlation detection.
Based on the above analysis, the total ORFs of

TianQin Iþ II and TianQinþ LISA are shown in

Fig. 4, where the transfer function of TianQin is also
involved for comparison. Similar to the transfer function,
the ORF of equal-arm Michelson remains constant with
low-frequency approximation, while for A=E channels it
is proportional to f2.

V. DETECTION METHOD

The output sðtÞ of detector channel mainly contains
SGWB signal hðtÞ and channel noise nðtÞ. Unless the
SGWB signal is much larger in magnitude than the channel

FIG. 3. ORFs of the equal-arm Michelson (top panel) and A=E
channels (bottom panel) for TianQinþ LISA.

FIG. 2. Total ORF of TianQin Iþ II for different initial angle
difference γ0.

FIG. 4. Transfer function and ORF for different detector
configurations. Red, green and blue lines match TianQin,
TianQin Iþ II and TianQinþ LISA, while dashed and solid
lines denote the results of the equal-arm Michelson and A=E
channels, respectively. Due to the limitation of calculation
accuracy, the ORF for TianQinþ LISA is truncated to 0.1 Hz.

2It is shown in Fig. 4 of Ref. [43].
3For the equal-arm Michelson, one can set f ¼ 0 Hz to get

the ORF under the low-frequency approximation; but for
A=E channels, the ORF drops to 0 when f ¼ 0 Hz, so we set
f ¼ 10−5 Hz.
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noise, it is almost impossible to separate the signal from
the noise through a single-channel measurement [28]. The
general strategies are cross-correlating the outputs from
different noise-independent channels [18,20,21] and auto-
correlating the output from one channel under the noise
monitoring of the null channel [37,44].
In cross-correlation method, one can define the product

of two outputs as the correlator, then the measurement can
be obtained by integrating the correlator over time:

SIJðt0Þ ¼
Z

t0þT=2

t0−T=2
dt
Z

t0þT=2

t0−T=2
dt0sIðtÞsJðt0ÞQIJðt − t0; t0Þ

≈
Z

t0þT=2

t0−T=2
dt
Z

∞

−∞
df

Z
∞

−∞
df0s̃Iðf; t0Þs̃�Jðf0; t0Þ

×
P�
hIJ
ðf; t0Þ

PnIðfÞPnJðfÞWIJðf; t0Þ
e−i2πðf−f0Þt; ð28Þ

where Pn is the noise PSD, and the correction function

WIJðf; t0Þ ¼ 1þ PhIðf; t0ÞPnJðfÞ þ PhJðf; t0ÞPnIðfÞ
PnIðfÞPnJðfÞ

þ PhIðf; t0ÞPhJðf; t0Þ þ jPhIJðf; t0Þj2
PnIðfÞPnJðfÞ

: ð29Þ

Under the assumption that SGWB signal and channel noise
are stationary in the time interval ½t0 − T=2; t0 þ T=2�, the
filter function QIJðt; t0Þ ¼ QIJðt − t0Þ.
In terms of the expectation value and variance of the

measurement

μðt0Þ ¼ hSIJðt0Þi;
σ2ðt0Þ ¼ hSIJðt0ÞSIJðη0Þi − hSIJðt0ÞihSIJðη0Þi; ð30Þ

the signal-to-noise ratio (SNR) can be obtained by

ρðt0Þ ¼
μðt0Þ
σðt0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

Z
fmax

fmin

df
jPhIJðf; t0Þj2

PnIðfÞPnJðfÞWIJðf; t0Þ

s
:

ð31Þ

For a single TianQin-like detector, the correlation
between the SGWB signal of noise-independent channels
cancels [41,45]. Thus the cross-correlation method will fall,
and the null-channel method need to be introduced.
For the channel group AET, one can construct the

correlator for null-channel method by

s0ðt; t0Þ ¼
X
I¼A;E

�
sIðtÞsIðt0Þ −

1

2

Z
∞

−∞
dfei2πfðt−t0ÞPnIðfÞ

�
;

ð32Þ

where the noise PSD of A=E channels can be monitored by
the null channel T. Similar to Eq. (28), we can obtain the
measurement by

Kðt0Þ ¼
Z

t0þT=2

t0−T=2
dt
Z

t0þT=2

t0−T=2
dt0s0ðt; t0ÞQIIðt − t0; t0Þ

≈
X
I¼A;E

Z
t0þT=2

t0−T=2
dt
Z

∞

−∞
df

Z
∞

−∞
df0

�
s̃Iðf; t0Þ

× s̃�I ðf0; t0Þ −
1

2
PnIðfÞ

�
PhI ðf; t0Þe−i2πðf−f

0Þt0

P2
nIðfÞWIðf; t0Þ

;

ð33Þ
where the correction function

WIðf; t0Þ ¼
�
1þ PhIðf; t0Þ

PnIðfÞ
�

2

: ð34Þ

For a symmetric scenario, one can further assume

PhAðf; t0Þ ¼ PhEðf; t0Þ;
PnAðfÞ ¼ PnEðfÞ: ð35Þ

Then the SNR of null-channel method is given by

ρðt0Þ ¼
hKðt0ÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihKðt0ÞKðη0Þi − hKðt0ÞihKðη0Þi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

Z
fmax

fmin

df
P2
hI
ðf; t0Þ

P2
nI ðfÞWIðf; t0Þ

s
: ð36Þ

By setting I ¼ J, the SNR of cross-correlation method
[i.e., Eq. (31)] returns to that of null-channel method [i.e.,
Eq. (36)]. More details are shown in Appendix D.
As the SNR is proportional to

ffiffiffiffi
T

p
, we can accumulate

a sufficiently high SNR by correlating plenty of datasets.
For the total correlation time T tot ¼ nT, the SNR

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXðn−1ÞT
t0¼0

ρ2ðt0Þ
vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

Z
fmax

fmin

df
Xðn−1ÞT
t0¼0

jPhIJðf; t0Þj2
PnIðfÞPnJðfÞWIJðf; t0Þ

vuut : ð37Þ

When SGWB signal is much stronger than channel noise,
the total SNR

ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

Z
fmax

fmin

df
Xðn−1ÞT
t0¼0

1
PhI

ðf;t0ÞPhJ
ðf;t0Þ

jPhIJ
ðf;t0Þj2 þ ð1 − δIJÞ

vuuut
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δIJÞT totðfmax − fminÞ

p
; ð38Þ
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where jPhIJðf; t0Þj2 ≤ PhIðf; t0ÞPhJðf; t0Þ. We can find that
the SNR is limited to a certain value, which is determined
by three factors: (i) the type of detection method; (ii) the
correlation time T tot; (iii) detection frequency band
½fmin; fmax�. On the contrary, when SGWB is much weaker
than channel noise, the correction functionWIJðf; t0Þ → 1.
In this case, the SNR for an isotropic SGWB can be
simplified to the following form:

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T tot

Z
fmax

fmin

df
½Γ̄IJðfÞShðfÞ�2
PnIðfÞPnJðfÞ

s
: ð39Þ

When SNR exceeds the preset threshold, the SGWB
detection will be announced.
As for the SNR threshold, the preliminary result is

provided by Ref. [28]:

ρthr ¼
ffiffiffi
2

p
½erfc−1ð2αÞ − erfc−1ð2γÞ�; ð40Þ

where the false alarm rate α and the detection rate γ are set
in advance. For example, when choosing α ¼ 0.1 and
γ ¼ 0.9, the SNR threshold ρthr ¼ 2.56; or ρthr ¼ 3.30
with α ¼ 0.05 and γ ¼ 0.95. Because the lower false alarm
rate and the higher detection rate imply that the detector
is more sensitive to GWs, the higher SNR threshold is
required.

VI. SENSITIVITY CURVE

We can further demonstrate the detection capability
of the detector through the sensitivity curve. The sky-
averaged sensitivity curve can be directly obtained based
on the response to SGWB and noise lever of the channel [36]:

SnIðfÞ ¼
PnIðfÞ
RIðfÞ

; ð41Þ

which is applied to an isotropic SGWB.
As for two channels, the effective sensitivity curve is

defined as [29]

SnIJðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PnIðfÞPnJðfÞ

p
Γ̄IJðfÞ

; ð42Þ

which reduces to Eq. (41) when I ¼ J. Then, Eq. (39) can
be further simplified:

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T tot

Z
fmax

fmin

df
�
ShðfÞ
SnIJðfÞ

�
2

s
: ð43Þ

Meanwhile, the corresponding energy spectral density ΩnIJ
can be convert to SnIJ through

ΩnIJðfÞ ¼
2π2

3H2
0

f3SnIJðfÞ: ð44Þ

As mentioned above, the correlation time and frequency
band of the detector have a significant impact on SGWB
detection. Therefore, Thrane et al. [29] proposed the PLIS
curve, which is applied to the power-law SGWB with the
following form:

ΩgwðfÞ ¼ Ω0ðϵÞðf=frefÞϵjϵ¼ϵ0
; ð45Þ

where Ω0 is related to the index ϵ, and the reference
frequency fref is arbitrary.
By combining Eq. (43)–Eq. (45),

Ω0ðϵÞ ¼ ρthr

�
2T tot

Z
fmax

fmin

df
ðf=frefÞ2ϵ
Ω2

nIJðfÞ
�−1=2

; ð46Þ

where the SNR is set to threshold ρthr. For each frequency,
we can obtain the maximum Ωgw with a specific index ϵ to
generate the PLIS curve:

ΩPLISðfÞ ¼ maxϵ½Ω0ðϵÞðf=frefÞϵ�: ð47Þ

The PLIS curve (on the log-log plot) specifies the envelope
of power-law SGWBs, of which the SNR is equal to the
preset SNR threshold. Once a power-law SGWB spectrum
is somewhere above the PLIS curve, the SGWB is expected
to be detected, and vice versa. It is explicit to determine
whether the SGWB can be detected by the detector
configuration.
We show the PLIS curves of TianQin, TianQin Iþ II,

TianQinþ LISA in Fig. 5. The solid and dashed lines are
the results for the equal-arm Michelson and A=E channels,
and both of them basically coincide. The result implies that
when A=E channels are employed instead of the equal-arm
Michelson, the detection capability of the detector con-
figuration is nearly unchanged.
The spectrum of astrophysical SGWB is usually in

power-law form, which is not true for the cosmological
SGWB, such as the first-order phase transition (PT).
Therefore, Schmitz et al. [30] proposed the PIS curve.
The energy spectral density of the first-order PT is

expressed as

ΩgwðfÞ ¼ Ωpeak
gw ðfpigÞSðf; fpeakÞ; ð48Þ

where Ωpeak
gw ðfpigÞ is the peak amplitude at the peak

frequency fpeak, the spectral function Sðf; fpeakÞ depends
on the cosmological model. Then through the definition of
PIS curve

ΩPISðfpeakÞ ¼
�
2T tot

Z
fmax

fmin

df

�
Sðf; fpeakÞ
ΩnIJðfÞ

�
2
�−1=2

; ð49Þ
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the SNR can be obtained by

ρ ¼ Ωpeak
gw ðfpigÞ

ΩPISðfpeakÞ
: ð50Þ

Once selecting a specific parameter group fpig, the peak
frequency fpeak and peak amplitude Ωpeak

gw are fixed. If the
peak amplitude is above ρthr times of the PIS curve, the
detection of cosmological PT will be claimed.
In Fig. 6, we show the PIS curves for a certain spectral

function:

Sðf; fpeakÞ ¼
3.8ðf=fpeakÞ2.9

1þ 2.9ðf=fpeakÞ3.8
: ð51Þ

Similar to the PLIS curve, the PIS curves of equal-arm and
A=E channels are mostly the same.

So far, this paper has discussed three types of sensitivity
curves. Sky-averaged sensitivity curve is independent of
correlation time and detection frequency band, and by
considering the impact of the two factors on SGWB
detection, PLIS curve and PIS curve are proposed. It is
straightforward to determine whether SGWB can be
detected by the last two sensitivity curves. Besides, the
PLIS curve works for the pow-law SGWB, and the PLIS
curve is applied to the SGWB with pre-known spectrum.

VII. CONCLUSION

In this work, we have analyzed the impacts of A=E
channels on SGWB detection for space-borne detectors.
We first selected the reference interference site for A=E
channels consisting multiple interference sites. In this way,
it is clear to define the detector separation through the
distance between reference interference sites, which works
well for any channel. By means of the reference interfer-
ence site, we derived the ORF that is valid across all
frequency bands. For TianQin, TianQin Iþ II, and
TianQinþ LISA, we calculated the ORFs for the equal-
arm Michelson and A=E channels, respectively. In addition
to ORF, the noise level, correlation time and frequency
band of the detector also need to be folded into detection
sensitivity, according to which we plotted the correspond-
ing sensitivity curves to assess the detection capabilities.
In a certain detector configuration, the ORF and noise

PSD of A/E channels differ from those of the equal-arm
Michelson, but their differences share the same coefficient
6 sin2ðf=f�Þ under the low-frequency approximation.
Since the detection sensitivity is determined by the ratio
of ORF and noise PSD, the detection sensitivity of the A=E
channels and the equal-arm Michelson are basically the
same. We have shown that the difference between A/E
channels and the equal-armMichelson stems from the extra
phase related to the position difference. For the low-
frequency approximation to be valid, the wavelength of
the GW should be longer than the armlength, which makes
the extra phase negligible.
However, the configuration design can affect the corre-

lation between detectors. In order to obtain optimal ORF,
the configuration design is well worth a discussion.
Meanwhile, the constructions of equal-arm Michelson
and A=E channels are different. Therefore, the configura-
tion design corresponding to the optimal ORF for A=E
channels may differ from that for the equal-arm Michelson.
TianQin Iþ II is one such configuration, where the launch
time difference between TianQin and TianQin II is the key
factor of configuration design. If one expects the optimal
ORF of TianQin Iþ II in SGWB detection, then the launch
time difference should be set to an integer and a semi-
integer multiple of the orbital period for the equal-arm
Michelson and A=E channels, respectively.
Recently, Bartolo et al. [46] reviewed the sensitivity

curve for the detection of the anisotropic SGWB by a single

FIG. 6. PIS curves of TianQin (red), TianQin Iþ II (green), and
TianQinþ LISA (blue) for A=E channels (solid line) and equal-
arm Michelson (dashed line). The setting of the correlation time
for the configuration is the same as when plotting the PLIS curve.

FIG. 5. PL sensitivity curves for different detector configura-
tions. We set the SNR threshold to 3.30 and consider that during
the one-year operating time, the correlation time of TianQin and
TianQinþ LISA is half a year, compared to four months for
TianQin Iþ II.
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LISA. Unlike for the isotropic SGWB, where only the A=E
channels and the equal-arm Michelson contribute to the
detection sensitivity, for the anisotropic SGWB the null
channel T also has a non-negligible impact on the sensi-
tivity. Therefore, if only considering the A/E channels and
the equal-arm Michelson, the detection sensitivities for the
anisotropic SGWB are different. However, by incorporat-
ing the null channel, the detection sensitivities for A=E
and T, as well as the equal-arm Michelson and T for the
anisotropic SGWB will be equivalent.
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APPENDIX A: RESPONSE TO GRAVITATIONAL-
WAVE FOR EQUAL-ARM MICHELSON

In Fig. 7, r⃗1 and r⃗2 label the position vectors of test mass
mI and mII, respectively. L is armlength and û denotes the
unit vector of the one-way tracking. At the moment t0, the
GW signal of one-way tracking can be expressed as [37,47]

hIðt; t0Þ ¼
δLðt0Þ
L

¼ 1

L

Z
L

0

ds
uaðt0Þubðt0Þ

2
hab½tðsÞ; x⃗ðsÞ�;

ðA1Þ

where s is the actual path of photon, and under the
0th-order approximation:

tðsÞ ¼ ðt0 − L=cÞ þ s=c;

x⃗ðsÞ ¼ r⃗1 þ sû: ðA2Þ

In terms of Eq. (3), the one-way tracking signal of SGWB is
a collection of GW signals from all directions:

hIðt; t0Þ ¼
1

L

Z
∞

−∞
df

Z
S2
dΩ̂k̂

uaðt0Þubðt0Þ
2

habðf; k̂Þei2πf½t−
Lþk̂·ðr⃗2−LûÞ

c � c · e−
i2πfs
c ðk̂·ûðt0Þ−1Þ

−i2πfðk̂ · ûðt0Þ − 1Þ

����s¼L

s¼0

¼
Z

∞

−∞
df

Z
S2
dΩ̂k̂F

ab
I ðf; k̂; t0Þhabðf; k̂Þei2πfðt−

k̂·r⃗2
c Þ;

then the frequency domain signal

hIðf; t0Þ ¼
Z
S2
dΩ̂k̂F

ab
I ðf; k̂; t0Þhabðf; k̂Þe−i2πfk̂·r⃗2=c: ðA3Þ

In Eq. (A3), the one-way tracking response function

Fab
I ðf; k̂; t0Þ ¼

uaðt0Þubðt0Þ
2

T Iðf; k̂; t0Þ ðA4Þ

and the strain transfer function

T Iðf;k̂;t0Þ¼ sinc

�
f
2f�

½1− k̂ · ûðt0Þ�
�
e−i

f
2f�½1−k̂·ûðt0Þ� ðA5Þ

with the characteristic frequency f� ¼ c=ð2πLÞ.
For the two-way tracking where the photon returns to mI

after a one-way tracking, the SGWB signal

hIIðt; t0Þ ¼
1

2L

Z
L

0

ds
uaðt0Þubðt0Þ

2

�
hab

�
t −

2Lþ k̂ · r⃗1 þ ½k̂ · ûðt0Þ − 1�s
c

�
þ hab

�
t −

Lþ k̂ · r⃗2 þ ½k̂ · −ûðt0Þ − 1�s
c

��

¼
Z

∞

−∞
dfFab

II ðf; k̂; t0Þhabðf; k̂Þei2πfðt−
k̂·r⃗1
c Þ: ðA6Þ

FIG. 7. Schematic diagram of the one-way tracking.
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Note that in the above formula, the length of links is
assumed to not change over time.
Then the corresponding frequency domain signal

hIIðf; t0Þ ¼
Z

∞

−∞
dfFab

II ðf; k̂; t0Þhabðf; k̂Þe−i2πfk̂·r⃗1=c; ðA7Þ

where the response function

Fab
II ðf; k̂; t0Þ ¼

1

2
T IIðf; k̂; t0Þuaðt0Þubðt0Þ ðA8Þ

with the strain transfer function

T IIðf; k̂; t0Þ ¼
1

2

�
sinc

�
f
2f�

ð1 − k̂ · ûðt0ÞÞ
�
e−i

f
2f�½3þk̂·ûðt0Þ�

þ sinc

�
f
2f�

ð1þ k̂ · ûðt0ÞÞ
�
e−i

f
2f�½1þk̂·ûðt0Þ�

�
:

ðA9Þ

For the record, the phase terms in Eq. (A3) and Eq. (A7) are
related to the GW measurement location.
Since the equal-arm Michelson consists of two different

two-way trackings, the response function can be written as

Fab
M ðf; k̂; t0Þ ¼ Fab

II ðf; k̂; ûðt0ÞÞ − Fab
II ½f; k̂; v̂ðt0Þ�; ðA10Þ

where û and v̂ are the unit vectors of the arms. Under the
low-frequency approximation, the response function

Fab
M ðf; k̂; t0Þ ¼

1

2
½uaðt0Þubðt0Þ − vaðt0Þvbðt0Þ�: ðA11Þ

APPENDIX B: ORF OF CHANNEL GROUP

As shown in Fig. 8, we can construct a set of orthogonal
bases:

k̂ ¼ ð− sin θ cosϕ;− sin θ sinϕ;− cos θÞ; ðB1Þ

l̂ ¼ðcos θ cosϕ; cos θ sinϕ;− sin θÞ; ðB2Þ

m̂ ¼ðsinϕ;− cosϕ; 0Þ; ðB3Þ

where k̂ is the propagation direction of the GW, and m̂ is
perpendicular to Z-axis.
In terms of l̂ and m̂, we can further construct the

polarization tensor:

eþijðn̂Þ ¼ l̂il̂j − m̂im̂j; ðB4Þ

e×ijðn̂Þ ¼ l̂im̂j þ l̂jm̂i: ðB5Þ

Then the analytical expression of the polarization tensor
can be obtained:

eþðk̂Þ ¼

2
64
cos2θ cos2ϕ − sin2ϕ 1

2
sin 2ϕð1þ cos2θÞ − 1

2
sin 2θ cosϕ

1
2
sin 2ϕð1þ cos2θÞ sin2ϕ cos2θ − cos2ϕ − 1

2
sin 2θ sinϕ

− 1
2
sin 2θ cosϕ − 1

2
sin 2θ sinϕ sin2θ

3
75;

e×ðk̂Þ ¼

2
64 sin 2ϕ cos θ − cos 2ϕ cos θ − sinϕ sin θ

− cos 2ϕ cos θ − sin 2ϕ cos θ cosϕ sin θ

− sinϕ sin θ cosϕ sin θ 0

3
75: ðB6Þ

On the X-Y plane, we place two equal-armMichelson channels with opening angle β between arms. The unit arm vectors
of the first one M1

û1 ¼ ½cos α0; sin α0; 0�;
û2 ¼ ½cosðα0 þ βÞ; sinðα0 þ βÞ; 0�; ðB7Þ

FIG. 8. Detector coordinate.
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and of the second one M2

v⃗1 ¼ ½cosðα0 þ β þ ηÞ; sinðα0 þ β þ ηÞ; 0�
v⃗2 ¼ ½cosðα0 þ 2β þ ηÞ; sinðα0 þ 2β þ ηÞ; 0�: ðB8Þ

Without loss off generality, one can set α0 ¼ 0 to
simplify the calculation, and under the low-frequency
approximate,

FM1
¼ 1

2
ðu1 ⊗ u1 − u2 ⊗ u2Þ

¼ sin β
2

2
64 sin β − cos β 0

− cos β − sin β 0

0 0 0

3
75;

FM2
¼ 1

2
ðv1 ⊗ v1 − v2 ⊗ v2Þ

¼ sin β
2

2
64 sinð3β þ 2ηÞ − cosð3β þ 2ηÞ 0

− cosð3β þ 2ηÞ − sinð3β þ 2ηÞ 0

0 0 0

3
75:
ðB9Þ

Then through

Fþ
M1
ð0; k̂Þ ¼ Fab

M1
eþabðk̂Þ ¼

3þ cos 2θ
4

sin β sinðβ − 2ϕÞ;
F×
M1
ð0; k̂Þ ¼ Fab

M1
e×abðk̂Þ ¼ sin β cos θ cosðβ − 2ϕÞ;

Fþ
M2
ð0; k̂Þ ¼ Fab

M1
eþabðk̂Þ

¼ 3þ cos 2θ
4

sin β sinð3β þ 2η − 2ϕÞ;
F×
M2
ð0; k̂Þ ¼ Fab

M1
e×abðk̂Þ ¼ sin β cos θ cosð3β þ 2η − 2ϕÞ;

ðB10Þ

we can calculate the transfer function and ORF:

RM1
ð0Þ ¼ 1

8π

X
P¼þ;×

Z
S2
dΩ̂k̂F

P
M1
ð0; k̂ÞFP�

M1
ð0; k̂Þ

¼ sin2β
5

¼ RM2
ð0Þ;

ΓM12
ð0Þ ¼ 1

8π

X
P¼þ;×

Z
S2
dΩ̂k̂F

P
M1
ð0; k̂ÞFP�

M2
ð0; k̂Þ

¼ sin2β cos½2ðβ þ ηÞ�
5

: ðB11Þ

For the equal-arm Michelson channels built in TianQin,
β ¼ π=3 and β þ η ¼ 2π=3, then

RM1
ð0Þ ¼ −2ΓM12

ð0Þ: ðB12Þ

In terms of Eq. (14) and Eq. (15),

lim
f→0

RXðfÞ
ΓXYðfÞ

¼ lim
f→0

RM1
ðfÞ

ΓM12
ðfÞ ¼ −2: ðB13Þ

Besides, for an regular triangle detector,

RaðfÞ ¼ RbðfÞ;
ΓabðfÞ ¼ ΓcdðfÞ; ðB14Þ

where a; b; c; d ¼ X;Y;Z with a ≠ b ≠ c ≠ d.
Based on the above derivation, the transfer function and

ORF of AET channel group

RAðfÞ ¼ REðfÞ ¼ RXðfÞ − ΓXYðfÞ;
RTðfÞ ¼ RXðfÞ þ 2ΓXYðfÞ;
ΓAEðfÞ ¼ ΓATðfÞ ¼ ΓETðfÞ ¼ 0: ðB15Þ

The last line of Eq. (B15) shows that there is no correlation
between the responses of A, E, and T to SGWB, and

RaðfÞ ¼ −2ΓabðfÞ; f ≪ f�: ðB16Þ

Thus, the first two lines of Eq. (B15) reduce to

RAðfÞ ¼ REðfÞ ¼
3

2
RXðfÞ;

RTðfÞ ¼ oðRXðfÞÞ; f ≪ f�; ðB17Þ

which implies that T acts as a null channel.
Furthermore, take TianQin as example, the transfer

functions of channel group AET based on Eq. (18) are
shown in Fig. 9. And in order to illustrate the effect of
reference interference site on the transfer function, we show

FIG. 9. Transfer function of the channel group AET for
TianQin.
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the corresponding result within the dashed line, which
employs the false response functions:

F̄P
Aðf; k̂; t0Þ ¼

1ffiffiffi
2

p ½FP
Zðf; k̂; t0Þ − FP

Xðf; k̂; t0Þ�;

F̄P
Eðf; k̂; t0Þ ¼

1ffiffiffi
6

p ½FP
Xðf; k̂; t0Þ − 2FP

Yðf; k̂; t0Þ

þ FP
Zðf; k̂; t0Þ�;

F̄P
Tðf; k̂; t0Þ ¼

1ffiffiffi
3

p ½FP
Xðf; k̂; t0Þ þ FP

Yðf; k̂; t0Þ

þ FP
Zðf; k̂; t0Þ�: ðB18Þ

Under the low-frequency approximation, the misuse of
analytical form has little effect on A=E channels, but a
significant impact on T channel.

APPENDIX C: CHANNEL NOISE LEVEL

For the one-way tracking built in the space-borne
detector, the output mainly consists of four parts [17,48]:

δlijðtÞ ¼ ψ ijðtÞ þ Ciðt − LijÞ − CjðtÞ
þ npijðtÞ þ naijðt − LijÞ − najiðtÞ; ðC1Þ

where Lij is the armlength between satellite i and j, ψ ij

specifies the GW signal. Ci, n
p
ij and n

a
ij are the noises caused

by laser frequency, aggregate optical-path and single proof-
mass acceleration, respectively [49]. Since the laser noise
cancels in equal-arm Michelson and TDI channels [16,17],
we will constrain our focus on other noises.
Assuming that the PSD of the same type of noise is

equal [50]:

hñαijðfÞñβ�kl ðf0Þi ¼
1

2
δα;βδij;klδðf − f0ÞSαðfÞ; ðC2Þ

then the noise PSD of the equal-arm Michelson

P̄nMðfÞ ¼ 4SpðfÞ þ 8

�
cos2

�
f
f�

�
þ 1

�
SaðfÞ; ðC3Þ

and for the channel group XYZ [24]

P̄nX;Y;ZðfÞ¼4sin2
�
f
f�

�
P̄nMðfÞ

¼16sin2
�
f
f�

��
SpðfÞþ2

�
cos2

�
f
f�

�
þ1

�
SaðfÞ

�
:

ðC4Þ

Furthermore, for channel group AET [24]:

P̄nA;EðfÞ ¼ 8 sin2
�
f
f�

���
cos

�
f
f�

�
þ 2

�
SpðfÞ þ 2

�
cos

�
2f
f�

�
þ 2 cos

�
f
f�

�
þ 3

�
SaðfÞ

�
;

P̄nTðfÞ ¼ 32 sin2
�
f
f�

�
sin2

�
f
2f�

��
SpðfÞ þ 4 sin2

�
f
2f�

�
SaðfÞ

�
: ðC5Þ

However, the two sides of the above equation [Eq. (C3)–Eq. (C5)] cannot be directly equal. First, to make the component
noises dimensionally consistent, the acceleration noise SadLðfÞ ¼ SaðfÞ=ð2πfÞ4 [51]. Second, to make the GW signals in
Eq. (A6) and Eq. (C1) consistent, one should divide the optical-path noise and the acceleration noise by 2L [52]. Following
this rule, the strain noise PSD

SpnðfÞ ¼
SpðfÞ
ð2LÞ2 ; SanðfÞ ¼

SadLðfÞ
ð2LÞ2 ¼ SaðfÞ

ð2LÞ2ð2πfÞ4 ; ðC6Þ

which are in units of Hz−1. Then we employ Spn and San instead of Sp and Sa to correct the strain noise PSD:

PnMðfÞ ¼
1

L2

�
SpðfÞ þ 2

�
cos2

�
f
f�

�
þ 1

�
SaðfÞ
ð2πfÞ4

�
;

PnXðfÞ ¼
4 sin2

h
f
f�

i
L2

�
SpðfÞ þ 2

�
cos2

�
f
f�

�
þ 1

�
SaðfÞ
ð2πfÞ4

�
;

PnAðfÞ ¼
2 sin2

h
f
f�

i
L2

��
cos

�
f
f�

�
þ 2

�
SpðfÞ þ 2

�
cos

�
2f
f�

�
þ 2 cos

�
f
f�

�
þ 3

�
SaðfÞ
ð2πfÞ4

�
;

PnTðfÞ ¼
8 sin2

h
f
f�

i
sin2

h
f
2f�

i
L2

�
SpðfÞ þ 4 sin2

�
f
2f�

�
SaðfÞ
ð2πfÞ4

�
:
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By setting SatotðfÞ ¼ 4SaðfÞ under the low-frequency
approximation [51,53], the noise PSD of equal-arm
Michelson is further expressed as

PnMðfÞ ¼
1

L2

�
SpðfÞ þ

SatotðfÞ
ð2πfÞ4

�
; ðC7Þ

where the total noise SatotðfÞ contains the noise at both ends
of the link.
On the other hand, the transfer functions of equal-arm

Michelson and X can be converted by Eq. (14):

RXðfÞ
RMðfÞ

¼ 2

�
1 − cos

�
2f
f�

��
¼ 4 sin2

�
f
f�

�
: ðC8Þ

Combined with Eq. (41), Eq. (B17), Eq. (C7) and Eq. (C8),
it can be inferred that the detection sensitivity of equal-arm
Michelson, X and A are the same under the low-frequency
approximation:

SnMðfÞ ¼ SnXðfÞ ¼ SnAðfÞ; f ≪ f�: ðC9Þ

In Fig. 10, we show the sensitivity curves of the above
channels for TianQin: hnðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
. On one hand, the

sensitivity curves of equal-arm and TDI Michelson chan-
nels are the same below the characteristic frequency f�.
Although the sensitivity curve of T is much lower than that
of other channels at low frequencies, both of them are
proportional to f−2. On the other hand, the sensitivity of

Michelson channels drops around 3f�, beyond which T
will be no longer treated as a noise monitor [54].

APPENDIX D: RELEVANT DERIVATION OF
DETECTION METHOD

For the output from noise-independent channel I and J:

hs̃Iðf; t0Þs̃�Jðf; t0Þi ¼ hh̃Iðf; t0Þh̃�Jðf; t0Þi: ðD1Þ

Note that, someone has discussed the subtraction of
correlated noise [55,56]. For simplicity, we prefer to
neglect the correlated noise at this stage of the analysis.
Then the expectation value and variance σ2ðtÞ of the
measurement can be calculated by

μðt0Þ ¼ hSIJðt0Þi

¼
Z

t0þT=2

t0−T=2
dt
Z

∞

−∞
df

Z
∞

−∞
df0hh̃Iðf; t0Þh̃�Jðf0; t0ÞiQ̃IJðf0; t0Þe−i2πðf−f0Þt0

¼
Z

t0þT=2

t0−T=2
dt
Z

∞

0

df
Z

∞

0

df0δðf − f0ÞPhIJðf; t0ÞQ̃IJðf0; t0Þe−i2πðf−f0Þt0

¼ T
Z

∞

0

dfPhIJðf; t0ÞQ̃IJðf; t0Þ; ðD2Þ

σ2ðt0Þ ¼ hSIJðt0ÞSIJðη0Þi − hSIJðt0ÞihSIJðη0Þi

¼
Z

t0þT=2

t0−T=2
dt
Z

η0þT=2

η0−T=2
dη

Z
∞

−∞
df

Z
∞

−∞
df0

Z
∞

−∞
dω

Z
∞

−∞
dω0

× ½hs̃Iðf; t0Þs̃�I ð−ω; η0Þihs̃Jð−f0; t0Þs̃�Jðω0; η0Þi þ hs̃Iðf; t0Þs̃�Jðω0; η0Þihs̃Jð−f0; t0Þs̃�I ð−ω; η0Þi�
× Q̃IJðf0; t0ÞQ̃�

IJð−ω0; η0Þe−i2πðf−f0Þte−i2πðω−ω0Þη

¼ T
2

Z
∞

0

df

�
ðPnIðfÞ þ PhIðf; t0ÞÞðPnJðfÞ þ PhJðf; t0ÞÞ þ jPhIJðf; t0Þj2

�
jQ̃IJðf; t0Þj2

¼ T
2

Z
∞

0

dfPnIðfÞPnJðfÞWIJðf; t0ÞjQ̃IJðf; t0Þj2; ðD3Þ

FIG. 10. Sensitivity curve hnðfÞ of the channel for TianQin.
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where the correction function is shown in Eq. (29) and the
channel noise is assumed to be stationary:

hñIðfÞñ�Jðf0Þi ¼
1

2
δIJδðf − f0ÞPnIðfÞ ðD4Þ

Combined with Eq. (D2) and Eq. (D3), the square of
SNR is obtained by

ρ2ðtÞ¼μ2ðtÞ
σ2ðtÞ¼

2T½R∞
0 dfPhIJðf;t0ÞQ̃IJðf;t0Þ�2R

∞
0 dfPnIðfÞPnJðfÞWIJðf;t0ÞjQ̃IJðf;t0Þj2

:

ðD5Þ

By the definition of positive-definite inner product for any
pair of complex function AðfÞ and BðfÞ [28]:

ðA;BÞ≔
Z

∞

0

dfAðfÞB�ðfÞPnIðfÞPnJðfÞWIJðf;t0Þ; ðD6Þ

Eq. (D5) turns to

ρ2ðtÞ ¼ 2T

�
Q̃IJðf; t0Þ;

P�
hIJ

ðf;t0Þ
PnI

ðfÞPnJ
ðfÞWIJðf;t0Þ

�
2

ðQ̃IJðf; t0Þ; Q̃IJðf; t0ÞÞ
: ðD7Þ

To maximize the SNR yields the solution:

Q̃IJðf; t0Þ ¼ λ
P�
hIJ
ðf; t0Þ

PnIðfÞPnJðfÞWIJðf; t0Þ
ðD8Þ

with a real constant λ and the correction function

WIJðf; t0Þ ¼ 1þ PhIðf; t0ÞPnJðfÞ þ PhJðf; t0ÞPnIðfÞ
PnIðfÞPnJðfÞ

þ PhIðf; t0ÞPhJðf; t0Þ þ jPhIJðf; t0Þj2
PnIðfÞPnJðfÞ

: ðD9Þ

Then the optimal SNR of cross-correlation method is given
by Eq. (31). Note that, the correlation time T should be long
enough that the PSDs of channel noise PnðfÞ and SGWB
signal Phðf; t0Þ are nearly invariable in the frequency
region Δf ∼ 1=T.
For a single TianQin-like detector, it needs to construct a

specific correlator. We start with the autocorrelation of
channel group AET

hsIðf; t0ÞsIðf0; t0Þi ¼ hnIðfÞnIðf0Þi þ hhIðf; t0ÞhIðf0; t0Þi

¼ 1

2
δðf − f0Þ½PnIðfÞ þ PhIðf; t0Þ�;

hsTðfÞsTðf0Þi ¼ hnTðfÞnTðf0Þi

¼ 1

2
δðf − f0ÞPnTðfÞ; ðD10Þ

where I ¼ A;E. At first glance, the auto-correlation PSD
PhI can be obtained by subtracting the second row from
the first row of Eq. (D10), which is under the assumption
that PnIðfÞ ¼ zIðfÞPnTðfÞ. Just follow that thought line,
the reconstructed correlator for null-channel method is
written as [57]

s0ðt; t0Þ ¼ sIðtÞsIðt0Þ − hnIðtÞnIðt0Þi: ðD11Þ

The next step is to obtain the measurement:

Kðt0Þ ¼
X
I¼A;E

Z
t0þT=2

t0−T=2
dt
Z

t0þT=2

t0−T=2
dt0s0ðt; t0ÞQIIðt − t0Þ

≈
X
I¼A;E

Z
t0þT=2

t0−T=2
dt
Z

∞

−∞
df

Z
∞

−∞
df0½s̃Iðf; t0Þs̃�I ðf0; t0Þ − hñIðf; t0Þñ�I ðf0; t0Þi�Q̃IIðf0; t0Þe−i2πðf−f0Þt0 ; ðD12Þ

of which the expectation value μðtÞ and the variance σ2 are

μðt0Þ ≔ hKðt0Þi

¼
X
I¼A;E

Z
t0þT=2

t0−T=2
dt
Z

∞

−∞
df

Z
∞

−∞
df0hh̃Iðf; t0Þh̃�I ðf0; t0ÞiQ̃IIðf0; t0Þe−i2πðf−f0Þt0

¼ 2T
Z

∞

0

dfPhIðf; t0ÞQ̃IIðf; t0Þ; ðD13Þ
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σ2ðt0Þ ¼ hKðt0ÞKðη0Þi − hKðt0ÞihKðη0Þi

¼
X
I¼A;E

Z
t0þT=2

t0−T=2
dt
Z

η0þT=2

η0−T=2
dη

Z
∞

−∞
df

Z
∞

−∞
df0

Z
∞

−∞
dω

Z
∞

−∞
dω0

×

�
hðs̃Iðf; t0Þs̃�I ðf0; t0Þ − hñIðf; t0Þñ�I ðf0; t0ÞiÞðs̃Iðω; η0Þs̃�I ðω0; η0Þ − hñIðω; η0Þñ�I ðω0; η0ÞiÞi

− hh̃Iðf; t0Þh̃�I ðf0; t0Þihh̃Iðω; η0Þh̃�I ðω0; η0Þi
�
Q̃IIðf0; t0ÞQ̃�

IIðω0; η0Þe−i2πðf−f0Þte−i2πðω−ω0Þη

¼ T
Z

∞

0

df2ðPnIðfÞ þ PhIðf; t0ÞÞ2jQ̃ðf; t0Þj2

¼ 2T
Z

∞

0

dfP2
nIðfÞWIðf; t0ÞjQ̃IIðf; t0Þj2; ðD14Þ

where the correction function

WIðf; t0Þ ¼
�
1þ PhIðf; t0Þ

PnIðfÞ
�

2

: ðD15Þ

Compared with Eq. (D9), the correction function WIðf; t0Þ does not involve the cross-term.
When the filter function

Q̃IIðf; t0Þ ¼ λ
PhIðf; t0Þ

P2
nIðfÞWIðf; t0Þ

ðD16Þ

with a real constant λ, the optimal SNR of null-channel method is obtained.
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