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Neutron star observables like masses, radii, and tidal deformability are direct probes to the dense matter
equation of state (EoS). A novel deep learning method that optimizes an EoS in the automatic
differentiation framework of solving inverse problems is presented. The trained neural network EoS
yields narrow bands for the relationship between the pressure and speed of sound as a function of the mass
density. The results are consistent with those obtained from conventional approaches and the observational
bound on the tidal deformability inferred from the gravitational wave event, GW170817.
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I. INTRODUCTION

Neutron stars (NSs) serve as cosmic laboratories for the
study of neutron-rich nuclear matter [1], with central
densities far greater than the nuclear saturation density
(ρ0 ¼ 0.16 fm−3). Heavy-ion collisions provide means to
compress nuclear matter in terrestrial laboratories to such
high densities, but inevitably involve moderate to high
temperatures [2–4]. Nonperturbative lattice quantum
chromodynamics (LQCD) calculations for the finite-density
region of the QCD phase diagram are a long-standing
theoretical challenge due to the sign-problem [5].
Nevertheless, studies dedicated to probe the cold and dense
nuclear matter properties have benefited from astronomical
observations in past decades [6]. NS observables, e.g., mass,
radius, and tidal deformability are highly dependent on the
underlying dense matter bulk properties—the nuclear equa-
tion of state (EoS) [7]. With the increasing number of
observations of long-lived single NSs and colliding NSs, as
of the operation of gravitational wave (GW) detectors and
associatedmultimessenger astrophysics, the inference of the
dense QCD matter EoS appears promising [8–11].
The EoS at low densities (ρ≲ 1 − 2ρ0) can be extrapo-

lated from finite nuclei experiments and can be calculated

from the chiral effective field theory (χEFT) [12–14].
At extremely high densities (≳40ρ0), one may resort
to perturbative QCD (e.g., the hard dense loop) calcula-
tions [15,16]. The intermediate density regime (∼2 − 10ρ0)
is however not accessible to QCD. This high baryon density
region is usually calculated from different effective field
theoretical models [17], e.g., pure nucleonic EoSs [18],
hybrid (hadrons and quarks) EoSs [19], and hyperonic
EoSs [20]. The existence of a one-to-one mapping from
the mass-radius (M-R) curve of NSs to the corresponding
EoS [21] provides possibilities to reconstruct the EoS
model-independently via an inverse process. However,
the limited number of NS observations and their large
measurement uncertainties pose severe difficulties in accu-
rately inferring the underlying EoS.
As a modern computational paradigm, deep learning is

tailored to represent indirect mappings or find hidden
structures in complex systems. It has been effective in
solving a number of physics problems, such as determining
the parton distribution function [22–24], reconstructing the
spectral function [25–27], and identifying phase transitions
and impact parameters for heavy-ion collisions [28–34].
Recent works implement machine learning in a supervised
learning manner. These include, for example, the nonlinear
mapping between a mass-radius (M-R) curve and its
corresponding EoS [35–40]. The learned mapping is
represented by a neural network which predicts the EoS
or its parameters from NS observational data. The super-
vised learning algorithms constrain the EoS in a reasonable
range. However, using a specific training dataset in the
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data-hungry network may lead to generalization errors [41].
In addition, the uncertainty estimate for EoS thus recon-
structed lacks principled guidance. As an alternative, the
EoS can be parametrized in a model-independent way, and
the parameters inferred from finite observations. This can
be achieved through Gaussian processes [42,43] or by the
conventional Bayesian inference [44–47]. In the latter
approach, one could make use of shallow neural networks
to parameterize the EoS and determine its parameters in an
unsupervised way [48]. A flexible parameterization may,
however, lead to a computationally expensive optimization
process. It has been shown that physics-driven deep
learning tools can surpass traditional methods in solving
inverse problems [49,50]. To reconstruct the NS EoS in an
unbiased manner, a novel approach which utilizes deep
neural networks (DNNs) in the automatic differentiation
(AD) framework is introduced. This method has been
tested on mock data in our previous publication [51]. In
the present work, the NS EoS is studied based on the same
approach, by utilizing real observational NS data. The
current experimental constraints from GW data and pos-
sible phase structures coded in EoS are discussed.

II. METHODS

The AD framework developed here shown in Fig. 1
consists of two differentiable modules: the EoS Network,
PθðρÞ, an unbiased and flexible parametrization of the EoS
using DNNs; and the TOV-Solver, a DNN for translating
any given EoS to its correspondingM-R curve. The latter is
an emulator for solving the Tolman–Oppenheimer–Volkoff
(TOV) equation [52,53] which is solved to obtain the
structural properties of nonrotating NSs.

The EoS Network, when combined with the well-
trained TOV-Solver network, can be optimized in an
unsupervised manner. Given Nobs number of NS observa-
tions, the EoS Network is trained to fit the predictions of
pairwise (M, R) from the pipeline (EoS Networkþ
TOV-Solver) to observations. A gradient-based algo-
rithm within AD framework is deployed to minimize the
loss function, χ2, expressed as

χ2 ¼
XNobs

i¼1

ðMi −Mobs;iÞ2
ΔM2

i
þ ðRi − Robs;iÞ2

ΔR2
i

: ð1Þ

Here (Mi, Ri) represents the output of the TOV-Solver,
and (Mobs;i, Robs;i) are observations which have an uncer-
tainty (ΔMi, ΔRi). With a static, well-trained TOV-
Solver network, the gradients of the loss with respect
to parameters of the EoS Network are

∂χ2

∂θ
¼

XNobs

i¼1

Z �
∂χ2

∂Mi

δMi

δPθðρÞ
þ ∂χ2

∂Ri

δRi

δPθðρÞ
�
∂PθðρÞ
∂θ

dρ: ð2Þ

Here, the TOV-Solver is a mapping f∶ PθðρÞ →
ðMi; RiÞ. The last two terms, i.e., the partial derivative
∂Pθ=∂θ and the functional derivative δðMi; RiÞ=δPθðρÞ,
can be directly computed via back-propagation algo-
rithm [41] within the AD framework for the two coupled
DNNs. The network is composed of a series of differ-
entiable modules including linear transformations and
nonlinear activation functions. The details are shown in
Fig. 1 and explanations are given in following sections. The
parameters of the EoS Network are optimized to obtain

(b)

(a)

FIG. 1. A flow chart of the developed method developed. The EoS Network (a) is a neural network representation of the EoS. The
TOV-Solver (b) is a well-trained static network.
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the best fit from the well-trained TOV-Solver to the finite
and noisy observational M-R data. We implement the
above framework using the TensorFlow [54] library.
The EoS Network is structured with baryon number

density (ρ ¼ ½1; 7.4�ρ0) as the input, and the corresponding
pressure [PðρÞ] as the output. The input density is chosen to
be a linearly spaced 1D array of length Nρ ¼ 32 on a
logarithmic scale, normalized to lie within the range (0, 1).
The input shape of the network is ðheight; channelsÞ ¼
ð32; 1Þ as shown in Fig. 1, with the height representing the
number of discrete density points, and the channel indicat-
ing the number of trainable kernels in subsequent layers.
The 1D convolutional kernel with non-negative activation
function introduces a monotonicity in the mapping between
density and pressure. This is due to the shared parameters
along each density value across the height dimension. This
ensures thermodynamic stability for the reconstructed EoS.
The architecture of the EoS Network is shown in
Fig. 1(a), where two hidden layers link the input and
output with activation function, ELU. The output [PθðρÞ]
from the EoS Network is further transmitted to the well-
trained TOV-Solver, which returns a prediction of the
M-R pairs.
The training of the EoS Network is in an unsupervised

learning framework, proceeded by maximizing the like-
lihood function of the observational data. The trainable
parameters are the weights and biases of the networks. The
optimization procedure involves minimizing the χ2 loss
shown in Eq. (1). There are recent works that parameterize
the EoS with shallow neural networks or Gaussian proc-
esses [48,55]. The method proposed in this work realizes
the deep (instead of shallow) neural network as a flexible
representation of the EoS with an efficient and economic
optimization.
The TOV equation is given as

−
dP
dr

¼ ½ϵðrÞ þ PðrÞ�½mðrÞ þ 4πr3PðrÞ�
r½r − 2mðrÞ� ; ð3Þ

and

dmðrÞ
dr

¼ 4πr2ϵðrÞ; ð4Þ

where r is the radial distance from the centre of the star, and
mðrÞ is the mass enclosed within r. We use the natural unit
(c ¼ G ¼ 1) throughout this letter. In order to determine
the corresponding observables given an EoS, i.e, mass (M)
and radius (R) of the star, the TOVequations are integrated
radially outwards from the center. The initial conditions are
Pðr ¼ 0Þ ¼ Pc, where Pc is the central pressure. The
radius of the star, R, is defined from the boundary condition
on the surface, Pðr ¼ RÞ ¼ 0, and the mass enclosed in R,
i.e, M ¼ mðRÞ, is the total mass of the star.
Training data is prepared using a large set of EoSs and

their corresponding M-R sequences to obtain an effective

TOV-Solver represented by DNNs. Four different low
density (ρ < ρ0) EoSs are included in the training data
generation: PS, SLy, DD2 and TM1. The 2M⊙ constraint
obtained from observational data is applied [56–59]. A less
conservative bound is used in the training data, i.e, theM-R
sequences of the EoS must accommodate a neutron star of
mass 1.9M⊙. The details of training and validation can be
found in our preliminary work [51]. In summary, the well-
trained network can efficiently obtain the M-R pairs given
an arbitrary EoS, and one typical architecture is exhibited in
Fig 1(b), in which the fundamental modules are consistent
with the above descriptions but they are non-trainable.
Normal distributions are used to fit the observational data

in a similar procedure as in Refs. [36,37]. The data is
available in the form of posterior probability distribu-
tions [60–64]. The observations are characterized with
the means and the variances of the fitted marginal distri-
butions ofM and R. This is also in accordance with the loss
function used in the current methodology as shown in
Eq. (1). Table I shows the fitted values of M and R for the
current M-R relation on NSs determined by various
astrophysical observations.

III. UNCERTAINTY ESTIMATION

The Bayesian perspective is invoked to estimate the
uncertainties of the reconstructed EoS from the method
proposed here. The training loss function is defined as the
distance square between the observed and predicted M-R
pairs in our method, which is the negative log-likelihood
for given observations. However, the observed data is not
uniformly distributed on the M-R plane, and the measure-
ment errors tend to cause a disarrangement in the M-R

TABLE I. The Gaussian fitted observations based on margin-
alized distributions of the properties for neutron stars [60,63].

Observable Mass (M⊙) Radius (km)

M13 1.42� 0.49 11.71� 2.48
M28 1.08� 0.30 8.89� 1.16
M30 1.44� 0.48 12.04� 2.30
NGC 6304 1.41� 0.54 11.75� 3.47
NGC 6397 1.25� 0.39 11.48� 1.73
ωCen 1.23� 0.38 9.80� 1.76
4U 1608-52 1.60� 0.31 10.36� 1.98
4U 1724-207 1.79� 0.26 11.47� 1.53
4U 1820-30 1.76� 0.26 11.31� 1.75
EXO 1745-248 1.59� 0.24 10.40� 1.56
KS 1731-260 1.59� 0.37 10.44� 2.17
SAX J1748.9-2021 1.70� 0.30 11.25� 1.78
X5 1.18� 0.37 10.05� 1.16
X7 1.37� 0.37 10.87� 1.24
4U 1702-429 1.90� 0.30 12.40� 0.40
PSR J0437–4715 1.44� 0.07 13.60� 0.85
PSR J0030þ 0451 1.44� 0.15 13.02� 1.15
PSR J0740þ 6620 2.08� 0.07 13.70� 2.05
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relationship. Furthermore, the data is limited and the
corresponding central densities are unknown. To tackle
this ambiguity in the sense of maximizing likelihood, we
adopt the method of “closest approach” [45] in the χ2 loss,
for each iteration of the training, i.e.,

χ2ðM;RÞ¼
XNobs

i¼1

ðMðρciÞ−Mobs;iÞ2
ΔM2

i
þðRðρciÞ−Robs;iÞ2

ΔR2
i

: ð5Þ

ρci is updated for every ith observation as,

ρci ¼ arg min
ρc

ðMðρcÞ −Mobs;iÞ2
ΔM2

i
þ ðRðρcÞ − Robs;iÞ2

ΔR2
i

: ð6Þ

Equation (6) is therefore used to determine the central
densities of the star (Mobs, Robs) that result in the least
distance between the predicted and the real M-R pairs.
To evaluate the uncertainty of the reconstruction under

Bayesian perspective, we then focus on the posterior
distribution of the EoSs given the considered astrophysical
observations, PosteriorðθEoSjdataÞ. In our calculation, we
first draw ensemble of M-R samples from the fitted
Gaussian distribution for real observations (in Table I),
with which (to be the references) we deterministically infer
the corresponding EoS with maximum likelihood estima-
tion. Given the ensemble of reconstructed EoSs, one can
then apply importance sample to estimate the uncertainty
related to the desired posterior distribution, where a proper
weight is evaluated to each EoS. Our results and uncer-
tainty estimations in the main text all obey this strategy. In
general, a physical variable Ô can be estimated as,

Ō ¼ hÔi ¼
XNsamples

j

wðjÞOðjÞ; ð7Þ

with the standard deviation can also be estimated as
ðΔOÞ2 ¼ hÔ2i − Ō2. The weights are,

wðjÞ ¼ PosteriorðθðjÞEoSjdataÞ
ProposalðθðjÞEoSÞ

¼ pðdatajθðjÞEoSÞPriorðθðjÞEoSÞ
pðθðjÞEoSjsamplesðjÞÞpðsamplesðjÞjdataÞ

; ð8Þ

where j indicates index of reconstructions (samples of
EoS), θEoS is the parameters set for representing the EoS,
pðsamplesjdataÞ ¼ N ðMobs;ΔM2ÞN ðRobs;ΔR2Þ dictates
the probability for samples we draw from the fitted
Gaussian distribution for real observations (in Table I),

pðθðjÞEoSjsamplesðjÞÞ ¼ 1 since the reconstruction can locate
the deterministic corresponding EoS given sampled M-R

points, and pðdatajθðjÞEoSÞ ∝ exp ð−χ2ðM
θðjÞEoS

; R
θðjÞEoS

ÞÞ is the

likelihood function (of EoS parameters) measuring dis-
tances of predicted M-R to the real observations. In
practical calculations, weights should be normalized as
w̃ðjÞ ¼ wðjÞ=

P
j w

ðjÞ and cut off to avoid outliers in
samples. In the training process, target observables of χ2

fitting (Eq. (1) in the manuscript) are changed from (Mobs;i,

Robs;i) to (M̃ðjÞ
i , R̃ðjÞ

i ). Using this method, the measurement
uncertainties of observational data is naturally encoded in
the proposed reconstruction method to obtain the corre-
sponding posterior distribution of EoS, from which the
uncertainty of the resulting EoS is obtained. The causal
condition (speed of sound c2s < 1) is also introduced to
eliminate nonrealistic reconstructions.

IV. RESULTS AND DISCUSSION

The dense matter EoS is reconstructed from the proposed
method using the 18 chosen NS mass-radius observations.
Fig. 2, presents the resulting EoS within 1σ confidence
interval (CI) as a light red shaded band (labeled “This
Work”). In order to reconstruct the EoS, 10,000 M-R
curves are sampled based on Table I. Post a causality
screening which rejects all reconstructed EoSs with super-
luminous speeds of sound, the uncertainty estimates are
extracted for the approach described above. For compari-
son, the results of other works are also shown in the figure.
The results from the method proposed here lie within the
limits estimated from chiral effective theory calculations
(χEFT). The band of uncertainties is considerably narrower
than other Bayesian analyses and recent supervised learn-
ing predictions. The band thus reconstructed is a smooth
curve which is due to the flexible neural network repre-
sentation. The DD2 EoS is adopted for sub-saturation

FIG. 2. The EoS reconstructed from observational data of 18
neutron stars (labeled as “This Work”). The red shaded area
represents the 68% confidence interval (CI) evaluated directly
from reconstruction. Other constraints on the EoS like the χEFT
prediction (gray band), results derived from Bayesian methods
(AJ.765,L5 [67] and ARAA.54,401 [68]) and the direct inverse
mapping (PRD.101,054016 [36]) are also included.
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densities. While low-energy nuclear experimental data
help constrain the reconstructed EoS in this density
region [65,66], the EoS at intermediate density regions
can be probed from the existing NS observations. The
reconstruction method used here focuses on the most
uncertain high density region (ρ ≈ 2 − 8ρ0), and can there-
fore be used to deduce the EoS from an ever increasing
number of observations.
The M-R bands and contours which correspond to

the reconstructed EoSs in Fig. 2 are shown in Fig. 3.
Astrophysical data (Gaussian fitted as shown in Table I.)
used in this study are also plotted. The observational
“massive neutron star” constraint has also been imple-
mented, i.e, reconstructedM-R curves with maximummass
Mmax ≤ 1.9M⊙ are excluded. Our results exhibit a narrower
band as compared to other works. This is partly also due to
the low density EoS prior chosen in the current analysis.
The reconstructed EoS (red band) certainly supports
massive neutron stars (>2M⊙), and predicts R1.4 ¼ 11.1�
0.51 km [at 68% confidence level (C.L.)] for a canonical
1.4M⊙ neutron star, which is consistent with recent con-
straints from multimessenger observations [69].
Further validation of the proposed method can be per-

formed directly by confronting the predicted tidal deform-
ability,Λ, from the reconstruction, with the constraints onΛ
as obtained from the gravitational wave observation,
GW170817 [70,71]. From the reconstructed EoSs, the
corresponding Λ is computed as a function of NS mass,
as shown in Fig. 4. Here, the recent constraint from the event
GW170817, Λ̃1.4 ¼ 190þ390

−120 [71] (at 90% C.L.), is also
shown. The value obtained from the reconstructed EoSs in
this work, Λ1.4 ¼ 209.12þ110.8

−110.8 (at 90% C.L.) is in good
agreement with the bounds estimated from GW170817.
The speed of sound in the neutron star matter is another

important characteristic of the EoS. The squared value, c2s is
derivable from any given EoS as c2s ¼ ∂P=∂ϵ. Figure 5

displays the corresponding c2s of the EoS reconstructed in
this work, with natural unit c ¼ 1. At low and medium
densities (ρ < 3ρ0), c2s shows an increase up to 0.3, with a
relatively narrow band of uncertainty. It does exceed
the conformal limit (the limits for massless noninteract-
ing ultrarelativistic matter) in the high-density region
(ρ > 3ρ0), which implies the presence of strong interactions
in the dense matter. c2s seems to saturate or decrease beyond
ρ ∼ 5 − 6ρ0. A smooth decrease of c2s might eventually
reach down to the conformal limit, found in recent calcu-
lations [36,72] which interpret this as the approach of the
asymptotically free state of quarks and gluons in a hadron-
quark continuity picture [73,74]. However, due to limited
observations and their huge uncertainties, the possibility of a
phase transition cannot be ruled out. If the number of
observations and certainty can both be improved signifi-
cantly in the near future, the possible existence and the order
of phase transitions can be recognized in the present
framework. This has been validated on a mock dataset with
sufficiently precise mass-radius pairs.

FIG. 3. M-R contour corresponding to the reconstructed EoS
(This Work) in Fig.2 and the other EoS candidates. The gray dots
with uncertainties are our fitting observations summarized in
Table I.

FIG. 4. Tidal deformability derived from the reconstructed EoS.
The 90% C.L. of the GW observation, GW170817, is shown as
black bar.

FIG. 5. Speed of sound corresponding to the reconstructed EoS
in Fig. 2. The band represents 68% C.L. The horizontal dotted
line is the conformal limit of c2s ¼ 1=3.
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V. SUMMARY

This work implements a novel AD-based approach with
DNNs for inverse problem solving, namely, to reconstruct
the NS EoS using M-R data from 18 NS observations.
Under a Bayesian inference picture, the EoS is represented
by DNNs (EoS Network) without explicit physical model
priors. A combination with a well-trained (TOV-Solver)
network for emulating the TOV equations solver, yields an
AD which is naturally applied to further perform the EoS
reconstruction with modern gradient-based optimizations.
Such an unsupervised learning manner allows for recon-
structing the underlying EoS with uncertainties correspond-
ing to the observations. The causality limit and the massive
mass observation are adopted as postconstraints. A further
check based on current gravitational wave observations
shows remarkable consistency with the existing tidal
deformability prediction. The physics-driven deep learn-
ing approach established here achieves a successful
reconstruction of the NS EoS. The results are in agreement
with current data. Multimessenger observations can be
incorporated into the proposed method in the near future.
[This devised unsupervised reconstruction scheme, with
reweighting coupled for principled uncertainty estimation,

can potentially benefit a bunch of sub-fields of physics with
inverse problem challenges, e.g., inverse scattering infer-
ence, quantum devices/systems control designing, optical/
dynamical system construction, etc.]
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