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Gravitational waves emitted from the binary neutron star (BNS) systems can carry information about the
dense matter phase in these compact stars. The crust-core interfacial mode is an oscillation mode in a neutron
star, and it depends mostly on the equation of state of the matter in the crust-core transition region. This mode
can be resonantly excited by the tidal field of an inspiraling-in BNS system, thereby affecting the emitted
gravitationalwaves and hence could be used to probe the equation of state in the crust-core transition region. In
this work, we investigate, in detail, how the first-order phase transition inside the neutron star, if it exists,
affects the properties of the crust-core interfacial mode using a Newtonian fluid perturbation theory on a
general relativistic background solution of the stellar structure. Two possible types of phase transitions are
considered: (1) the phase transitions happen in the fluid core but near the crust-core interface, which results in
density discontinuities, and (2) the strong interaction phase transitions in the dense core (as in the conventional
hybrid star case). We study how these phase transitions affect the properties of the neutron star oscillation
mode excited at the interface, where there exists a shear modulus discontinuity (interfacial mode). In
particular, the former phase transition has a minor effect on the mass-radius relation, and the adiabatic tidal
deformability, but has the potential to significantly affect the interfacial mode frequency and thereby could be
probed using gravitational waves. For the BNS systems, we discuss the possible observational signatures of
these phase transitions in the gravitational waveforms and their detectability. Our work enriches the
exploration of the physical properties of the crust-core interfacial mode and provides a promising method for
probing the phase transition using the seismology of a compact star.
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I. INTRODUCTION

Quantum chromodynamics is nonperturbative at low
energy scales, therefore, understanding the equation of
state (EOS) and the phase transition of dense matter around
1–10 times the nuclear saturation density from the first
principle is an issue. Currently, models based on micro-
scopic many-body theories and energy density functional
theories are used to describe the dense matter, while there
are still many uncertainties about these theories due to the
complexity of the nonperturbative strong interaction.
Nuclear physics experiments in the Earth’s laboratory have
a limited capability to unveil cold dense nuclear matter
above the nuclear saturation density [1–6]. Developing
methods to probe these matter states and test the micro-
scopic theories is important for understanding dense matter.

Compact stars, such as neutron stars (NSs) or hybrid stars
(HSs), can carry information about these dense matters. A
neutron star has a rich and interesting structure [7], typically
consisting of a surface ocean (which is a plasma consisting of
free electrons and ions), a solid crust with dramatic density
profile (dρðrÞ=dr ∼ 109 g=cm4), and a neutron-fluid core.
This solid crust can be divided into two regions: the several
hundred-meters thick outer crust with density up to the
neutron-drip density (ρdrip ∼ 1011 g=cm3); the inner crust
consists of neutron-rich nuclei, free neutrons and some
electrons and protons, with density ranging from the
neutron-drip density to the nuclear saturation density
(ρsat ∼ 2.5 × 1014 g=cm3 or number density equal to
0.15 fm−3). In the crust-core transition region, the nuclear
matter is so dense that exotic nuclear states could form, such
as nuclear pasta, nuclear waffles [8–11], etc. These exotic
nuclear matter states are generated by the competition
between the Coulomb force and the nuclear force. Inside
the core, for the region where the fluid density is lower than
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10ρsat but higher than the nuclear pasta density, there could
also be phase transitions due to the emergence of new baryon
states. The onset densities for heavier baryons and quarks
degrees of freedom are still unclear with model predictions
ranging from 2ρsat to 10ρsat, while those new degrees of
freedom are competing with each other. Moreover, if there
exists a quark core inside the compact star, then this type of
compact star is named as a “hybrid star.” It has been shown
that the possible phase transition in the dense matter,
although with uncertain microscopic modeling, could
leave detectable imprints in the postmerger gravitational
wave (GW)waveform of binary neutron star (BNS) systems,
and the prospects of verifying such a scenario is also
suggested [12–14].
These compact stars, containing dense matter with a

density higher than the nuclear saturation density, are a
natural laboratory for probing these dense matter states.
Measurements of NS mass and radius play an important
role in constraining the EOS of NSs [15–24]. Recently, the
discovery of GWs radiated from BNS systems opened a
new window for probing the EOS of the dense matter:
firstly, information such as NS tidal deformability is
encoded in the inspiral GW signals [25–28]; secondly,
the electromagnetic counterparts of a BNS merger depend
sensitively on the merger outcome, which constrains many
EOS properties [29–33].
In this work, we focus on using NS/HS seismology to

probe the first-order phase transitions inside NSs. A similar
discussion has been proposed by Lau et al. [34], where they
investigated the interfacial mode excited at the interface
between the crystalline quark core and the neutron fluid in a
HS. In their case, the typical frequency of the interfacial
mode is∼500 Hz, which is a relatively high band for current
ground-basedgravitationalwave detectors. Compared toLau
et al. [34], our work has the following different features:
(1) We focus on the interfacial mode excited at the interface
between NS crust and the neutron fluid core [35–37], the
frequency of which is typically a lower frequency band,
therefore, beingmore observationally feasible. (2)Regarding
the NS, we are interested in probing the signature of the first-
order phase transition of dense matter near the crust-core
interface by investigating how the crust-core interfacialmode
will be affected by this phase transition. It is interesting that
these first-order phase transitions could have a very minor
effect on the mass-radius (M-R) relation and tidal deform-
ability. Therefore, the gravitational wave signatures associ-
atedwith the interfacialmode is a promising channel to probe
these phase transitions. (3) Regarding the HS with quark
core, we are interested in probing the high-density matter
states by distinguishing the so-called “twin-star” phenome-
non in the M-R relation, which is due to the introduction of
the hadron-quark phase transition [38]. In this case, the two
components of the twin star will have different radii and
structures, though their masses are the same. Therefore, the
interfacialmode and the correspondingGWphenomenology
will also be different, which provides an observational

possibility to study the phase transition of the strong-
interaction matter. In addition, there are also other works
[39] investigating the effect of phase transitions inside the
crust on the oscillation mode in a hot adolescent/newborn
NS in a general relativistic framework, and the effect of the
cooling process of a hot NS on the crust shear modes is also
studied.
The structure of this paper is the following: Section II

introduces the phase transitions in the compact star and
its effect on the M-R relations; Section III discusses the
properties of interfacial modes and how they are affected
by the phase transition; Section IV is devoted to inves-
tigating the coupling of the interfacial modes to the orbital
motion of binary compact star systems and how to use the
associated gravitational wave observation to probe these
phase transitions; Finally, we will conclude the paper and
present an outlook. The appendices will present the details
of solving interfacial mode and the approach to the crust
melting process.

II. PHASE TRANSITIONS OF THE HIGH DENSITY
NUCLEAR MATTER

A. Hadron-quark phase transition
and the twin-star scenario

Phase transition in the core of a compact star can change
its M-R relation. This phenomenon has been investigated in
[38], where they discussed the generic conditions for stable
hybrid stars, assuming that the surface tension of the phase

FIG. 1. Relevant neutron star structure for the interfacial modes
are discussed in this paper. The outer crust consists of a dense
Coulomb crystal, while the inner crust consists of dense nuclei.
The nuclear pasta phase is located at the bottom of the inner crust,
with only ∼100 meters thickness. The density of the inner crust
ranges from the neutron drip density to the nuclear saturation
density. Inside the neutron star fluid core, depending on the EOS,
there could be a first-order phase transition (denoted as blue dot-
dashed lines) in the fluid core near the crust-core interface, where
new baryon states could emerge. In the deeper region of the core,
a first-order phase transition from the hadronic matter state to the
quark matter state can happen.
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boundary is high enough to prevent the formation of a
mixed phase. Such a boundary at the interface between
hadronic matter and quark matter could exist in the NS core
in Fig. 1. The general structure of the EOS we use is shown
in Fig. 2, where the hadronic matter phase and quark matter
phase are connected by a first-order phase transition.
In the high-density region, we adopt the constant speed of

sound (CSS)model to describe the quarkmatter [38,40]. The
CSS model has a feature in which the sound speed in the
quark matter is almost constant, which is independent of
the baryon number density. This feature is exhibited in many
microscopic quark models (as summarized in [40]), e.g., the
perturbative quark matter EOS [41] with a roughly constant
c2QM ≈ 0.2–0.3, the model based on the field correlator
method [42], and some variations of the MIT bag model
or Nambu–Jona-Lasinio models [43,44]. Concretely, the
CSS EOS is described by the following relation [38]:

ρðpÞ ¼ ρtrans þ Δρþ c−2QMðp − ptransÞ;
pðμBÞ ¼ Aμ

1þ1=c2QM
B − B;

μBðpÞ ¼ ½ðpþ BÞ=A�c2QM=ð1þc2QMÞ;

nðμBÞ ¼ ð1þ 1=c2QMÞAμ
1=c2QM
B ; ð1Þ

where ρ; p; μB; n are the energy density, pressure, chemical
potential, and the baryon number density, respectively. The
ρtrans;Δρ; cQM are the energy density at the phase transition
point, the energy density width of the phase transition, and
the sound speed of the quark matter, respectively. The
coefficient B ¼ ðρtrans þ Δρ − c−2QMptransÞ=ð1þ c−2QMÞ is
determined by the quark deconfinement transition point
(See Appendix A in Ref. [38] for a detailed proof), and A
is an undetermined constant whose value does not affect the
energy density-pressure relation. For hadronic matter phase
on the lower density region, we adopt the models based on
the nonrelativistic/relativistic mean-field theories [45]. By
specifying that the μB remains constant during the hadron-
quark first-order phase transition, we can determine the
coefficient A mentioned above and thus determine the
number density n; in this way we connect the nuclear matter
and quark matter.
With different parameters, different M-R relations

can be obtained using the above EOS and the Tolman-
Oppenheimer-Volkoff (TOV) equations [38]. The interesting
parameter space corresponds to the so-called disconnected
hybrid stars, as shown in Fig. 3 as an examplewherewe used
the covariant density functional NL3 [46] for the hadronic
matter and the CSS model for the quark matter. We choose

FIG. 2. Illustration of an equation of state model involving a
hadron-quark first-order phase transition. The red line in the high
energy density region represents the quark matter phase, while
the green line in the low energy density region represents the
hadronic matter phase. In between, there exists a first-order phase
transition starting at ρtrans ¼ 5.2429 × 1014 g=cm3 with width
Δρ ¼ 5.8720 × 1014 g=cm3, using the NL3 EOS for the hadronic
matter. Note that here and in Sec. III B, we use the NL3 EOS for
illustrative purposes since the NL3 is a very stiff EOS and the two
components of the corresponding twin-star solution (Fig. 3) have
a relatively large radius difference. This means the effect of the
quark core on the interfacial mode will be more significant (see
Sec. III B). The EOS in Table I can also be stiff (e.g., DD-LZ1),
but the radius difference of the twin-star components is relatively
small. This EOS corresponds to the twin-star solution of 1.6M⊙
in Fig. 3.

FIG. 3. M-R for the hybrid star with nuclear-quark transition in
the core. This disconnected M-R relation exists for certain phase
transition parameters with a large energy density jump Δρ=ρtrans
and medium ρtrans. The twin-star solution for three different
masses M ¼ ð1.3M⊙; 1.6M⊙; 1.9M⊙Þ and three different EOSs
are shown. The dashed lines represent the unstable HS configu-
ration. The EOSs of the quark core and the nuclear matter are the
CSS model and NL3 model, respectively.
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the NL3 EOS for the illustrative purpose since the two
component stars in the twin-star solution have a relatively
large difference compared to other EOSs in Table I. For a
compact star with a fixed mass, there exists two different
configurations; one is a normal NS, while the other is a HS
containing a quark core. These twinlike compact star
solutions are called the “twin-stars” scenario [38]. The HS
solution is typically more compact than the NS solution. The
dashed downward cusps in Fig. 3 correspond to the unstable
solutions. This is because the constant pressure in the hadron-
quark matter phase transition cannot provide sufficient
support against the gravity of the HS core with an increased
energy density gained from the first-order phase transition.
As the central density increases, the quark core can finally
reach a stable state that can balance the gravitational
attraction, which corresponds to the stable HS solution.
The radii of twin starswith degeneratemasses can be differed
by several kilometers.

B. Phase transition near the crust-core interface

The crust-core transition region in the neutron star can
be described as follows. The nuclear matter state in the

neutron star crust is dominated by the Coulomb interactions
among ions and the nuclear interaction between nucleons.
Like ordinary materials, nuclear matter can also be clas-
sified to be “hard matter” and “soft matter” [7], in terms of
their elastic moduli. The NS outer crust has a solid
crystalline structure, which is a hard Coulomb crystal
[7,58–61]. However, as the density increases, the competi-
tion between the nuclear attraction force and the Coulomb
repulsive force starts to dominate the matter phase. Unlike
the Coulomb force, nuclear force is typically short-range
hence breaking the long-range order of the matter state. In
this case, the usual spherical nuclear shapes become
nonspherical complex shapes, such as lasagna or spaghetti,
and the crystal structure gradually dissolves before the
nuclear matter completely becomes uniform [8–11]. A
typical NS has a liquid core and a solid crust, while the
matter of the inner crust has ∼100 meter thickness and
consists of spherical nuclei, nuclei clusters, and also
nuclear pastas. The liquid core has a homogeneous matter
phase and therefore has a zero shear modulus, and the
discontinuity interface of the shear modulus is set at the
bottom of the inner crust, see Fig. 4.

TABLE I. Upper panel: the interfacial mode frequency for a 1.4M⊙ neutron star computed using different EOS models partially based
on the CompOSE database. The density discontinuity is set to happen at n ¼ 0.1 fm−3. The ntrans is the baryon number density at which
the shear modulus transition happens, which is obtained from the corresponding microscopic models of the EOS.a The Δρ=ρ is the
relative width of the first-order phase transition plateau. The fiμ=ρ and fĩμ=ρ are the frequencies of the interfacial mode iμ=ρ before and after
we introduce their interactions, respectively. We can see that the interaction induces the avoiding crossing of the modes as discussed in
the main text. Lower panel: pictorial demonstration of the avoiding crossing of the modes.

EOS SKI6 [47] RS [48] SLY4 [49] APR4 [50] DD2 [51,52] DDME2 [53–55] TW [56] DD-LZ1 [57]

ntransðfm−3Þ 0.0895 0.0672 0.076 0.0672 0.067 0.074 0.076 0.07
Δρ=ρ 1.47% 3.41% 5.19% 7.36% 1.52% 3.30% 5.06% 7.24%
fiμ (Hz) 49.2 41.8 54.2 50.3 50.0 56.0 56.8 56.3
fĩμ (Hz) (1st PT) 23.9 33.4 36.3 36 37.2 37.1 40.3 36.9
fiρ (Hz) 81.6 154.3 152.6 183.7 91.2 128.7 166.5 172.5
fĩρ (Hz) (with shear) 91.9 156.0 157.7 186.5 97.6 135.6 171.4 177.6

aFor the EOS data, see the CompOSE website: https://compose.obspm.fr. In the composition table, we choose the ntrans to be the
density where the proton number Z and the nuclei number A are zero, which is the upper limit density at which the nuclei structure
disappears.
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In the fluid core, there could exist first-order phase
transitions with discontinuous density jumps near the crust-
core transition interface, as shown in Fig. 5. For example,
we can construct such a phase transition at r ¼ rρ < rμ
following the method presented in the Appendix of [45]
based on thermodynamically consistent conditions, which
means that the chemical potential μB on both sides of the
interface are equal, while the ∂P=∂μB and the density have
discontinuity. An example of this first-order phase tran-
sition is presented in Fig. 6, which is based on the SLy4
nonrelativistic mean field theory model.

There could be many microscopic physical mechanisms
that contribute to these phase transitions, such as the
emergence of the new degrees of freedom [62–66]. For
example, the pion condensation can cause a transition from
the normal low-density phase to the high-density phase of
nuclear matter at ρ ≈ 1.3ρsat [67]. Moreover, introducing
the Δ hadron resonance in neutron stars could lead to a
first-order phase transition around the crust-core transition
region [63]. Bayesian inference with explicit first-order
hadron-quark phase transitions from observables of canoni-
cal neutron stars shows a large likelihood (at 68% con-
fidence level) of phase transitions at ρ ≈ 1.6þ1.2

−0.4ρsat, which
is also close to the crust-core transition region [68]. In our
work, with the above constructed first-order phase tran-
sition on the EOS, we want to explore whether such detail
structure of the EOS can be probed by using gravitational
waves, despite the microscopic mechanism.
Furthermore, by solving the TOVequation and adopting

a small density jump with the emergence of a first-order
phase transition, we can also obtain the corresponding M-R
relation shown in Fig. 7, which means that the M-R relation
is hardly affected by introducing this first-order phase
transition. For the region r > rμ, that is, at the bottom of the
crust, there can also be first-order phase transitions among
different nuclear pasta phases. We are not interested in
these phase transitions since the density jumps are often
negligible [8].
As we shall see in the later sections, even with barely

indistinguishable M-R relations, these phase transitions
will affect the interfacial mode of the compact star, which
could lead to observational signatures in the gravitational
wave emitted from binary compact star systems.

FIG. 4. Shear velocity as a function of density for different
EOSs (later will be used in Table I); the EOS data is from the
CompOSE database. The enlarged figure shows the shear
velocity near the bottom of the inner crust.

FIG. 5. The discontinuity of the density and the shear modulus
can happen at different radii rρ and rμ in the compact stars. The
region where r > rμ is the crust where μ > 0, and the rρ < r < rμ
and r < rμ regions are two fluid nuclear states with different
densities. If the rρ is in the deeper region of the fluid core and the
matter with r < rρ is quark matter state, this compact star
becomes a hybrid star. The φ denotes the azimuthal angle and
the ẑ axis is perpendicular to the paper.

FIG. 6. Exemplary equation of state including the crust-core
first-order phase transition, where the enlarged figure shows the
first-order phase transition region. The blue curve is the EOS
without the phase transition, which is based on the SLy4
nonrelativistic mean field theory model. The red curve is the
EOS with phase transition constructed based on the SLy4 model,
where the phase transition happens at n0 ¼ 0.10 fm−3 and the
relative energy density jump is 6%.
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III. INTERFACIAL MODE

A. Modes at the interfaces with shear/density
discontinuity

Under the driving of external dynamical tidal force (e.g.,
provided by a companion star), the internal oscillation
modes of a NS can be excited (e.g., the fundamental
f-mode, gravity g-mode, and pressure p-mode, etc.)
[35,69–71]. Among them, one type of resonant mode takes
place on the interface between different matter phases
called “interfacial modes” (i-mode). For example, there
exists a crust-core interfacial mode [35,36,69] denoted as
iμ-mode excited at the interface between the fluid core and
the solid crust, where the shear modulus μ has a discon-
tinuous transition. For the interface where a first-order
transition happens with a discontinuous density jump, there
will also be another interfacial mode denoted as iρ-mode
(sometimes named as “discontinuous-g-mode”). These
modes can coexist in a NS as shown in Fig. 5.
The coupling of the i-mode and the BNS orbital motion

can exchange energy between the orbital motion and the
internal oscillations, thereby creating observational signa-
tures in the gravitational waves. For example, the excitation
of the crust-core interfacial mode iμ can even induce the
cracking or the melting of the NS crust [36,37,72,73]. Since
the wave function and the resonant frequency of the i-mode
are dependent on the EOS of a compact star, studying these
physical phenomena related to the i-mode could help us
understand the properties of the phases of dense matter. In
the following, we will look into these interfacial modes.
The oscillationmodes of the compact star can be described

by the displacement of the fluid element, represented by

ξ⃗αðr; θ;φÞ ¼ ξ⃗nlmðr; θ;ϕÞ
¼ UðrÞYlmðθ;φÞr̂þ rVðrÞ∇Ylmðθ;φÞ; ð2Þ

where UðrÞ, VðrÞ are the displacement in the radial and
tangential directions, and r is the NS radial coordinate. The
properties of the interfacial mode were first studied by
McDermott et al. in the 1980s [35,69], and the relevant
astrophysical phenomenawere discussed byTsang et al. [36]
and Pan et al. [37] (these modes are all iμ-modes with
discontinuous shear moduli). Following the same approach
and the Cowling approximation, in this work, we calculate
the interfacial mode following the Newtonian perturbation
theory on a general relativity static background obtained by
numerically solving the TOV equation, where the perturba-
tive displacement of the fluid element satisfies

�
L̂þ ρ

∂
2

∂t2

�
ξ⃗ ¼ −ρ∇UG; ð3Þ

in which the L̂ is a linear differential operator that describes
the spatial dependence of the fluid displacement, and the
“restoring force” exerts on the fluid element (for details, see
[35,69] or the supplementary in [37]). The term on the right-
hand side of the above equation is the tidal force exerted by
the companion star’s tidal gravitational potential UG, which
will be presented in Sec. IV. For solving the i-mode
frequency and wave function, only homogeneous perturba-
tion equations are needed: ðL̂ − ρω2

αÞξ⃗α ¼ 0, whereωα is the
resonant frequency of the i-mode, and ξ⃗αðrÞ ¼ ξ⃗ðrÞeiωαt is
the displacement in the rotating frame of the resonant
frequency. The α denotes the fn; l; mg quantum number
that labels the eigenmodes, wheren is the number of nodes of
the eigenmode, l,m are the indices of the spherical harmonic
function Ylmðθ;φÞ. The standard shooting method [74] is
applied to obtain the eigenfrequencies of the i-mode and the
mode eigenfunctions are normalized as

R
d3xjξ⃗αj2 ¼ MR2.

The key parameters in these perturbation equations are the
Γ1 ≡ d ln P=d ln ρ and the crust shear modulus μ (which
can be calculated using the formula given in Appendix B).
We will introduce the two interfacial modes and their
interactions in the following paragraphs.

1. Interfacial mode iμ
Concretely, the tidal force distorts the NS core ellipsoi-

dally in terms of Y2;�2ðθ;ϕÞ scalar spherical harmonics.
The deformation of this core will “squeeze” the surround-
ing solid crust, creating a shear deformation and compres-
sion of the nuclear matter in the crust; the deformation
pattern is shown in the Fig. 8(a). We have shown the wave
function of the iμ mode as the solid curves in Fig. 8(c): the
wave function of the radial displacement UðrÞ has a kink at
the interface; the shear displacement VðrÞ is hardly/
significantly excited in the NS core/crust, due to the

FIG. 7. Exemplary M-R relation corresponding to the EOS in
Fig. 6 based on the SLy4 model with (blue)/without (red) first-
order phase transition. The introduction of the phase transition
does not significantly change the M-R relation, with the small
difference shown in the enlarged figure. This result shows that it
is difficult to probe such a phase transition (if it exists) simply by
measuring the M-R relation of the compact stars.
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discontinuity of the shear modulus crossing the crust-core
interface. The directions of the shear motion of the fluid/
solid element of the two sides of the interface are opposite
to each other.
With the introduction of the first-order phase transition at

rρ, the interfacial mode iμ is changed with the deformation
pattern shown in Fig. 8(b). It is important to note that the
fluid within rρ < r < rμ has zero shear moduli and can slip
freely. This means that the free-slipping fluid layer within
rρ < r < rμ will share the displacement of the crust
bottom. Under the tidal deformation with the Y22ðθ;φÞ-
pattern at φ ¼ π=2, the shear motion of the free-slipping
fluid element will meet and combine to push the core
inwardly and the crust outwardly. Therefore, the wave
function UðrÞ for the iμ mode in Fig. 8(c) changes its sign

when crossing the rρ < r < rμ region. For the shear wave
function VðrÞ, it is also easy to see that VðrÞ changes its
sign when crossing the two interfaces. The shear displace-
ment is relatively large within rρ < r < rμ compared to the
shear motion in the core and the crust because the fluid
element between the two interfaces is freely slipping during
the oscillation.
The iμ-mode is typically soft and has a frequency around

50 Hz, see Table I for different EOSs. Its frequency will
further decrease when interacting with the iρ-mode, as we
shall discuss later.

2. Interfacial mode iρ
For a fluid compact star where the shear modulus

vanishes everywhere, there exists an oscillation mode iρ
excited at the density discontinuity interface, with the
typical deformation pattern shown in Fig. 9(a) and wave
function shown as solid lines in Fig. 9(c). Introducing the
shear-modulus discontinuity (or the NS crust) will modify
the original “bare” iρ-mode to that shown in Fig. 9(b) and
the dashed lines in Fig. 9(c). The wave functions here are
different from the iμ-mode case, where the radial displace-
ment UðrÞ does not flip the sign crossing the transition
region rρ < r < rμ, and the shear displacement VðrÞ only
flips its sign when crossing the shear discontinuity inter-
face. The physical picture of the iρ-mode can be understood
as both the crust and the rρ < r < rμ fluid that are passively
displaced under the driving of the core deformation in
r < rρ. However, in the case of the iμ-mode, it is the crust
and the r < rρ core passively displaced under the driving of
the slipping of the fluid in rρ < r < rμ. Such a difference is
the key to distinguishing the deformation pattern between
the iμ-mode and iρ-mode.
The iρ-mode is relatively hard with a typical frequency

larger than 100 Hz, see Table I for the results for different
EOSs based on different nuclear physics models. The
interaction with the iμ-mode will increase the frequency
of the iρ-mode.
Furthermore, it is worth noticing that this interfacial

mode iρ is actually the Kelvin-Helmholtz wave (KH wave)
in fluid dynamics. Kelvin-Helmholtz wave is the wave
excited at the interface of two fluids with different densities
in a gravitational field, which exactly corresponds to the
iρ-mode here (we do not expand the discussions on
the Kelvin-Helmholtz wave theory, for which we refer to
the textbooks [75]). The relationship of the frequency of the
KH waves and the densities when the fluid bulk velocity is
zero is: ω ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðρ− − ρþÞ=ðρ− þ ρþÞ
p

, where the ρ− and ρþ
are the densities of the fluids at inner and outer sides of the
interface. In the iρ-mode case, for the SLy4 EOS in Table I,
the phase transition width Δρ ¼ ρ− − ρþ is around ∼5%.
This value is in Fig. 5 and is chosen to be 1.5%–2.0%,
while the ρ− þ ρþ is about the same. Therefore, it is

(a) (b)

(c)

FIG. 8. Upper panel: schematic diagram showing the iμ-mode
of the compact star at the interface with shear modulus dis-
continuity. The (a/b) represents the deformation pattern without/
with the first-order phase transition with density jump. The fluid
within rρ < r < rμ in (b) has zero shear modulus hence slipping
freely. Lower panel: the interfacial mode wave function for the
iμ-mode based on SLy4 EOS. The red/blue solid/dashed line
represents the wave functions of iμ-mode of UðrÞ=VðrÞ before/
after we introduce the first-order phase transition with the density
discontinuity. The vertical dashed and solid lines represent the
density discontinuity interface and the shear discontinuity inter-
face, respectively. Detailed physical explanations are presented in
the main text.
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reasonable to expect that there will be a difference of the
frequencies by a factor around 1.6–2.0.

3. Mode interactions

In the above analysis, we showed that the iμ=ρ-mode
frequencies and wave functions will be altered when both
density and shear discontinuity interfaces exist. This phe-
nomenon can be qualitatively understood as the mode-mode
interaction, in terms of the following simple Hamiltonian:

H ¼ ðξμ; ξρÞ
�
ωμ χ

χ ωρ

��
ξμ

ξρ

�
; ð4Þ

where the ωμ=ρ is the frequency of iμ=ρ mode when only
shear-modulus/density discontinuity interface exists. The χ

phenomenologically describes their interactions, which
depends on the radial distance between these interfaces.
Typically, for a first-order phase transition that does not
significantly alter the M-R relation; this distance cannot be
too large. Therefore, the excitation of iμ=ρ mode must
simultaneously drive the iρ=μ-mode since their wave func-
tions are significantly overlapped. In this case, we will have
an avoid-crossing effect for the mode-mode interaction, that
is, the new eigenfrequencies become

ω̃ρ ¼
1

2

�
ωμ þ ωρ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωμ − ωρÞ2 þ 4χ2

q �
> ωρ;

ω̃μ ¼
1

2

�
ωμ þ ωρ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωμ − ωρÞ2 þ 4χ2

q �
< ωμ; ð5Þ

which are manifested in Table I. In obtaining Table I, we first
compute the interfacial modes iμ or iρ when there is only
shear-modulusdiscontinuity or density discontinuity, respec-
tively.After that, we find the eigenfrequencies corresponding
to these two modes when both discontinuity interfaces
coexist. Physically, the introduction of the free slipping
layer effectively shares the excitation of the core in iμ-mode,
causing its eigenfrequency to decrease. During the excitation
of the iρ-mode, the introduction of shearmodulus in the crust
makes it harder for the core to drive the r > rρ part of the
compact star thereby increasing the mode frequency.
One specific case is when the two interfaces coincide,

where the free-slipping fluid in the rρ < r < rμ region
vanishes and the two modes merge into one mode denoted
as iμρ-mode, with frequencies shown in Fig. 10. In the
limiting case of rρ ¼ rμ, the intermediate layer of fluid
disappears and so does the iμ-mode associated with this
intermediate fluid layer. This can be seen from Fig. 8(b)
that the fluid element motion vanishes at φ ¼ 0;�π=2; π in
this limiting case. Moreover, the l ¼ 2 harmonic function
Y2;�¼2ðθ;φÞ ∝ cos 2φ also vanishes at φ ¼ �π=4;�3π=4.
Then there exists totally eight nodes when rρ ¼ rμ, which
means that this mode is no longer the l ¼ 2 mode even if
the fluid motion got excited and thereby cannot be excited
by the orbital motion at the leading order.
Therefore, in a binary compact star system, it becomes

relatively more difficult for the orbit motion to drive the
interface oscillation iμρ when the shear modulus disconti-
nuity happens at the same radius as the density disconti-
nuity, compared to the driving of the iμ. For the unified
relativistic mean field EOSs in the CompOSE database
[76–78] FSU2R, FSU2H, and TM1e [79], which have
relatively soft inner crust structures, we find that these
unified EOSs have the two interfaces coincide. In these
EOSs, the crusts are connected to the core with an abrupt
energy jump and a pressure plateau (i.e., a first-order phase
transition). The connection happens at a density where the
heavy nuclear clusters dissolve with a shear-modulus
discontinuity. The relative energy density jumps are

(a) (b)

(c)

FIG. 9. Upper panel: schematic diagram showing the iρ-mode
of the compact star at the interface with density discontinuity. The
(a/b) represents the deformation pattern without/with the shear
modulus transition. The fluid within rρ < r < rμ in the right
panel has zero shear moduli thereby slipping freely. Lower panel:
the interfacial mode wave function for the iρ-mode based on SLy4
EOS. The red/blue solid/dashed line represents the wave func-
tions of iρ-mode of UðrÞ=VðrÞ before/after we introduce the
shear modulus transition. The vertical dashed and solid lines
represent the shear discontinuity interface and the density
discontinuity interface, respectively. Detailed physical explana-
tions are presented in the main text.
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16.4%, 15.4%, and 14.2% with the number density of the
bottom of the crust being 0.083 fm−3, 0.087 fm−3, and
0.089 fm−3 for the FSU2R, FSU2H, and TM1e, respec-
tively. Accordingly, the iμρ-mode frequencies of 1.4M⊙ are
176.6 Hz, 177.2 Hz, and 187.4 Hz. This demonstrates that
these unified EOSs in the CompOSE database with
coinciding interfaces only have one iμρ interfacial mode
with a higher frequency around 180 Hz.

B. Interfacial modes affected by the quark core

Besides the phase transition,which happens near the crust-
core transition region, we have also investigated the strong
interaction phase transition, which leads to the existence
of quark matter in the core of a HS. Lau et al. [34] analyzed
the interfacial mode excited at the interface between the
crystalline quark matter core and a fluid hadronic envelope,
which has a relatively high frequency ranging from300Hz to
1500 Hz. Intuitively, even if the quark core is not crystalline
but a fluid core, then there could also exist an interfacialmode
(similar to the iρ-mode discussed in the previous section) at
the interface of the first-order hadron-quark phase transition.
Although this interface is in the relatively deeper regionof the
fluid core, it can still affect the properties of the interfacial
mode excited at the crust-core interface with shear-modulus
discontinuity.

As we mentioned in the previous section, the NS and HS
with the same mass but different radii are called twin stars.
Interfacial modes may help us distinguish the twin branch,
of which the wave functions are shown in Fig. 11 and the
frequency differences are shown in Fig. 12, where we take
the CSS model with the speed of sound cQM ¼ c for the
quark core. We plot the frequency of the iμ-mode for seven
different twin-star solutions (i.e., the NS and HS with the
same mass) corresponding to seven different hadron-quark
transition densities where NL3 hadronic EOS transits to
CSS quark EOS.

FIG. 10. The interfacial mode when the two interfaces coincide
(using SLY4 EOS as an example): rμ ¼ rρ, which we denote as
the interfacial mode iμρ. In this case the fluid region rρ < r < rμ
vanishes, and the soft mode shown in Fig. 8(b) disappears. The
horizontal axis is the number density n at which the shear
modulus happens accompanied with the density jump, which
serves as a free parameter due to its uncertainty. The blue/green
dots are the iμ=ρ frequencies when we consider the effects of the
shear-modulus/density discontinuity at density n, respectively.
The density discontinuity constructed here is rather small,
ranging from 1.5% to 2.0%. It is shown that shifting n has a
minor influence on the iμ mode frequency, while the introduction
of the density discontinuity will significantly increase the mode
frequency.

(a) (b)

FIG. 11. Upper panel: schematic diagram showing the iμ-mode
of the compact star (HS and NS with the same mass 1.6M⊙) at the
interface with the shear modulus discontinuity. The (a/b) repre-
sents the deformation pattern without/with the hadron-quark first-
order transition. For the compact star with the same mass, the
radius of a NS is typically larger than that of a HS, and these two
configurations are called twin stars. Lower panel: the interfacial
mode wave function for the iμ-mode based on SLy4 EOS. The
red/blue solid/dashed line represents the wave functions of the
iμ-mode of UðrÞ=VðrÞ before/after we introduce the hadron-
quark transition. The vertical dash-dotted and dashed lines
represent the hadron-quark interface and the shear discontinuity
interface for the HS, respectively. The solid vertical line and the
dotted vertical line are the shear discontinuity interface for the NS
and the surface of the HS, respectively. The R is the radius of the
NS and the green-shaded region is the crust of the NS/HS.
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For one particular hybrid star EOS, the frequency first
increases and then decreases as the mass of the compact star
increases. The initial frequency increase is due to the reason
that, for the stableHS branch of the EOSwheredM=dR < 0,
the HS radius R first decreases rapidly as M increases.
Moreover, there also exists an interfacial mode at the hadron-
quark phase transition interface discussed by Lau et al. [34],
which can also induce an avoid-crossing effectwith the crust-
core interfacial mode. As the mass further increases and the
radius further decreases, the relative distance between the
nuclear-quark phase transition interface and the crust-core
interface shrinks, which creates a larger overlap between
these two interfacialmodes thereby a stronger avoid-crossing
effect, see Fig. 12. This is why the frequency then decreases
after reaching a peak value. For one particular compact star
mass (e.g., the horizontal dashed line shown in the left panel
of Fig. 12), different EOSs lead to different radii of the HS,
hence also different iμ-mode frequencies shown in the right
panel of Fig. 12.

IV. GRAVITATIONAL WAVE SIGNATURE

A. Interfacial mode couples to the orbital motion

The excitation of the crust-core i-mode by the tidal force
in a binary compact star system (see Fig. 13) will convert

part of the energy of the orbital motion to the NS
oscillation, thereby affecting the waveform of the gravita-
tional waves. This phenomenon is called the dynamical
tidal coupling. The internal oscillation of a NS can have
many different modes, such as the pressure mode, funda-
mental mode, gravity mode, Rossby wave, and interfacial
mode. The frequencies of the pressure mode and funda-
mental mode are usually above the binary inspiral fre-
quency, while the gravity mode cannot efficiently couple to
the orbital tidal. The Rossby wave also couples weakly
since it is driven by the relativistic gravitomagnetic effect
[80,81]. The crust-core interfacial mode has a relatively
lower frequency and a larger coupling to the tidal field.
Therefore, the interfacial mode is of particular interest that
may leave signatures in the GW emitted from the inspiral
stage of a binary compact star system, and hence could be
used as a probe of NS EOS and internal structures. In this
section, we discuss the impact of nuclear matter phase
transitions on the GW signals emitted from the binary
systems.
Our analysis of the tidal excitation of the i-mode follows

the standard method presented in [37,82]. For the com-
prehensive purpose, we summarize the basic procedure as
follows. The tidal excitation of the i-mode can be described
by a driven harmonic equation:

FIG. 12. The interfacial mode frequency affected by the quark core. Left panel: twin star M-R relations constructed using different
hadron-quark transition densities. To explore the upper limit of the twin-star’s effects, the speed of sound of the quark EOS is assumed to
be c (which means a very stiff quark matter), and the relative energy density jump Δρ=ρtrans is as large as possible until reaching the
observational constraints Mmax ≈ 2.1M⊙. Right panel: the red dashed line represents the frequency of the iμ-mode at the NS branch
(the solutions with larger radii) for different masses, and the solid line corresponds to the HS branch (the solutions with smaller radii) for
different masses. The two frequencies of the two solutions in a twin-star EOS are typically differed by ∼7–10 Hz. The EOSs of the quark
core and the nuclear matter are the CSS model and NL3 model, respectively. Detailed physical explanations are presented in the
main text.
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ämðtÞ þ ω2
mamðtÞ þ γ _amðtÞ ¼

GM�W2mQ2m

D3ðtÞ e−imΦðtÞ: ð6Þ

In this formula, the am are the mode expansion coefficients
defined as ξðr; tÞ ¼ P

m amðtÞξmðrÞ, where m denotes the
azimuthal quantum number of the eigenmode with angular
pattern Y2mðθ;φÞ, and the ξmðrÞ is the neutron star
eigenmode functions. The right-hand side is the tidal force
derived from the tidal potential

UG ¼ −GM�
X
l;m

Wlm
rl

Dlþ1
e−imΦðtÞYlmðθ;ϕÞ; ð7Þ

where the Wlm is the spherical harmonics expansion
parameter, M� is the mass of the companion star, D is
the orbital distance between the two NSs, and the ΦðtÞ is
the orbital phase. The spherical coordinate ðr; θ;ϕÞ
describes the position of the fluid element in the tidally
deformed NS. TheQlm is the tidal coupling coefficient, that
is, the overlap between the compact star’s internal Ylm-
oscillation mode and the external tidal force, given by (for
n ¼ 1, l ¼ 2)

Q2m ¼ QU
2m þQV

2m ¼ 1

MR2

Z
d3xρξ⃗ �

2m ·∇ðr2Y2mÞ

¼ 2

MR2

Z
R

0

ρr3dr½UðrÞ þ 3VðrÞ�: ð8Þ

It is important to note that theQ2m coefficients are different
for different modes, which we listed in Table II. This result
can be understood using the wave function modified by
the phase transition is shown in Fig. 8(c)and Fig. 9(c).
For example, the tidal coupling coefficient of the radial
deformation UðrÞ of the iμ-mode drops significantly when

we introduce the first-order phase transition at rρ because
the integrand UðrÞ flips its sign when crossing the region
rρ < r < rμ.
The γ parameter is the dissipation rate of the i-mode,

which depends on the microscopic details, and was
phenomenologically discussed in [37,82]. It is worth noting
that the tidal coupling to the interfacial mode could lead to
some nonelastic effects. For example, Tsang et al. showed
that when the shear motion of the crust reaches its elastic
limit a resonant shattering of the NS crust will happen
[36,73], which could be a possible reason for the precursor
of the short gamma-ray burst [36]. Moreover, Pan et al.
recently considered the tidal heating and the melting of the
NS crust due to the excitation and dissipation of the crust-
core interfacial mode, and they studied its possible sig-
natures in the GW observations. In this case, the ωα is a
time-dependent resonant frequency of the i-mode since the
elastic modulus of the NS crust can decrease with an
increasing temperature, and the dissipation rate γ can also
be time dependent. Since the crust cracking/melting proc-
ess depends on the details of nuclear matter, we only
qualitatively discuss these nonelastic effects in this work
for an illustrative purpose later.
In computing the tidal driving on the right-hand side of

Eq. (6), we use the no-backaction approximation discussed
and justified in [80] so that the variation of the distance
DðtÞ and phase satisfies

_D ¼ −
64G3

5c5
MM�ðM þM�Þ

D3
;

_Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þM�Þ

D3

r
; ð9Þ

which assumes that the evolution of the orbital distance is
assumed to be dominated by gravitational wave radiation.
When the orbital motion is on-resonance with an internal
mode frequency, a tidal resonance happens. For the NS
with only shear-modulus/density discontinuity in the crust-
core transition region as in Figs. 8(a) and 9(a), the tidal
force of the inspiral stage will excite one resonance at fiμ=ρ ,
of which the values are distinct from each other. For the NS
with both shear-modulus and density discontinuity in the
crust-core transition region as in Figs. 8(b)and 9(b), there
will be two resonances successively excited at different

FIG. 13. Binary compact stars system. The orbital motion of the
binary system will exchange energy with the internal oscillation
of the NS/HS through the tidal excitations. The companion
compact star can be a NS, HS, or even a black hole. In this case,
the interfacial mode will affect the gravitational waves emitted
from the binary system.

TABLE II. Exemplary tidal coupling coefficient Q22 of EOS
DD-LZ1 affected by first-order phase transition.

Mode Q22 QU
22 QV

22

iμ 0.0285 0.0425 −0.0140
iρ −0.0173 0.0354 −0.0527
iμ (1st PT) −0.0230 0.0001 −0.0231
iρ (with shear) 0.0090 0.0437 −0.0347
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frequencies fĩμ=ρ during one inspiral process. These tidal
resonances will affect the gravitational wave signal and
provides a way to probe the nuclear phase transition in
compact stars.

B. GW waveform and the detectability

1. Full elastic case

First, we discuss the situation where there is no inelastic
process in the neutron star oscillation. The effect on the
orbital cycle and hence the phase of the gravitational wave
radiated by the inspiraling BNS has been studied by Lai
[80,82], where the phase shift is generally given by

ΔϕjGW ¼ 2πωorbΔE= _Etot; ð10Þ

in which ωorb is the orbital frequency on resonance with the
interfacial mode, _Etot is the energy loss rate of the entire
BNS system (consists of orbital energy and the NS energy
and typically equal to the emission power of the gravita-
tional waves), and ΔE is the change of the NS energy. In
the case of no crust melting or shattering, the ΔE is the
energy stored in the NS oscillation mode and the corre-
sponding phase shift can be written as follows [82]:

ΔϕjGW ¼ −
5π2

1024

�
Rc2

GM

�
5 2q
1þ q

jQj
2;2j2ð2πf̃jÞ−2

≈ 54

�
100 Hz

fj

�
2
�
Qj

2;2

0.03

�2�
1.4M⊙

M

�
4

×

�
R

10 km

�
2 2q
1þ q

; ð11Þ

where q ≈ 1 is the mass ratio, and f̃j ¼ fj
ffiffiffiffiffiffiffiffiffiffiffiffi
R3=M

p
is the

normalized dimensionless i-mode frequency. In obtaining
the above formula, we have considered the fact that there
are two m ¼ �2 excited modes. Simple estimations can
show that the phase shift induced by the tidal excitation of
the interfacial mode is quite large compared to the g-mode
or f-mode if the excitation process is entirely elastic. If
there exists an inelastic process, such as crust melting, the
phase shift would be much smaller as analyzed in [37] since
the crust will melt before the resonant oscillation develops.
When the time-varying tidal force sweeps through the

resonant frequencies, there will be a modification to the
gravitational wave phase represented by

ΔΦðfÞ ¼ −
X
j

X
A¼1;2

δϕðAÞ
jGW

�
1 −

f

fðAÞj

�
Θðf − fðAÞj Þ; ð12Þ

compared to the phase ΦðfÞ in the GW waveform (in the
frequency domain) without this tidal resonance effect,

hðfÞ ¼ ÃðfÞ exp½iΦðfÞ�; ð13Þ

where ÃðfÞ and ΦðfÞ are the gravitational wave strain
amplitude and phase in the frequency domain. Here the
summation over A ¼ 1, 2 takes into account the oscillation
mode of two compact stars in a binary system, and the
summation over j accounts for the situation where there
will be more than one resonant mode to be excited. For
example, when the shear and density discontinuity coexists
in a NS, there will be two internal modes that will be
excited successively. In this case, there will be eight new

parameters: δϕð1;2Þ
iμ=ρ

and fð1;2Þiμ=ρ
enter into the GW waveform.

For the binary system consisting of two similar compact
stars, their internal modes have similar structures and

properties, that is fð1Þi ≈ fð2Þi , which gives the possibility
to reduce the number of parameters of this model as raised
in [37]:

ΔΦðfÞ ≈ −
X
j

δϕ̄j GW

�
1 −

f
f̄j

�
Θðf − f̄jÞ; ð14Þ

where we define δϕ̄jGW ¼ P
A δϕ

ðAÞ
jGW and f̄j ¼ δϕ̄jGW=

ðPA δϕ
ðAÞ
jGW=f

ðAÞ
j Þ. For the compact star with two resonant

modes excited, there will be only four new parameters
under this approximation. The point particle waveforms
used in this work also follows [34], where we use
IMRPhenomD template with 5th Post-Newtonian (PN)
and 6th PN tidal contributions and cut-off frequency chosen
as the innermost stable circular orbit frequency (for details,
see [34]). When using these waveform templates, we
recomputed the tidal deformability using the EOS modified
by the phase transition is shown in Table III.
We model the detectability using the Fisher information

matrix as in [34,83,84], supposing that the gravitational
wave signal is strong enough to have a high signal-to-noise
ratio, and the detector noise is Gaussian. The effective
Fisher matrix incorporating a priori information following
[83] with template parameters fθmg defined by

TABLE III. The tidal deformability of different EOSs with
1.4M⊙. This table shows that the introduction of the first-order
phase transition at rρ only induces a slight change of the tidal
deformability. The tidal deformability coefficient in the template
waveform is Λ̃, which is a weighted combination of the tidal
deformability of the two stars in a BNS system. WhenM1 ¼ M2,
we have Λ̃ ¼ Λ1 ¼ Λ2. The detection uncertainty calculated from
Fisher information is ΔΛ̃ ∼ 100, based on Cosmic Explorer
sensitivity. This means that the tidal deformability can not be
used to probe the first-order phase transition at rρ.

EOS SKI6 RS SLY4 APR4 DD2 DDME2 TW DD-LZ1

Λ 488 597 299 248 682 712 406 722
ΛPT 496 651 303 260 714 738 424 755
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Γ̃mn ¼
�
∂h
∂θm

���� ∂h
∂θn

�
þ δmn

σ2mprior

; ð15Þ

where the inner product ðajbÞ is defined as

ðajbÞ ¼ 2

Z
∞

0

a�ðfÞbðfÞ þ aðfÞb�ðfÞ
ShhðfÞ

; ð16Þ

with ShhðfÞ is the strain noise spectral density of the GW
detector. The root-means-square (rms) for estimating the
parameter θm now can be written as follows:

Δθm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ̃−1Þmm

q
; ð17Þ

where Γ̃−1 is the inverse of the effective Fisher information
matrix. The phase shift is detectable if it is larger than the
error for measuring the parameter θm ¼ δϕ̄jGW:Δδϕ̄jGW. In
Fig. 14, we plot the detectability of the interfacial modes
computed using different EOSs, based on the designed
sensitivity of advanced Laser Interferometer Gravitational
Wave Observatory (LIGO) [85] and the third generation
detector Cosmic Explorer [86]. For the iμ-mode at the shear
discontinuity interface with lower frequency, there is a
significant detectability of these modes from the GW
observations if the excitation process is entirely elastic;
while the interfacial mode at the density discontinuity
interface is relatively more difficult to be detected due to its
high frequency. The introduction of the first-order tran-
sition reduced the frequency of the iμ-mode while increas-
ing its detectability.

2. Influence of the inelasticity to the detectability

The results presented in Fig. 14 show that for the elastic
deformation there is a significantly high detectability.
However, as we mentioned before, Tsang et al. and Pan
et al. [36,37] investigated the possible inelastic process that
happens in the deformation of a NS crust. In particular, Pan
et al. [36,37] considering the melting of the crust and the
basic physical process describe it as follows: the tidal
interaction drives the i-mode so that the shear motion may
exceed the crust yield limit and the plastic deformation starts,
accompanied with the mode energy converting into the
thermal energy. Gradually, accumulating heating energywill
start to melt the crust, and it takes ∼20 orbit periods to
completely melt down the crust which costs about 1047 ergs
energy. Pan et al. [36,37] gave the formula for estimating the
phase correction induced by the crust melting as

δϕmelt ¼
2ωorbEmelt

PGW

≈
0.18
q2

�
1þ q
2

�
2=3 Emelt

1047 erg

�
M

1.4M⊙

�
−10=3

×

�
fGW;melt

100 Hz

�
−7=3

; ð18Þ

which can be used to estimate the effective melting to the
detectability. Using the approach as in Pan [37], we plot the
effect of melting on the detectability of interfacial modes for
different EOSmodels in the lower panel of Fig. 14, wherewe

FIG. 14. Upper panel: detectability of the interfacial modes for
the elastic NS deformations. The vertical axis is the phase shift δϕ
due to the coupling of the orbit motion and the interfacial mode,
and the horizontal axis is the redefined interfacial mode fre-
quency for the binary system [see the text below Eq. (14)]. The
yellow and grey lines are the detectability threshold of advanced
LIGO (using its designed sensitivity) and the proposed Cosmic
Explorer, which are obtained using the Fisher information
analysis. The blue diamond points and the green squared points
describe the phase induced by the interfacial modes shown in
Fig. 8(b) and Fig. 9(b), which are affected by the mode mixing.
The red triangle points and circular purple points represent the
interfacial modes iμ without the effect of the density discontinuity
shown in Fig. 8(a) and the situation when the shear and density
discontinuity merges, respectively. We calculate the detectabil-
ities for eight different EOSs in Table I, and the mode with lower
frequencies is easier to be detected. Lower panel: detectability of
the interfacial modes when the crust-melting process is intro-
duced; the setting of the figure is the same as that of the
upper panel.
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considered the temperature-dependent shear modulus and
the detailed crust heating model (summarized in the
Appendix for illustrative purposes). The results in Fig. 14
can be understood as follows: (1) The effects on the GW
phase due to the coupling of the orbital motion with the iμ
modes become more difficult to observe since the melting
destroys the crust, and themelting energyEmelt is only a small
fraction compared to the resonant energy when the iμ-mode
is fully swept through during resonance. (2) The resonant
frequency for the driving of the crust-core interfacial modes
iμ systematically move leftward because the heating softens
the crust matter. Moreover, since the exceeding of elastic
deformation happens before the original resonant point, the
accumulation of heat and the meltdown of the crust effec-
tively lower the resonant frequencies, which is beneficial to
the observability of the iμρ mode (see Fig. 14). (3) The
melting effect will convert the crust from a Coulomb crystal
to a Coulomb liquid, so that the discontinuity of the shear
modulus that exists in the cold NS diminishes. Therefore, the
corresponding interfacial mode iμ also disappears. Hence,
the coupling between the iμ and iρ also diminishes, which
will create a decrease of the iρ frequency and an increase of
the tidal coupling coefficient Q2m (see Table II) of the iρ
frequency. This will increase the signal of the coupling
between orbital motion and the interfacial mode iρ and also
its detectability compared to the elastic case.

C. Distinguishing the twin star

The above discussions focus on probing the nuclear
phase transition near the surface of the neutron fluid core.
Now we discuss the possibility of using the interfacial
mode to probe the nuclear-quark phase transition.
As mentioned in Sec. III B, the iμ-mode frequencies of

NSs and HSs differ up to 7–10 Hz. In reality, the resonance
excitation does not happen instantaneously at the resonant
orbital frequency. Following [82], the total number of
orbital cycles that the binary system evolves during the
period of the effective resonant excitation of the iμ-mode is

δNorb;i ≈ 12

�
fi

100 Hz

�
−5=6

�
M

1.4M⊙

�
−5=6

q−1=2
�

2

1þq

�
1=6

;

ð19Þ

which means that there is a bandwidth of orbital frequency
experienced during the resonant excitation. If the internal
oscillation frequency of the NS in a NS-NS binary system is
different from that of the HS in a HS-NS binary system with
the same mass by δfi, and δfi is smaller than the bandwidth
of the resonant excitation, then this frequency difference is
not resolvable and thereby difficult to distinguish the twin-
star component.
This can be formulated in another equivalent way. The

number of cycles for the BNS evolving from f1 to f2 can be
obtained by

ΔNorb ¼
Z

t2

t1

ΩðtÞdt=2π; ð20Þ

where theΩðtÞ can be solved from Eq. (9). The t1 and t2 are
the moments when orbital frequencies take the value of f1
and f2, respectively. To distinguish NS/HS from the binary
system, f1=2 can take the value of half of the iμ frequency
for the NS/HS, that is, the orbital resonant frequency of the
NS/HS, respectively. The NS/HS is distinguishable as long
as the inequality ΔNorb > δNorb is satisfied.
In Fig. 15, we demonstrate the distinguishability of the

HS solution compared with the NS solution based on NL3
EOS. Since there is no density discontinuity near the
crust-core interface in the NL3 EOS, the corresponding
frequency of the crust-core interfacial mode iμ is around
30–40 Hz. Therefore, the orbital excitation of this iμ-mode
happens in a relatively early inspiral stage. Although the
frequency differences between NSs and HSs are only about
7–10 Hz, the difference of the number of orbital cycles
ΔNorb for the HS and NS is large enough compared with
the δNorb, which indicates its possible detectability.

V. CONCLUSION AND OUTLOOK

In this work, we studied the possibility of using the crust-
core interfacial mode of the neutron stars to probe the phase

FIG. 15. Distinguishability of the NS and its HS counterpart at
different masses. For illustrative purposes, the mass of the
companion compact star is set to be fixed at 1.4M⊙. The red
dashed line is the δNorb of the iμ-mode resonance of the NS. The
solid lines are the differences in the orbital cycle between the NS-
NS binary system and the NS-HS binary system’s resonant orbital
frequencies. Detailed analysis is in the main text.

ZHU, WANG, XIA, ZHOU, and MA PHYS. REV. D 107, 083023 (2023)

083023-14



transition in dense matter. Some phase transitions, in
particular, those that can significantly change the mass-
radius relation or the tidal deformability of the neutron
stars, can be probed using electromagnetic observations or
the adiabatic GW waveform. There could also exist phase
transitions that have a minor effect on the M-R relation and
the tidal deformability. For example, in the fluid core of a
NS, first-order phase transitions with density discontinuity
can happen near the crust-core interface, due to the possible
emergence of the new baryon degrees of freedom. For these
phase transitions, we explore the possibility of probing
them using the crust-core interfacial mode, which can
couple efficiently to the orbital motion of a binary neutron
star system and leaves signatures in the gravitational wave
radiations. In this work, we carefully analyzed the proper-
ties of the crust-core interfacial mode and found that they
can be significantly modified by the existence of these first-
order phase transitions. We also study the observability of
this phase transition using Fisher analysis. Moreover, we
also explore the effect of the hadron-quark phase transition
on the interfacial mode and its possible observability in the
gravitational wave signals, as complementary to the meas-
urement of the M-R relation. Our results indicate that a
ground-based gravitational wave detector has the potential
to detect the signature of these phase transitions via the
crust-core interfacial mode.
We want to comment that our results here may have the

following inaccuracies. Firstly, our analysis was based on a
Newtonian perturbation theory on a general relativistic
background stellar structure under the Cowling approxi-
mation, where the perturbation of the gravitational field
and its coupling to the perturbation of the fluid energy
momentum were ignored for simplicity. The most accurate
analysis should be based on a fully consistent general
relativistic calculation. For neutron stars, applying
Newtonian approximation usually contributes ∼10% error
on the value of the mode frequencies. This could be
important because, as we have discussed before, a differ-
ence of a few Hz can correspond to many orbital cycles at
low frequency. We leave the full relativistic perturbation
calculation for a future work. Secondly, the detailed
inelastic mechanical process of the neutron star crust under
the excitation of the tidal interactions is not entirely clear
[37,87] since it depends on the exotic matter phase in the
extreme conditions in the neutron star. Therefore, the
results concerning the inelastic effect of neutron star crust
in this work should be valid as semiquantitative estima-
tions. A more accurate understanding needs a more detailed
study of the inelastic properties of the crust. Thirdly, our
analysis is based on the binary system where the compact
stars have no spin angular momentum, which, in principle,
can affect the interfacial mode and the orbital motion. The
spin affects the internal oscillation mode in a way similar to
the Zeeman effect in atomic physics or the Sagnac effect in
a laser gyroscope, and the orbital motion of the binary

system can also be modulated due to the spin-orbital and
spin-spin coupling. Besides, only near-circular binary orbit
is considered, while, in principle, the interfacial mode can
also be excited via an eccentric orbit. We leave the
improvement of this work by dealing with these inaccur-
acies for future works.

ACKNOWLEDGMENTS

The authors devote many thanks to Professor Micaela
Oertel, Dr. Helena Pais, and the “CompOSE” team for
patient discussions and help in constructing a consistent
neutron star EOS. Y. M. thanks Professor Huan Yang and
Dr. Zhen Pan for the discussions on their work about the
interfacial mode and for sharing their calculations for
comparison. He also thanks Professor Shun Wang for
his constant support. J. Z., C. W., and Y. M. thank
Professor Yanbei Chen for the discussion and his encour-
agement in completing this work. We also thank Miss
Zeying Xia for her administrative support. J. Z. is supported
by China National Scholarship (undergraduates). E. Z.
thanks Yong Gao for discussion on the g-mode. Y. M. is
supported by the start-up funding provided by Huazhong
University of Science and Technology. E. Z. is supported by
National SKA Program of China No. 2020SKA0120300
and NSFC Grant No. 12203017. C. X. is supported
by the National SKA Program of China (Grant
No. 2020SKA0120300) and the National Natural Science
Foundation of China (Grant No. 12275234).

APPENDIX A: SOME DETAILS ON SOLVING
THE INTERFACIAL MODES

We follow the standard approach [69] to solve the
eigenfrequencies of asteroseismology under the Cowling
approximation, briefly summarized in this section. We also
discuss some important numerical details.
In the solid crust, the movement of a mass element is

governed by Newton’s second law, mass continuity equa-
tion, and the Poisson equation for gravitational potential:

∂v⃗
∂t

þ ðv⃗ ·∇Þv⃗ ¼ 1

ρ
∇ · S −∇Φ;

∂ρ

∂t
þ∇ · ðρv⃗Þ ¼ 0; ∇2Φ ¼ 4πGρ; ðA1Þ

where S is the elastic stress tensor with component as

Sij ¼ Γ1PTrðϵÞδij þ 2μ

�
ϵij −

1

3
TrðϵÞδij

�
; ðA2Þ

where ϵij ¼ ðξi;j þ ξj;iÞ=2 is the strain tensor, μ is the shear
modulus, and Γ1 ¼ dlnP=dlnρ is the adiabatic index,
which is a characterization of the matter hardness. In
particular, we will see later that the eigenmode results
are very sensitive to Γ, and we need to be careful in the
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numerical treatment of Γ. For the fluid core, the equation is
the same except the shear modulus μ is set to be zero.
Perturbations are applied to the above equations, with

static zeroth order background quantities obtained using the
Tolman-Oppenheimer-Volkoff equation. We do not list the
cumbersome detailed form of the perturbation equations,
which can be easily found in [34,35,37,69]; we only list the
important junction conditions at different interfaces and
other important details that need to be noticed.

1. Junction conditions

As mentioned in Sec. III, there are two different
interfaces in the compact star: the shear-modulus disconti-
nuity interface and the density discontinuity interface.
When integrating across these interfaces, proper junction
conditions must be applied to connect the perturbation
variables at both sides of the interface.
The physical conditions, which must be satisfied at both

interfaces, are the continuity of the radial displacement of the
fluid elements and the radial stress. These two requirements
are sufficient to construct the connection at the density
discontinuity interface. At the shear-modulus interface, an
additional condition acquiring zero shear stressmeans that an
ideal fluid with μ ¼ 0 does not support shear stress.
The dimensionless perturbation variables of the solid

crust that appear in the oscillation equations are

z1 ¼
U
r
; z2 ¼

λ

p

�
1

r2
d
dr

ðr2UÞ − lðlþ 1Þ
r

VÞ
�
þ 2

μ

p
dU
dr

;

z3 ¼
V
r
; z4 ¼

μ

p

�
dV
dr

−
V
r
þU

r

�
; ðA3Þ

where λ ¼ Γ1p − 2=3μ is the Lamé coefficient.
The dimensionless perturbation variables of the liquid

core are

y1 ¼
U
r
; y2 ¼

δp
ρgr

: ðA4Þ

Correspondingly, the junction conditions at the two inter-
faces are

½z1�solid ¼ ½y1�liquid
½z2�solid ¼ ½Ṽðy1 − y2Þ�liquid
½z4�solid ¼ 0 ðA5Þ

and

y1l ¼ y1h;

Ṽlðy1l − y2lÞ ¼ Ṽhðy1h − y2hÞ: ðA6Þ

In the junction condition, there appears a quantity
Ṽ ¼ −d lnp=d ln r ¼ ρgr=p. Therefore, the density dis-
continuity will result in a discontinuity of Ṽ.

The brackets “[]” in the above formula with the sub-
scripts “solid” and “liquid” indicate that the quantities
should be evaluated at both solid and liquid sides, respec-
tively. In (A6), the subscripts “l” and “h” indicate that the
quantities should be evaluated at the lower mass density
side and the higher mass density side, respectively, at the

FIG. 16. The adiabatic index Γ1 (upper panel) and the corre-
sponding M-R relation (lower panel). The blue line is the Γ1 of
SLy4 EOS using a cubic spline interpolation algorithm [74],
while the red line is the one using a polynomial interpolation
algorithm. Although these two approaches fit quite well at the low
density region, they are deviated from each other in the crust-core
transition region. If the accuracy of the precision of the inter-
polation algorithm was not well controlled, then the resultant Γ1

actually corresponds to a different EOS and hence a different
TOV solution.
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interface of the first-order phase transition in the liquid
core, which is essential to the calculation of “free-slipping”
effects.

2. Numerical details on the adiabatic index

The adiabatic index Γ1 characterizes the stiffness of the
EOS and reflects some physical effects like the softening of
the EOS when the density is higher than the neutron drip
density or the stiffening at the crust-core interface of SLy4
EOS. However, we need to be careful in choosing the
algorithm when we obtain the adiabatic index. For exam-
ple, using a 9-order polynomial interpolation to obtain
the Γ1, shown approximately in Fig. 16, will have some
problems. First, this method may significantly alter the
EOS stiffness behavior around the crust-core region,
thereby removing some important physical facts that
may affect the properties of the i-mode. Second, the altered
Γ1 essentially represents a new P − ρ relation and thus a
different EOS. It creates an artificial inconsistency with the
original background static star solution computed by the
original P − ρ relation. Our test shows that this incon-
sistency will overestimate the i-mode frequency from
54 Hz to 170 Hz due to the increasing of Γ1 at the
crust-core region for the EOS SLy4 with 1.4M⊙.

APPENDIX B: CRUST MELTING

We follow the same approach as in [37] to compute the
effect of crust melting to the binary neutron stars system,
which is briefly summarized in this appendix section.
Once the tidal-induced shear strain exceeds the elastic

limit ϵb ∼ 0.1, the plastic deformation of the crust will
cause heat dissipation given by [88]

_ϵpl ¼
niZ2e2ωp

aμN̄Γ
eð−18.5σ̄bþσ̄ N̄ÞΓ; ðB1Þ

where μ is the elastic shear modulus [89,90]:

μ ¼ 0.1194
1þ 0.595ð173=ΓÞ2

niðZeÞ2
a

;

with ni ¼
Nð1 − XnÞ

A
: ðB2Þ

Here N is the baryon number density, Xn is the fraction of
nucleons in the neutron gas [90], a ¼ ð3=4πniÞ1=3 is the
average ion spacing, ωp ¼ ð4πZ2e2ni=AmbÞ1=2 is the ion
plasma frequency, σ ¼ μϵel is the shear stress,
σ̄ ¼ σ=ðniZ2e2=aÞ, Γ ¼ ðZeÞ2=akBT is the melting param-
eter, and for Γ ¼ Γm ≈ 180 the crust undergoes a fluid-solid
transition. The melting temperature for the bottom of the

crust is T ∼ 1 MeV. Then the energy heating rate due to the
plastic deformation is [87]

ni _ei ¼ σ _ϵplðσ; TÞ; ðB3Þ

where ei is the thermal energy per ion. The energy
dissipation rate has an exponential dependence on the
elastic strain [see Eq. (B1)]. Therefore, we can expect that
at some point during the evolution, the heating will become
very fast.
For computing the heating effect dei ¼ cVdT, we need

the specific heat capacity per ion given as [91]

cV
kB

¼ 8D3ðαηÞ − 6
αη

αη − 1
þ eγLη

�
γLη

eγLη−1

�
2

; ðB4Þ

whereD3 is the Debye integral, α ¼ 0.4, and η ¼ ℏωp=kBT
with ωp the plasma frequency and T the temperature. The
γL ¼ 0.899 is the longitudinal correction factor of the
acoustic mode in a Coulomb crystal defined in [92],
which should be distinguished from the mode damping
factor γ. We can get the time derivative of temperature:
_T ¼ μϵel _ϵpl=nicV . We mainly focus on the temperature
evolution at the crust base for its dominant role in the crust
heat capacity. The melting will affect the parameters of the
interfacial mode, for example, the damping factor γ and the
resonant frequency will depend on time, that is

ämðtÞ þ γðtÞ _amðtÞ þ ω2
mðtÞamðtÞ ¼

GM�W2mQ2m

DðtÞ3 e−imΦðtÞ:

ðB5Þ

For example, the damping rate is

γðtÞ ≈
�
2

Z
crust

d3xni _eiðtÞ
�

��
MR2

X
m

j _amðtÞj2 þ ω2
mðtÞjamðtÞj2

�
; ðB6Þ

where the denominator represents the mode’s total energy,
and the numerator represents the total energy dissipation
rate in the crust. The resonant frequency ωαðtÞ is assumed
to be proportional to the square root of the shear modulus
μðtÞ in Eq. (B2), which also depends on the increasing
temperature during the heating process. Combining the
above equations, one can analyze how the melting process
affects the coupling between the interfacial mode and the
orbital motion, on which the lower panel of Fig. 14
is based.
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