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We present the general relativistic electrodynamics and magnetohydrodynamics with a helically coupled
scalar field. We consider a three-component system with the fluid, scalar field, and electromagnetic fields
with a helical coupling. We derive three exact formulations: the covariant formulation, the ADM
formulation, and the fully nonlinear and exact perturbation formulation. We also derive the weak-gravity
limit with fully relativistic fluid and fields. The latter two formulations are presented in cosmological

context.
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I. INTRODUCTION

Magnetic fields are ubiquitous in celestial environments.
The relativistic processes involving a magnetic field are
also widespread in astronomical objects. A scalar field
appearing in high-energy physics is now the main ingre-
dient in cosmological processes, playing an essential role in
driving inflation, dark matter, and dark energy. For the
scalar field, relativistic treatment is necessary. The combi-
nation of the magnetic field and the scalar field naturally
leads to helical electromagnetism [1] which disappears
without the scalar field coupling.

The electromagnetic field helically coupled with the
scalar field (the axion as an example) naturally leads to an
a-dynamo term [2] causing exponential growth of the
magnetic field in the linear stage and to the magnetic
helicity generation which has important implications in
enhancing the large-scale magnetic field through the
inverse cascade, propagating the magnetic field to larger
scales [3,4]. Although the origin and evolution of the
cosmic magnetic field are largely unknown in astrophysics
and cosmology, the helically coupled scalar field may have
important roles in understanding the subject, see [5—10] for
reviews.

Relativistic electrodynamics (ED) and magnetohydro-
dynamics (MHD) are important in many aspects of rela-
tivistic astrophysics and cosmology. Here, we present three
exact relativistic formulations and the weak-gravity
approximation of ED and MHD of the three-component
system including the helical coupling: the fluid (FL), the
scalar field (SF), and the electromagnetic (EM) field. We
consider a Lagrangian density
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where L, is the fluid part, R the scalar curvature, A the
cosmological constant, ¢ the SF, F,, the EM tensor, and
the other symbols will be explained later. The g, term is
the helical coupling.

In ED, the presence of a helical coupling causes extra
charge and current densities and provides windows for
direct detection of the axion particles by EM means [1,11].
In MHD, the helical coupling causes the a-dynamo term in
MHD treatment: for expressions in the four formulations,
see Sec. VID.

The covariant (1 + 3) and the Arnowitt-Deser-Misner
(ADM) (3 + 1) formulations are reformulations of Einstein’s
gravity without any restriction on the geometry and the
energy-momentum contents. The fully nonlinear and exact
(FNLE) perturbation formulation is based on nonlinear and
exact perturbations in the Friedmann background. Here, for
simplicity, we ignore the tensor-type perturbation and
impose the spatial gauge conditions. The formulation is
general without imposing the temporal gauge (hypersurface,
slicing) condition.

The weak-gravity approximation is a limiting case of the
FNLE formulation in the limit of weak gravity but with a
fully relativistic fluid and fields. The formulation is possible
in the uniform-expansion gauge (maximal slicing in the flat
spacetime background). By taking the nondynamic back-
ground, the equations of FNLE and weak-gravity formula-
tions are valid for general energy-momentum configuration.

Previously, in [12] we presented the weak-gravity and
slow-motion limit of the system and studied gravitational

© 2023 American Physical Society
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and magnetic instability in the case of the massive scalar
field with f « ¢ coupling. Here, we present the fully
relativistic and nonlinear ED and MHD of the system
without the restrictions used in [12]. As we consider
general potential V and coupling f, here we do not handle
the axion case with a massive scalar field. For the axion,
together with f o ¢?, the Klein and the Madelung trans-
formations are available with proper nonrelativistic limit. In
the absence of the g, coupling, the covariant formulation
and the post-Newtonian approximation of the axion were
studied in [13]. For a general potential V(¢), the SF does
not have Newtonian limit, thus the post-Newtonian
approximation is not available.

The complete sets of equations in the three exact
formulations of ED are derived in Secs. II-IV. The
weak-gravity approximation of the FNLE formulation of
ED is derived in Sec. V. MHDs in the four formulations are
derived in Sec. VI. In three appendices we derive the
covariant, ADM, and FNLE formulations for a general
single-component fluid. Being a general fluid, the formu-
lation is valid in the multicomponent fluids and fields with
the fluid quantities interpreted as collective ones. As the
main purpose of this work is deriving the formulations, we
will present some details needed for the derivation.

II. COVARIANT (1 +3) FORMULATION

The covariant (1 + 3) formulation [14-18] is derived in
Appendix A for a most general imperfect fluid. The
fundamental set of equations are Eqs. (A15)—(A32). The
formulation in Appendix A, although u,, is used as the four-
vector, is based on a generic timelike four-vector U,,. From
now on, we will use U, for the generic four-vector, reserving
u,, for the fluid four-vector and n,, for the normal four-vector.
The U, can be the FL comoving (u,), the collective-matter
comoving, the SF comoving, the normal (n,), etc.

In the presence of multiple component fluids and fields,
we may regard the fluid quantities in Appendix A as the
ones for the collective fluids and fields. Thus, our task in
this section is to derive the conservation equations for the
FL, the Maxwell equations for the EM field, the equation of
motion for the SF, and the collective fluid quantities.
Einstein’s equations in (A21)-(A32) together with the
collective fluid quantities provide the gravity part.

A. Maxwell equations

The EM tensor is decomposed as [16]
Fab = UaEb - UbEa - ’/IabchCde (2)
with E,U% = 0 = B,U%; U, is a generic timelike four-vector
normalized with U°U, = —1; E, and B, are based on the

four-vector. In terms of the EM four-potential A,, we have

Fab = vaAb - vbAm (3)

where V,, is the covariant derivative. The dual tensor is

Frab — % ndF . = UBY — UPB? + yedU E,,
Fop = _%”abch*Cdv (4)
thus
E,=F,U"’, B,=F:,U". (5)

We have two invariants

FabFab — _2(E2 _ BQ) — _F*abFZb’
FeF*, = —4E‘B,,, (6)

where E? = E°E,; F,,F** is parity odd and leads to
asymmetry between the two circular polarization states, thus
helical.

For fluid quantities and the electric and magnetic
field strengths based on the generic four-vector U,, we
can take either the normal frame (which is closer to the
laboratory frame) with U, = n, or the comoving frame. In
the presence of the FL, the SF, and the EM field, the
comoving can be fluid comoving (comoving with the
fluid), the scalar field comoving, etc. The fluid quantities
of the FL are often expressed in the fluid-comoving frame,
and the EM fields are often expressed in the normal frame.
Expression of the SF is simplified in the SF-comoving
frame. We reserve U, = u, for the fluid-comoving frame
(thus, u, is the fluid four-vector).

Variation with respect to A, gives the Maxwell equations

4m
Fe = — (Jam—cgp f oF*),

Frb =0 (or Flup,q =0), (7)
with

Jém = QemcU” + j4, Jo U =0, ng;a =0, (8)
where the semicolon indicates a four-dimensional covariant
derivative. Thus

OemC = _JeamUa’ ¢ = hz‘]gm’ (9)
where ¢, and j¢ are the charge and current densities,
respectively, based on U,; hy, = g,, + U,U, is the pro-
jection tensor. From these we can derive the four Maxwell
equations [16]

Ea;bhg = 4”(Qem_g¢yf.aBa) - za)aBm (10)

083020-2



EXACT FORMULATIONS OF RELATIVISTIC ...

PHYS. REV. D 107, 083020 (2023)

¥ 2
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B, hh = 20°E,, (12)

3
—ﬂab(?dUd(abEC _Eb;c)v (13)

. 2
haB” = (n“hchdwC + o8 — —5;;9) B

where ga = E“;,,U”. Equations (10)-(13) follow, respec-
tively, from

UaFab;b = ey
Ua’/ladeFbc;d =0,

REFy =,
hlelrledeFbc;d =0. (14)

Apparently, the g,, coupling can be interpreted as intro-
ducing extra charge and current densities [1,19]. We have

Jix = _ngﬁyf,bF*ab» Qax = _gqﬁyf.aBa’
Jix = Gy f 5 (UPB = U Ey). (15)

These are axion (SF) induced electric charge and current

densities.
We can derive

~ 4
(B*) = 26,,B*B" — 5932
- 27’]adeUdBa(CleC + Eb;c)' (16)
The current conservation J¢,,., = 0 gives
C(éem + egem) = _ja;a = _tha;b —Jja,, (17)

which is also valid for Jg,.

B. Equation of motion

Variation with respect to ¢ gives the equation of motion

g() *d
Op =V 4+ %f,,,,Fa,,F b, (18)
Using F,,F** = —4E“B, which is frame invariant, we
have
—Op+Vy=d+0p+V,—h(hed,), - hip,a*
= gt/)yf.(/)Ean (19)

based on the generic four-vector U,,.

C. Fluid quantities

In the presence of all three components, T,, can be
separated into three components as T,, = Tt5 + 750 +
TEM with each component in Egs. (21)—(23). The ﬂu]d
quantities in Appendix A can be regarded as the collective
ones with u = u™ + 4SF 4+ ™M etc.; for individual fluid
quantities, see Eq. (24) for FL in the fluid frame, and
Egs. (29) and (32) for the SF and the EM field, respectively,
in the generic frame. Thus, the fluid quantities used in
Einstein’s equations in (A15)—(A32) are collective ones
based on the generic frame. The energy-momentum con-
servation in Eqs. (Al7) and (A18) also apply for the
collective fluid quantities. In the following, unless men-
tioned otherwise, the fluid quantities y etc. are in the fluid-
comoving frame.

In the multicomponent case, it is convenient to introduce
the individual conservation equations. The conservation
equations of individual components are constrained by

T ), = (T% + T+ T&,)., = 0. (20)
For the FL, we additionally have a mass conservation
equation in (A19). For the EM field, we additionally have
the Maxwell equations in Eq. (7); in the covariant form
decomposed using U,, see Egs. (10)—(13). For the SF, we
have the equation of motion in Eq. (18); in the covariant
form decomposed using U, see (19).

Variation with respect to g,;, gives Einstein’s equation
and the energy-momentum tensor, with &6(\/=gL) =

1T\ /=989ap- We have T, = TEL 4+ TS5 + TEM with

TF = puguy + phay + qauy + qpug + g, (21)
SF 1 RE
Tab = ¢,a¢,b - EQS’ ¢,c +V Yab» (22)

1

1
TEIZ:/[ = E (FaCF};C - ZgachdFCd> P (23)

where u = uf, etc. In T, the fluid and the two fields are
clearly separated. The g,,-coupling term does not contrib-
ute to the energy-momentum tensor, thus to the fluid
quantities. The g,, coupling occurs only in the Maxwell
equations and the equation of motion. The EM coupling
with the fluid appears in the energy and momentum
conservation equations.

Fluid quantities of the FL in Eq. (21) are defined based
on the fluid four-vector U, = u,, with

1
TFbu ub p= STI;II;h”b, q,=-T. FLuchd,
Tap = T?jhf;hg — Phap, (24)
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where we often do not distinguish the fluid quantities of the
fluid by index FL. For a single component fluid, the fluid-
frame condition implies vanishing flux g, = 0.

The fluid quantities based on the generic U, frame are
similarly introduced as

Tab = IuUan + p(gab + Uan) + anb + qua + Tabs

(25)
thus,
1
H= TabUan’ p = gTabhuh9 qa = _Tchchg’
Tab = Tcdhzhz - phabv (26)

with the conditions in Eq. (A13); here, u = u'Y) etc. and
hap = gap + U, U, we do not distinguish hflg), hg), etc. by
superscript, which can be understood in the context. In the
above relations, T, can be TEM, T5F or the collective
one T'.

The energy-momentum tensors of the SF and the EM
field in Egs. (22) and (23) are introduced without reference
to the four-vector; 7', is frame invariant. Using the generic

four-vector U,, we can expand

1=2 1
TS, = (545 +V+§hab¢,a¢.b> u.U,

1= 1
+ (5 §-v- Ehabqﬁ.aqs,b) ha + W53 .

— QU h.o + UphSep.), (27)
1 |1

T = {E (E* + B)(UoUs + hay) = EuE

- BuBh + (Ua”]bcde + Uhnacde)EchUe] ’ (28)

where we used ¢, = hbe, — g;ﬁUa with c;ﬁ = ¢ U° for the
SF, and Eq. (2) for the EM field.
For the scalar field, from Eqgs. (22) and (26), we have

1=2 1
pE =24 +V+ohh by,

2 2
SF 1=2 1 ab SF ks b
P = §¢ -V- gh ¢.u¢,hv qda = _¢ha¢,h’
1
Top = hoh hib.a =3 haph D p.a, (29)

using the generic four-vector U ,; thus, here 5 = u<55>, etc.

The SF-comoving frame is defined as ¢3F = 0. In this
frame we have h5¢, = 0, thus

132 132
pr=3¢ +V, pF=3¢ -V, z5=0. (30)

and Eq. (19) simplifies to
_D¢ + V¢ = ¢ + 9¢ + V¢ = gqﬁyf.quaBa’ (31)

where the four-vector is defined as Uagb =-¢, or

Phle, =0 where U, is the SF-comoving frame; for the
axion with time average involved, the latter case applies
and we have to use Egs. (19) and (29) [13].
For the EM field, from Egs. (23) and (26), we have
1

ﬂEM — 7(E2 +B2) — 3PEM,
8

1 :
qSM = 4_77uthE‘bBC Ud9
T

1 1
M = ~in E,E, + B,B, — gha,,(E2 +B%)|, (32

using the general four-vector U ,; thus, here 5 = ,u?g), etc.

The EM field is often evaluated in the fluid-comoving frame
u, and the normal frame n,. Later we will introduce
notations distinguishing the EM field in the two frames,
see Eq. (42).

D. Fluid conservation equations

For the fluid, the energy-momentum tensor and fluid
quantities are given in Egs. (21) and (24). From Eq. (21) we
have

TE iy = =i+ (u+ p)0+ 16, + ¢ + q°a,). (33)
T e = (u+ pla, +hb(p, + 5. + Gp)

4
+ (a)ab + Oup + gehab> qb. (34)

As the contraction with u, indicates, here we are using the
fluid four-vector, and all the kinematic quantities 6, etc. and
the projection tensor is associated with u,. We can instead
contract Eq. (21) using the arbitrary frame four-vector U,

and h,(f!) = g, + U, U,, and the results are a mixture of the
above two conservation equations; when U, = n,, we have
the ADM energy and momentum conservation equations.

For the EM field, from Eq. (23), using Eq. (7), we have

&, = —%F“bJ;erng”bF;c fe. (35)
Thus, using Egs. (2) and (8), we have
Tlca?\/l;bh? = —QemE" — %”abmijcUd
+94, EBh f 4. (36)
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For the scalar field, from Eq. (22), using Eq. (18), we
have

T, = ¢ (O -V 4) = =94 f“E'B,.  (37)
Thus,
T¢.,U, = —g4,EB,f.
T§y.,he = =gy EPByh f . (38)

Combining the two field contributions, we have

Lo ..
(T4 + Ty U = EJo (39)

1 ,
(T§p + TR) e = —0emE” — EnadeJbBcUd, (40)

where the g, interaction terms have canceled. The col-
lective energy and momentum conservation equations are
b b b -
(TI%L + TgF + T%M);bUa - O’

(T + T + TRy ,hé = 0. (41)

In the following we indicate the electric and magnetic
fields in the fluid-comoving and normal frames, respec-
tively, as

e,=EY, b,=BY; E,=E, B,=B,
n =0t Ja=Ji. (42)

In the fluid-comoving (u,) frame, the fluid conservation
equations give

. I .
f+ (u+p)o+ o, + ¢, + qa, = ;e“ﬁ")

1 . 1 .
= ;yEa.]a - QemEaua - Znade.]aubnch’ (43)

. 4
(ﬂ +p>aa + hzbl(pVb +”z;c + qb) + <wab +6ab +§0hab) qb

1 b e
= Qf(:lrdrzea +_r]abcd.][(7u)bc ud
c

1 :
= Qem(Ea + uaEbub) + Z (na - yua)]bEb
1
+_77abcd[jb(}/BC+nCBeue)ud+uanijeue]' (44)
c
The g4, interaction term does not affect the fluid con-
servation equations. In the second steps we expressed the

EM contributions using the normal-frame quantities. The
relations follow from Egs. (5) and (8) as

€y = yEa + naEbub - nabcdubnchv
ba = VBa —+ naBbub + nabcdubncEdv

1.
Qéﬁq) = ¥Qem — ;Juu“,

]E{u) = ja + uajbl/tb + Qemc(na - yua)’ (45)

where we set gen = oun and j, = ji".

Mass conservation follows from J¢, = 0 with J¢ = gu*,
thus

o+ 6o=0. (46)
We have
u=oc*,  o=0(1+1/c?), (47)

where ¢ is the mass density, and oIl is the internal energy
density; IT = ¢ in the Appendix.

III. ADM (3+1) FORMULATION

The ADM equations are derived in Appendix B. From
this section, we indicate the spacetime covariant quantities
by overtildes like ii,, Ea, etc.

The ADM metric and its inverse are [20,21]

gOOE—N2+NiNi, Joi = N, .aithijv
FO=-N7 FPT=NTN
7 = hil = N2NINJ, (48)

where A% is an inverse of the three-space intrinsic metric /;;
.
h*hj = 6, (49)

and the index of N; is raised and lowered by h;; and its
inverse metric 4. Thus,

hij = Gij» N; = goi, N =1/4/-3%. (50)

We have
/=5 = NVh,

The connection and curvature in terms of the ADM metric
are presented in Appendix B. The ADM fluid quantities are

g=det(gup), h = det(h;;). (51)

E = i, i, T, J, = —ﬁhTf’, N Tij,
- - 1
S =h"S;;, SijESij_ghij& (52)

where indices of J; and §;; are raised and lowered by /;; as
the metric and its inverse. The fundamental set of ADM

083020-5
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equations for a general imperfect fluid are Egs. (B15)—(B20).
In the multiple component fluids and fields, the fluid
quantities in these equations and above can be regarded
as the collective ones. In our three-component system we
have E = Eft + ESF  EEM  etc., and all we additionally
need are conservation equations for the FL, the Maxwell
equations for the EM field, equation of motion for the SF,
and the collective fluid quantities all in the ADM notation.
We will derive these in this section.
For the normal four-vector 7i,, we have

‘ 1
i=-—, i®=—. (53)

~'an )
i N N

ﬁOZ—N,

For the fluid velocity vector we have a couple of alternative
expressions of often used in the literature. These are

N ACE LI N A N B
Vi= b —— [ 4 N | =— (Vi N ,
- ¢ N (ao + ) N( +N)
pral A iy (54)
7T ’

where indices of V' and V' are raised and lowered by h;;
and its inverse; V; is the fluid three-velocity measured by
the Eulerian observer with 7i, [22], and V, is the fluid
coordinate three-velocity [23,24]. We use V; in this work,
and the relation to V; is simple as given above. Thus, our
fluid four-vector is

i =yVi ity =y(N;V' = N),
. A i 1
7l = Vi _N | =2V, ~0 _ , 55
v=(viegn) =l =t 59)
with the Lorentz factor
I, 1
y= -0 =Ni' = —— (56)

V1-Vkv

A. Maxwell equations

We introduce the EM field in the ADM notation. From
Baﬁ” = 0, using Eq. (55), we have

Fij = fiB*, Fy; = —-NE;— (Nx B);

i

F":—ﬁE-Mﬂi BF
J N J Jk ’

where the vector product is associated with 7, and h;;;

Fii N E/ N’ Ei + 7/kB
SoNE TN E TS

- N o
Fiy= —ﬁEjN/ + NE' + i/*N ;By,

b;=b,, by = b;(N' = NV?),
Ni

- ) ) ~ 1 .
b'=b'——b,V/, b = —b, V', (57)
N N

(u)

and similarly for &, and j,"
(u)

i

with &; = ¢; and j" = j";

indices of e;, b;, and j; are raised and lowered by A;; and

its inverse. Similarly, from B,71¢ = 0, using Eq. (53), we
have

B,=B;,, By=B,N', B =B, B'=0, (58)
and similarly for £, and j, with E; = E; and j; = j;;
indices of E;, B;, and j; are raised and lowered by £;; and its
inverse. In the two frames we have

Jo= @i, + ) = e+ (59)

thus

| 1.,
Qem = wéﬁ? + - V’J,(»"), an) =0~V Vijis

ji =i + colily Vi,
i =0 PV = otV (60)
where we set g, = ot and j; = jl(").

Now, we derive relations of the EM field between the
normal and comoving frames. From b, = F*,i’ and

¢, = F,,ii®, evaluating the EM tensor in the normal frame,
and using Egs. (2), (4), (55), and (B6), we have
b; = y(B; — ij;uV/EF), e; =y(E; +n;V/BY).  (61)

Similarly, from B, = F*,ii” and E, = F ,ii’, evaluating

the EM tensor in the fluid frame, and using Egs. (2), (4),
(53), and (B6), we have

B =y(b; = V;V;b/ + ijpViek),
E;=y(e;—V;Vel =i VIb*). (62)

The EM tensor becomes

FOi _ lE!
N b

- 1 .
FOO :NEI'NI? (63)

bold face letters indicate the three-space vectors, N = N I and

B = B, etc., with the location of the index depending on the context. In a matrix form, we have

083020-6
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0 ~NE, - (N x B),
NE, + (N x B), 0
Fo =1 NE, + (NxB), Ty B
NE, + (N x B), Mo B

In the normal frame, the Maxwell equations in
Egs. (10)—(13), using Egs. (53) and (B8), become

Ei:i = 4”(Qem_g¢y3if,i)’ (65)
E'y=NKE +E. ;N —EN'.; + 7" (NBy).;

4z | . A
——N|Jj"+egy (B'f — 7 E;f )| (66)

B'y = NKB' + B'.,;N/ = B/N'.; = ij/*(NE).;, (68)

where

2 1 .
$=¢n = N (0g = N'V,)¢. (69)

The colon and V; indicate the covariant derivative asso-
ciated with the intrinsic metric /;;.
In the vector notation, using Eq. (B3), we have

V-E = 4”(Qem_gz/1yB : Vf), (70)

! (VIE)y =~V x (NxE) + NV -E + V x (NB)

=

T
—47”N[j+cg¢y <B} _E x Vfﬂ, (71)

-NE,— (NxB), -NE,—(NxB),
_X' B* __xv BY
My _'1 " (64)
0 Ny B
—]yy. B 0
V-B=0, (72)
1
— (WVhB), = -V x (NxB)=Vx (NE), (73
ﬂ( )o ( ) (NE), (73)

where the curl and divergence operators are associated with
17] ijk and h i

B. Equation of motion
From Eq. (18), we have

I 2 1 . .
P +Vy=0d-Kp—(NG™).i +Vy = 9y f 4E'Bi.
(74)

C. Fluid quantities

The FL parts of ADM fluid quantities can be derived
from Egs. (52), using the following ADM notation for the
fluid part. The fluid quantities based on the fluid four-
vector ii, are introduced as

p=p, D =D, q;= Qi ;=1 (75)

where indices of Q; and II;; are raised and lowered using
h;; and its inverse. The ADM fluid quantities can be
expressed in terms of the fluid quantities in the comoving
frame, using Eq. (55), as

EM =p+ (u+p)(r* = 1) +2/V'Q; + VIV,

ST =3p+(u+p)r*=1)+24V'Q; + V'V,

JY =+ p)rPVi+r(Qi+ViVIQ)) + VI,

SHE = (u+ p)r*ViVi+ phi; + 1L +7(Q;V; + Q; V).

_ 1 1 2
S = = s hif T + (u+ p) |r* ViV, — ghij(72 - 1)} + 7(QiVj +0O;Vi— ghiijVk) (76)

3

where ITi = VIVIII, j- The ADM fluid quantities, being defined as in Eq. (52), are frame independent. For a single

component fluid, by following the fluid, we may set Q; = 0.
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The SF parts of ADM fluid quantities can be derived from Egs. (52) and (22)

122 1 . 2
ESF:§¢ +V+§¢'k¢.k’ IE =~ ¢,

122

1.
S =i+ <2¢ -V —2¢'k¢,k) hij,

1= 1 . - 1.
SSF =3 <§¢2 -V- 6¢'k¢.k>’ S =i, - §¢'k¢,khij' (77)

The EM parts of ADM fluid quantities can be derived from Egs. (52) and (28) in the normal frame

1 1 1 1
EPM — _ (E? 4+ B?), JMM — _ (E xB), SEM — ___\E.E. + B,B; — —h;;(E* + B?)|,
877:( + ) 1 477:( X )l 12 4”|: 1 j+ =] 2 lj( + ):|
1 - 1 1
SEM — __(E? + B?), SPM — ___|E.E. + B,B, ——h,;,(E* + B?)|. 78
BB SR == L EE BBy (5 4 87 (78)

For the EM parts of the fluid quantities in the fluid frame, thus evaluating Eq. (32) in the u, frame, and using Eq. (61),

we have

2 1 o ) .
M = 3pEM = T Kz - —2) (E? + B2) + i E'VIB* = 2(E,V')? - 2<B,-v1)2] ,
p .

8r

oM = E{”h’jkEjBk + E.E;V/ + BBV = y*(E* + B*)V; = 2V iijus E'VEB” + P Vi[(E;V)* + (B;V/)?]},

1 _ _ _ _ o
HE-M i {EiEj + BB + (Eiffjxy + Ej’]ikK’)Vka — (Biftjie + Bj”ikf)VkEf + nikf’/ljmnvkvm(EfEn +B’B")

T

1 1
=3P+ V)| (22 ) € 4 B) 4 amn v B - 2 - 28,07 | (19)

Evaluating these in the normal frame, we have

EM(n) _ EEM _— ¢EM _ 3pEM(n)

u
Q:;M(n) — JEM, M) S (80)

1

D. Fluid conservation equations

In the presence of three components, the conservation
equations in Eqs. (B19) and (B20) are valid for collective
fluid quantities, like E = EF- + EEM + ESF etc. These are
also consistent with the Maxwell equation and equation of
motion for the EM field and the SF. Using the ADM fluid
quantities for the two fields in Egs. (78) and (77), we can
show, for the EM part

1. .
E%MN_l +...= —;Elji_gqbyElBif?
1 A
SN+ = —eenEi = i B +94,E'B;f 1o (81)

where we used the Maxwell equations in Eqgs. (65)—(68);
ellipses (...) indicate that the left-hand side is the same as
the original ADM conservation equations in Egs. (B19) and
(B20) with the fluid quantities replaced for the individual
component, here the EM part. For the SF part, we have

[
ESSN~'+...=gsE'Bif. JN'+...=—g,,E'Bf .
(82)

where we used the equation of motion in Eq. (74) in the first
relation. Thus, we have

1.
(E*M + ESF) N71 + ... = ——E'j,,
: c
1. .

(JM L JFF) oN~ 4 = —0emE; — E”/ijk]”Bkv (83)
where the g,, interaction terms have canceled. Therefore,
the fluid parts of the ADM conservation equations, with
E = E™, etc., give

-1 in-1 1 Tij R —2(N27i
EoNT' —E;,N'N~' -K E+§S - SYK;; + NT*(N°J').;
1 ..
= ;E Jis (84)
JioN™' = J; ;NIN~! — J.,-N{',»N‘1 —KJ; +EN;N~!

. . 1
+ S{:j + SIN ;N = gemE; + Eﬂijk]/Bk, (85)
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with no g,, interaction terms appearing in the conservation
equations for the fluid; in these two equations £ = EFL etc.
These can be written in conservative forms as
(VHE) o + [VR(NJ' = N'E)] ;
L 1 )
= Vh(NSUK;; =N J')+ ; VhNE'j;,  (86)
(VhI) o+ [VR(NS] = NIJ,))
1 ) )
=Vh <§ NS*hj; + J N’ — ENJ)

1 .
+VhN <QemEi + Zflijkj]Bk)' (87)

The continuity equation, (gii“).. = 0, gives

(VhD) o + [\/ED(NVf - Ni)] =0, (88)
where we define
) , /T
D=ye. u=ec’. e=e(l+5 (89)
Using
E=E-Dc?, (90)

the energy conservation equation can be written as

Sl

(VRE)y + [VA(NT = DNV - NE)|
= Vh(NSUK;; —N,iJ")+%\/ENE" ji (91)

where £ = EFL etc.; the same equations without the EM
parts are valid for £ = &', etc.

IV. FNLE FORMULATION

The FNLE equations are derived in Appendix C. From
this section, we indicate the ADM fluid quantities of the FL
and EM field by overlines like Q;, I1;;, E;, B;, j;, etc., and
indicate the covariant quantities by overtildes like it,, E,,
etc. Different notations are inevitable as, for example, even
for the magnetic field B;, we have B;, B;, and a plain B,.
The first one indicates the i component of a spacetime
covariant four-vector B,, the index of the second one is
associated with the intrinsic metric, /;;, and the index of
the final one is raised and lowered by §;; and its inverse; the
latter two do not have the temporal index. To minimize the
notational complication, we omitted the overtildes in Sec. II
and Appendix A and overlines in Sec. III and Appendix B.

The FNLE metric is [25]

oo = —a*(1 + 2a), Joi = —axi,

The index 0 indicates the conformal time # with adn = cdt
and the spatial index of y; is raised and lowered by 6;; and
its inverse 6. In the FNLE formulation, we introduced the
metric (of vector- and tensor-type perturbations) and fluid
variables (like velocity and stress) with spatial indices
associated with the comoving part of three-space metric of
the Friedmann background [26,27]; for a flat Friedmann
background, the three-space metric becomes §;;. This is a
basic assumption used for the formulation. The FNLE
equations are exact but not covariant. Here we consider a
flat Friedmann background.

In our metric convention we have only five degrees of
freedom; we ignored the transverse-tracefree tensor-type
perturbation (losing two physical degrees of freedom), and
imposed a spatial gauge condition (three gauge degrees of
freedom) without losing any generality or convenience;
these make the spatial part of the metric tensor simple as
above. We still have not imposed the temporal gauge
condition. After imposing the temporal gauge condition,
we have four physical degrees of freedom, two for scalar-
type perturbation and two for vector-type perturbation; we
may decompose the vector variables into the longitudinal
and transverse parts as y; =y, +y; and v; = —v; + v;"
with ¥ ;=0 and v"; =0 where v; is defined in
Eq. (94); such a decomposition is possible even to fully
nonlinear order while couplings occur in equations from
the nonlinear order. Extension of the formulation including
the tensor mode and without imposing the spatial gauge
condition is presented in [28].

As the temporal gauge condition we can impose a = 0
(synchronous gauge), ¢ =0 (uniform-curvature gauge),
¥ =0 (zero-shear gauge), k=0 (uniform-expansion
gauge) with « defined in Eq. (C6), v =0 (comoving
gauge). Except for synchronous gauge, where we have
remnant gauge mode even after imposing the condition, the
other fundamental gauge conditions, together with the
spatial gauge condition we already imposed, completely
fix (temporal and spatial) gauge degrees of freedom. The
remaining variables after imposing such gauge conditions
are free from the gauge degrees of freedom and have unique
gauge invariant combination. Thus, the variables can be
regarded as equivalently gauge invariant [29]. These com-
ments on the gauge issue apply to fully nonlinear orders in
perturbation [25,30].

The fundamental set of FNLE equations for a general
imperfect fluid are Egs. (C8)-(C17). In the multiple
component fluids and fields, the fluid quantities in these
equations can be regarded as the collective ones, like
E = E™ + EFM | ESF etc., and all we additionally need
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are conservation equations for the FL, the Maxwell
equations for the EM field, equation of motion for the
SEF, and the collective fluid quantities all in the FNLE
notation. We will derive these in this section.

The normal four-vector is

i, =0, ity = —alN,

i — X o 1
a’N(1+2¢)’

where N is defined in Eq. (C2). The fluid four-vector is

(93)

-~ Vi !
u=ay—,
c

- X V;
ity = y(a/\f+1+2w—c),
~i Y

_ voxy o b
! _a(1+2¢)<c+a./\/>’ TN 54)

with the Lorentz factor

Y S (95)

where 2% = v*v;. Compared with the ADM fluid velocities
in Eqgs. (54) we have

i

v; _ B ey
=i (96
D v+aj\/' (96)

v;
Vi=a—, Vi=a’N—,
c c

where indices of v; and v; are raised and lowered by §;; and
its inverse; ?; is used in the post-Newtonian study of [31].

A. Maxwell equations

We introduce the EM field in the FNLE notation. From
Eaﬁ“ =0, we have

Eizabi, BO - — aN <v + e >bi7

14+ 2¢ ¢ aN
- 1 . V4 vl
b = b “p,).
a(1+2§0)( +aN(1—|—2(p)c J)
- 1 v
[ 97
aN(1+2¢p)c (57)

and similarly for &, and }'Ef” with &; = ae; and jl(»") = aj,@.

Indices of b;, e;, and jﬁ") are raised and lowered by the metric

&;; and its inverse 5" Similarly, from B,7i* = 0, we have

i

- - X
B; = aB,;, By = 14200
o 1 . -
S — 1 B =0, 98
a(l +2¢) (98)

(n)

i

and similarly for £, and jEﬂ) with E; = aE; and j'l(»") = aj
Indices of B;, E;, and jl(»") are raised and lowered

by the metric &;; and its inverse 6Y. In the two frames
we have

Jo= oMty + " = gimeng + i, (99)
thus
w1
Qem YQem+1+2(pCC], )
y 1o, o
Qe(:ﬁz = YOem — mz?]h Ji= J,('u) + Qélrdrzyvi»
2
() . roovvp o,
Ji =ity 20 &2 7 =7 0emis (100)
where we set 0o, = ot and j; = jf-">.
Compared with the ADM notation, we have
_ _ . B!
Bi=aB, B=—" . 101
and similarly for E;, j;, b;, etc. We have
- - B?
B*=PB>= , (102)
14 2¢

where B?> = B°B,, B> = B'B;, and B> = B'B;.

We derive relations of EM field between the two frames.
From b, = F*,ii” and &, = F,;,ii", and evaluating the EM
tensor in the normal frame, we have

(103)

and from B, = F*, i’ and E, = F ;,ii", and evaluating the
EM tensor in the fluid frame, we have

1 wvv; . 1 v’
B=y|lb,——— b+ p. —k],
i 7(’ Tr2p 207" 1+2(p'7’f"ce)

1 v . 1 v/
E. = Ly p——ay VO N & 1) Vi)
i 7/<el 1 2 C2 e 1 2;)’7’.11( c > ( )

These also follow from Egs. (61) and (62), using Egs. (96),
(C7), and (101).

In the FNLE formulation the Maxwell equations in
Egs. (65)-(68) become

1

i BY.f
sz (VT2 =g, s )

(142¢)
(105)
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ao E; N 3H-« 1 E; x . 1 ,
= e Ei l Jj i E] — v} _/\/Bk
c0t<a(1+2q))) 1+2¢p ¢ * (1—1—2(0)[ <]+2(p>j)( +<1+2 ) }+a(1—|—2¢)3/2’1]k ( )
Az N 1 c'Vif cn' i E;V, f
T i B ’ 106
c1+2¢ {j’w"”{N ( 1+2¢> a1+ 2¢ (106)
( 1+2(pB") =0, (107)
ao B; N 3H-«x 1 B Ve : 1 :
———) = B, ! J ! Bl | ————————n:u V/(NEF).
cot (‘1(1 +2(P)) 1429 ¢ +a2(1 +2¢) [ (1 —1—290) '+ (1 +2¢> J } a(l +2¢)3/2’7/k ( )
(108)

Using Eq. (C8), Egs. (106) and (108) simplify, and in the vector notation we have
V- (/1+2¢E B-V
&_47?(%11— f > (109)

a(1+ 2¢)*2 a1l +29))°

1o/, B 1 - V. (VT+2¢E)
,&<a \/1+2(pE) =Vx <m1xE)+an(NB)—XH2(p

4 . cy-Vf cE xVf
—7a2./\/\/1+2(p{,]+g¢yL\/. <f+ 5 )—am”, (110)

(1+2¢)

v-( 1+2¢B>:0, (111)

%%(Cﬂ 1+2¢B) = —aV x (NE). (112)

1
Vx|———ixB
<¢—1 20" )
The g,4, coupling causes extra charge density and current densities [19].
Equation (111) shows divergence of /1 4+ 2¢B vanishes instead of V - B. This is partly because of our somewhat
arbitrary definition of B; in Eq. (98) which leads to relations in Eq. (102). The other factor is caused because we are using
the divergence operator of flat space while we are in a curved space.

B. Equation of motion
From Eq. (74) we have

a1 o (NVI 2997, E'B,
_D¢+V’¢:¢+;<3H_K)¢_(a2./\/(l+2(€p)3/)é+V g¢yf¢l+2(p (113)
where
g a1 (10 X o
¢=dah _N<c0t+a(l+2(p)v’>¢' (114)
Thus

. N cy'N ; 2t c? 5 cii X
b (3 =N S ) gt e (V)

2.2 i J \ k i
+{—N—C<T+—¢ >+<3H./\/—./\/’K—M— AN ) (C’(

a*(1+2¢) 14 2¢ N @NcA(1+2¢)) a*(1 + 2¢)
i . k i i
= = = N2V 4 = N? E'B; 115
+<612(1+2</))> T+ 29) <1+2¢),]¢ TN = Cg¢yf¢1+2 (115)
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Ignoring the metric perturbations, thus in the Friedmann background, we have
¢S+3H¢—c—¢+c V4 =gy f4E B, (116)

where F,,F* = —4E - B is related to the time derivative of the magnetic helicity, fv A -Bd’x with B=V x A [32].

C. Fluid quantities

The fluid quantities in the FNLE formulation, E, S, m; and m;;, are defined using the ADM fluid quantities in Eq. (C1).
For the fluid part, from Eq. (76), we have

2y v Q; 1 viv/
EFL — 2_ i | P
ﬂ+(ﬂ+p)(y )+1+2(pc c (1+2(p)2 i CZ
2y ' Q,; 1 viv/
SFL:3 2—1 l i )
ptu+p) -1+ 1+2¢C c T2
. Q 1 v
JFL _ 2 Vi 5 2 il = FL.
i a{(ﬂ"‘P)V T 1—|—2(pc 1—|—2§0 ’c acm!
FL _ 2 Vi J 4 _
SE = (14 20008+ o )P+ (@ Qo) + T = 21+ 20 (117)
where we introduced
, 0; _ Q! _ IT; _ gl
=gl i— % =M, Ii= L M= 118
2 ‘e Q ac(1 +2¢) =4 T 1+ 2¢ a*(1+2¢)? (118)

with the indices of Q; and I1;; raised and lowered by 6;; and its inverse; y, p, Q;, and II;; are fluid quantities in the fluid-
frame i1,. We have

1 viv/
Hk — o 11
k 1+2(ﬂ ij C2 ) ( 9)
and mFL—mFJL 16;;m™* with m™* = ST
For the SF part, from Eq. (77), we have
1 1 . )(l¢ 2 1 ¢l¢
ESF__ - \l V4 — 0 ’
z(w“ een) AR P Ee
% L y )(¢l 2 —3V 1 ¢ ¢l
2 ./\/c (14 2¢) 2a%(1+2¢)°
JSF = ( Zd)] >> acm3t,
1 1 . kqb 2 1 ¢kp
SM=g.¢,; - ¢’k¢_k5ian2(1+2(p)ﬁ1%F. (120)
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For the EM part, from Eq. (78), we have

1 1 1 a 4
EEM _ gEM _ (E2 + B?), JM = — . E'BY = acm™,

8l +2¢ dr\/14+2¢
1 1
SE-EJ-M:—4ﬂ_d2|:EiEj+BiBj_25ij(E2+B2):| = a*(1 +2¢)m}",

_ 1 1 _

We can derive covariant fluid quantities of the EM field. From Eq. (32) evaluated in the fluid frame, and transforming to the
fields variables to the normal-frame ones using Eq. (103), we have

JEM — 3 pEM
1y 1 4 i 2 i\2 i \2
= T (2= ) (B + B) + =i = B - SE )+ (5B |
dqrl+2¢ y 1+2¢ c 14+2¢ [\ c c
1 % ‘ 1 v/ v/ v;
- QM — 2 FEIBY 4+ —— |E,—E,+B,—B;, —y*—(E* + B?
Q s l—I—Zgo{n”k * T+2¢p| 'c it e/ yc( + 5
277w, ok r? v; [ (v \? v \?
— RLEYINDN oy - L S—_ ] Gy 5 —B. ,
1429 c 57 +(1—|—2(p)3/2c c i) TR
YR SN S S (Emyr + E )”ka L B+ B )”kEf
ij 4 ij iPj 1+2(P n]kf rhkf 1+2(p lﬂ]kf ]’/Izkf c
1 vko™ 1 Y vv;
EfEn Ban R 7y
+1+2 NikeMNjmn — 73— ( + ) 3< 11+1+2§0 C2
1 4 i 2 T 2 vk 2
2——= | (E?+B) 4+ —— EF—Bm — —E —B . 122
e Ry T

Einstein equation parts of the FNLE equations are presented in Egs. (C8)—(C12) where we have E = ET" + ESF  EEM

and similarly for S, m;, m;;, and m;;.

D. Fluid conservation equations
The fluid parts of the ADM conservation equations in conservative forms, Eqs. (86) and (87), give

%[a3(1+2(p)3/2E]'+é[\/1+2 (./\/cm + )(E)] \/1—|—2 cmt

—\/1+2¢m’7K +¢+2- ¢>51,+ —Xij— >(2)(i(p.j ,,)(¢k}+\/1+2 NE -j,  (123)

(1+2(p

L., 1 ; cy'm;
— 1420)32m. ) 4+ = [ (1 +2¢)3/? Sy AT
g la* (14 29)"2m;] +a[( +20) (le+a(1+2¢)>]_

1 No; c( i (j xB),
— (202 | Xl g N E-S (X (1 12932 E 49X 2)i ) 124
a( +2¢) [1+2¢ N, a(1+2¢),im]}+( +2¢)°P N Qem it T2, (124)

The mass conservation in Eq. (88) gives

% [a3(1 + 2¢)3/2D]- +% [\/1 + 2(p(/\/vi —l—%){’)D] =0, (125)

i
s

where D = gy. In another conservative form, using £ = E — Dc?, we have
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R
a

i

X @i
— 1+ 20|(H 2H S—— :
+ rp{( + @+ 2Hp) 1120

e+ 206+ VT B e - Do)+ ] b —-C T3y

c ..
S+;m” (){U —

J

2)(i(ﬂj i
. 142 E'j;.
i Zq))]—h/ + 2pNE'j;

(126)

In Egs. (123)-(126) we have E = E-, etc.; the same equations without the EM parts are valid for E = E©, etc
The covariant equations (43) and (44) lead to another form of conservation equations. Ignoring g, and z,,, for simplicity,

we have

1

: i S,
ﬂ+a(1 +2¢) (Nv +a)(>ﬂ”

Y 1+ 2¢
.(u) Uiv]

e —Le’(
y 7 (420 7

+(ﬂ+P)P/(3H )+y+A—/< i )

1+2¢
1.
+—2pv,»+

]/2

Ui

{ e cym (o

In the Friedmann background, thus ignoring metric
perturbations, we have

1 a cr
—(PE) +-S+—m, =E-j, 129
S@Ey s+ S =Ry (129
1 4 1 1
F(a mi) +Z QemE + (J X B) (130)
1 &2 1 ;
L (@D) +=(Dv), =0, (131)
a a
1 .. a 2 ; .
L@ey + s+ S i - D) =B (13)
a3

where E = EFL, etc.; the same equations without the EM
parts are valid for E = E*, etc. The above equations are
valid for general fluid with Q; and IT;;.

We have not imposed temporal gauge condition, and the
available gauge conditions are summarized below Eq. (92).

V. WEAK-GRAVITY APPROXIMATION

We can formulate the weak-gravity approximation by
taking the weak gravity limit in the FNLE formulation. For
this purpose it is important to take a suitable temporal

](“)
A1 +2¢9)"

+p[l c? c J
K 2p {(ayvi)'Jr./\/',,-Jrz( 2 > v; +
ay a a G

1+2¢ ¢

j . 1
E — J - .
§0) 1A N2 j( Qem? ) + ¢ /—1 ¥ 24” (’/hjk

C)(i}’.i N <N.i 30, ) ,}
3 + =+ ; v
a*(1+2¢)y a(l+29) \ N 1+2¢

N

. 1
_ Ei l/k B o— em?i), 127
—]+2¢< +7m11 . k)(]z Oem?i)s  (127)

(Vvi),j

. c N
— = 2 N 2y ~—=p,
a(1+2¢)7< ) et

viP.j SN N (ws L s e
W <NU’ + ax’)] =2 (Qemei + = Miveal () D

U Uf
5 ’7/kf>]( )bk:|

7/2 Vv 1,’
iB 128
1129 & ’hkf)J ] (128)

I
gauge condition. The weak-gravity formulation was
derived in [33,34] for a single fluid and ordinary MHD
in a nonexpanding medium. Here we extend to the
expanding background with the SF and EM field.

We set

o
"o

m\"U

a

(133)

The weak gravity approximation is a limit with four
conditions,

@ <1 ¥ <1
c? ' c? '
£ Goa’> a’H*> ¢?
2l
<1, ~ ~ <1, 134
4 n A PN (134)

where the third one is the action-at-a-distance condition;
t, = ¢/ c with £ a characteristic scale, and 7, = 1/,/Go the
gravitational timescale. The fourth condition is the sub-
horizon limit with £y = cty, ty = 1/H and H = a/a the
Hubble-Lemaitre paramater.

A consistent weak gravity formulation, with the matter
and field parts kept fully relativistic and nonlinear, is
possible in uniform-expansion gauge condition setting
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k =0; x is defined in Eq. (C8), and in nonexpanding
background it is the same as the maximal slicing setting the
trace of extrinsic curvature equal to zero as the hypersurface
condition. An alternative temporal gauge condition avail-
able is zero-shear gauge setting the longitudinal part of y;
equal to zero, but this leads to an inconsistency with the
exact result known in spherical geometry [35,36], by
missing a pressure term in Poisson’s equation [33]. For
a consistent weak-gravity formulation with fully relativistic
matter and field, it is essential to keep the y; term properly.

Using the weak gravity condition and imposing uniform-
expansion gauge, Eq. (C10) gives

1 /1 1 8nG
— <—A)(i +—)(k,ki> =——3 am,
a c

: : (135)

where m; can be read from Eqgs. (117), (120), and (121).
Decomposing y; into the longitudinal and transverse parts,
we have

1 12 G
Sy= = A (136)
a

1 162G o

;;(P: — @A~ (m; = VA7 mi ). (137)

Assuming m; ~ gy*v;, i.e., assuming the other contributions
from FL, SF, and EM fields are smaller than or comparable
|

E=0c*+(oc*+p)(* = 1) +2r—~

S =3p+(ec* + p)(r? —1)+27/

<Q+ p)y v; +y<6’

m;; = po;j + (Q+ )7’ UiV

D =yo,

In Egs. (139)—(143) the fluid quantities are only for the
fluid with E = E, etc. We note that the potential terms in
Egs. (139) and (142) are negligible compared with the m' ;
term by the weak-gravity condition. Similarly, the ¥ S
term in Eq. (140) is also negligible compared with the m,

term by the same condition.
Maxwell’s equations in Egs. (109)—-(112) become

J

V'E:4ﬂa<gem—g¢yiB-Vf), (144)

E=E-Dc?,

to this term, considering the action-at-a-distance condition,
we have

(I
i <
a

; (138)

Fluid conservation equations in Egs. (123)—(126) become

7 2 1 .
E+Z(3E+S)+—m{,~ = —5(2CI>—\P)J.m' + E - j,
(139)
1 4 J
— (@*m;) +—m}; = (D,E+Y,S)
a ' ac
+oemE; + - (i x B) (140)
[N | ;
;(Cl D)‘l‘;(D’U ),iIO, (141)
c? 1
£+ (35+S) —(m' = Dv'); ——5(2(I> )
YE-j, (142)
where
v Q; viv/
2 +1Lj—% 2
’Q, viv/
+H,-j7,
1 QJ
1‘[ _J
Y
?(inj‘f'QjUi)‘f'Hij,
I1
QE@(1+?). (143)

a2
li( ZE)—anB—4—[J+g¢y(Bf——Efo)]
(145)
V-B =0, (146)
l%(QZB) = —-aV x E. (147)
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Thus, all metric perturbations disappear, and these are the
same as the Maxwell equations in the Friedmann background.
The equation of motion in Eq. (115) gives

. . A
B+ 3Hp =2 S+ (3 2DV = gy, f 4B B,

(148)

where we kept the @ term as the mass term of the SF has ¢?
order in the potential, V = 2h2 Sy

The remaining ones are Einstein’s equations determining
gravity in Egs. (C8)—(C12). Equation (C10) is already used
above and the other ones give

%‘P _ 4:2G (E—E,), (149)
%@Zg(E“rS_Eb_Sb)’ (150)

%{Q{Zm +m;') = (VIV; +5,A) A~ m"k”.
_%<vv —%51 )(cp lP)+8”—Gm;} (151)
3P + 33@ = —127GaA~'m! (152)

where the subindex b indicates the background order,
and we used Egs. (136) and (137). The fluid quantities
in these equations are the collective ones with E =
EFL 4+ ESF 4+ FEM etc. thus,

1. 1
E:EFL—l—F(]ﬁz—i—V+—¢’l¢,i+—(E2+Bz),

S = SFL+—¢ —3V——2¢ Y T (E2+Bz),

m; = mtt 2¢¢ + (EXB) (153)

where EFL, ST, and m!l are given in Eq. (143).

To prove the consistency of the weak-gravity formu-
lation we can show the validity of the remaining two
equations in Egs. (151) and (152). By taking V,V/ in
Eq. (151) and using Egs. (149), (150) and the momentum
conservation equation for collective fluid [the same as
Eq. (140) without the EM terms], we can show its validity;
®,E and ¥ ;S terms are negligible by the subhorizon
and the weak-gravity conditions, respectively. Finally,
Eq. (152) is naturally valid by using Eqgs. (136), (149),
(150) and the energy conservation equation for collective
fluid [the same as Eq. (139) without the EM term]; the
(2@ — ) ;m' term is negligible by the weak-gravity con-
dition. This proves the consistency of the weak-gravity

approximation with fully relativistic consideration of the
fluid and fields.

Equations (139)—(150) are the complete set in the weak-
gravity limit.

VI. MHD

In this section, we consider MHD approximations of the
four formulations. MHD treats the evolution of magnetic
field B coupled with hydrodynamic variables ¢ and v. Here,
we additionally have the helically coupled scalar field. The
Maxwell equations are replaced to the induction equation
which is Faraday’s equation with the electric field deter-
mined in terms of the electric current by using certain forms
of Ohm’s law, and the electric current determined using
Ampere’s law. Thus, only the Maxwell equations and the
EM contribution to the fluid quantities are modified. As
modifications in the fluid quantity are simple (replacing the
electric field using Ohm’s law and Ampere’s law), here we
consider the Maxwell equations only.

Although the conducting fluid is often composed of the
mixture of charged fluids with electrons and ions, MHD
handles the case as a single fluid approximation with
Ohm’s law. MHD usually fakes as Ohm’s law a simple
relation between the current and the electric field in the
comoving frame of the fluid [37-39]

i = e, (154)

where ¢ is the isotropic electrical conductivity. Whether
this simple prescription is valid in relativistic regime, in
particular, for relativistic velocity, is an open issue; here, we
take this relation as one of the MHD assumption. MHD
approximation further assumes large conductivity with [40]

4ro > 1/T, (155)
where T is the characteristic timescale involved in the
system with 0/(dt) ~ 1/T. The ideal MHD considers ¢ —
oo limit with finite current, thus &, = 0. Keeping finite o
gives the resistive MHD. For ideal MHD, the Joule heating
term disappears in the covariant energy conservation in
Eq. (127), whereas the term survives in the conservative
forms in Egs. (123) and (126).

A. Covariant formulation
Using Eq. (45), Ohm’s law in Eq. (154) gives

ja =+ uajbub =+ Qemc(na - 7”64)

= 0(yE, + n Epu’ — npequ’nBY).  (156)
In this subsection we omitted the overtilde indicating the
spacetime covariant quantities. In the ideal MHD limit, we
have
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(}/52 + naub)Eb = nabcdubnch' (157)
Using the MHD condition in Eq. (155) in Gauss’s law in
Eq. (10), the convective current term, Q.,c(n, — yu,), is
negligible; we use E%,h% ~ E,/L and c(n, — yu,) ~ L/T,
and assume the axion contribution is of the similar order as
Qem; L 1s the characteristic length scale. Thus, Ohm’s law in
MHD approximation is

ja + ”ajbub = G(yEa + naEbub - nabcd”anBd)' (158)
Now, we can set up the covariant MHD formulation.

Ohm’s law in Eq. (158) determines E,

L. .
yEa = nabcdubnch + ; [Ja + (ua - yna)]bub]' (159)
Gauss’s law in Eq. (10) determines @,
1 a b a
Oem — —E ;bha+g¢yf,aB ) (160)

4

where %, is associated with n, and w,;, = 0 for the normal
frame. Ampere’s law in Eq. (11) determines ;¢

M C 1 2 a apc
Jj= e Kﬁ‘b - 35b9> E" +n*dn,(a,B, — By,)

T b .
— hE ] —cgwf,b(ana —nebedn E,), (161)

where we kept the displacement current term (Eb term).
Combining Eqgs. (158) and (161), the condition in Eq. (155)
does imply that the displacement current can be ignored
compared with the conductive current. Thus, the displace-
ment current disappears in the induction equation using
Ohm’s law and Ampere’s law. However, the current term
also appears in the fluid conservation equations without a
direct combination with Ohm’s law. Thus, we keep the
displacement current term in Ampere’s law in Egs. (161),
(169), and (177).

Faraday’s law in Eq. (13) gives the induction equation
for B¢

¥ 2
1 = (o~ 3530 B - <n (auk — By, (162

and the no-monopole condition in Eq. (12) gives

Be.,hl = 0. (163)
Equations (159)—(163) provide Maxwell equations determin-
ing the magnetic field in MHD approximation. The EM
variables E;, Q.nm, and j, are determined by Eqgs. (159)—(161).
We note that £, and j, are coupled in Egs. (159) and (161).

The other equations determining the gravity, fluid, and the
scalar field are the same as in Sec. IL

B. ADM formulation
Ohm’s law in Eq. (154), using Eqgs. (60) and (61), gives

JFYPVV - j—0mr*cV=0y(E+VxB), (164)
where the curl operation is associated with 7, ;. Using the
MHD condition in Eq. (155) in Gauss’s law in Eq. (70), the
convective current term, cg.,ny>V, is negligible; we use
V-E~E/L and ¢V~ L/T, and assume the axion con-
tribution is of the similar order as @.p,,. Thus, Ohm’s law in
MHD approximation gives

j+7’VV.-j=o0y(E+VxB). (165)
For an ideal MHD we have
E =-VxB. (166)
Now, we can set up the ADM MHD formulation.
Ohm’s law determines E as
_ _ 1 - —
E=-VxB+—(j+7°VV-})). (167)
oy
Gauss’s law in Eq. (70) determines @,
1 — _ _
Qem = —V -E+g, B -Vf. (168)
4z
Ampere’s law in Eq. (71) determines j,
j:ﬁ{—Vx(NxE)—f—Vx(NB)
1 _ __
- — (VhE ]—c Bf-E x Vf), 169
\/E( )o|=¢94, (B f f). (169

where we used Eq. (B3). Faraday’s law in Eq. (73) and
Eq. (72) give

(VhB)y = -V x (NxB) -V x (NE),  (170)

Sl

V-B=0. (171)
Equations (167)—(171) provide Maxwell equations deter-
mining the magnetic field in MHD approximation. The EM
variables E, ¢, and j are determined by Eqs. (167)—~(169).
We note that E and j are coupled in Eqgs. (167) and (169).
The other equations determining the gravity, fluid, and the
scalar field are the same as in Sec. III.
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C. FNLE formulation

Ohm’s law in Eq. (154), using Eqs. (100) and (103),
gives

2

vxB
c/T1+2¢)’
(172)

ro o1 .
+ 1 +2¢?VV'J — Qem?’V = ay(E +

where the curl operation is associated with 7, ;. Using the
MHD condition in Eq. (155) in Gauss’s law in Eq. (109),
the convective current term, g.,7>V, is negligible; we use
V-E~E/L and v~ L/T, and assume the axion contri-
bution is of the similar order as @.y,. Thus, Ohm’s law in
MHD approximation gives

2
. 14 1 ) vx B
—yv.i=— E+—|. 173
It 2™ ”y( +c\/1+2¢> (173)
In the ideal MHD limit, we have
vx B
E=—-———. 174
cy/1+2¢ (174)

Now, we can set up the FNLE MHD formulation.
Ohm’s law in Eq. (173) determines E

E vxB (1 (175)
=t — — VvV -
c/1+2¢ oy ! 1+2¢ J

Gauss’s law in Eq. (109) determines @y,

V- (/T+2¢E) B-Vf (176)
Qem = dra(1 + 2¢)3/? a(l+2¢)

Ampere’s law in Eq. (110) determines j,

. c 1 ¥ ¥ E
J——MmA[m[Vx(NB)—l-an <7>

Vv1+2¢
IV (VTH2E) 19,
Ya 1+2¢ ac 01‘( 1+20F)
1 cy-Vf cE xVf
e k=) e == UL

where we used Eq. (176). Faraday’s law in Eq. (112) and
Eq. (111) give

( 2\/T+29B) = —aV x NE)+V><(’7X—B),

1+2¢
(178)

v-( 1+2¢B> —0. (179)

Equations (175)—(179) provide the Maxwell equations
determining the magnetic field in MHD approximation.
The EM variables E, ¢, and j are determined by
Eqgs. (175)—-(177). We note that E and j are coupled in
Egs. (175) and (177).

In MHD limit, fundamental variables are the fluid variables
(0, v, etc.) with the magnetic field (B); in our case we also
have the equation of motion for the scalar field (¢) and
equations for the gravity (a, @, k and y). The fundamental
equations without imposing temporal gauge condition are the
following. The equation of motion for the scalar field remains
the same as in Eq. (115) with E determined by Eq. (175).
Notice that for an ideal MHD, as E is orthogonal to B, the EM
contribution to the equation of motion disappears. Under our
MHD condition without assuming the slow motion, all the
fluid conservation equations in Egs. (123)—(126) remain
the same. Similarly, for the gravity part, Egs. (C8)—(C12)
remain the same with the fluid quantities in Eqgs. (117), (120),
and (121). The weak-gravity limit and slow-motion limit will
further simplify some parts in the EM contributions as we
show below.

1. Weak-gravity limit

In the weak-gravity limit the complete equations are in
Egs. (139)—(150). In MHD, the Maxwell equations in
Egs. (144)—(147) should be replaced by Egs. (175)-(179).
In the weak field limit, these become

1 1 1
E :——va+—<j+y2—2VV-j>, (180)
c oy c

|

Oem = 4;: —V. E+g¢}, B-V/f, (181)

_ 0 2

I= 47mv x 4dra? dt(a E)
—gd,y(Bf—gE fo), (182)
10

= (a’B) = —aV xE, (183)
V.B=0. (184)

The other equations in Eqgs. (139)—(143) and (148)—(150)
remain the same.

2. Slow-motion limit

In the slow-motion limit with »?/c? < 1, the only
change in Egs. (175)—-(179) occurs in Ohm’s law in
Eq. (175) which simplifies to

vx B

1
E=—-——wr—+1+-j. 185
C\/1+2(p+0"] (185)
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Further simplifications occur in the fluid quantities of the
FL and EM field, and in the fluid momentum conservation
equation. First, we can set y = 1 and ignore v'v//c? in
Eq. (117) and conservation equations. For an ideal MHD,
using Eq. (174), E? and EE; in Eq. (121) can be ignored
compared with B? and B;B;. Finally, in Eq. (124), using
Eqgs. (174) and (177), the first ¢.,E; term can be ignored
compared with the second Lorentz force term. The remain-
ing equations are the same.

The weak-gravity and slow-motion limit was studied
in [12].

D. Induction equation

Replacing E and j using Ohm’s law and Ampere’s law,
Faraday’s law gives the induction equation. In the weak-
gravity approximation, using Eqs. (180) and (182), Eq. (183)
gives

B c2AB _ Yy v

4rea®>  oya

x[(l +y2izvv> : (fB—fE fo)},
C a

1o,
?(QB) va(va)

(186)

2

Vv1+2¢

a a

%(azx/l—i—ZgoB)—éV(N vxB )+4c -V x [i

oy

where 1 is 5} and we assumed a constant ¢. The displace-
ment current term in Ampere’s law can be ignored in
induction equation using the MHD condition in
Eq. (155). The second term in the left-hand side is the flux
conserving induction term (in the absence of the other terms
the magnetic field is frozen-in with the fluid), and the third
term is the diffusion. The right-hand side is a contribution
from the helical coupling and can work as the scalar field
source for the magnetic field; in the slow-motion limit,
the first term with f B can work as the a dynamo [2] with
a = cgy, f /o [41,42]. The a-dynamo term causes exponen-
tial growth of the magnetic field in the linear stage, see
below. For an ideal MHD (6 — o), the g4, coupling
disappears.

Corresponding induction equations can be derived in the
three exact formulations as well. In the covariant formu-
lation, we can use Eqgs. (159) and (161) to remove E, and j,
in Eq. (162). In the ADM formulation, we can use
Egs. (167) and (169) to remove E and j in Eq. (170). In
the FNLE formulation, we can use Egs. (175) and (177) to
remove E and j in Eq. (178), and we have

V x (/\/B)]

1+2¢pc? NVT+2¢

—‘VUx 7B ¢ V x ! I+
a4t VI+2¢) 4na oyN 1+ 2¢

2 ivv 7 x ¥xE \ _V-(J/T+2¢E)
14292 Ji120) 7 1+29

c 1 o1 1 . cy-Vf cE xVf
CgpVxd—(1+—"——w)|-B - . 1
Tt {0y< +1+2fpc‘2vv) [N <f+a2(1+2¢) ay/T+2¢ 187)

To the linear order, this gives

2
c"AB _ ng)yfv « B.
a

2B -
(a°B) dralo o

1
= (188)
which coincides with the one from the weak-gravity
approximation in Eq. (186). In Fourier space with B(k, 1) =
[ d®xe™™*B(x,1), and using the orthonormal helicity
(circular polarization) basis [39] (€.,é_,é;) with é,=
(&, +ié,)/V2,8; =k/k,and B = B &, + B_é_ + B;é;,
we have

c? K 4rk .
<__2j:7;g(/)yf)8i’ (189)

1
_z(azBi)' =
a a

4o

with solutions [41-43]

a? tc? K> 4rk .
By =B, —5exp {/ <——2:|:——g¢,yf>dt], (190)
a ¢ ca

. dro a

[
and Bj purely decaying. The first term is diffusion damping.
The second term causes exponential growth of the magnetic
field for small enough k and steady f/(ca), with maximum
growth rate for k = 2%¢|g, |, and the system tends toward
to maximal helicity state [41,42,44]. The maximal helicity
state can cause inverse cascade of the magnetic energy to
larger scales [3,4,6].

VII. DISCUSSION

We derived three exact formulations (the covariant, the
ADM, and the FNLE formulations) and weak-gravity
formulation of the general relativistic ED and MHD
including the helically coupled scalar field. The latter
two formulations are presented in the cosmological context.
The complete set of equations for each formulation is
derived in each section and Appendices A—C.

The covariant and the ADM formulations are reformu-
lations of Einstein’s gravity using the timelike four-vector
U, (thus, 1 + 3) and the intrinsic metric 4;; (thus, 3 + 1),
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respectively. In the covariant formulation the ED and MHD
without the helical coupling was studied in [45]. The EM
field in that work, however, is somehow confined to the
comoving frame (i), thus, they only used &,, b,, etc.
Whereas, the conventional EM fields in the ED and MHD
are the ones measured in the normal frame (7i,), thus, using
E,, B,, etc. as we expressed throughout this work.

The FNLE formulation is designed as exact perturbations
in the Friedmann background spacetime. The resulting
FNLE equations are fully nonlinear and exact with the
metric perturbation variables explicitly visible in the equa-
tions, see Eqgs. (C8)—(C17). Compared with the covariant
and the ADM formulations where the inverse metric g° and
hi/ are assumed to exist, in the FNLE formulation these are
exactly derived in terms of the metric tensor g,;, [25,28].

In Minkowski background the FNLE equations are gen-
erally valid in any configuration and the energy-momentum
content, just like Newtonian hydrodynamic equations are
valid for any arbitrary matter configuration; still, one impor-
tant restriction (not in physics though) is that the FNLE
formation is based on explicitly building the general exact
perturbations in the Friedmann or Minkowski background
spacetime, thus in the isotropic background. The FNLE
formulation is provided without fixing the temporal gauge
condition. For simplicity, here we ignored the tensor-type
perturbation and imposed a spatial gauge condition; formu-
lation without these restrictions is possible [28].

The weak-gravity approximation takes weak gravity
limit in the FNLE equations while keeping the energy-
momentum part including the fluid and fields fully rela-
tivistic. The formulation is consistent in uniform-expansion
gauge (maximal slicing in Minkowski background).
Relativistic corrections appear, in particular, in the two
Poisson’s equations in Egs. (149) and (150). We do not
address the post-Newtonian approximation [31,46] in this
work because it demands proper Newtonian limit which is
not available for the general scalar field potential we are
considering. The situation changes as we consider the axion
as a massive scalar field.

The axion is a case of massive scalar field with

V= ”;;22 ¢*. The coherent oscillation stage of axion can
work as the cold or fuzzy dark matter depending on the
mass scale [47-50]. In such a field we have the Klein and
the Madelung transformations which transform the SF to
the Schrodinger equation and conservation equations with
proper Newtonian (nonrelativistic) limit. In the presence of
Jgy coupling, however, in [12] we found that these two
transformations are possible only for f « ¢* which is not a
favored form in the axion physics [1].

For a massive scalar field with f = %(/)2 coupling, under
the Klein transformation [51]

B(x.1) = —=lp(x. ey (x. )eto], (191)

_h
\V2m

the equation of motion leads to the Schrodinger equation
with y the complex wave function; @, = mc?/h is the
Compton frequency [52]. By further applying the
Madelung transformation [53]

%eimu/h’

s (192)

ll/E

the Schrodinger equation leads to continuity and momentum
conservation equations with ¢4 and u interpreted as the mass
density and velocity potential (u, :£Vu), and with a
characteristic quantum stress term encompassing the quan-
tum nature [54]. In [12] we studied the weak-gravity and
slow-motion limit of this case, and studied gravitational
instability caused by MHD and magnetic instability caused
by the helically coupled field. For the same V and f these
two transformations can be applied in the three exact
formulations as well, but we do not pursue the subject here;
in the absence of the FL and EM field, see [13] for the
covariant formulation and the post-Newtonian approxima-
tion of the axion.

The exact equations of the helically coupled ED and
MHD in the ADM and FNLE formulations will be useful to
implement in numerical simulations. The ADM formu-
lation of ED and MHD without the helical coupling was
implemented in numerical relativity [24]. The helically
coupled scalar field as the (cold or fuzzy) dark matter or the
dark energy will be the interesting subject to explore in the
context of origin and evolution of the cosmic mag-
netic field.

The weak-gravity formulation in Minkowski background
will be useful in many astrophysical situations where
relativistic effects of fluid and fields are important while
the gravity is weak. Indeed, in nearly all astrophysical
situations, except for nearby compact objects like the black
holes, neutron stars, and white dwarfs, the gravitational
fields are extremely weak with ®/c?> ~ GM/(Rc?) <1073
where M and R are characteristic mass and length scales.
Even in cosmology, the gravitational field is similarly
extremely weak in nearly all observable cosmic scales
including the cosmic microwave background radiation.
Equations in the weak-gravity approximation are similar
to Newtonian hydrodynamic equations and will be much
easier for numerical implementation compared with numeri-
cal relativity which is a complicated constrained system.
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APPENDIX A: COVARIANT (1+3)

FORMULATION
The 1+ 3 covariant decomposition is based on the
timelike normalized (u“u, = —1) four-vector field u,

introduced in all spacetime points [14—17]. The expansion
(0), the acceleration (a,), the rotation (w,;,), and the shear
(o,p) are kinematic quantities of the projected covariant
derivative of flow vector u, introduced as

hehuca = S huq + b teq = Oy + O

1
Oup =0 — gahab,

= Uy + a,uyp,

(A1)

A b
u, = ua;bu .

D)
1l
<
Q
S
2
Il

where h,, = g, + u,u, is the projection tensor with
hau’ =0 and h% = 3; an overdot with tilde ~ indicates
a covariant derivative along u“; indices surrounded
by () and [] are the symmetrization and antisymmetrization
symbols, respectively, with Ay E%<Aab +A,,) and
Alap) =3 (Aup — Ap,). Thus

1
ua;b = Wyp + () + gghab —a,up. (AZ)
We introduce
a — 1 abcd c,,d
w =§’7 UpDcq, WDap = Naped®@ U™,
2 1 ab a 2 1 ab
) :Ea) W, = W Wy, o :EG Oubs (A3)

where @“ is a vorticity vector which has the same
information as the vorticity tensor @,,. We have

ubuh;a = 0.

(A4)

o U’ = wut = o ub = a,ut =0,

We have the antisymmetric tensor ¢ = plabed with

n"'% =1/,/=g, thus

1 €abcd

V=9

ﬂ”th = s Nabed = —V/ ~Y€abcd> (AS)

where €?? is an  antisymmetric

€123 = €y103 = +1. We have

symbol  with

o4 5? oy O

b &b o &
abcd _ e shscsd ¢ ! 9 h
n 77€fgh - _4!5[65](595}1] - 52 5} 5; 5;1 ’

oot ol o

w5 o
" ega = 3180855 = —| 80 8, 8.
5 8 &

bed b 5(; 5?

abedp, g = —45080 = 2| ©
n nefcd [c“d) 52 5?

= (598 — 45).

nabajnebcd = _6625 nuthnabcd =-24. (A6)

Our conventions of the Riemann curvature and Einstein’s
equation are

Ugpe = Ug;eh = udeahc’ (A7)

1 87G
Ry — ERgab + Agap = e T op- (AB)

The Weyl (conformal) curvature is introduced as
1
Cabcd = Rabcd - 5 (gacRbd + gbdRac - gbcRad
R

- gadec) + g (gacgbd - gadgbc)' (Ag)

The electric and magnetic parts of the Weyl curvature are
introduced as [18]

Eab = Cacbducudv Hab =C, ducud’

abce

Cabcd — (_nabpqncd” + gabpqgcdm)upurEqs

- (nabpqgairs + gabpandrs)upuquS’ (AIO)

where C, ., =211,."Corpq. We have E,, =Ep, and
E_,u’” =0, and similarly for H,. Similarly as in EM in
Eq. (6), we have two invariants,

CadeCabcd — S(EabEab _ HabHab) — C*adeCthd’

cebedCr, = 16EH,,, (A11)

. 1 p2
Wlth CadeCabcd = RadeRabcd — 2RabRab + §R .

The energy-momentum tensor is decomposed into fluid
quantities based on the four-vector field u“ as

T,y = puguy + p(.gab + uaub) + oty + Gplta + Taps
(A12)
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where

uq, =0 = um,,, Tap = Tpas 72=0. (A13)
The variables y, p, q,, and =z, are the energy density, the
isotropic pressure (including the entropic one), the energy
flux, and the anisotropic pressure (stress) based on u,

frame, respectively. We have

1

H= Tahuaub’ pP= gTabhah’ qda = _Tcduchgv

Tap = Tcdhzh;)l = phap. (A14)

The kinematic and fluid quantities and the electric and
magnetic parts of Weyl tensor depend on the frame four-
vector u,. Although the fluid quantities of the real fluid are
defined in the fluid-comoving frame where u,, is the fluid
four-vector, here, we may consider u, as an arbitrary
timelike four-vector.

1. Covariant equations

The specific (per mass) entropy S can be introduced by
TdS = c*de + pydv where € is specific internal energy
with g = 9(c? + €), py the thermodynamic pressure, v =
1/0 the specific volume, and T the temperature. We have
the isotropic pressure p = pr + e where e is the entropic
pressure (isotropic stress). Using Egs. (A17) and (A19)
below we can show

oTS = —(e0 + 76, + q“.+qa,). (AlS)
Thus, we notice that e, 7%°, and ¢“ generate the entropy.
Using a four-vector S = gu®S + qu” which is termed the
entropy flow density [14] we can derive

1 /T 1
St == (G4 a) ¢ = (e a%u). (A16
We derive the covariant (1 + 3) set of equations in the
following, see [14—18].

The energy and the momentum conservation equations
follow from u, 7", = 0 and hST".;, = 0, respectively,

/‘i + (/" + p)g + ﬂabgab + qa;a + qaaa =0, <A17)

(/’l + p)aa + hzbz(p,b + ﬂ:lc);c + éb)

4
+ <a’ab + Oup + gghab> q" =0. (A1B)

The mass conservation follows from j*=gu® and
j%a=0as

0+ 60 =0. (A19)
By applying u” on Eq. (A7) we have
(”a;c)iv_ aa;c + ua;bub;c + Rabcdubud =0. (A20)

By applying ¢““ on Eq. (A20) we have the Raychaudhuri
equation

1 4G
9+§92—a“;a+2(62—a)2)+L4(,u+3p)—A:0.
C
(A21)

By applying #*“*'u; on Eq. (A20) we have the vorticity
propagation equation
o 2 1
ha® + S 00" = ol + En“bc‘iubac;d. (A22)
An equivalent equation can be derived by applying hf dhg]
on Eq. (A20)

- 2
hghg(wcd — a[c;d]) +-0w,, = ZJfaa)b]C. (A23)

3

By applying h? dhi) on Eq. (A20) we have the shear

propagation equation

i 2
hghz (ch - a(c;d)) = a,ap + 0,0 + GaCU}C; + _Haab

3
1 4rG
- ghah(wz + 202 - a,Lc) + Eab - L47Tab =0. (A24)
C

By applying g““h%¢ on Eq. (A7) we have

817G

:—q .
e

2
hab <wbc;c - Gbc;c + §8b> + (wab + oab)ab

(A25)

From Eq. (A7) we have wuyy,=0. Thus, from

n*dugu,,. = 0 we have

., =20"a,. (A26)
By applying h-;’eh;i)nyh”"uh on Eq. (A7) we have
Huh = 2a(aa)h) - hzhg(w(ce’f + a(ce;f)”d)gefug' (A27)
From the Bianchi identity R p[cq4,] =0 we have
. Ta: | .
Cuhcd;d — Rc[u,h] _ ggL[aR’h], (A28)

using C%<¢ in Eq. (A10) we can derive the four quasi-
Maxwellian equations,
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4dnG

hathbd abcdubO.eHde + 3Ha b __

47G .
hehSHY. .+ Pl ot E,y — 3ES0” = = {Z(u + p)o + n*<dy, {qad + 7o (@4 + aed)] }

—(Bh“bub hén®e.. —3w,q" + 64q° + nfa® —§9q) (A29)
ct

(A30)

h?hzécd + <HJ; eh( —2a HE} > )cdeuc + huhUCdEcd + eEah _ Eg\a(30b)c + a)”)f)
4nG p a oz a 1
— :_ [ (/t 4 P) za(aqb) _ hﬁ hZ)<qC’d +ﬂcd) _ (wc(a -l-dg >ﬂ.b)c _§0ﬂab += 3 (q ot acq* + gl d)hab:|’
(A31)
hehbE — (Ef;eh( — 2a,EY ) bledey, 4 habged[ 4+ OH — H (3017)6 + wb>ff)
4nG a ’ a cde a c a
= qugg - n{i;eh} )nb> ey + he,.q° — 3wl qb)]. (A32)

These follow, respectively, from

1
_ubuccabcd;d’ —Ehgufﬂefabufcade;d,
1
_ hg—’h{) Mbcabcd;d’ —Ehggh?) ufnefabuccade;d, (A33)

where we used the momentum conservation and the energy
conservation equations in Eq. (A29) and (A31), respec-
tively. Notice the analogy with Maxwell equations in
Egs. (10)—(13).

We note that the timelike four-vector used above is a
generic one. We also note that in the presence of multiple
components like several components of FL, SF, and the EM
field, etc., T,, is the sum of each component, and
consequently the fluid quantities (1, p, q,, and 7,;,) are
also the collective ones defined in Eq. (A14). As we explain
in Sec. II, in such a case, equations governing the individual
component should be supplemented, like conservation
equations for an individual fluid component, the equation
of motion for the SF, and the Maxwell equations for the
EM field.

APPENDIX B: ADM (3+1) FORMULATION

In the following, we use tildes in order to clearly
distinguish covariant quantities. The ADM notations [20,21]
|

\/E,O i
h)k k 'k -k
I >ij.0_ (—2NK(1+Nk(l+N<l >:j)+(NKij_N(i:j)) s

of the metric and fluid quantities are presented in Egs. (48)
and (52). The extrinsic curvature is defined as

Ki'E (N j TN = hijo), K = hiK;,
1
KijEKIJ_ghin’ (Bl)

where the indices of K; are raised and lowered by £;; and its

inverse,and K = K. A colon indicates a covariant denvatlve
associated with h;; where the connection is

. 1 .
F(h)}k = hlf(hfj.k +he ;= e

i

| L

2
1
thE

hkfhkf’i = h = det(h,]> (BZ)

Thus
1/ . 1 . 1/ . Vhy
K=—(N., —<hin, )=~ (N.-"2). (B3
N( i 2 z],O) N( i \/E) ( )

We have

hi oy = —h*hi*hy, g = 2NKY — N'*J — NI,

o

(B4)

The intrinsic curvature R jke 18 the Riemann curvature tensor associated with /;; as the metric tensor
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R(h)jkf = r(h);'.f’k — r(h);'.kf 4 r(h)rr;.fr(h);;m - r(h)n;.kﬁh);m,

(h) _ i) _ i S(h) _ o) 1
Ry =Rk, RM = hiiR; = R, R =R —ghin(’”. (B5)

We have antisymmetric tensor

U T 1 i ~ i

7ok = ——§€0Uk = meo’/k = Nﬂ”k, oijk = —/=G€oijx = =NVheoijp = —Nijij;

_ . 1 _ . o e

Nijk = Wijkd”d = —ﬁﬂouk, ’7”k = W’jkd”d = Nﬂo”k’ (B6)

where indices of 7;;, are raised and lowered by £;; and its inverse. We have

5 &, & .

~ijks i i i si S ~ijmy i i k= isi _ sis) =ikt i

T 0w = 30,0080y =5, 8y 64|, Tun =205, =| ] — (8h-0i8l). =26 (BY)
sk sk sk ke

The ADM equations can be derived in a conventional way [20,23,24]. One other way is by using the covariant equations
based on the normal-frame 7i,. Here we derive the set directly from Einstein’s equation by brute force. We will also present
the conformal tensors and the quasi-Maxwellian equations in the ADM notation.

The connection gives

= _ 1 i inNJ = _ 1 j 0 1
o :N(N,0+N,1N - K;iN'N/), Lo :N(N,i - K;;iN7), I = _NK’V"
- 1 . . . L. . .
Ty = V(=N = NN + KuNIN¥) + NN 4 N'g = INK'IN; + NN,
[ — — LN NI = NKI + NI, + = NINK fi =i+ Lyig B8
0 =~ NN T NG AN T jko k= e g N R e (B8)
thus,
o1 ;o1 Vhy - 1
P =y No- NK+N; ZNN,OJFWa I =10 ty N (B9)
The Riemann curvature tensor gives
RO0r = == K1 oNI =~ N 1 N+ K iNIN* 4 K NE N7+~ KN NI — K KN
00i = =g RijoNT =g N iNT o R oy RNV lVT A KN N = R ks
- 1
R = N (KF.; = K5.0) N
. 1 1 . 1, (R B 1
R%; = —NKU.O—NN,i:j_Kink+NKi;ij+ﬁKikN :j+NKjkN s R™ji :N(Kij:k_Kik:j)7

Rigy; = R, ,NEN” = N(K* ) + K. N*) = NN*'; — K'K;,N*N” + NKX(NK} = N'.;)
1. :
+ NV (N Ko+ N g jN* = Ky ;NN = Ko NENTj + NK KN = KNS )
+ N(K*.; 4+ K '')N; + NK*N,.; + K, KLN*N?

_ i 4 Kl
Rl()jk = 2NK[jik] - ZNl:[jk] - 2NNZN Kf[j:k] + 2N K[ij]f,

. . [ . 1 S 1
Rijo = R N” + N VKo + KONeK i+ 5N ' = NN Koo = o N' (N K e + N7 K )

— KiK;eN’ + N'KKyp + N(Ky ' = KL )), Ry = ROy, + 2K K — 23 N'K s (B10)
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7 h
ROin - ngj)-kaNf + N[Kij,o + Kij:ka + Nﬁiij -

(Ki:j + Kkj:i)Nk - (KkiNk:j + Kijk:i)}

+ N?K¥K ;i + (K;;Ky, — Ky K s )N*N”,
= = h
Roijx = Nf( ;lzk 2K, Kk]f) —2NKjjj.i Rijre = Rz('jlzf + 2Kk Ky (B11)
The Ricci tensor gives
Ry =N (K,O + K,N'+ N*'; = NKVK;; — 2N ;K" ;,»)
| R
+ NN (—Kij,() — N jj + KjiN* + 2K juN¥; + NKK;j — 2NK*K i + NRSJ’.”) ,
o j (h) azj 1 j 1 Nk 1 i Nk j
ROi - NKJ' _NKlj + le N —NKU()N +NKU]<N N + K‘/ NN |kN + KN
1 1 . .
- NNMN/ + NKjkaNk;,- - 2K;; KN,
3 w1 1 1
R, = Rl(';) _NKij’O _NN‘” +KK;; - 2KikK§ +N (K,kN + K N*. ) +— KU WNK, (B12)
~ 1 . P -
Rg:—ﬁ(K,O‘FN'U—K}(JN’_NK”KU)’ P ( - >
R = R —l(Ki — K NK S + KK +1(KiNk = KN + (K —K~). (B13)
j 7N j.0 Jik N J J N k N Jik
|
i 1 . | B
The scalar curvature gives N (Ko— K N')+ N N
1 4zG
- y 2 ; iy — ij__g2_"=
R=R 4+ KKV + K~ (Ko~ KN +N).  (Bl4) KKV —3 K ——(E+S5) +A=0. (BI7)
A trace-free combination of Einstein’s equation R’ — 16 R’,ﬁ,

The electric and magnetic parts of the conformal tensors
will be presented later in Eqs. (B26) and (B27).

1. ADM equations

The ADM equations can be derived directly from
Einstein equations. The G? component of Einstein’s equa-
tion gives

(B15)

The G component of Einstein’s equation using Eq. (B15)
gives

_§K2+ 162G

R = KK E+2A.  (B16)

The trace of Einstein’s equation using Egs. (B15) and (B16)
gives

using Eq. (B15) gives
(e i nNk B Atk _ i ATk
N Kj,O_Kj:kN +KjN"“* = K N*.;
= 1 PR PR —mi_ 9nG o,

From 7,7, = 0 and T%, = 0, we have the energy and
momentum conservation equations

L Ey—EN)-K(E+1s
N0 *3
- SVK; + 2(N2]’) =0, (B19)
L (g0 = Ji NI = TN
N i,0 — Jij —Jj i
! i Ly o
- KJ; +NEN”' +8i.; +NN,jSt. =0. (B20)
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Equations (B15)—(B20) are a complete set of ADM equa-
tions. The continuity equation is based on the fluid four-
vector; (0it).. = 0 gives

<\/ED>’O+ {\/ED(NVI'—NI')} =0. (B21)

i
,

Equations (B19)—(B21) can be written in conservative
forms as

(x/EE) . [\/E(NJI‘ - NfE)] = VA(NSUK;; = N .J%).

i
)

(B22)

+ [Vh(vs] =Ny

(i), ;

=Vh ( NS*hj; +J;N/ ; EN,,). (B23)

Using

E=E-Dc, (B24)

Using Egs. (B16), (B18), and (B15), these become

- (K;.o — Ki N + RENT — RIN* + N7 —§5PN""‘> ~o kK-

the energy conservation equation can be written as

(Vie),

= Vh(NSUK;; = N J').

[ h(NJ' — DNV — N€)]

1
s

(B25)

In the presence of multiple components of fluids and
fields, the fluid quantities in the ADM equations are
collective ones with E = EFL 4+ ESF 4+ EEM  etc. Instead
of the conservation equations for collective component in
Egs. (B19), (B20), (B22)-(B25) we can also use the ones
for individual components. For the fluid, we have
Egs. (84)—(87) and (91). For the EM field, we have the
Maxwell equations in (65)—(68). For the SF we have the
equation of motion in Eq. (74).

2. Weyl equations

The electric and magnetic parts of conformal tensors
based on the normal frame are

1 1.
KiK* +35'K’<Kf+2R< )i,

(B26)

— . . 47[G 1 _i _ i
H}:”/lkf (Kjk:f—célhjffk> o\ ka.fk5f+’7§ka:f)'

2(
(B29)
Equations (A29)—-(A32) give the quasi-Maxwellian

equations expressed in terms of the electric and magnetic
parts of Weyl tensor in the normal frame,

F = R+ KK - <f<§;f<§—%5§f<§kf) s, IR By = [gE 3 (Ky=Khy) =38} j],
=R, + KK~ K{ K"~ (%E—f—%A)é}—ﬁS’ (B30)
(B28) H{ _’—7{/(<K£Rl(<f)_|_4”_GJ ) (B31)
l(E,,,O —E;;.xN*) = 2KE;; + <5K’< ——N" — hi;KEEL + 7 (Hj)k P —EN,CHM>
N
47CTG { (E—l—;S)K —Ji:j) — %N,(i-]j) (Sij0 = SijN¥) = (K](i —%le(,) S
+;h,, <J" A Nka Kksf>} (B32)
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1 _ _ 2 _ s 2
N(Hij’o — Hij:ka) —_ 2KHU -+ <5Kﬁ _NNk( >H h Kka n(ikf (Ej)k:f _NN,kEj)f>

472G _ -
= _TW(ikf(Kj)ka + Sk:e)- (B33)

Using Eq. (B29), Eq. (B30) can be written as

_ . 87G |1 1 A
El; = K*(Kj.i = Kijx) t—a |:§E,i - <Kij —gKhu)J’ —555:,']- (B34)

Equations (B30) and (B34) give the Bianchi identity R, —% and Eq. (B31) follows from Eq. (B29).

APPENDIX C: FNLE FORMULATION
The metric is in Eq. (92). The FNLE fluid quantities are defined in terms of the ADM fluid quantities as

E. S, Ji=acm;, S;=d*(1+2¢)m;;, S;;=a*(1+2¢)m,;, (C1)
where indices of m; and m;; are raised and lowered using &;; as the metric and its inverse; we introduce 7;; -1 30ij ’,§

with mi =S.
We use the ADM formulation. The ADM metric quantities can be expressed in terms of the FNLE notation as

00\—1/2 X Ve
N=—(") "2 =ay/14+20+—"2"—=aN, N,=§,=-ay;, N =—F7"——,
(&) (1+20) = Joi =0z a(1+2¢)
. 1 .
h:. =70, = 1+20)5,;, hY=———-05Y. C2
ij gl/ a ( + (ﬂ) ij a2(1+2(p) ( )

The inverse metric, three-space connection, and curvatures are given by

o1 S g <5ij Y > (C3)
a’N?’ AN (1 +2¢)° a*(1+ 2¢) a’N*(1+42¢))’
. . 4 4 30,
h)i i i N hk )l
) jk = m ((P.j5k + §0.k5j - 5jk)v r ik = m (C4)
. 1 . . .
R * =T 2 2 (@ b — 0'k8je — @ jo0 + @ 26 1)
+ 05207 (=300 6, + 30 0 k8 + 3¢ ;0 5, = 3079 18k — Q" P 6 Bir + " P 5L 1)
R — _ P.ij 3 PiPj @ _ an N
i 1+2¢ (1+2¢)? 1+2¢p (1+2¢9)?2)
2 R
RW — = 33—
a2(1+2tp)2( 20"+ 1+2¢)°
o A 1 . oo, 1 o e,
RWi =g _—gip — | _i 3PP L5k 3 PPk Cs
j P73 F1 41207 |7 T 1520 3%\ 7% T2 (C3)
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We have the extrinsic curvature as

a’ [1 ) 1
Kij = Y {; (H+¢+2Hyp)s; +2—az()(i,j + %)) —m()ﬁ(m +x0. —)(k€0,k5ij)],
1 3 1 X (ﬂk 1
i — K 1 i 1 i R 1 k 1 i 2
Kj:Kj_géjK_ 2N 129) 2 ()( X —§5IX T T 20 X +x0 —39 S v
. 1 1 1 . .
KjK? :a4N2( +2¢) { )( (ZU +Zjl)_§)( ,i)fj,j
4 1, L, 2 TR
12 247 Uij+2ji) =32 000, +m X905+ 30005 ) - (Co)
We have
. y 1 y )
’70”k = \/—_—gﬂ”k = m’?”kv Noijk = =/~ 9Mijk = —04-/\/(1 + 2(0)3/2’71‘,‘1(;
I 1 ) .
it = \/—Eﬂ”k = Wﬂl]k? Nijk = \/_’71,/( = a*(1+2¢)* 2nij;
N Ny = 68,5088, Wi = 280,85, 0ty = 265, (€7)

where indices of 7;;, are raised and lowered by the metric §;; and its inverse.

1. FNLE equations

The ADM equations give the following. Trace of extrinsic curvature in Eq. (C6):

i(ed) s b3 )

ADM energy constraint in Eq. (B16):

(C9)

3 <d2 872G A(:2> N a A 1, 3 ol [
2 i

I\ T3 T3 ) T T 2pr 6 T2 ey 4

ADM momentum constraint in Eq. (B15):

21 1 1 1 1 N Q; 1 . ) 1
k4 —— Ay 4= = = e »J (. L) — 2§k
3¢ T AN+ 20) (2 i+ gl -’”) a2/\/(1+2¢){</\/ 1+2¢) [2(’“”' ) =30
@ 1 N 1 2 _ 814G
" . 20, AN v i_Zg 22T am.. C10
L ()(,rp,,,+3)(]<p.,> +1+2¢ L\/ X+ xe 3 pax 3 am; (C10)
Trace of ADM propagation in Eq. (B17):
3 1 [a '+&2+4n’G( E+5) Ac? n 1 ,+2('1 N AAN
N \a a? c N TN

1 c . N; o
I i L 2KEK C11
3K a2N(1+2(p)<ZK”+Cl+2(p>+C LK (C11)

Trace-free ADM propagation in Eq. (B18):

083020-28



EXACT FORMULATIONS OF RELATIVISTIC ... PHYS. REV. D 107, 083020 (2023)

a - A . 10 a ka c
hi 4+ 3—h'. — > ht ——+3—- ——=——V —
L ’+<N0t+ a K+a2/\/(1—|—2(p) k>{a2/\/(1+2(p)

1, . 1 1 . 2
i JY _ o sig ko i g _ Zsink
X [E()(.j"’)(j ) A 520 ()( Qx50 m)}

c? 1 . 1. 1 . 1.
_a2(1 T30 [1 ey <v V; —géjA>(p+N (V vj—ga‘jA>N}
2 2

c 3 ’ L. 1 i l_ o

CZ

1 ‘ 1 . . ‘ .
| Dk, ki ki N S ki, ik
+a4Nz(1+2¢)2 [2(;( ik = XX )+1+2¢0( X0 =Xy iox et et = xid ")

2 , . 872G _.
— _(viy.0*e, — v.oi0 —m, Cl12
+ (15207 o or —x e w,,)} + = ] (C12)
where we introduced a transverse-trace-free part of the spatial metric /;; only to the linear order; we introduce g;; =
a®[(1 + 2¢)5;; + 2h;;] where hi =0 = h{’j with indices of h;; raised and lowered by 6;; and its inverse. For FNLE
formulation including the transverse-trace-free mode to fully nonlinear and exact order, see [28]. We have
. 1

KK =——F———
Jt a4N2(1+2(P)2

2 o 1.
+ (4207 (){’xiq)'/ @+ 3)(’;(’ 0. ,-) } (C13)

. L L L
oXa (xi; +)(j,i)_§)( 4 ,j_1_|_2¢ AP ()(i,j+)(j,i>—§)( X

The ADM energy, momentum and mass conservation equations follow from Egs. (B21)-(B23),

N

1 1 . . 1 .
;[cﬁ(l + 2¢)32E) +- [(1 + 2¢)1/2 (chm’ +§)('E):| = —5(1 +2¢) 2N ;*mi

a2 2 (A o1 2%0 s+ Eii - C (ni ik Cl4
(1+2¢) [<a+rp+ P i a2(1+2(p)()(€0 X)) | mi (C14)

%[a4(1+2¢)3/2m,~]‘+%[(14—2(;7)3/2(/\/111{—1—%)} ':é(1+2¢)3/2{MS—N,E C( Z >mj]
J i

a(l+2¢ 1+2¢ T a\1+2¢
(Cl15)
%[a3(1 +2¢)*2D] —i—é [M(Nvi +21’)D] ) =0, (C16)
where D = gy. Using € = E — Dc?, we have
%[(P(l +2¢)%2&) —l—é{M[ch(mi — Dv) +§){"5} }’i = —é V14 20N ;Em
- m[(fz + ¢+ 2Hp)S —%K?;(pS—t—%Wj (;(,-,j - 12’:”2;)] (C17)

The ADM related fluid quantities E, S, m;, and m;; will be determined in terms of the fluid quantities in the comoving frame
for the FL, the SF, and the EM fields in Eqgs. (117), (120), and (121), respectively.
To the background order, Egs. (C9), (C11), (C14), and (C16), respectively, give

a?  8zG Ac? a 4rG Ac? . a . a
—=—FE+—, —=———(E+8)+—, E+3—(E+S)=0, 0+3-0=0, C18
a?> 3¢ + 3 a 32 (E+S)+ 3 + a( +9) et a’ (C18)
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where, from Egs. (117), (120), and (121), we have

1., 1.,
E = — V, §=3 —¢ =V,
oo+ <p+202¢ )

(C19)

with g = ¢(c? + I). The EM field cannot be accommodated in the Friedmann background.
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