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A primordial black hole (PBH) is interesting to people for its ability of explaining dark matter as well as
supermassive astrophysical objects. In the normal inflation scenario, the generation of PBHs usually
requires an enhanced power spectrum of scalar perturbation at the end of inflation era, which is expected
when the dispersion relation of the inflaton field gets modified. In this work, we study a kind of inflation
model called the Dirac-Born-Infeld-inspired nonminimal kinetic coupling (DINKIC) model, where the
dispersion relation is modified by a square root existing in the field Lagrangian. We discuss the
enhancement of scalar power spectrum due to the modified dispersion relation, as well as the abundance of
PBHs produced by the Press-Schechter collapse mechanism. We also discuss the formation of scalar-
induced gravitational waves by linear scalar perturbations.
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I. INTRODUCTION

Primordial black holes (PBHs) have been drawing atten-
tion of more and more astrophysicists and cosmologists.
Unlike the formation of astrophysical black holes, PBHs are
not formed by the collapse of stars, but by the gravitational
collapse of local high-density regions in the early Universe,
thus PBHs have much broader mass range than astrophysical
ones. Therefore, it cannot only act as dark matter whose
identity has not been confirmed yet, but also an interesting
candidate of the supermassive black hole, which seems
impossible to be astrophysical because of the lack of
formation time. First initiated by Zeldovich and Novikov [1]
in the 1960s, and put forward by Hawking and Carr in the
1970s [2,3], PBHs have been widely studied, see e.g. [4–10]
and the references therein. Moreover, there are also a
lot of efforts putting various constraints on PBHs, such
as from gravitational lensing [11–14], cosmic micro-
wave background (CMB) and big bang nucleosynthesis
(BBN) [15–17], gamma-ray emission [15,18–23], compact
objects [24–26], gravitational waves [27–31], large-scale
structures (LSSs) [32] and so on; see [33] for a review.
As has been demonstrated in the literature, PBHs can be

generated in inflation scenario. During the inflation era, the
Universe expands dramatically over a short period of time,
while the quantum fluctuations in the vacuum of the

inflation field will be stretched out of the horizon and
become classical perturbations. In small scales, if the power
spectrum of the cosmological perturbations has large peaks,
it will lead to large inhomogeneities in the energy distri-
bution of the Universe. After the perturbation reenters the
horizon, PBHs will form in regions of high energy density
due to gravitational collapse [34]. To be precise, in order to
effectively form the PBHs, it is necessary to enhance the
amplitude of the power spectrum on small scales to the
order of 10−2 [35], while on the CMB scale, it is con-
strained to 10−9 by the observations [36]. There are many
ways to enhance the power spectrum, such as selection of
scalar potentials with special features [37–54], multifield
inflation models [55–60], sound speed resonance [61,62]
and so on [63–71].
Recently, there are works discussing about generating a

large scalar power spectrum by suppressing the sound
speed of the inflaton field to a very tiny value, namely
cs ≪ 1 [72–74]. One can see from the expression of the
scalar power spectrum, Pζ ∼H2=ðϵcsÞ, that such an
approach is parallel to that of suppressing the slow-roll
parameter, as what has been done in the ultra-slow-roll
inflation models [35,41,50,75], albeit the latter violates
the slow-roll condition. Moreover, in these works, the
suppression of cs was realized accompanied by a higher
order term, in order not to violate the consistency require-
ment and lead to strong coupling [72,73,76]. In [72], such a
realization was discussed in the general effective field
theory (EFT) language, while in [73], people used the ghost
inflation with a higher-order corrected dispersion relation
as a specific example.
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On the other hand, the modified dispersion relation
(with higher-order term) can be naturally generated in
inflation models which have nonlinear kinetic terms,
such as the DBI-inspired nonminimal kinetic coupling
(DINKIC) model proposed by one of the authors in
2015 [77]. The nonlinearity in this model is due to the
fact that the nonminimal kinetic coupling term resides
inside the square root in the field Lagrangian. As a result,
there is an additional term proportional to k4 besides the
normal dispersion relation: ω2 ¼ c2sk2. In this work, we
discuss the generation of PBHs in the framework of this
model. While in the original paper [77], we set the c2s to be
constant, in this work we make it vary, which gives rise to a
modified dispersion relation: as the evolution goes, the k2

term dominates first, and the k4 dominates later. In such a
case, we calculate the scalar perturbations in order to obtain
a large power spectrum on small scales. We analyze the
possibility of the formation of PBHs which can act as a
large amount of dark matter, and confront our results to the
constraints of current observations. We also discuss the
scalar-induced gravitational waves (SIGWs) generated in
this model [78–82].
This paper is organized as follows. In Sec. II, we briefly

review the DINKIC inflation model, which contains a
correction term of k4 in the dispersion relation. In Sec. III,
we set up our model with varying sound speed, and present
the information for background quantities. In Sec. IV, we
calculate the evolution of the perturbation so as to obtain
the scalar power spectrum, and analyze the conditions for
enhancing the power spectrum to 10−2. In Sec. V, we
calculate the PBH abundance produced in the model, and
constrain our results with the current observations. In
Sec. VI, we discuss the production of SIGWs in our model.
Section VII is devoted to the conclusions and discussions.

II. DINKIC INFLATION MODEL

The original DINKIC inflation model proposed in
Ref. [77] has the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

fðϕÞ ð
ffiffiffiffi
D

p
− 1Þ − VðϕÞ

�
; ð1Þ

where we have defined

D≡ 1 − 2αfðϕÞX þ 2βfðϕÞX̃; ð2Þ

X ≡ −
1

2
gμν∇μϕ∇νϕ; ð3Þ

X̃ ≡ −
1

2M2
Gμν∇μϕ∇νϕ: ð4Þ

Here α and β are constants, M is the scale of nonminimal
kinetic coupling, while Mpl ¼ κ−1 is the Planck scale,

and the function fðϕÞ is the (squared) warp factor of the
AdS-like throat. Note that the second kinetic term, X̃,
belongs to the generalized scalar-tensor theory action,
which possesses nice properties such as violating the null
energy condition without having ghosts [83,84]. Therefore,
it is interesting to extend it to the nonlinear action as well.
One extension is to have the field’s action like that of
the Dirac-Born-Infeld (DBI) field, which has strong moti-
vations from string theory [85–88]. Note that the above
action is related to Fab 5 theory proposed years ago [89,90].
Under the flat FLRW metric (gμν ¼ diagf−1; a2ðtÞ;

a2ðtÞ; a2ðtÞg), one can vary the action with respect to
the field ϕ to get the equation of motion for ϕ:

fϕð
ffiffiffiffi
D

p
− 1Þ2

2f2
ffiffiffiffi
D

p þ 3βH2 − αffiffiffiffi
D

p ϕ̈þ 2β _H þ 3βH2 − αffiffiffiffi
D

p 3H _ϕ

−
3βH2 − α

2D3=2
_D _ϕ−Vϕ ¼ 0; ð5Þ

while the energy density ρ and pressure p are given by

ρ ¼ ð ffiffiffiffi
D

p
− 1Þ

fðϕÞ þ VðϕÞ þ α _ϕ2ffiffiffiffi
D

p þ 6βH2 _ϕ2

M2
ffiffiffiffi
D

p ; ð6Þ

p ¼ −
ð ffiffiffiffi

D
p

− 1Þ
fðϕÞ − VðϕÞ − 3βH2 _ϕ2

M2
ffiffiffiffi
D

p −
�

βH _ϕ2

M2
ffiffiffiffi
D

p
�:

: ð7Þ

In order to analyze the perturbations generated by the
model, we use the Arnowitt-Deser-Misner formalism, in
which the perturbed action up to the second order becomes

Sc2 ≈
1

2κ2

Z
d4xa3

�
6
xβ
D

_ζ2 −
2ϵ

a2
ð∂ζÞ2 þ 16x4βy

a4H2
ð∂2ζÞ2

�
; ð8Þ

where we define several dimensionless variables,

xβ ¼
κ2β _ϕ2

2M2
ffiffiffiffi
D

p ; y ¼ fðϕÞM2
pH2ffiffiffiffi

D
p ; ð9Þ

and the ϵ≡ − _H=H2 is the slow-roll parameter. One can
see from Eq. (8) that, different from usual generalized
scalar-tensor theory, an additional higher-order spatial
derivative term appears, which is due to the nonlinearity of
the action. From Eq. (8), we can easily get the perturbation
equation:

u00 þ c2sk2
�
1þ

�
k
kc

�
2
�
u −

z00

z
u ¼ 0; ð10Þ

where the prime denotes derivative with respect to con-
formal time dτ≡ a−1ðtÞdt; see Ref. [77] for more details.
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In the above equation, we define u≡ zζ, z≡ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xβ=D

p
,

c2s ¼ ϵD=3xβ, and the critical scale:

kc ≡ aH

ffiffiffiffiffiffiffiffiffiffi
ϵD
8x4βy

s
¼ aHcsffiffiffi

γ
p ; ð11Þ

where γ ≡ 8x3βy=3. Therefore we have the dispersion
relation as

ω2 ¼ c2sk2 þ c2sk−2c k4: ð12Þ

The dispersion relation above indicates that the fluctuation
modes of the inflation field can be divided into two cases,
namely k < kc and k > kc. In the first case, the first term in
Eq. (12) dominates over the second term, and the approxi-
mate dispersion relation approaches ω ∼ k. In the second
case, the second term dominates over the first one, and
it becomes ω ∼ k2. The similar dispersion relation also
appears in ghost inflation [91] whose background has a
timelike scalar field ϕ ¼ M2t, and has been recently
studied in EFT inflation [72,73].
In Ref. [77], we assume the parameters such as xβ, y, ϵ

and c2s are slow varying, so that kc ∼ aH. We draw the
evolution of the “critical wavelength” 1=kc as well as the
wavelength of fluctuation mode with arbitrary wave num-
ber k for this case in the left panel of Fig. 1. One can see
that, for the modes with k < kc initially, it will keep so until
the end of inflation, so the k4 term will be subdominant all
of the time. However, for the modes with k > kc initially, it
will evolve until k becomes smaller than kc at a later time.
According to the analysis in the previous section, the
dispersion relation is dominated first by the k4 term, then
the k2 term.

We also draw the effective horizon leff such that, when
1=k < leff , the term with k dominates over the effective
potential term containing z00=z (subhorizon), and vice versa
(superhorizon). This determines the functional form of the
solution u, as will be seen later. Thus, the leff also depends
on which term in Eq. (12) will be dominant. For k < kc
where the first term dominates, leff ¼ cs=aH, while for
k > kc where the second term dominates, leff ¼ ffiffiffi

γ4
p

=aH,
so for the modes whose wavelength crosses the critical
wavelength during inflation, the effective horizon will be
discontinuous at the crossing point (denoted as τ�). This is
different in normal inflation models without the k4 correc-
tion term in the dispersion relation. However in this case,
although the modified dispersion relation can affect the
initial condition of the fluctuations, at late times (especially
the superhorizon region) it can hardly make any effect
on the perturbations so as to deviate from the standard
slow-roll inflation. Therefore, the PBHs are not easy to be
generated either.
If we break the “slow-varying” approximations of some

of the variables, however, things will become different.
Note that the critical scale kc is related to the sound speed
cs, and if we make cs steplike from a large value to a small
value, kc will be large at the beginning, then become small
later. For certain fluctuation modes with wave number k,
one can have k < kc at the beginning, then k > kc later. We
draw the same plot for this case in the right panel of Fig. 1.
In this case, the dispersion relation will be dominated first
by the k2 term, then the k4 term. Moreover, the effective
horizon will also be made steplike, namely cs=aH followed
by

ffiffiffi
γ4

p
=aH. Note that although for large-scale modes which

exit the horizon before the transition time τ�, the k4 term
actually does not affect the solution (since z00=z > ω2),
for small-scale modes which exit the horizon after the

FIG. 1. The sketch plots of the evolution of fluctuation modes for the DINKIC inflation model in [77] (left panel) and this paper (right
panel). The green lines: the conformal wavelengths 1=k for different fluctuation modes; the yellow lines: the conformal critical
wavelength 1=kc; the red lines: the “effective horizon” which presents the effects of the “effective potential” z00=z in Eq. (10), and it
depends on which term in Eq. (12) will dominate over the other. One can see that, while in the original model the effective horizon and
the critical wavelengths are continuous, in this work both are steplike, which is useful to create the peak in the scalar power spectrum in
small scales.
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transition time, the k4 term does affect the solution before
the horizon crossing (z00=z < ω2). Therefore, PBHs can be
formed in such a case, as has been shown in Ref. [72–74] as
well. We will analyze such a case in a bit more detail in the
next section.

III. OUR MODEL WITH VARYING SOUND
OF SPEED

First of all, we assume that the inflation field ϕ still obeys
the “slow-roll” approximation, namely

jϕ̈j ≪ j3H _ϕj; j2β _Hj
jαM2 þ 3βH2j ≪ 1;

xβ ≪ 1; y ≪ 1; D ≃ 1; ð13Þ

under which the equation of motion (5) and Friedmann
equation are reduced to

3

�
αþ 3βH2

M2

�
H _ϕþ Vϕ ≃ 0;

3H2

κ2
≃ VðϕÞ þ

�
αþ 6βH2

M2

�
_ϕ2: ð14Þ

In this case, the model is approaching a potential-
driven inflation model. Thus the slow-roll parameter
ϵ can be expressed in terms of the potential, namely ϵ ¼
V2
ϕ=ð2κ2VðϕÞ2Þ, while from the previous section, the sound

speed squared c2s can be expressed as

c2s ¼
ϵD
3xβ

≃
1

6κ2xβ

�
Vϕ

VðϕÞ
�

2

; ð15Þ

Therefore both ϵ and c2s are closely related to the form of
the potential VðϕÞ.
According to the analysis above, we now consider a

steplike sound speed form. One such parametrization is as
the following function:

c2s ¼
1

Aþ exp½Bðt − tcÞ=κ�
; ð16Þ

where A, B are parameters, and tc denotes the transition
time. Therefore, when t ≪ tc, the second term in the
dominator of Eq. (16) is suppressed exponentially, there-
fore we have c2s ≃ 1=A, which can be viewed as the initial
value of c2s . On the other hand, when t ≫ tc, Eq. (16) as a
whole is suppressed by the exponential term, giving rise
to c2s → 0.
Making use of Eqs. (9), (14), (15), and (16), one can get

the forms of potential VðϕÞ and function fðϕÞ as

VðϕÞ¼V0exp

�
−

ffiffiffi
3

p
Mκffiffiffiffi

A
p

BC
tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA−1eBð

ffiffiffiffi
2C

p
ϕ=M−tc=κÞ

q �
;

ð17Þ

fðϕÞ ¼ 72C3γ

�
κ

VðϕÞM
�

2=3
½Aþ eBð

ffiffiffiffi
2C

p
ϕ=M−tc=κÞ�1=3; ð18Þ

and an analytical solution:

ϕðtÞ ¼ 1ffiffiffiffiffiffi
2C

p M
κ
t: ð19Þ

Here we also assume γ is a constant.
In Fig. 2, we plot the evolution of c2s , VðϕÞ and ϵ in

our model. We choose the parameters as A ¼ 1, B ¼ 4,
C ¼ 1250, tc¼10M−1

pl , M¼10−1Mpl, V0¼1×10−11M4
pl.

The plot shows a sudden decrease of cs and ϵ at the middle
stage of inflation, and such decrease is simultaneous, as
can be seen from Eq. (15). Therefore in our model actually
both cs and ϵ will contribute to the increase in the power
spectrum. This is different from the discussions in [72–74].
As a side remark, let us mention that it is hard to get

the simple mathematical forms of potential and functions
simultaneously due to the nonlinear term in the action.
However, the most important is the above calculation
results show a steplike sound speed, which can generate
PBHs as wewant. Meanwhile, although the concise form of
sound speed leads to a complex mathematical form of the
potential, it can be seen from Fig. 2 that the potential is a
flat potential; in this sense, the potential form is simple and
natural. It makes sense to optimize the model by finding a
more concise mathematical expression for each function in
the model, and this will be a step for future research.

IV. THE EVOLUTION OF THE PERTURBATIONS

In this section, we will calculate the analytical solution of
Eq. (10) based on the relationship between k and kc. In
order to solve Eq. (10), we assume the cs, ϵ, xβ and y do not
change significantly in both the k < kc and the k > kc
region, and we find analytical solutions for each region.
Furthermore, we match the solutions in the two regions by
making use of an appropriate matching condition.
Let us first consider the k < kc region, where the k2 term

dominates over the k4 term in the dispersion relation (12).
Then Eq. (10) reduces to

uð−Þ00k þ
�
c2sk2 −

2

τ2

�
uð−Þk ¼ 0; ð20Þ

where (−) denotes the variables in the k < kc region.
Imposing the Bunch-Davies initial condition, we find the
positive frequency solution for Eq. (20) as
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uð−Þk ¼ eiπ
ffiffiffiffiffiffiffiffi
−πτ

p
2

Hð1Þ
3=2ð−cskτÞ: ð21Þ

We can obtain the power spectrum expression as follows:

Pð−Þ
S ¼ k3

2π2
jζð−Þj2 ¼ H2D

24π2c3sxβ
: ð22Þ

Meanwhile, in the k > kc region where the k4 term
dominates over the k2 term in (12), Eq. (10) reduces to

uðþÞ00
k þ

�
8

3
x3βyk

4τ2 −
2

τ2

�
uðþÞ
k ¼ 0; ð23Þ

where (þ) denotes the variables in the k > kc region. The
most general solution of Eq. (23) can be written as

uðþÞ
k ¼

ffiffiffiffiffiffiffiffi
−πτ

p
2

�
C1H

ð1Þ
3=4

�
1

2

ffiffiffi
γ

p
k2τ2

�

þ C2H
ð2Þ
3=4

�
1

2

ffiffiffi
γ

p
k2τ2

��
; ð24Þ

where C1 and C2 are constants.

Matching the two solutions (21) and (24) at the conformal
time τ� so as to make the solutions in k > kc and k < kc
regions continuous at the time point τ� [73], we can get

C1 ¼
π

4
½2ycHð1Þ

3=2ðxcÞHð2Þ
−1=4ðycÞ − xcH

ð1Þ
1=2ðxcÞHð2Þ

3=4ðycÞ�;
ð25Þ

C2 ¼ −
π

4
½2ycHð1Þ

3=2ðxcÞHð1Þ
−1=4ðycÞ − xcH

ð1Þ
1=2ðxcÞHð1Þ

3=4ðycÞ�;
ð26Þ

therefore

jC1 − C2j2 ¼ −
πffiffiffi

2
p ð−xcÞ3y3=2c

�
4HF

�
−
3

4
;−

1

4
y2c

�

× ðxc cosð−xcÞ þ sinð−xcÞÞ

þHF

�
1

4
;−

1

4
y2c

�
½3ðxc cosð−xcÞ

þ sinð−xcÞÞ − x2c sinð−xcÞ�
�

2

; ð27Þ

FIG. 2. The evolutions of sound speed c2s , potential VðϕÞ and slow-roll parameter ϵ during inflation, whose analytical expressions are
given by Eqs. (16)–(18), respectively. The related parameters are chosen as A ¼ 1, B ¼ 4, C ¼ 1250, tc ¼ 10M−1

pl , M ¼ 10−1Mpl,
V0 ¼ 1 × 10−11M4

pl.
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where HF is the hypergeometric function, and we defined
xc ¼ −cskτ, yc ¼ 1

2

ffiffiffi
γ

p
k2τ2.

For the fluctuation modes which exit the horizon at this
stage, the power spectrum is as follows:

PðþÞ
S ¼ H2

4π

�
16

γ

�
3=4 D

3xβ
ðΓð3=4ÞÞ2jC1 − C2j2: ð28Þ

Since xc ≫ 1 in the k4 phase, and we consider that
HF½− 3

4
;− 1

4
y2c� ≃ Γð1=4Þ−1, then Eq. (27) can be reduced to

jC1 − C2j2 ≃
πffiffiffi

2
p ðxcÞ3y3=2c

x4c
Γð1=4Þ2 ; ð29Þ

at the transition point we can find

yc ¼
x2c
c2s;t

�
2

3
x3βy

�
1=2

; ð30Þ

at the same time, we consider yc ≃ 1. Then substituting this
value into Eq. (28), we find

PðþÞ
S ¼ 16π2c3scs;t

γ

�
Γð3

4
Þ

Γð1
4
Þ
�

2

Pð−Þ
S ðk → 0Þ; ð31Þ

where Pð−Þ
S ðk → 0Þ ≃ 2 × 10−9 is the power spectrum of

fluctuation which exits the horizon before transition time τ�,
thus constrained by the CMB measurements [36]. cs is the
sound speed in the k2 phase before the sound speed starts
changing in time, cs;t is the sound speed at the transition
point. For enough formation of PBHs, one needs the power
spectrum up to 10−2 [35], therefore γ ≃ 10−6 is required.
A more precise numerical calculation shows that we have
to assume γ ¼ 10−7. The above result is the same as
Refs. [72,73].
In Fig. 3, we show the relationship between power

spectrum PS and the wave number k. From the plot we can
see that, for the small k region where k < 10 Mpc−1, the
fluctuations exit the horizon before the transition time,
therefore the power spectrum is not affected by the decrease
of the sound speed. Therefore, the amplitude of the power
spectrum remains ∼10−9, consistent with the CMB obser-
vational data [36]. For the large k region, the fluctuations
exit the horizon after the decrease of sound speed, thus the
amplitude of the power spectrum gets enhanced. The peak
of the spectrum at the point k ≃ 103 Mpc−1, corresponding
to the scale where PBHs are generated. For the very large k
region where k > 103 Mpc−1, since the fluctuation modes
are mainly in the subhorizon region, the oscillation behav-
ior is robust.

V. THE ABUNDANCE OF PRIMORDIAL
BLACK HOLES

In this section, we consider the formation of the
primordial black holes (PBHs) and their abundance in our
model. Generally, after the end of inflation, our Universe
will enter a radiation-dominated era, and the perturbations
will reenter the horizon. If the perturbations are still very
large, it will generate the primordial black hole by means
of the gravitational collapse of the local inhomogeneities.
From [6,92,93], the mass of PBHs formed during the
radiation-dominated period can be described by the follow-
ing equation:

MPBH ¼ϒMH ¼ϒ
4π

3
ρformH−3

form

¼ 1015×

�
ϒ
0.2

��
g⋆

106.75

�
−1=6

�
kform

0.07Mpc−1

�
−2
M⊙;

ð32Þ

where g⋆ is the total effective degree of freedom of the
Universe, and ϒ ≃ 0.2 is the efficiency factor; both are
evaluated in the radiation dominated era [6], and M⊙ is the
solar mass. kform is the comoving number of the fluctua-
tions which formed PBHs, whose inverse denotes the scale
of PBH formation. From the above expression we can see
that the mass of the primordial black hole is determined
by kform.
From the analysis in the above section, kform≃

1.174 × 103 Mpc−1. Compared to the wave number cor-
responding to solar-mass PBHs which is ∼105 Mpc−1, in
our model the fluctuations exit the horizon not far from
the window opened for CMB observations, and will reenter
the horizon later than those of solar-mass. In this case, the

FIG. 3. The plot of power spectrum in our model in terms of k.
For k < 10 Mpc−1, the spectrum is flat and the amplitude fits
with the CMB observational data. For 10Mpc−1<k<103Mpc−1,
the power spectrum increases with k and reaches a peak at around
k ∼ 103 Mpc−1. For k > 103 Mpc−1 where the fluctuation modes
go deep into the subhorizon, the spectrum exhibits oscillating
behavior.
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PBHs have the opportunity to accumulate until they
became very massive. From the above equation we can
get that, for our case with kform ∼Oð103Þ Mpc−1, the mass
of PBH is around MPBH ∼ 106–107M⊙. Such a massive
PBH can also help explain the generation of supermassive
black holes, such as those with a mass of 1010M⊙ found by
a redshift of z ≃ 7 [94–97].
In order to evaluate how much primordial black holes

can be generated and how it can act as the dark matter, we
usually define the fraction of primordial black holes in dark
matter, namely,

fPBH ¼ βðMPBHÞ
�
ρtot
ρDM

�				
form

¼ 1.68 × 108
�
ϒ
0.2

�
1=2

�
g⋆

106.75

�
−1=4

×

�
MPBH

M⊙

�
−1=2

βðMPBHÞ; ð33Þ

where

βðMPBHÞ ¼
ρPBH
ρtot

				
form

ð34Þ

is the fraction of the PBHs in the entire Universe. The last
step of (33) comes from some tedious but straightforward
calculation [6,50]. On the other hand, according to the
Press-Schechter formalism [98,99], β is given by the
probability that the fractional overdensity δ≡ δρ=ρ is
above a certain threshold δc for PBH formation [100].
Therefore for Gaussian primordial fluctuations, β is
given by

βðMPBHÞ ¼ 2

Z
∞

δc

exp

�
−

δ2

σ2ðMðkÞÞ
�

dδffiffiffiffiffiffi
2π

p
σðMðkÞÞ

¼
ffiffiffi
2

π

r
σðMðkÞÞ

δc
exp

�
−

δ2c
σ2ðMðkÞÞ

�
; ð35Þ

where δc is the threshold density. Here σ2ðMðkÞÞ represents
the standard deviation of the coarse-grained density con-
trast for the PBHs mass of M [101]:

σ2ðMðkÞÞ ¼ 16

81

Z
∞

0

d ln q

�
q
k

�
4

W

�
q
k

�
2

PSðqÞ: ð36Þ

Therefore it can be related to the primordial power
spectrum at the horizon reentering. In this work, we adopt
the Gaussian window WðxÞ ¼ exp ð−x2=2Þ. The result of
the power spectrum is given by Eq. (31) and, substituting it
into the above formulas, one can get the fraction of PBHs
generated in our model.
In Fig. 4, we plot fPBH against the mass of PBHs,MPBH,

and confront various constraints that are obtained from the

publicly available Python code PBHBOUNDS [102]. The
constraints contain Experience de Recherche d’Objets
Sombres (EROS) [11], Subaru Hyper Suprime-Cam
(Subaru-HSC) [12], Gravitational-Wave Lensing [13],
Optical Gravitational Lensing Experiment (OGLE) [14],
cosmic microwave background (CMB) [16], femtolensing
of Gamma-ray bursts (FL) [18], white dwarf explosions
(WD) [24], neutron stars (NSs) [25] (note that it has later
been shown that the survival of stars actually cannot
constrain the PBHs, thus making the constraints even
looser, see [103,104]), Leo-I dwarf galaxy [26],
NANOGrav [27,28], LIGO/VIRGO [30], various cosmic
large-scale structures LSSs [32], and so on. As demon-
strated before, the mass range of the PBHs formed in our
model is around 106–107M⊙. Moreover, we find that as the
threshold density δc increases, the corresponding PBH
abundance will decrease. This is easy to understand: the
higher the threshold energy, the more difficult it is to form a
black hole. The oscillating behavior of the power spectrum
can also lead to the generation of multimass PBHs.

VI. SCALAR INDUCED GRAVITATIONAL WAVES

The large amount of the primordial scalar perturbations
cannot only generate primordial black holes via overdensity
collapse, but also induce gravitational waves in the radi-
ation-dominated era [78,79]. Such kinds of gravitational
waves are effects of second order, thus are usually
neglected in large scales such as CMB scale, where the
scalar perturbation source are already constrained to be
small. However, in small scales, the scalar induced

FIG. 4. Colored peaks: the fraction of PBHs generated by our
model against the total amount of dark matter. The parameters are
chosen to be the same as before. The red peaks correspond to the
threshold density δc ¼ 0.33 which was initially obtained by Carr
et al. using the relation δc ≃ w in the radiation-dominated era
[105], while the blue peaks correspond to δc ¼ 0.40, which was
obtained after a refined analytical and numerical calculation
recently [106–110]. The highest peaks locate aroundM=M⊙∼107,
and reaches the value of fPBH ≃ 10−7. Colored regions: the
excluded regions by various observations, which are obtained
from the publicly available Python code PBHBOUNDS [102].
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gravitational waves (SIGWs) may become large to be
detected, and thus become a probe to small scale physics
as well. The energy densities of SIGWs at present are
related to their values after the horizon reentry in the RD era
as [111,112]

ΩGW;0ðkÞh2 ¼ 0.83ΩRD;0h2
�

gc
10.75

�
−1
3

ΩGWðk; ηcÞ; ð37Þ

whereΩRD;0h2 ≃ 4.2 × 10−5 is the current radiation density
parameter and the gc ≃ 106.75 is the effective degrees of
freedom in the energy density at ηc, at which ΩGW stops
growing. The energy density of the GWs in the radiation-
dominated era is [113–116]

ΩGWðk; ηcÞ ¼
1

6

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1 − u2 þ v2Þ

4uv

�
2

× I2RDðu; vÞPSðkvÞPSðkuÞ; ð38Þ

where the variables u and v are defined as u≡ jk − k̃j=k,
v≡ k̃=k, and the full expression of IRD is given by

I2RDðu; vÞ ¼
9

u2v2

�
u2 þ v2 − 3

2uv

�
4

×

��
ln

				 3 − ðuþ vÞ2
3 − ðu − vÞ2

				 − 4uv
u2 þ v2 − 3

�
2

þ π2Θðuþ v −
ffiffiffi
3

p
Þ
�
; ð39Þ

Θ is the Heaviside theta function. Moreover, from the
relationship of the frequency of gravitational waves f and
the wave number k,

f ¼ 1.546 × 10−15
�

k
Mpc−1

�
Hz; ð40Þ

we can easily have f ≃ 10−12 Hz for kform ≃ 103 Mpc−1 in
our model. In Fig. 5, we plot the SIGWs generated in our
model as well as the constraints from experiments such as
EPTA [117,118], NANOGrav [119], SKA [120], FAST
[121], TianQin [122,123], LISA [124], and Taiji [125]. We
can see that the current observations cannot give constraints
to such a low frequency, however, since it is close to the
primordial gravitational waves generated by quantum
fluctuations in CMB scale, it is possible to have it detected
in the upcoming CMB telescopes, such as AliCPT [126] or
CMB-S4 [127] collaborations.

VII. CONCLUSIONS AND DISCUSSION

The generation of PBHs has attracted attention from
many people both in theoretical physics and astronomy, and
has been widely investigated in recent years. To generate

PBHs in the inflation era, one usually requires the pri-
mordial scalar perturbations increase and form a peak in the
small scales, and this can be realized by the suppression of
either the slow-roll parameter ϵ, or the sound speed cs,
or maybe both. However, in order to decrease the sound
speed, a modified dispersion relation of perturbations with
higher order terms is needed in order not to break the
effective field theory description of our Universe. A typical
example of such a modification is to add a quadratic
correction term, namely ω2 ¼ c2sk2 þ αk4.
In this work, we consider a specific inflation model

where a nonminimal kinetic coupling term resides in the
DBI-like square root in the action, which makes the action
nonlinear, giving rise to a k4 term in the equation as well
as the dispersion relation of the scalar perturbation. Based
on this model, we consider the sound speed that can vary
from the early to late time during the inflation. While at the
very beginning when cs ≃ 1, the k2 term dominates the
dispersion relation, at the late time cs drops to a vanishing
value, k2 becomes negligible while the k4 term becomes
dominant. We constructed the potential for this model
according to the sound speed. We calculated the evolution
of perturbations during the whole region, and obtained
the final power spectrum in both CMB scale and PBH
formation scale. While in the CMB scale the spectrum is
consistent with the observational constraint; in the PBH
formation scale it has a peak of 10−2, which is sufficient to
allow PBHs to form and act as the origin of dark matter in
the Universe.
Making use of the Press-Schechter formalism, we

calculate the mass of the generated PBHs MPBH, as well
as the fraction of PBHs against the total amount of dark
matter, fPBH. We found that the scale of the PBH formation
is near to the CMB scale, which means that the PBHs in our
model are formed later than the usual solar-mass ones, and
more massive, falling into the category of supermassive

FIG. 5. Black line: the energy spectra of SIGWs in our model.
The parameters are chosen to be the same as before. Colored
lines: the sensitivity curves of the current and future GW projects,
including EPTA, NANOGrav (gray region), SKA, FAST,
TianQin, LISA and Taiji.
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black holes. The fraction of PBHs in our model is
consistent with constraints by various observations, from
the gravitational lensing to large scale structures. Moreover,
we also investigated the scalar-induced gravitational waves,
and find that the frequency of the gravitational waves is
much lower than the current gravitational wave observa-
tions both using interferometers and pulsars, but close to
that of the primordial gravitational waves generated from
quantum fluctuations.
Some final remarks are in order. First of all, from the

theoretical point of view, we know that the PBH formation
is a highly nonlinear process, which might cause large non-
Gaussianities and backreactions such as loop corrections.
It is still not clear whether these backreactions will affect
(or ruin) the PBH formation process investigated here.
Although the constraints from these effects are still not
decisive yet (see recent discussions in [128]), we cannot say
that it will not become a smoking gun in the future. Second,
as mentioned before, the PBHs generated in our model are

supermassive ones, different from the normal ones which
have asteroid, lunar or solar masses. This may also be
interesting to the studies in astrophysics, for it may be
possible to explain the findings of supermassive quasars in
z ≃ 7 as well as the galaxy formations. Moreover, the low
frequency of scalar-induced gravitational waves may also
attract the attention of the next generation of CMB and
primordial gravitational wave detections. Making use of
these detections, we may be able to test the model by
verifying whether there is such a low frequency SIGW or
not. We will extend these investigations in upcoming works.
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