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We perform a novel multimessenger analysis for the identification and parameter estimation of the
standing accretion shock instability (SASI) in a core-collapse supernova with neutrino and gravitational-
wave (GW) signals. In the neutrino channel, this method performs a likelihood ratio test for the
presence of SASI in the frequency domain. For gravitational-wave signals we process an event with a
modified constrained likelihood method. Using simulated supernova signals, the properties of the Hyper-
Kamiokande neutrino detector, and O3 LIGO interferometric data, we produce the two-dimensional
probability density function (PDF) of the SASI activity indicator and calculate the probability of detection
PD as well as the false identification probability PFI. We discuss the probability to establish the presence of
the SASI as a function of the source distance in each observational channel, as well as jointly. Compared to
a single-messenger approach, the joint analysis results in a PD (at PFI ¼ 0.1) of SASI activities that is larger
by up to ≈40% for a distance to the supernova of 5 kpc. We also discuss how accurately the frequency and
duration of the SASI activity can be estimated in each channel separately. Our methodology is suitable for
implementation in a realistic data analysis and a multimessenger setting.
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I. INTRODUCTION

With the recent detection of gravitational signals from
binary systems, we have entered the era of multimessenger
astronomy with gravitational waves (GWs) [1,2]. There is
great hope that many more classes of sources will even-
tually be detected in GWs in the future. One such class,
with great scientific potential, is core-collapse supernovae
(CCSNe) [3,4].
A CCSN is a prime multimessenger source, involving

GWs, neutrinos, electromagnetic signals at several wave-
lengths, and possibly cosmic rays. In particular, neutrinos
and gravitational waves play an important role, as they
carry information about the early stages in the collapse as
well as the causes for shock revival, while instead electro-
magnetic observations mainly probe the later, postshock
breakout physics [3].
In the event of a supernova in our galaxy, a detection

in the neutrino channel is guaranteed, as long as neutrino
detectors at or above the kiloton scale are operational
[5]. The detection of GWs is possible and might be
achieved at ground-based laser interferometers depend-
ing on the detailed GW morphology [6]. The physics
potential of a joint detection of neutrinos and GWs from
a galactic (or otherwise nearby) supernova has been

explored by some pioneering works [7,8], but has not
been fully studied yet.
The simulated gravitational waves from CCSNe appear

as stochastic processes in the time domain but also present
deterministic features in the time-frequency domain. These
features include the frequency evolution of the fundamental
vibrational mode (f=g-mode) of the proto-neutron star
(PNS) [9–11], as well as a deterministic imprint related to
the hydrodynamic instability called the standing accretion
shock instability (SASI) [12–23]. The latter has a distinc-
tive signature in neutrinos, in the form of quasiperiodic
fluctuations of the neutrino luminosity, and therefore it is a
natural candidate for multimessenger studies. As its name
indicates, SASI is a large-scale, sloshing motion of the
stalled shock front, which typically lasts for a fraction
of a second postcollapse. Depending on its amplitude and
duration, it could have a critical role in promoting con-
vection and therefore aiding the shock revival mechanism,
especially in more massive progenitors that are prone to
collapse into a black hole [12].
The SASI descriptive parameters include the frequency

(in both the GW and neutrino channels), duration, ampli-
tude, and GW polarization state. The average SASI
frequency contains information about the average radius
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of the stalled shock front and coupling mechanism between
the shock wave and the PNS [12,24]. Longer SASI
durations could also appear in failed supernovae [24].
It is of interest to analyze the statistical conditions

needed to detect the presence of the SASI and to estimate
its parameters for realistic detectors where noise is present.
The noises, as well as the signal processing artifacts, of
neutrino and GW detectors are different. However, in both
the neutrino and GW channels, noise can induce some
energy in the SASI time-frequency regions, thus compli-
cating the analyses. Spectral properties of the SASI features
in the neutrino luminosity were described in Refs. [25–27]
for a specific set of progenitors. The question of the
detectability of SASI was discussed, not with respect to
a specific algorithm, but in terms of the spectral amplitude
relative to a Cherenkov detector’s shot noise. In
Refs. [26,27], the shot noise was estimated by Fourier
transforming a neutrino time series. The estimated shot
noise became independent of frequency. Note, however,
that when the statistical fluctuation of the neutrino signals
itself dominates over the noise of the detector’s back-
ground, the frequency independence assumption may only
serve as a rough approximation. The extension to a full
SASI detection methodology in the neutrino channel was
performed in Ref. [5], where some of the current authors
proposed a procedure (which we named the “SASI-meter”)
to detect the presence of SASI with a desired statistical
confidence, as well as obtain an estimate of the frequency
for SASI candidates that pass a desired confidence thresh-
old. In that work, we also pointed out that there is an
intrinsic uncertainty in the frequency of SASI in both the
GW and neutrino channels related to the finite duration of
the SASI episode.
In Ref. [28], an application of the Hilbert-Huang trans-

form to a three-dimensional CCSN GW was proposed for
the SASI frequency and duration estimation with simulated
Gaussian noise.
In Ref. [29] a Bayesian method that uses a training

process on an existing database of GWs was proposed to
identify the presence of SASI. Magnetorotational emission
models were assumed not to contain the SASI. Parameter
estimation and the false identification probability were not
involved in that study. In this paper, we further extend the
theme of SASI detectability and parameter estimation in
real interferometric noise as well as analyze the probability
with which the presence of the SASI can be established,
the intrinsic uncertainties of the SASI frequency, and the
SASI false identification probability. We use frequentist
inference, which does not apply prior information about
the SASI from any specific numerical simulation. We use
theoretical knowledge to identify conservative boundaries
of the time-frequency region of a GW signal where SASI
contributions would be present.
We consider a scenario where a CCSN detection has

been established in both the (time-coincident) neutrino and

GW channels. In this framework, we focus on the estima-
tion of physical parameters of the SASI hydrodynamic
instability from the recorded neutrino luminosity and GW
signatures. We extend our recent neutrino analysis [5] with
an estimate of the duration of the SASI and by including the
GW channel for both the detection and the estimation of
the deterministic parameters. The wavelet decomposition
of the GW data, recorded at a laser interferometer like
LIGO [30], is performed using the coherent WaveBurst
(cWB) algorithm [31], while the postprocessing of the
(simulated) data is a novel element of this work. We
introduce a new quantitative metric for the detection of
the SASI in the GW channel, which computes the ratio of a
collective signal-to-noise ratio (SNR) of the wavelet com-
ponents in the SASI time-frequency region versus the total
SNR of the event.
In Sec. II we review the physical origins of SASI and its

deterministic parameters, and discuss an illustrative exam-
ple. In Sec. III we discuss the methodology of analyzing
SASI-induced neutrino and GW modulations separately,
and the results of the single-messenger analyses. In Sec. IV
we present a novel methodology of jointly analyzing the
neutrino and GW signatures, and the results of this analysis.
We also discuss the expected precision in estimating the
oscillation frequencies, amplitude, starting time, and dura-
tion of SASI-induced modulations on neutrino and GW
signatures separately. For the frequency estimation, we
present the results of the two channels separately [32].
The roles of the detectors and the distance to the CCSN
are investigated. Finally, we discuss the application of this
novel joint analysis to future CCSNe observations and
conclude in Sec. V.

II. TIMING, FREQUENCY,
AND DURATION OF SASI

In this section, we review the origin of the signal
processing features of the SASI like the timing with respect
to the initial collapse, the duration, the frequency content in
the neutrino and GW channels, as well as some consid-
erations on the amplitude and related GW polarization state
(even if the current analysis does not make use of the GW
polarization state).
The electron neutrino luminosity increases to its peak

level over a ∼1–10-ms time scale after the core bounce due
to neutronization. Over the same time frame, for a non-
rotating progenitor, we do not expect a relatively strong
GWemission, because the collapsed core and its immediate
surroundings are nearly spherically symmetric (see, for
example, the GW signals in Ref. [6]). A turbulent phase is
expected to start after the shock stalls, at t≳ 50 ms
postbounce, with parts of the shock collapsing under
aspherical mass accretion. Such turbulence corresponds
to a relatively stronger GWemission, which will be initially
due to the fundamental g=f oscillatory mode of the PNS.
When the accretion on the shock breaks spherical
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symmetry, parts of the shock are also susceptible to
tangential forces that can amplify the SASI; see, for
example, Ref. [12] and references within.
As an illustrative example of our methodology, we use

the results of the three-dimensional general-relativistic
(GR) simulation by Kuroda, Kotake, Hayama, and
Takiwaki (KKHT) [33], in which SASI was found to leave
an imprint in both neutrinos and GWs. Specifically, we use
the numerically calculated neutrino event rate for Hyper-
Kamiokande (Hyper-K) and the GW time series for the
model S15.0 (SFHx) which is for a nonrotating progenitor
with mass 15.0M⊙ and the equation of state SFHx. The
KKHT model exhibits vigorous sloshing (as opposed to
spiral) SASI motion. We obtain both the simulated neutrino
and GW signals for a representative observer direction,
which is generic, and not special with respect to the
sloshing SASI motion. The investigation of models with
fast-rotating progenitors that show spiral SASI motion will
be left for future works.

A. Physical origin of SASI

Let us begin by reviewing basic analytical arguments on
SASI. There is agreement in stating that the SASI period
depends on the mechanism that couples the shock wave and
the surface of the PNS, as well as the total mass behind the
shock wave. However, more discussion is ongoing on the
details as well as the best definitions for parameters like
the PNS radius. Two equations related to these issues are
discussed in the following. In Ref. [12], the coupling
was stated to be acoustic because the advective effect is
expected to operate on slower time scales. According to
Refs. [21,24], SASI is due to an advective-acoustic cycle
whose period is given by the sum of the advective
and acoustic time scales for perturbations traveling between
the (angle-averaged) shock radius rsh and the radius of
maximum deceleration r∇ on the surface of the proto-
neutron star:

TSASI ¼
Z

rsh

r∇

dr
jVrj

þ
Z

rsh

r∇

dr
cs − jVrj

: ð1Þ

Here Vr is the average radial velocity of the outgoing
material within the average shock radius and cs is the
average speed of sound in the same region. Equation (1)
shows that fluctuations in the shock radius will induce
variations in the period of the SASI. The size of these
variations is about 20% in some numerical simulations of
CCSNe with direct collapse into black holes [24]. The
dependence of the central frequency on the mass behind
the shock has also been estimated, by either physical
arguments [6,25,34,35] or mode analysis [11,36–39].
According to the fitting formulas derived in Ref. [11],
the typical frequency of the GW emission associated with
SASI activity [40] is given by

fSASIGW ¼ 2 × 102 Hz
ffiffiffiffiffiffiffi
msh

r3sh

r
− 8.5 Hz

�
msh

r3sh

�
: ð2Þ

Here msh ¼ Msh=M⊙ and rsh ¼ Rsh=100 km, where Msh
and Rsh are the total mass behind the shock and average
shock radius, respectively.Msh can be approximated by the
PNS mass, Msh ≃MPNS ≃ 1.4M⊙, because most of the
mass is confined within the central object. Before shock
revival, typically Rsh ≈ 150 km. With this choice of
parameters, we find fSASIGW ≈ 125 Hz [40]. The connection
between fSASIGW and the actual frequency of the hydrody-
namical instability is still an open question. Since each full
cycle of the SASI amounts to two periods of an associated
quadrupole deformation, the frequency of the GWs gen-
erated directly by the SASI, or by the resonant excitation of
the PNS by the SASI, is expected to be roughly twice the
frequency of the instability itself, which is also the expected
frequency of the fluctuations in the neutrino luminosity,
fSASIν . Therefore, one might expect fSASIGW ∼ 2fSASIν . Some
authors also found that, for observing directions along the
SASI axis, the SASI signature in the GW channel could
have two main components: one at f ∼ fSASIν and the other
at f ∼ 2fSASIν [25]. In other numerical works, a simpler
connection, fSASIGW ∼ fSASIν , has emerged [33]. Motivated by
the currently evolving discussion, here fSASIGW and fSASIν will
therefore be treated independently, without any assumption
linking them.
We note (see also Ref. [5]) that the SASI frequency suffers

from a minimum uncertainty given by the inverse of the
duration of the SASI episode (e.g., a 100-ms SASI would
have an intrinsic uncertainty of 10 Hz) because of the line
broadening induced by temporal windowing. In this regard,
given that the duration is the same for the neutrino and GW
signatures, this fixed duration’s relative impact would be
smaller in the GW channel if fSASIGW ∼ 2fSASIν . Given that the
GW features related to the SASI are expected to develop a
specific preferential rotational axis, the polarization is
expected to be mainly elliptical [41]. Here, however, the
polarization signatures will not be considered in detail; their
inclusion is postponed to future work.

B. Illustrative example

To illustrate the methodology, we use the results of
the KKHT model S15.0, for both the neutrino and GW
channels. The simulated GW waveform contains both the
g-mode and the SASI. In two-dimensional time-frequency
maps, the g-mode has a slope of ∼3000 s−2, and it starts
roughly before 100 ms postbounce. The SASI episode has
a duration of approximately 50 ms, and a frequency of
∼127 Hz.
For the neutrino event rates, the signal with the SASI

removed (no-SASI from here on) was generated in the way
described in Ref. [5]. The original time sequence is made
smoother (thus eliminating the high-frequency oscillations
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due to SASI) by taking the event rates averaged over
eight time bins, each of width Δ ¼ 1 ms, and performing a
polynomial interpolation of these averaged rates. See Fig. 1
for the predicted original and smoothed-out neutrino event
rates. The figure also shows a realistic version of the same
rates where, for illustration, we include a realization of the
statistical fluctuations of the number of events in each bin
(neutrino shot noise).
To illustrate the GW pipeline we prepare two sets of

simulated GW waveforms and corresponding neutrino
event rates (number of events in time bins of 1-ms width)
at the Hyper-K detector. One set includes the original
KKHT output containing the SASI for neutrinos and GWs.
The other is produced from the original one by artificially
removing the SASI imprints. We use the two waveforms to
derive the receiver operating curves (ROCs) to identify the
SASI in GW data (see Sec. III). The two sets are shown in
Figs. 2 and 3; a brief description of how they are prepared is
given below.
For GWs, we resample the original KKHT waveform

(run S15.0) to 16 384 Hz to match the standard sampling
frequency of the LIGO noise and used waveform data after
57.37 ms, as the earlier part has neither g-mode nor SASI
components. We apply a twofold filtering to the S15.0
waveform as follows:
(1) The S15.0 waveform is split into two segments

based on time intervals: one (t < 156.25 ms,
S15.0-E for Early) where the SASI is not present,
and the other (t > 156.25 ms, S15.0-L for Late)
where it is present. This “cutoff” was chosen
particularly for this waveform (to produce the
no-SASI injection). The GW SASI-meter does not
include any such cut-off. Then, a band-stop Butter-
worth digital filter [42] is applied to the S15.0-L
segment to remove frequencies from 60 to 200 Hz,
thus removing the SASI (fS15.0-L segment, where
f is for filtered).

(2) We rejoin the S15.0-E and fS15.0-L segments, and
apply a low-pass filter to the resulting waveform to
address the residual discontinuity in the junction
point by removing frequency components greater
than 2000 Hz. The final result is the new, filtered
waveform, fS15.0.

Figure 2 shows the two polarizations with the two
models in the time domain, with their corresponding
spectrograms in the time-frequency domain.

FIG. 1. Neutrino event rates with and without SASI-induced imprints predicted by KKHT [33] at Hyper-K for a supernova at distance
D ¼ 10 kpc. The curve without SASI is obtained by applying a low-pass filter on the original signal. In the left (right) panel the rates are
shown without (with) the realistic Poisson fluctuations—i.e., the neutrino shot noise—which are driven by the signal itself.

FIG. 2. The cross and plus gravitational-wave polarizations of
the KKHT model [33] are plotted versus time (black solid). We
also plot the same quantities where a time-frequency filter is
applied to remove the GW SASI component according to the
discussion in Sec. II B (blue dashed).
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Although the methodology of this paper is illustrated for
the results of a specific numerical simulation, we designed
it to be applicable to the range of three-dimensional
simulations existing in the literature, which is summarized
below for the interested reader.
In Ref. [13], results from a three-dimensional simulation

of GW emission for a 15M⊙ star were presented. From the
time-frequency plots, we can see that after the quiescent
phase, which lasts until t ≈ 100 ms postbounce, a low-
frequency signal, with frequencies below ≈200 Hz begins,
after ≈50 ms of the g-mode component corresponding
to 200 Hz, which persists through the remainder of the
simulation (until ≈425 ms postbounce), which is due to
aspherical mass motions in the gain layer from neutrino-
driven convection and the SASI. Also, in the interval
∼150–200 ms postbounce, an intermediate frequency
emission (≈400–600 Hz) joins the low-frequency emission
which is described as SASI-induced aspherical accretion.
In Ref. [33], three-dimensional GR with ν transport

simulation was conducted for three nonrotating progenitors
of 11.2, 15, and 40M⊙. Prompt convection can be seen in
both low- and high-frequency regions in the early stage

until t ≈ 50 ms postbounce of the simulation, with S11.2
showing the strongest prompt convection. In addition to the
PNS g-mode, which is a relatively narrow-banded spectrum
that can be seen for all models, in S15.0ðSFHxÞ a SASI-
induced low-frequency component is seen in the 100 <
f < 150 Hz band for t > 150 ms postbounce, which is
≈75 ms after the g-mode component.
In Ref. [43] four models were discussed: s11.2, s20,

s20s, and s27. In s11.2, no SASI growth is observed
because of the large shock radius. The other models are
SASI dominated. In s20, strong SASI activity (dominated
by the spiral mode) is seen from 120–280 ms after core
bounce which is the extended phase with a peak from
200–250 ms. After a period of transient shock expansion,
SASI (much weaker) continues. In s20s, prior to shock
revival, postshock flow is dominated by large-scale SASI
sloshing motions between 120–280 ms post bounce. In s27,
two episodes of pronounced SASI activity can be seen
interrupted by a phase of transient shock expansion
following infall of the Si=O interface. The first phase is
from 120–260 ms postbounce and the second phase is from
410 ms postbounce to the end of the simulation (575 ms
postbounce). Also, a low-frequency emission between
280–350 ms postbounce can be seen which is not asso-
ciated with SASI.
SASI produces a sizable l ¼ 1 mode in the range

50–100 Hz, and l ¼ 2 components in 100–200 Hz range.
From the literature, we see that noticeable SASI compo-
nents begin after a delay of ≈50 ms from the g-mode
component corresponding to 200 Hz.

III. SINGLE-MESSENGER ANALYSIS: METHOD

We now illustrate the statistical method of analysis for
each messenger separately. The flowchart in Fig. 4 provides
a compact summary of the single-messenger analysis
procedure, and its relationship with the multimessenger
analysis, which will be discussed in Sec. IV.
We assume that the noises in the neutrino and GW

channels are statistically independent. The main reason is
that for the neutrino channel the noise is partly driven by
the neutrino luminosity itself in the search for oscillatory
signals in detected neutrino events, while in laser interfer-
ometers the noise is instrumental in origin.
The signals in the GW and neutrino channels have

different dependences on the distance to the CCSN, D.
The amplitude of the GW signal at an interferometer scales
like D−1, whereas the event rate in a neutrino detector
is proportional to D−2. This means that the dependence
on D of the SASI meter, as well as the SASI parameter
estimation, could be different in the neutrino and GW
channels, resulting in a nontrivial dependence of the
combination of the two channels on the distance, which
needs to be properly investigated; see Sec. IV.

FIG. 3. S15 model spectrogram for the plus polarization, with
SASI (top) and without SASI (bottom). In the top spectrogram,
the blue line indicates where the g-mode is located (with the red
dot indicating the time that the g-mode is around 200 Hz). In
green is the allowed time-frequency SASI region (to start after
50 ms of the g-mode initial time) and below the 200 Hz line. In
yellow we indicate the temporal interval where the actual SASI
oscillations (see the location of the SASI in the left plot of Fig. 1
and bottom plot of Fig. 2) are removed, after the yellow vertical
line at 156.25 ms.
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A. Neutrino-only analysis

In the present context, a neutrino detector like Hyper-K
operates as a counting device, so the main observable is
the number N of neutrinos detected (“events”) in the
detector’s volume in a given time bin. N is a function of
time, and it is affected by the physical fluctuations of
the incoming neutrino flux (some due to SASI) as well
as statistical (Poissonian) fluctuations. The latter scale asffiffiffiffi
N

p
, so their relative amplitude increases with the dis-

tance:
ffiffiffiffi
N

p
=N ∝ D.

In the following we discuss our likelihood ratio meth-
odology for identifying SASI-induced neutrino signals in
detail. This methodology is inspired by the Neyman-
Pearson detection method of a signal in Gaussian noise,
and provides the probability to detect the SASI as a
function of the corresponding false alarm probability.
The method was described extensively in Ref. [5]; for
completeness, here we briefly summarized its main points.

1. Computing receiver operating curves

First, we establish two parametric templates in the time
domain which characterize the main features of neutrino
signals with and without the SASI activity. For the case
with SASI activity we choose a single frequency function:

NSðtÞ ¼ ðA − nÞð1þ a sinð2πfStÞÞ þ n; ð3Þ

where NS is the number of neutrino events collected in
a unit time bin centered at t, A is the time-averaged event
rate (the “DC component”) in the detector including
instrumental noise (after possible experimental cuts), a is
the relative SASI amplitude, n is the mean value of the
background events (n ≃ 0 for Hyper-K), and fS is the
nominal frequency of the SASI. The second template, for
the case without SASI, is a constant:

NnSðtÞ ¼ A; ð4Þ

FIG. 4. Flowchart of the multimessenger SASI meter developed in this work. Due to the absence of current detections, we characterize
the pipeline with random realizations of reconstructed ν and GW signals for the test example. For the ν, this means adding Poissonian
fluctuations on signals that have a SASI as well as signals where the SASI was removed. In the case of future detections, we can achieve
the same result by taking a smoothed-out version of the detected neutrino luminosities as the no-SASI ν signature, and randomize it with
Poissonian fluctuations to identify the threshold for the desired PFI used as a reference in this work for the single-channel or multiple-
channel identification mode (PFI ¼ 0.1). For the GW channel, in the test example used in this paper, we inject the GWs with and without
SASI in real interferometric noise. In a realistic scenario, the no-SASI injections can be used to tune the threshold on the identification
metric for the desired single or multimessenger PFI (PFI ¼ 0.1). The signals in the ν and GW channels with SASI are used in this paper
to characterize the performance of the GW-ν SASI meter.
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[with A having the same meaning as in Eq. (3)]. In the
above templates, fS and a are treated as free parameters,
with respect to which the likelihood will be maximized. We
note that there are two implicit variables in Eqs. (3) and (4):
the starting time t0 and the duration τ of the neutrino time
series of interest (which is typically a subset of the entire
neutrino burst, where SASI is likely to be found). We
consider these as fixed for the time being, as was done in
Ref. [5]; varying them is discussed later in Appendix A.
The quantity A is treated as fixed as well, because it can be
determined accurately by measuring the total number of
neutrino events collected in a time series with t0 and τ [5].
We consider the neutrino events that are recorded in a

detector after an initial time t0, in time bins of width
Δ ¼ 1 ms. The jth time bin then corresponds to the time
tj ¼ t0 þ jΔ. The observed number of events in the same
bin will then be NðtjÞ. The spirit of the method consists in
establishing how well the time series fNðtjÞg matches the
templates in Eqs. (3) and (4). Considering the oscillatory
character of SASI, the matching is done in frequency space.
Following Refs. [26,27], we perform a discrete Fourier

transform of the series fNðtjÞg over the time interval
½t0; t0 þ τ�, containing Nbins ¼ τ=Δ time bins. The discrete
frequency resolution is then

δ ¼ 1

τ
; ð5Þ

which represents the minimum width of frequency bins for
which statistical independence between adjacent bins can
be realized. The Nyquist frequency is

fNyq ¼
1

2Δ
; ð6Þ

which corresponds to the frequency index

kNyq ¼
fNyq
δ

¼ τ

2Δ
¼ 1

2
Nbins: ð7Þ

We define the discrete Fourier-transformed neutrino
signal as

hðkδÞ ¼
XNbins−1

j¼0

NðtjÞei2πjΔkδ ð8Þ

and the one-sided power spectrum as

PðkδÞ ¼
�
2jhðkδÞj2=N2

bins for 0 < kδ < fNyq;

jhðkδÞj2=N2
bins for kδ ¼ 0:

ð9Þ

The factor of 1=N2
bins is included in order to fix the

normalization, so that at k¼0we havePð0Þ¼ðNev=NbinsÞ2
[here Nev ¼

PNbins−1
j¼0 NðtjÞ].

For a given quantity, a symbol with a tilde will be used
when referring to an actual outcome of a measurement,
which is affected by statistical fluctuations. The probability
that an observed power at a specific frequency kδ, P̃ðkδÞ,
is a realization of a certain hypothetical template with
parameters set Ω is [5]

ProbðP̃;ΩÞ ¼ N2
bins

4σ2
exp

�
−
N2

bins

4σ2
ðP̃þ PÞ

�

× I0

�
N2

bins

2σ2

ffiffiffiffiffiffiffi
P̃P

p �
; ð10Þ

where I0 is the modified Bessel function of the first
kind, P is the power calculated by the template Ω at
frequency kδ, and

σ2 ¼ Nev

2
: ð11Þ

Let us now define the likelihood that a given observed
power series vector, P̃ ¼ fP̃ðkδÞg, is a realization of a
certain hypothetical template Ω. It is defined as

LðP̃;ΩÞ ¼
YKmax

k¼Kmin

ProbðP̃ðkδÞ;ΩÞ; ð12Þ

where Kmin and Kmax represent the minimum and maxi-
mum frequencies, with typical values being Kminδ ≈ 50
and Kmaxδ ≈ 150 Hz, which covers the SASI frequencies
predicted by state-of-the-art simulations [13,25,33].
Given two hypotheses (i.e., two templates) with param-

eter sets ΩS and ΩnS, and an observed set P̃, the likelihood
ratio is

LðP̃Þ ¼ MaxΩS
½LðP̃;ΩSÞ�

MaxΩnS
½LðP̃;ΩnSÞ�

: ð13Þ

In the numerator (denominator), the template correspond-
ing to SASI (no-SASI) is used and MaxΩSðnSÞ ½LðP̃;ΩSðnSÞÞ�
is the maximized likelihood with extremal parameters ΩS

(ΩnS) with respect to the observed power spectrum P̃.
In this work, the templates in Eqs. (3) and (4) will be
used as representative of the SASI and no-SASI cases.
Their parameters are ΩS ¼ fa; fSg and ΩnS ¼ fNullg,
respectively.
It is intuitive to see how the likelihood ratio in Eq. (13) is

sensitive to SASI. Since our templatesNS [Eq. (3)] and NnS
[Eq. (4)] capture well the main features of the neutrino
event rates of the models with and without SASI, respec-
tively, as the SASI features in the data become more
pronounced, the numerator (13) is likely to increase, while
at the same time the denominator is likely to decrease
(poorer fit for the NnS template), so L is likely to increase.
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Vice versa, L will take lower values if the SASI signatures
in the data become weaker. Therefore, Eq. (13) serves as
our “SASI-meter” to identify the presence of SASI.
To assess the robustness of the SASI-meter method, we

find the probability density distributions of L (or, equiv-
alently, lnL) under the two hypotheses as a test bed. This is
done by simulating (using a Monte Carlo method) 103 sets
of P with shot noise based on the KKHT models with and
without SASI.
We then obtain the probability density distributions of L

in the two scenarios: Probν;SðlnðLÞÞ and Probν;nSðlnðLÞÞ.
A useful way to describe these two distributions, and
compare them with one another, is to examine the prob-
abilities that—under the two hypotheses—the likelihood
ratio exceeds a certain threshold value, Λν:

Pν
D ¼

Z
∞

Λν

d lnðLÞProbν;SðlnðLÞÞ; ð14Þ

Pν
FI ¼

Z
∞

Λν

d lnðLÞProbν;nSðlnðLÞÞ: ð15Þ

Λν represents a value of the likelihood ratio above which
the SASI hypothesis is accepted as true (“detection”).
Therefore, Pν

D takes the meaning of the SASI detection
probability, because it represents the probability that the
method accepts the SASI hypothesis as true when the SASI
is in fact true. Pν

FI then represents the false identification

probability, i.e., the probability that the SASI hypothesis is
accepted when in fact the no-SASI hypothesis is the true
one. The curve of the points ðPν

D; P
ν
FIÞ for varying Λν is the

ROC, which allows us to evaluate the effectiveness of the
method at a glance.
In addition to assessing the detectability of SASI, our

SASI-meter can also be used for parameter estimation.
Indeed, in every realization of the Monte Carlo simulations
based on the KKHT model, the extremal parameters Ω̃SASI

are found when searching for the maximized L̃ðP; Ω̃SASIÞ.
Thus, the probability distribution of Ω̃SASI is sampled by
our Monte Carlo simulations. From it, one can find the
uncertainty on the parameters fS and a due to the statistical
fluctuations of neutrino events in the detector. These
uncertainties increase as the distance of the CCSNe to
the Earth increases, as a result of the decreased number of
neutrino events [5].

2. Results: Neutrino receiver operating curves

Our results for the neutrino-only analysis are shown
in Figs. 5 and 6. In particular, Fig. 5 shows the statistical
distributions of lnðL̂Þ for the SASI and no-SASI cases, for
different values of the distance D. The probability density
function (PDF) of lnðL̂Þwith its maximum in the SASI case
being one is obtained by rescaling the distribution
of lnðLÞ. The corresponding ROCs are shown as well.
We notice the expected trends (see Sec. III A 1), namely,

No-SASI No-SASI No-SASI

FIG. 5. Top row: examples of distributions of the test statistics lnðL̂Þ obtained from Monte Carlo–generated neutrino data at Hyper-K
with the starting time t0 ¼ 150 ms and duration τ ¼ 50 ms. The blue histograms correspond to the one from a simulation where the
SASI component has been previously filtered out and the red histograms correspond to the one from a simulation where the SASI
component has been kept. Here, lnðL̂Þ is the rescaled logarithmic likelihood ratio with its maximum in the SASI case being 1. The three
columns correspond to distancesD ¼ 1, 5, 10 kpc to the supernova. Bottom row: corresponding receiver operating curves describing the
identification probability versus the false identification probability.
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the two distributions have an increasingly large overlap as
D increases, which results in a worsening (i.e., approaching
the line Pν

D ¼ Pν
FI) of the ROCs. For example, at 5 kpc,

Pν
D ≈ 0.5 (for Pν

FI ¼ 0.1). At 10 kpc, PD ≈ 0.2, indicating
that it would be difficult to identify SASI in Hyper-K.
The methodology introduced here is model independent,
namely, the identification thresholds for Pν

FI ¼ 0.1 are
determined automatically from the smoothed detected
luminosity. However, the performance will be model
dependent from the amplitude of the neutrino luminosity
fluctuations and the mean neutrino luminosity.
We then discuss SASI parameter estimation using the

neutrino SASI-meter. The estimation of parameters char-
acterizing the SASI starting time and duration is dis-
cussed in Appendix A. We estimate the SASI frequency
(oscillation amplitude) in the KKHT model by calculat-
ing the mean and uncertainties of the extremal frequency
(extremal oscillation amplitude) in the time interval
where the monochromatic feature is observed (see
Appendix A for a more detailed discussion of the
monochromatic feature). We plot the probability density
distribution of the estimated SASI frequency at various
CCSNe distances in Fig. 6. We further summarize the
estimated SASI frequency and oscillation amplitude
of the KKHT model (with uncertainties) at various
CCSNe distance in Table I. To conclude, the extremal
frequencies in the monochromatic region indicate the
SASI frequency (oscillation amplitude) fν ≈ 120 Hz
(aν ≈ 0.05) when the neutrino signals are simulated using
the KKHT model.

B. Gravitational wave–only analysis

In this section, we discuss the GW SASI identification
ROC and estimate some of its parameters. We assume the

existence of a detected GWevent from the CCSN of interest
in coincidence with a neutrino detection.
We restrict the analysis to the frequency range

16 ≤ f ≤ 2000 Hz, and assume SASI starting times later
than 50 ms after the beginning of the g-mode-related
turbulence in the GW analysis, based on the literature
review performed at the end of Sec. II B.

1. Receiver operating curves and parameter estimation

In detection and identification problems, a very impor-
tant aspect is the choice of the metric to be used as an
identification tool. The metric we suggest here allows us to
leverage the relative importance of the recorded energy
in the time-frequency region of the SASI with respect to
the overall energy of the candidate. Two visualizations
that illustrate the time-frequency layout of the events (in
particular, the location of the SASI and g-mode) are
presented in Fig. 7. One is an example of the standard
cWB scalogram and the other is the equivalent pixelization
adopted for the estimates of the identification metrics in this
paper. The difference in the scaling of the likelihood values
is because of the presence of overlapping pixels in the left
plot, whose likelihood values (which are all positive) add
up, causing the upper limit of its likelihood color bar to be
higher than the one in the right plot. In the second plot we

FIG. 6. Histograms of the estimated SASI frequency from
neutrino signatures. As expected, the variance decreases for
closer distances since the amplitude of the Poissonian fluctua-
tions decreases with closer distances, while the amplitude of the
SASI fluctuations with respect to the DC component is distance
independent.

TABLE I. Estimated mean (median for GW SASI duration) and
standard deviation of the SASI parameters in the neutrino and
GW data analysis and the g-mode slope in the GW data analysis.
The SASI frequency fν and amplitude aν in the neutrino analysis
are estimated using neutrino events with starting time t0 ¼
150 ms and duration τ ¼ 50 ms, where Pν

D is maximized at
different CCSNe distances. The estimated SASI starting time tν0
(tGW0 ) and duration τνðτGWÞ in the neutrino (GW) analysis are also
provided. See Appendix A for a detailed discussion of determin-
ing tν0 and τν using neutrino signals. See Sec. III for a detailed
discussion of determining τGW using GW signals. The reasons for
the nonmonotonic behavior of the duration estimation with the
distance are discussed in Sec. V.

g-mode slope SASI 10 kpc 5 kpc 1 kpc

fν (Hz) 113.38 111.03 119.85
δfν (Hz) 32.9 22.6 1.22

aν 0.063 0.047 0.044
δaν 0.022 0.013 0.005

fGW (Hz) 120.08 120.42 122.36
δfGW (Hz) 18.65 13.80 5.48
tν0 (ms) N/A (due to

large δfν)
>150 >150

τν (ms) N/A (due to
large δfν)

>50 >50

τGW (ms) 259 494 166
δτGW (ms) 347 552 261

mGW
opt ðs−2Þ 2564.84 2645.02 3190.68

δmGW
opt ðs−2Þ 1301.08 1132.72 929.62
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also illustrate the relevant parameters used in each pixel
(pixel central time, pixel central frequency, and pixel SNR)
as well as collective measures like the local density of
pixels, estimated g-mode start time, and slope.
The performance of applying thresholds on a certain

metric should be tested on a large number of test cases.
Here we produce the test cases by injecting the simulated
gravitational waves into different instances of real laser
interferometric noise from the LIGO O3 scientific run. In
each case, the cWB algorithm was used to process the data
according to the configuration described in Appendix B.
The normalized likelihood for a given trigger is defined as
the sum of the likelihood values of all pixels surviving
in the SASI region (see Appendix B) with respect to the
total sum of likelihoods in the trigger:

ρnorm ¼
P

i∈SASIρ
iP

j∈triggerρ
j ; ð16Þ

where the ith pixel ∈ SASI region and the jth pixel ∈
whole trigger. If there are no pixels in the SASI region, the
normalized likelihood of the trigger is 0. In this case our
recommendation is not to use the gravitational-wave data
but instead use only the neutrino SASI-meter for the
identification and parameter estimation of the SASI. In
this analysis, the situation with no pixels in the SASI-region
occurs with probability of ≲1% at 1 Kpc and ≲20% at
10 Kpc.
We prepare distributions of the normalized likelihood by

repeating the analysis for injections at different times in
the noise. The fraction of events above a given threshold
can be considered as an estimate of the probability that the
normalized likelihood is above the threshold. The detection
probability (PGW

D ) and false identification probability

(PGW
FI ) are calculated from the PDF of ρnorm based on

the simulated GW waveforms with and without SASI
activities. PGW

D (PGW
FI ) is the ratio of the cumulative

area under the SASI (no-SASI) PDF curve of ρnorm with
ρnorm > ΛGW to the total area under the SASI (no-SASI)
PDF curve (see the three distributions in the top row of
Fig. 8). The ROC is the plot of PGW

D as a function of PGW
FI ,

with varying ΛGW:

PGW
D ¼

Z
∞

ΛGW

dρProbGW;SðρÞ; ð17Þ

PGW
FI ¼

Z
∞

ΛGW

dρProbGW;nSðρÞ: ð18Þ

The ROC with PGW
D ¼ PGW

FI corresponds to the 50=50
classification/detection scenario, which is equivalent to
flipping a coin. The operating point depends on the
maximum PFI that we would like to use. Similarly to
Ref. [5], we take PGW

FI ¼ 0.1.
The two SASI parameters that we calculate for each

trigger are its central frequency and duration. The central
frequency of the SASI, fGW, is estimated as the weighted
mean of the frequencies of the pixels belonging to the SASI
region (fic) in the time-frequency pixel map presented
in Fig. 7. The weights are given by the likelihoods of
corresponding pixels (ρi), where the ith pixel ∈ SASI
region. fGW is

fGW ¼
P

i∈SASIρ
ificP

i∈SASIρ
i ; ð19Þ

FIG. 7. Left: example of a standard cWB scalogram for a GW event. Each wavelet component involved in the reconstructed event is
represented with a rectangle of sides equal to the frequency and temporal resolution. The darker blue regions highlight the reconstructed
SASI and g-mode features. The duration resolution of tens of milliseconds of some of the wavelets below 200 Hz indicates that some
impact on the duration reconstruction is to be expected. Right: the same event is displayed with a single dot for each wavelet, with the
coordinates representing the central time and frequency of the wavelets. While the color bar to the right corresponds to the single-pixel
likelihood, the color bar to the left (not used in the calculations of this paper) corresponds to the likelihood for a fixed-size time-
frequency region. For each wavelet, we use/define different parameters for the χ2 localization of the g-mode frequency evolution (red)
with slope (s ¼ Δf

Δt): the wavelet central time (tc), wavelet central frequency (fc), wavelet likelihood (ρ), and density of wavelets (Ξ) in a
given time-frequency box. For details on these parameters and their usage, see Appendix B.
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where the summation is done over all pixels remaining in
the area of interest of the trigger (SASI region) and ρi is the
likelihood value of the ith pixel.
The GW duration of the SASI (τGW) is estimated here by

the difference in time coordinates of the two extreme pixels
in the SASI region. Since the pixels correspond to wavelet
components from multiresolution, the time resolutions
of the two extreme pixels are also used in the estimate
according to

τGW ¼ tmax þ
δtmax

2
− tmin −

δtmin

2
; ð20Þ

where tmax and tmin are the time coordinates of the rightmost
pixel (with δtmax as its time resolution) and the leftmost pixel
(with δtmin as its time resolution), respectively.

2. Results: GW receiver operating curves

Figure 8 displays the PDFs as well as the ROCs of the
test-statistics ρ̂ for the SASI and no-SASI cases, for
different values of CCSNe distance. The PDF of ρ̂ with
its maximum in the SASI case being one is obtained by
rescaling the distribution of ρnorm. As expected, the value of
PGW
D (for fixed PGW

FI ) decreases with increasing distance.
The decline is noticeably slower than the one observed in
the neutrino channel, reflecting the slower scaling of the
GW signal with D. For D ¼ 10 kpc and PGW

FI ¼ 0.20, we
have PGW

D ∼ 0.60–0.65, which is larger than the corre-
sponding neutrino result (Pν

D ≃ 0.35 for Pν
FI ¼ 0.20).

In Fig. 9 and Table I, we present the parameter estimation
results. Figure 9 shows the probability density distribution
of the SASI starting time as well as the SASI duration in
GW signals at various CCSNe distances.
In Table I we show the estimated values and uncer-

tainties for the frequency fGW and duration τGW of
the SASI. The results for fGW can be directly compared
to those obtained from the neutrino-only analysis (also
shown in the table). Here we notice the different depend-
ence on D in the neutrino and GW results: for D ¼ 1 kpc
the uncertainties are comparable in the two channels, with
the performance being slightly better in the neutrino
channel; however, as the distance grows, the perfor-
mances in the two channels decrease at different rates.
The parameter estimation performance is poorer for

τGW, for which the uncertainty is comparable or larger
than the central value [44]. This result could be a
limitation of our definition of duration. In the future,
we might instead employ a definition based on an SNR-
weighted duration.
The results discussed here show the possibility to

identify the presence of the SASI for a galactic CCSN
candidate at current interferometers. Our results can be
used to forecast the performance of future interferometers
that will have order-of-magnitude better sensitivity.
Because GW signal amplitudes scale as D−1, these
detectors are expected to have ROCs similar to those
shown here for larger distances (proportional to their
sensitivity).

FIG. 8. Top row: examples of distributions of the test-statistics ρ̂ obtained from simulated GW data, for distances D ¼ 1, 5, 10 kpc
to the supernova. Here, ρ̂ is the rescaled logarithmic likelihood ratio of GW signals with its maximum in the SASI case being 1.
Bottom row: corresponding receiver operating curves.
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IV. MULTIMESSENGER ANALYSIS

In this section we discuss a novel methodology analyz-
ing the SASI using both the neutrino and GW signals
combined. To begin with, we present a flow chart illustrat-
ing the main procedure; see Fig. 4. In the following, the
generation of combined receiver operating curves for SASI
identification is discussed.

A. Combining probabilities

The identification of SASI activity can happen in two
scenarios, where (usable) data are available either (i) only
in a single messenger (either neutrino or GW signatures) or
(ii) in multiple messengers. Each scenario is expected to
happen with a specific probability. Realistically, the detec-
tion probability of neutrino signals from a galactic or
nearby extragalactic CCSN is unity (when the detectors are
active), and the neutrino data can always be used for the
detection of the SASI activity. The probability of having
usable data in the GW channel, PD

GW, depends on the
probability to detect the GW waveform itself (for a recent

discussion, see Ref. [45]) and the probability that the
GW presents surviving wavelet components in the SASI
time-frequency region.
In the case where only neutrino data are available,

the detection probability of SASI activities is PD ¼ Pν
D.

Similarly, PFI ¼ Pν
FI. In the second case, where both usable

neutrino and GW data are present, we define joint detection
and false identification probabilities as follows.
We can define the two-dimensional probability density

distributions for the SASI and no-SASI cases as

ProbSðlnðLÞ; ρÞ ¼ Probν;SðlnðLÞÞProbGW;SðρÞ;
ProbnSðlnðLÞ; ρÞ ¼ Probν;nSðlnðLÞÞProbGW;nSðρÞ: ð21Þ

Similarly to the single-messenger case, this distribution
can be integrated to obtain detection and false identification
probabilities. In this case, however, the integration thresh-
old for SASI identification can be chosen in more than one
way. The choice is driven by the goal of finding the optimal
ROC curve (i.e., maximize the joint detection probability
for a fixed false identification probability) for the identi-
fication of the SASI.
For example the identification of the presence of the

SASI can be pursued in the three following ways:
(1) Logical And: SASI is established when L > Λν and

ρ > ΛGW. The combined probability of detection
and the combined false identification probabilities
are

Pcomb
D ¼ Pν

D × PGW
D

¼
Z

∞

Λν

Z
∞

ΛGW

d lnðLÞdρProbν;SðlnðLÞÞ

× ProbGW;SðρÞ ð22Þ

and

Pcomb
FI ¼ Pν

FI × PGW
FI

¼
Z

∞

Λν

Z
∞

ΛGW

d lnðLÞdρProbν;nSðlnðLÞÞ

× ProbGW;nSðρÞ: ð23Þ

In a two-dimensional probability density distribution
of ðL; ρÞ, the SASI threshold defined above appears
like a rectangle (see illustration in Fig. 10), with its
accepted GW component lying between ΛGW and∞
and its accepted neutrino component lying between
Λν and∞. Only the ðL; ρÞ lying inside of the defined
rectangle would be identified as a detection of
the SASI.

(2) Logical Or: SASI is established when at least one of
L > Λν or ρ > ΛGW is verified.

FIG. 9. Probability density distribution of the SASI central
frequency (upper) and SASI duration (lower) estimations based
on GW signals.
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FIG. 10. Two-dimensional probability density distribution of flnðL̂νÞ; ρ̂GWg at 1 kpc (upper panels), 5 kpc (middle panels), and 10 kpc
(lower panels), where the distributions in the left (right) panels are based on neutrino and GW signals without (with) SASI activities.
Here, lnðL̂Þ is the rescaled logarithmic likelihood ratio with its maximum in the SASI case being 1, and ρ̂ is the rescaled logarithmic
likelihood ratio of GW signals with its maximum in the SASI case being 1. In the upper left panel, the colored curves illustrate the
different integration thresholds that can be used to identify the presence of the SASI, as discussed in Sec. IVA. Specifically, the region
inside the green dashed rectangle is for “Logical And” case, and the region outside the blue solid rectangle is for “Logical Or” case. The
region outside the red solid triangle corresponds to the “xþ y ¼ const” case, and the region to the upper right of the orange dashed curve
represents the “x × y ¼ const” case.
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The combined probability of detection and the
combined false identification rate are then given by

Pcomb
D ¼ 1 − ð1 − Pν

DÞ × ð1 − PGW
D Þ

¼ 1 −
Z

Λν

0

Z
ΛGW

0

d lnðLÞdρProbν;SðlnðLÞÞ

× ProbGW;SðρÞ ð24Þ

and

Pcomb
FI ¼ 1 − ð1 − Pν

FIÞ × ð1 − PGW
FI Þ

¼ 1 −
Z

Λν

0

Z
ΛGW

0

d lnðLÞdρProbν;nSðlnðLÞÞ

× ProbGW;nSðρÞ: ð25Þ

Here, the SASI threshold appears like a “rectangular
hole” (shown in Fig. 10), with its rejected GW
component lying between 0 andΛGW and its rejected
neutrino component lying between 0 and Λν. Only
the ðL; ρÞ lying outside of the defined rectangle
hole would be identified as a detection of the SASI
imprints.

(3) Mixed: SASI is established when fðL; ρÞ > Λ,
where f is a function of L and ρ. Here, the SASI
threshold can be defined in several ways, such as
L × ρ > Λ, which is denoted as the “x × y ¼ const”
threshold, or as Lþ ρ > Λ, which is denoted as the
“xþ y ¼ const” threshold (see Fig. 10 for an illus-
tration). The Pcomb

D based on the above thresholds are

Pcomb;x×y
D ¼

Z
∞

L×ρ>Λ
d lnðLÞdρProbν;SðlnðLÞÞ

× ProbGW;SðρÞ ð26Þ

and

Pcomb;xþy
D ¼

Z
∞

Lþρ>Λ
d lnðLÞdρProbν;SðlnðLÞÞ

× ProbGW;SðρÞ: ð27Þ

The false alarm probability is defined similarly, with
Probν;S → Probν;nS and ProbGW;S → ProbGW;nS.

We will discuss the relationships between the above
combined PD in more detail in the next section. Note that
the strength of the SASI imprints may depend on the
distance D differently for neutrinos and GWs. So a
combination of relatively high L and relatively low ρ (or
vice versa) from a CCSN is possible. The two-dimensional
probability distribution map may provide a way to account
for possible tensions between neutrino and GW SASI
identifications, and provide a statistical interpretation for
a combined data set including both neutrino and GW
observations.

B. Results: The joint SASI-meter

Results are presented in Fig. 10, where the two-
dimensional probability density distributions of flnðL̂νÞ;
ρ̂GWg are shown for various CCSNe distances.
We first compare the two-dimensional probability den-

sity distributions of the joint indicator for SASI and no-
SASI, for fixed D. As expected, for all three distances
investigated here, the joint SASI indicator in the SASI
scenario is likely to be located in the upper right region of
the panel, while the indicator in the no-SASI scenario is
likely to reside in the lower left corner. For example, for
D ¼ 1 kpc, the indicator is most likely to be located in the
region f0.5; 0.4g when SASI appears, while it is most
likely to be near f0.0; 0.0g when SASI is absent from the
signatures.
We then consider how the two-dimensional probability

density distributions of the joint SASI indicator vary with
distance. As D increases, the PDF of the SASI indicator
becomes broader, due to the increasing importance of the
statistical fluctuations, in both neutrino and GW signatures,
which results in larger uncertainties of both lnðL̂νÞ and
ρ̂GW. Consequently, the PDFs for SASI and no-SASI have
increasing overlap, meaning that the detectability of SASI
activities in this joint analysis decreases with increasing
distance. Figure 10 shows another interesting trend: as D
increases, the maximum of the two-dimensional PDF for
the SASI scenario moves from the lnðL̂νÞ > ρ̂GW region to
the lnðL̂νÞ < ρ̂GW one. Such behavior reflects the faster
decline of the sensitivity in neutrinos with distance com-
pared to GW signatures.
Given the two-dimensional PDFs of flnðL̂νÞ; ρ̂GWg, we

perform quantitative SASI-/no-SASI-scenario identifica-
tion by constructing the receiver operating curves (Pcomb

D
as a function of Pcomb

FI ) at different CCSNe distances,
according to the prescriptions discussed in Sec. III
[Eqs. (22)–(27)].
The resulting curves are shown in Fig. 11. Note that

for the “Logical And” and “Logical Or” prescriptions the
two-dimensional SASI thresholds are composed of two
independent thresholds Λν and ΛGW. By varying Λν and
ΛGW independently, multiple ROC curves are found
(because one specific Pcomb

D corresponds to multiple
Pcomb
FI ’s), which form a “receiver operating band” in the

Pcomb
D -Pcomb

FI plane. For comparison, in Fig. 11 we also
show the single-messenger ROCs (labeled ν and GW) from
Eqs. (14) and (17).
From Fig. 11, one can see the dependence of the ROCs

on D. For D ¼ 1 kpc, the performance of the ν-only ROC
is much better than the GW-only one, with the multi-
messenger ROCs being intermediate between the two.
However, as the CCSNe distance increases, the decline
of the ν-only ROC performance is much faster compared to
the GW-only one. As D increases, interestingly, we find
that the strategy of jointly using neutrino/GW information
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could provide ROCs that perform better than both single-
messenger ROCs. For example, at 5 kpc, we observe that
PD ≈ 71% at PFI ¼ 10% using the “x × y ¼ const”

threshold in the multimessenger analysis, while PD ≈
40–50% at PFI ¼ 10% in the single-messenger analysis.
We summarize the PD based on single-messenger

and multimessenger methods at PFI ¼ 0.1 and PFI ¼ 0.2
in Table II. As shown in Table II, when using the
“x × y ¼ const” threshold and the “xþ y ¼ const” thresh-
old, PFI ¼ 0.1ð0.2Þ corresponds to a range of PD ’s, rather
than a single PD. This is because when using these types of
SASI-meter thresholds, we obtain a “receiver operating
band,” as explained above. Finally, the PD at 10 kpc (with
PFI ¼ 0.1, 0.2) and at 5 kpc (with PD ¼ 0.1) in the GW
channel cannot be determined accurately because of the
difficulty of obtaining enough GW triggers and the result-
ing “zigzags” on the GW ROC.

V. DISCUSSION AND CONCLUSION

We have introduced a novel multimessenger methodol-
ogy (“SASI-meter”) to identify and characterize the
presence of SASI activities in a future core-collapse
supernova event that is detected with neutrinos and
gravitational waves.
For each messenger, the SASI-meter indicates the

presence of SASI with a desired maximum false

FIG. 11. Combined receiver operating curve at 1 kpc (upper left), 5 kpc (upper right), and 10 kpc (lower) based on Fig. 10, using
different selection thresholds.

TABLE II. PD corresponding to PFI of 10%, which we take as
the operating point, and 20%, where the difference between ν and
GW channel becomes more pronounced, for the distances of
1 kpc, 5 kpc, and 10 kpc in the single-messenger (GWand ν) and
combined cases.

PFI Channel PD (10 kpc) PD (5 kpc) PD (1 kpc)

0.10 GW ≈0.15–0.25 ≈0.40–0.50 0.90
0.10 ν 0.25 0.40 1.00
0.10 Logical And ≈0.19–0.47 ≈0.47–0.68 ≈0.80–1.00
0.10 Logical Or ≈0.18–0.25 ≈0.48–0.60 ≈0.83–1.00
0.10 x × y ¼ const 0.41 0.71 1.00
0.10 xþ y ¼ const 0.35 0.70 1.00

0.20 GW ≈0.60–0.65 0.70 1.00
0.20 ν 0.35 0.65 1.00
0.20 Logical And ≈0.40–0.69 ≈0.69–0.82 ≈0.90–1.00
0.20 Logical Or ≈0.36–0.65 ≈0.66–0.76 ≈0.92–1.00
0.20 x × y ¼ const 0.59 0.83 1.00
0.20 xþ y ¼ const 0.61 0.83 1.00

CHARACTERIZING A SUPERNOVA’S STANDING ACCRETION … PHYS. REV. D 107, 083017 (2023)

083017-15



identification probability. We studied the effectiveness of
the procedure with ROCs, which give the probability of
establishing the presence of SASI for a fixed false iden-
tification probability, that are tuned on generic properties of
the GW and neutrino CCSNe signatures when the SASI is
not present. The results were produced using numerical
simulations with and without SASI-induced signatures at
different distances from ground-based detectors.
The method also performs parameter estimation, by

characterizing the features of the SASI oscillations such
as the oscillation amplitude, frequency, duration, and
starting time.
More explicitly, we characterized the pipeline with

random realizations of reconstructed ν and GW signals
for the test example. For the ν, this means adding
Poissonian fluctuations to signals that have SASI as well
as signals where the SASI was removed. In the case
of future detections, we can achieve the same result by
taking a smoothed-out version of the detected neutrino
luminosities as the no-SASI ν signature, and randomize it
with Poissonian fluctuations to identify the threshold for
the desired PFI used as a reference in this work for the
single-channel or multiple-channel identification mode
(here PFI ¼ 0.1). For the GW channel, in the illustrative
example used in this paper, we injected the GWs with and
without SASI in real interferometric noise. In a realistic
scenario, the no-SASI injections can be used to tune the
threshold on the identification metric for the desired
single- or multimessenger PFI (here PFI ¼ 0.1). The signals
in the ν and GW channels with SASI were used in this
paper to characterize the performance of the GW-ν
SASI meter.
We anticipate and observe a different scaling with

distance in the frequency estimation uncertainties in the
GWand neutrino channels because of the different depend-
ence of the signal amplitude with respect to the source
distance. The method is capable of accounting for an
intrinsic uncertainty of the SASI frequency due to, for
example, the shock radius fluctuations of a progressive
frequency drift like in the case of a spiral SASI.
The frequency estimate in the neutrino channel uses the
peak frequency in the spectrum. In the GW channel, the
estimated SASI frequency is a weighted average frequency
among the wavelet components in the SASI time frequency
region. This concept of an average is well defined even
when the frequency drifts because of shock radius fluctua-
tions or other reasons. We have also shown estimates of
the slope of the g-mode in the GW channel. The estimation
of the SASI duration in the GW channel might not be
optimized yet. We expect similar identification perfor-
mances at order-of-magnitude larger distances for third-
generation GW detectors.
For neutrinos we have elaborated on a previously

presented maximum likelihood method. Our single-
messenger results show that for a galactic event the

SASI can be identified with high confidence, and its main
parameters can be estimated.
The single-messenger methods have been combined into

a fully consistent multimessenger SASI-meter, where a
joint receiver operating curve is found. The results confirm
the power of multimessenger astrophysics; they show that,
for a typical galactic supernova (distance D≳ few kpc), a
joint analysis can be more sensitive than each of the single-
messenger ones, depending on the degree of optimization
of the integration domain of the multidimensional proba-
bility distribution curves.
Given future galactic CCSNe observations, the SASI-

meter calculates the quantities characterizing the strength of
SASI-induced oscillations, namely, flnðL̂νÞ; ρ̂GWg, based
on observed neutrino and GW data in the time-frequency
domain. The flnðL̂νÞ; ρ̂GWg based on observations can be
compared with theoretical predictions. In this way, the
results of the SASI-meter could be used to validate and
interpret future CCSNe numerical simulations. The detailed
calibration procedure was not discussed in this work and
will be left for future investigations.
In this work we used the results of a representative

but specific numerical simulation. As more simulations
become available with both neutrino and GW signatures,
we will repeat the SASI-meter analysis. We expect that the
thresholds to achieve a given PFI will change weakly when
more models are included in the analysis, while the
identification range will change depending on the relative
amplitude of the SASI.
Future works may include 1) generalizing the GW SASI-

meter to other wavelets bases (in the future, the method
could be tested in those directions as well), or 2) applying
the SASI-meter method to a model with a fast-rotating
progenitor (note that the KKHT model has a nonrotating
progenitor). The PDF of flnðL̂νÞ; ρ̂GWg in the SASI
scenario might be sensitive to the observational direction
with respect to the rotating axis of CCSNe. A direction-
dependent SASI activity indicator flnðL̂νÞ; ρ̂GWg from
simulations can then be compared with observations. In
this way, the joint SASI-meter may help to identify the
rotating axis of the CCSN in a quantitative way.
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APPENDIX A: NEUTRINO ANALYSIS:
OPTIMIZATION OF THE SASI INITIAL

TIME AND DURATION

In the SASI-meter method illustrated above, the duration
τ and starting time t0 are fixed before the process of
identifying the existence and analyzing the features of the
SASI. Let us now discuss a new aspect of this work,
namely, that we do not assume prior values of t0 and τ (as
was done in Ref. [5]), but rather analyze the output of the
KKHT simulation for their extremal values. Following
the method suggested in Ref. [47], the process of SASI
identification described above is performed repeatedly for
various time series ½t0; t0 þ τ�. The extremal interval
½t0; t0 þ τ� for the detection of the SASI can be found by
exploring all the possible pairs ðt0; τÞ. The starting time t0 is
varied in the range 50–210 ms, with a time step of 20 ms.
The duration τ is varied within 20–70 ms, with a time step

of 10 ms. For each pair ðt0; τÞ, the interval ½t0; t0 þ τ� is used
to analyze the detectability as well as the features of the
SASI [48]. The detection probability PD is calculated (for a
fixed PFI). The optimal values of t0 and τ are identified as
those for which PD is a maximum. Indeed, if the SASI-
induced fluctuations predicted by the KKHT SASI model
are present in ½t0; t0 þ τ�, then the PDF of L from the KKHT
SASI model and that from the KKHT no-SASI model would
deviate from each other. Thus, the resultant PD would be
high. Otherwise, the PD would be low.
By applying the SASI-meter to neutrino signatures of

½t0; t0 þ τ�, PD and PFI in a specific neutrino time series are
found. In Fig. 12, at fixed PFI ¼ 10% we plot PD in
neutrino times series of ½t0; t0 þ τ�, where t0 (τ) varies from
80 (30) ms to 200 (70) ms. We find that PD obviously
increases when the neutrino time series of ½t0; t0 þ τ�
(partly) overlaps the SASI region predicted by the

FIG. 12. Probability of detection PD of SASI at a false alarm rate PFI ¼ 10%. The PD’s are evaluated in neutrino time series with
different durations and starting times. The upper left, upper right, and lower panels are for PD’s with CCSNe distances of 10, 5,
and 1 kpc.
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KKHT model. For example, at a CCSNe distance
D ¼ 1 kpc, PD ≈ 1.0 in the neutrino time series of
½110 ms; 110þ 70 ms�, ½130 ms; 130þ 60 ms�, ½130 ms;
130þ 70 ms�, ½150 ms; 150þ 30 ms�, ½150 ms; 150þ
40 ms�, ½150ms;150þ50ms�, and ½170ms;170þ30ms�,
and the SASI region predicted by the KKHT model is
approximately in the range ½150 ms; 150þ 50 ms�. In the
neutrino time series ending after 200 ms, PD ¼ 0.0. This is
because the simulation of CCSNe in KKHT model was
truncated after 200 ms. Finally, for neutrino time series
ending before 150 ms, PD ≪ 1.0, indicating that the SASI-
induced neutrino oscillations cannot be identified in these
time series. The PD distributions at different distances are
qualitatively similar.
As one may notice, the extremal ðt0; τÞ defines the region

where the SASI activity in the KKHTmodel has the highest
probability to be verified against observations. Naturally,
this interval may not adequately represent the starting
time and the duration of the SASI activities residing in
observed neutrino events. In fact, the comparison with the
true, observed values of t0 and τ is a test of the model. Such
true values can be roughly measured using the SASI-meter
method as follows. First, note that the SASI modulation on
neutrino and GW emissions is predicted as a quasiperiodic
signature and its oscillation frequency remains almost
constant for tens of ms. Thus, when exploring the Ω̃SASI
for various points ðt0; τÞ in the parameter space we find that
for all time intervals ½t0; t0 þ τ� that at least partially include
SASI-induced oscillations, the estimated SASI frequency
f̃S is approximately the same, representing the “mono-
chromatic” feature of SASI-induced oscillations. By iden-
tifying the region of the parameter space where f̃S stays
constant, we can find the SASI region in the time domain
and estimate t0 and τ, without relying on a model. In this
way, the SASI-meter can give an approximate estimation of

the SASI duration and starting time. Such an estimation is
necessarily rough and less accurate than the measurements
for fS and a, since the SASI duration and starting time
are features in the time domain, while the SASI-meter is
designed mainly for analyzing SASI features in the
frequency domain.
In Fig. 13, the extremal frequencies that maximize the L

in various neutrino time series are plotted. Note that for
time series of ½150ms;150þ30ms�, ½150ms;150þ40ms�,
½150 ms; 150þ 50 ms�, the corresponding optimal fre-
quencies are approximately identical, indicating that a
monochromatic SASI oscillation exists in these periods.
Since the determination of optimal SASI oscillation param-
eters does not require a prior PDF of L, we can model
independently identify the neutrino time series with
SASI-induced oscillations and measure the corresponding
oscillation frequency given the observation of neutrino
signatures. For example, at 1 kpc, the fact that the optimal
frequency in ½t0; t0 þ τ� with t0 < 150 ms is different from
those in ½150 ms; 150þ 30 ms�, ½150 ms; 150þ 40 ms�,
and ½150 ms; 150þ 50 ms� suggests that the SASI activity
happens no sooner than ≈150 ms. Additionally, the fact
that the optimal frequencies in ½150 ms; 150þ 30 ms�,
½150 ms; 150þ 40 ms�, and ½150 ms; 150þ 50 ms� are
approximately the same indicates that the SASI activity
lasts for ⪆50 ms.

APPENDIX B: GW ANALYSIS: INITIAL
PROCESSING AND g-MODE REMOVAL

In this appendix, we define the different GW parameters
and the method used by the cWB algorithm to produce the
likelihood time-frequency maps, describe the GW data we
are using, the retuning of some cWB parameters that we
perform, and the g-mode slope estimation for the removal

FIG. 13. Averaged optimal frequency (left) and amplitude (right) evaluated in neutrino time series with different durations and starting
times. The corresponding distance to the CCSNe is 1 kpc.
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of the g-mode region in order to define the SASI-dominant
region (or the SASI region) where we perform the SASI
parameter estimation.

1. Generation and processing
of the time-frequency maps

For a single detector (with equal arms of length l), the
response XðtÞ is the sum of detector noise nðtÞ and the GW
signal contribution ξðtÞ;

XðtÞ ¼ nðtÞ þ ξðtÞ; ðB1Þ

where ξðtÞ depends on the absolute difference in the change
in length of the two arms δlxðtÞ and δlyðtÞ relative to the
original length,

ξðtÞ ¼ jδlxðtÞ − δlyðtÞj
l

¼ FþhþðtÞ þ F×h×ðtÞ;

where hþðtÞ and h×ðtÞ are the plus and cross polarization
components of the GW and Fþ and F× are the respective
antenna patterns. ξ can also be expressed as

ξ ¼ ζ · Ãþ ζ̃ · A; ðB2Þ

where ζ ¼ hþ þ ih× and A ¼ 1
2
ðFþ þ iF×Þ.

Since the response of the interferometer, or the detector
data, is in the form of a time series X ¼ fx½0�; x½1�;…; x½I�g
that may or may not contain a GW signal, a decision has to
be made regarding the presence (hypothesisH1) or absence
(hypothesis H0) of the GW signal described by the two
probability densities pðxjH1Þ and pðxjH0Þ, respectively.
Any decision rule would then be based on a threshold
applied to these densities. For this, we define the likelihood
ratio ΛðxÞ as

ΛðxÞ ¼ pðxjH1Þ
pðxjH0Þ

: ðB3Þ

In GW data analysis, due to the standard whitening
procedure performed by cWB, we can assume the noise to
be a zero mean temporarily uncorrelated Gaussian process
with standard deviation σ (non-Gaussian noise components
are managed separately). The probability density functions
associated with the two hypotheses H0 and H1 become

pðxjH0Þ ¼
YI
i¼1

1ffiffiffiffiffiffi
2π

p
σ
e
−
�

x2 ½i�
2σ2

	
; ðB4Þ

pðxjH1Þ ¼
YI
i¼1

1ffiffiffiffiffiffi
2π

p
σ
e
−
�

ðx½i�−ξ½i�Þ2
2σ2

	
: ðB5Þ

Then, the logarithmic value of the likelihood ratio, which
we simply call the likelihood, is

ρ ¼ lnðΛðxÞÞ ¼ ln

 YI
i¼1

eð
1

σ2
ðx½i�ξ½i�−1

2
ξ2½i�ÞÞ

!

¼
XI
i¼1

1

σ2

�
x½i�ξ½i� − 1

2
ξ2½i�

�
: ðB6Þ

For N detectors, σ ¼ fσ1; σ2;…; σNg, ξ ¼ fξ1; ξ2;…; ξNg,
Fþ ¼ fFþ1; Fþ2;…; FþNg, F× ¼ fF×1; F×2;…; F×Ng,
and A ¼ fA1; A2;…; ANg and the total likelihood for the
N detectors becomes

ρ ¼
XN
k¼1

XI
i¼1

1

σ2k

�
xk½i�ξk½i� −

1

2
ξ2k½i�

�
: ðB7Þ

If we introduce

fþ ¼
�
Fþ1

σ1
;
Fþ2

σ2
;…;

FþN

σN



; ðB8Þ

f× ¼
�
F×1

σ1
;
F×2

σ2
;…;

F×N

σN



; ðB9Þ

Aσ ¼
�
A1

σ1
;
A2

σ2
;…;

AN

σN



; ðB10Þ

gc ¼
XN
k¼1

A2
k

σ2k
; ðB11Þ

where gc is the network antenna pattern, the transformation
gc → g0c which makes the imaginary part of g0c vanish
transforms to the dominant polarization frame (DPF). If
gc ¼ jgcje2iγ, the transformation of Ak is A0

k ¼ Ake−iγ and
thus the normalized antenna patterns transform as

f0kþ ¼ fkþ cosðγÞ þ fk× sinðγÞ; ðB12Þ

f0k× ¼ −fkþ sinðγÞ þ fk× cosðγÞ: ðB13Þ

The unitary vectors of the DPF are expressed as e0þ ¼ f0þ
jf0þj

and e0× ¼ f0×
jf0×j. It can be shown, after transforming to the

DPF, where the plus and cross antenna patterns are
orthogonal, and assuming they have the same magnitude,
that the maximum likelihood value, after applying the
conditions δρ

δhþ
¼ 0 and δρ

δh×
¼ 0, is (see Ref. [49])

ρmax¼ðX ·e0þÞ2þðX ·e0×Þ2¼
X
k

ξ2k
σ2k

¼
X
k

SNR2
k; ðB14Þ
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where the SNR of the detector k calculated from the
detector response ξk and noise variance σk is expressed

as SNR2
k ¼ ξ2k

σ2k
. We can see that the maximum likelihood is

the sum of squared SNR of the detectors.

2. GW data

For the processing of the interferometric data, we apply
the CCSNe configuration of the cWB algorithm in the
16–2048 Hz band, to detect and reconstruct the CCSNe
GW signals, after injecting those signals on LIGO noise
from the O3 run [46] using data from detectors H1 and L1
(GPS times 1256652800 to 1269563392). In order to
account for the time variability of the noise, we prepare
hundreds of injected events (triggers) separately for each
distance of 1, 5, and 10 Kpc. We use our prepared SASI and
no-SASI waveforms (injections), with amplitudes scaled
according to the distance, and the injections are added to
the noise at different times.

3. Cluster formation, likelihood time-frequency maps,
and cWB parameter tuning

cWB is an excess-power search algorithm for detecting
and reconstructing GWs based on a constrained likelihood
formalism [31]. The analysis of GW strain data is per-
formed in a wavelet domain [50] using the wavelet
transform, a tool that transforms the signal into the time-
frequency domain. First, the cWB algorithm performs data
conditioning on the calibrated strain data by applying a
linear prediction error (LPE) filter to remove “predictable”
components from the time series, such as lines of stationary
noise. The LPE filter and whitening is applied in the
wavelet domain individually for each wavelet layer [31].
The cWB algorithm uses Wilson-Daubechies wavelets,

resulting in two-dimensional maps that are formed from
wavelet components (pixels) with different time-frequency
resolutions.
Since the wavelet decomposition is performed through

seven wavelet bases in parallel, the time and frequency
resolutions of each pixel are in general different, as seen
in Fig. 7. The cWB algorithm performs wavelet/pixel
selection. Wavelets with amplitudes above a threshold,
designed to spare only a small percentage of the noise-
induced ones [black pixel probability (bpp)], are retained
in each frequency. Each wavelet component is defined
by its time, frequency, likelihood, and time-frequency
resolution. The frequency resolution is inversely related
to the time resolution.
For the time-frequency position i, j in the time-

frequency plane (after wavelet decomposition), with time
resolution δt, the resulting signal is expressed as xði; j; δtÞ.
From Eq. (B7), the likelihood thus needs to be defined over
both time and frequency as (see Ref. [49])

ρc ¼
X
ij

XN
k¼1

1

σ2kði; jÞ
�
xkði; j; δtkÞξkði; j; θ;ϕÞ

−
1

2
ξ2kði; j; θ;ϕÞ

�

¼
X
ij

ρði; j; θ;ϕÞ; ðB15Þ

where the likelihood functional ρði; j; θ;ϕÞ, defined over
time-frequency positions i, j and angles θ;ϕ referring to the
source coordinates, is expressed as

ρði; j;θ;ϕÞ

¼
XN
k¼1

1

σ2kði; jÞ
�
xkði; j;δtkÞξkði; j;θ;ϕÞ−

1

2
ξ2kði; j;θ;ϕÞ

�
:

ðB16Þ

The maximum likelihood statistic, for a given location
ði; jÞ, is then determined by maximizing the likelihood
functional over the source coordinates θ;ϕ (ρmði; jÞ). The
likelihood time-frequency map, a pixel map, is then
obtained from the set of these maximum likelihood values
for each time and frequency. Coherent clusters are formed
from these pixels, which are formed by selecting pixels
with a maximum likelihood ρmði; jÞ greater than a chosen
threshold, and they are composed of pixels belonging to all
detectors involved in the network. Final clusters are used to
reconstruct the gravitational-wave signal.
The cWB pipeline is divided into two stages: the

coherent event generator and the post-production analysis.
After the event generation, as explained above, the resulting
data is stored as the output trigger files and the post-
production stage deals with the selection of the optimal
set of statistics. Some of the post-production metrics are
explained below.
The likelihood is a quadratic form that can be expressed

in a matrix form ½ρmn�. And according to Eq. (B14) we have

ρmax ¼ ðX · e0þÞ2 þ ðX · e0×Þ2: ðB17Þ

Expanding the dot product in N-dimensional space (where
the m, n indices refer to the detector number), we get

ρmax ¼
X
mn

fðXme0þmÞðXne0þnÞ þ ðXme0×mÞðXne0×nÞg

¼
X
mn

ρmn: ðB18Þ

We define the coherent network energy, or simply
coherent energy (Ec), as the sum of the off-diagonal terms
of the likelihood matrix:
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Ec ¼
X
m≠n

ρmn: ðB19Þ

The null energy (Null), which is the total reconstructed
energy of noise, is defined as

Null ¼ jX − ξj2: ðB20Þ

The network correlation coefficient (CC), which is an
estimate of coherence among different interferometers, is
defined as

CC ¼ Ec

Ec þ Null
: ðB21Þ

Real gravitational-wave events are expected to have a
CC closer to 1, and noise events are expected to have
a CC ≪ 1.
Thresholds on the event metrics are applied. For exam-

ple, we applied a threshold on the correlation coefficient
CC and threshold on Z, which is the effective correlated
amplitude or effective correlated SNR of a trigger which is
based on Ec (see Ref. [31]). The relationship between Z and
CC is given by

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ec
N
CC

r
; ðB22Þ

where the reduced correlated energy ec is defined as

ec ¼
X
m≠n

ρmnjrmnj; ðB23Þ

where m; n ¼ 1; 2;…; N refer to the detector number. The
network correlation coefficient rmn, obtained by cross-
correlating detector data, is defined as

rmn ¼
ρmn

2
ffiffiffiffiffiffiffiffi
ρmm

p ffiffiffiffiffiffiffi
ρnn

p : ðB24Þ

The traditional tuning process of the cWB algorithm
focused on producing the best ROC for the detection of the
overall signal and not the identification of a specific feature
in the signal, like the SASI. For this reason, we redo some
of the tuning. Here, the focus is to maximize the chance an
event is reconstructed since otherwise it is not possible to
identify the presence of the SASI when it is present. For the
cWB internal parameter optimization, we execute different
cWB jobs at different bpp and CC thresholds to find the
set of values that give us the maximum number of triggers.
As we can see from Fig. 14, the optimal bpp is 0.05 and the
optimal CC threshold is 0.5. However, exploring a sys-
tematic optimization of all cWB thresholds is beyond the
scope of this study.

4. g-mode location, parameter estimation,
and removal

The growth of the frequency of the fundamental mode
of oscillation of the PNS in the GW spectrogram is the
main feature that all CCSNe numerical simulations display.
Estimating the g-mode slope has merit by itself, but for the
detection of the SASI its contribution in the GWevent is not
necessarily useful as its contribution to the overall SNR
does not make the total SNR a good indicator for the
presence of a SASI. In this regard, the g-mode location and
estimation in this work is considered sufficiently well-
performed in terms of benefits to the SASI ROC curves.
The optimization of the g-mode parameters is the topic of
future publications. We locate the g-mode region, in terms
of start time and initial slope, and later, remove
the pixels from that part of the event to focus on the
SASI pixels. It is also possible that the statistically more
significant wavelet components induced by noise are

FIG. 14. Optimal choices of bpp (left) and the CC threshold (right) at 5 Kpc in terms of maximizing the number of triggers produced
by the cWB algorithm, while other cWB parameters remain unchanged. The cWB algorithm arranges a number of triggers into job files
that are executed individually. Here, the analysis is carried out for ten such jobs for each bpp value and 50 jobs for each CC value shown
in the graph.
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scattered in the time-frequency plane (but in proximity of
the GW event). A second mechanism where energy could
percolate in the SASI region is an impulsive stimulation of
the PNS. This could happen, for example from an unusu-
ally large accretion funnel of material, inducing a broad
band GW spike that also contains lower frequencies
[25,35]. Also, there is a possibility that a CCSN explosion
could have turbulent components containing some GW
energy as well in the SASI region. Nevertheless, the metric
introduced in Eq. (16) allows to produce probability
distributions where the two scenarios can be distinguished
(see, for example, Fig. 8).
We apply a (Python) code to process wavelet maps for all

reconstructed triggers to remove the g-mode contribution in
those triggers, detect SASI, and estimate its frequency and
duration. For the g-mode parameter estimation, we remove
pixels below 200 Hz, because there is no significant energy
of the g-mode component there but the SASI component
may be present which can affect our g-mode parameter
estimation. Since the g-mode slope estimation is affected
by the noise-induced pixels, we discard pixels with like-
lihoods below the event-dependent arithmetic mean of
likelihood of the event. Next, as the g-mode is one of
the most energetic features in the GW event, from the
surviving pixels, we only choose pixels in an interval of
0.2 seconds (roughly twice the visible g-mode duration
for most waveforms) identified as the 0.2-second interval
containing the most energetic pixels for the g-mode
parameter estimation. Such an interval is selected by
comparing the sum of likelihood of the pixels, as the
measure of total energy, within all 0.2-second intervals in
the event and choosing the one with the maximum value.
If less than two pixels survive, we do not perform slope

estimation and thus the following steps for g-mode slope
estimation are bypassed and the next steps for SASI
parameter estimation are implemented (see Sec. III B 1).
The preliminary estimation of the slope and intercept of the
g-mode line is performed using linear regression on the
remaining pixels. For the triggers with estimated slopes
outside the physical range ð500; 5000Þ s−2 identified from
the literature review, the slope-intercept optimization proc-
ess mentioned below is bypassed, like before, and the next
steps for SASI parameter estimation are implemented (see
Sec. III B 1). The statistics of the number of triggers for
which g-mode slope estimation is not bypassed are
observed to be 807 out of 1081 at 1 Kpc, 671 out of
2867 at 5 Kpc, and 357 out of 2764 at 10 Kpc. The
estimation of the slope is performed in two steps. The initial
one involves a simple linear regression. The estimation is
then refined by defining intervals around those values
(200 points were taken around the initial estimates, with
a relative variation of < 33% with respect to the initial
points). In this way, we construct a grid in the slope-
intercept plane and use this set of values to minimize the
following weighted χ2 function:

χ2 ¼
X
i

ρiðficÞ2Ξi

�
tic −

ðfic − cÞ
m



2

; ðB25Þ

Here, tic is the centre time of ith pixel. The fic is the central
frequency of the ith pixel. The ðficÞ2 is a weight function
used to compensate for the LIGO noise curve. It is necessary
because the LIGO noise increases with frequency, resulting
in worse SNR at higher frequencies. The ρi is another weight
function and is the likelihood value of the ith pixel. By using
ρi, we take the energy of the pixels into consideration. This is
because the pixels corresponding to signal would be more
energetic in general than those corresponding to noise.
Finally, since the pixels related to signals are most likely
to be clustered together and the pixels related to noise are
most likely to be isolated in the t-f maps, we introduce a
quantity Ξi in the weights, which measures the density of
pixels around the ith one. It is calculated as the sum of the
likelihoods in the neighborhood of the pixel in a window of
0.01s time interval and 25 Hz frequency interval centered
around the given pixel in the t-f map.
The summation is done over all pixels remaining in the

area of interest of the trigger for all elements in the grid of
possible slopes (i.e., m) and intercepts (i.e., c).
Minimization of the multivariate χ2 function gives the

optimal slope and intercept point (average of all slopes
and intercepts with minimum chi-squared values) on the
slope-intercept grid. Thus, the g-mode frequency (fg)
evaluation becomes

fg ¼ mGW
opt tþ cGWopt ; ðB26Þ

where cGWopt and mGW
opt are the optimized intercept and slope,

respectively. For the removal of the g-mode region, the

FIG. 15. g-mode slope histograms for D ¼ 1, 5, 10 Kpc. The
center solid vertical line identifies the slope of the g-mode
evolution estimated from the spectrogram in Fig. 3, which is
3000 s−2 (which is the g-mode slope of our illustrative example,
estimated visually from Fig. 3). The left and right dashed vertical
lines represent the range of slopes for slowly rotating progenitors
observed in the literature (derived from Refs. [35,51]), which are
1100 and 4000 s−2, respectively. The variance of the distribution
shrinks with closer distances.
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g-mode initial time is calculated from the fitted line at

200 Hz as tgini ¼
ð200−cGWopt Þ

mGW
opt

. When the slope estimation and/or

the slope optimization steps are bypassed, we only select
the pixels that are 50 ms after the earliest pixel in the time-
frequency map of the whole event to be included in the
SASI time-frequency region (or, simply, the SASI region).
Otherwise, as the g-mode initial time tgini would be
available, only the pixels 50 ms after it are included in
the SASI region. In this way, g-mode removal from the
pixel map is performed. We then have a t-f map that only
includes the SASI components. This map is further used for
SASI parameter estimation described in Sec. III B 1. The
results of the slope optimization at different distances are
listed in Table I and shown in Fig. 15.

Using the pixels remaining in the SASI region, after the
removal of the g-mode components, we estimate the SASI
parameters—the central frequency and duration—using the
statistical approaches described in Sec. III B 1. We find that
with the decrease of the bpp value we use (0.05) with
respect to the standard cWB configuration (bpp ¼ 0.1), an
extra threshold is needed to remove some noise-related
pixels in the SASI time-frequency region, as lower bpp (to
increase the number of triggers) would also allow more
noise-related pixels in the triggers. We choose a threshold
on the likelihood values of the pixels in the SASI region,
as a pixel selection criteria for parameter estimation,
which is set at 50% of the maximum likelihood value
among all pixels in the given event (i.e., an event-dependent
threshold).

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 101, 084002 (2020).

[4] M. J. Szczepanczyk, Ph.D. thesis, Embry-Riddle Aeronaut-
ical University, Daytona Beach, FL, 2018.

[5] Z. Lin, C. Lunardini, M. Zanolin, K. Kotake, and C.
Richardson, Phys. Rev. D 101, 123028 (2020).

[6] M. Szczepanczyk et al., Phys. Rev. D 104, 102002
(2021).

[7] O. Halim, C. Casentini, M. Drago, V. Fafone, K. Scholberg,
C. F. Vigorito, and G. Pagliaroli, in 16th Marcel Grossmann
Meeting on Recent Developments in Theoretical and Ex-
perimental General Relativity, Astrophysics and Relativistic
Field Theories (World Scientific Publishing Company,
New Jersey, 2021), arXiv:2110.15620.

[8] O. Halim, C. Casentini, M. Drago, V. Fafone, K. Scholberg,
C. F. Vigorito, and G. Pagliaroli, J. Cosmol. Astropart. Phys.
11 (2021) 021.

[9] P. Astone, P. Cerdá-Durán, I. Di Palma, M. Drago, F.
Muciaccia, C. Palomba, and F. Ricci, Phys. Rev. D 98,
122002 (2018).

[10] K. Kotake, C. R. Phys. 14, 318 (2013).
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