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We use an asteroseismology method to calculate the frequencies of gravitational waves (GWs) in a long-
term core-collapse supernova simulation, with a mass of 9.6 solar mass. The simulation, which includes
neutrino radiation transport in general relativity is performed from core-collapse, bounce, explosion
and cooling of protoneutron stars (PNSs) up to 20 s after the bounce self-consistently. Based on the
hydrodynamics background, we calculate eigenmodes of the PNS oscillation through a perturbation
analysis on fluid and metric. We classify the modes by the number of nodes and find that there are several
eigenmodes. In the early phase before 1 s, there are low-frequency g-modes around 0.5 kHz, midfrequency
f-modes around 1 kHz, and high-frequency p-modes above them. Beyond 1 second, the g-modes drop too
low in frequency and the p-modes become too high to be detected by ground-based interferometers.
However, the f-mode persists at 1 kHz. We present a novel fitting formula for the ramp-up mode,
comprising a mixture of g-mode and f-mode, using postbounce time as a fitting parameter. Our approach
yields improved results for the long-term simulation compared to prior quadratic formulas. We also fit
frequencies using combinations of gravitational mass, M, and radius, R, of the PNS. We test three types

of fitting variables: compactness M=R, surface gravity M=R2, and average density
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. We present

results of the time evolution of each mode and the fitting for three different ranges, from 0.2 s to 1 s, 4 s, and
20 s for each formula. We then compare the deviation of the formulas from the eigenmodes to determine
which fitting formula is the best. In conclusion, any combination of M and R fits the eigenmodes well
to a similar degree. Comparing three variables in detail, the fitting with compactness is slightly the
best among them. We also find that the fitting using less than 1 s of simulation data cannot be extrapolated
to the long-term frequency prediction.

DOI: 10.1103/PhysRevD.107.083015

I. INTRODUCTION

The gravitational wave (GW) is one of the most
important prediction of general relativity, which was
directly confirmed by the observation of the binary black
hole merger, GW150914 [1]. After the memorial event,
increasing number of GW events have been observed from
binary star systems including merger of two neutron stars
and black hole-neutron star systems [2].
The next most promising targets for observation of

GWs are supernova explosions, the origin of neutron stars
and black holes. Supernovae (SNe) emit electromagnetic
waves, neutrinos, and GWs, and the multimessenger
observations can provide deep insight into the supernova

interior (see Refs. [3–10] for reviews). Indeed, the first
detection of neutrinos from SN 1987A [11–13] allowed us
to estimate the total energy emitted by neutrinos being
∼ 1053 erg [14–16] and led to the conclusion that a neutron
star (NS) formed inside supernova explosion and the
released gravitational energy drives the explosion. When
the next galactic supernova happens, GWs would also be
detected [17]. Combining these independent pieces of
information will lead to a breakthrough in the study of
supernova explosions.
The GW asteroseismology, which is a counterpart of

regular light-based asteroseismology but with GW, has a
potential to provide NS parameters [18–32]. NSs are
expected to produce strong GWs from their typical oscil-
lation modes, which is the so-called eigenmodes. If these
oscillation modes are observed in GWs, we will be able to
extract the combination of the mass M and radius R of
the NS. There are three different variations of fitting
formulas for evolution of oscillation frequencies; the
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compactness (M=R), the surface gravity ðM=R2Þ, and the
average density

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. For instance, Sotani et al. [26]

proposed a universal relation for models employing differ-
ent nuclear equations of state based on the average density,
while Torres-Forné et al. [29,30] proposed a comparable
formula but using the average density for p- and f-modes
and the surface gravity for g-modes. There are also studies
where postbounce time is used as a fitting variable.
Morozova et al. (2018) [33] used fitting with postbounce
time and reported that differences between equation of
states showed up. Warren et al. (2020) [34] investigated a
correlation between an estimate of GW frequencies and
neutrino emission.
Table I summarizes previous studies. The number of

the models in the general relativistic framework is
limited and no simulations were performed beyond
10 s except this work. We have not known how long
the fitting formulas are applicable. The motivation of this
study is to discover long-term behavior of frequencies
and find a fitting formula for long-term emission. Another
importance of long-term simulation is related to the
multimessenger astronomy. If galactic supernovae hap-
pen, neutrino events are observable for more than
20 s [36,37] so we need the same time prediction of
GWs to check the correlation.
Our goal of this work is to discover the behavior of NS

eigenmode frequencies and the connection of their proper-
ties. To accomplish this goal, this paper employs the
long-term simulation of a supernova explosion and NS
formation. We will utilize data from Ref. [37], especially
long-term (20 s) self-consistent simulations from the
collapse of the iron core to the supernova explosion and
the protoneutron star (PNS) cooling phase. The late period
has the great advantage of allowing more precise modeling
than the early period (≲1 s), as the complex physical
processes settle down. Recently, Refs. [36,38–40] have
developed a method to extract the mass and radius of the
NS based on theoretical estimates of neutrino emission in
the late phase. Theoretical predictions of GW, on the other
hand, have been focused on the early phase, since long-
term multidimensional numerical simulation are needed to
predict the GW.

In this paper, we will show long-term evolution of PNS
eigenmodes, which are a source of GW emission, inves-
tigate which combination of mass and radius can fit g- and
f- modes the most for a long time and discuss the
possibility whether we can estimate late-time frequencies
from early time fitting. Our PNS simulation considers the
full general relativistic gravity and neutrino transport, and
our mode analysis employs metric perturbations. These
make our estimation quantitatively precise. Section II
explains the neutrino-radiation hydrodynamics simulation
and the method to estimate eigenmodes of GWs based
on the simulation. Section III describes the results of the
eigenmode analysis and fitting. We use three parameters
(compactness, surface gravity, and average density) to fit
eigenmodes. We also propose new fitting formula with
respect to time after bounce and provide a discussion on
which fitting formula is the best. Finally, we summarize our
conclusion in Sec. IV. Note that we employ the signature
ð−;þ;þ;þÞ as the Minkowski metric and adopt units
of G ¼ c ¼ 1.

II. METHODS

This section describes how to estimate the frequency of
eigenmodes from our supernova model. We first conduct
core-collapse supernova (CCSN) simulation by solving the
neutrino-radiation hydrodynamics equations and then cal-
culate eigenmodes of the PNS based on the simulation
results. The calculation of the eigenmodes allows us to
compute leading order contribution to GW signals.

A. Neutrino-radiation hydrodynamics simulation

Our CCSN model is based on the model in Ref. [37].
The progenitor is 9.6M⊙ and zero-initial metallicity [41],
which has been reported to explode not only in multidi-
mensional simulations but also in spherical symmetric
simulations [37,42–44].
As Ref. [37], we employ a public code, GR1D [45,46] for

our hydrodynamics simulation. The primitive variables in
GR1D are density ρ, specific internal energy ϵ, velocity v and
electron fraction Ye. The metric used in GR1D is

TABLE I. Summary of recent GW asterosemismology studies, where a and b of Torres-Forné et al. and Mori, Suwa and Takiewaki.
are real numbers.

Authors Year Gravity Fitting variables Simulation time (s) References

Sotani and Takiwaki 2016 Newtonian No fitting ∼1.0 [19]
Sotani, Kuroda, Takiwaki and Kotake 2017 GR MR−3 ∼0.3 [20]
Morozova et al. 2018 Approx GR Postbounce time ∼1.5 [33]
Torres-Forné et al. 2019 Approx GR/ GR MaRb ∼1.2 [29,30]
Warren et al. 2020 Approx GR Postbounce time ∼4.0 [34]
Sotani, Takiwaki and Togashi 2021 Approx GR MR−3 ∼0.8 [26]
Sotani and Sumiyoshi 2021 GR MR−3 ∼1.4 [35]
Mori, Suwa and Takiwaki 2023 GR MaRb, Postbounce time ∼20 This work
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ds2 ¼ −αðr; tÞ2dt2 þ Xðr; tÞ2dr2 þ r2dΩ2; ð1Þ

where r and t are radius and time. α and X are a lapse and a
shift function, which are written with functions of the
potential Φ and enclosed gravitational mass mðr; tÞ,

α ¼ expðΦðr; tÞÞ; ð2Þ

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2mðr; tÞ
r

r
: ð3Þ

Those are given as

mðr; tÞ ¼ π

Z
r

0

ðρhW2 − Pþ τνmÞr02dr0; ð4Þ

Φðr; tÞ

¼
Z

r

0

X2

�
mðr0; tÞ
r02

þ 4πr0ðρhW2v2þPþ τνΦÞ
�
dr02þΦ0;

ð5Þ

where h ¼ 1þ ϵþ P=ρ is enthalpy with P being pressure,
W ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is Lorentz factor with v ¼ Xv1 being the

product of three-velocity v1 and X and τν is the stress-
energy tensor component of neutrinos. Here, Φ0 is deter-
mined by the matching condition. The metric must be
connected to the Schwarzschild metric at the star’s surface,
which leads to

ΦðR�; tÞ ¼ ln½αðR�; tÞ� ¼
1

2
ln

�
1 −

2mðR�; tÞ
R�

�
; ð6Þ

where R� is the star’s radius.
In GR1D, the hydrodynamics equations are described

as below,

∂tU⃗ þ 1

r2
∂r

�
αr2

X
F⃗

�
¼ S⃗; ð7Þ

where U⃗ is a set of conserved values, F⃗ is a set of flow
values, S⃗ is a set of source terms, and ∂x ≔ ∂=∂x. To be
specific, conserved values are given as

U⃗ ¼ ½D;DYe; Sr; τ�; ð8Þ

where

D ¼ XρW; ð9Þ

DYe ¼ XρWYe; ð10Þ

Sr ¼ ρhW2v; ð11Þ

τ ¼ ρhW2 − P −D: ð12Þ

The flux vector F⃗ is

F⃗ ¼ ½Dv;DYev; Srvþ P; Sr −Dv�; ð13Þ

and the source and sink terms are

S⃗ ¼
�
0; Rν

Ye
; ðSrv − τ −DÞαX

�
8πrPþ m

r2

�
þ αPX

m
r2

þ 2αP
Xr

þQν;E
Sr þQν;M

Sr ; Qν;E
τ þQν;M

τ

�
; ð14Þ

where Rν
Ye
,Qν;E

Sr ,Q
ν;M
Sr ,Qν;E

τ , andQν;M
τ are the contributions

of neutrinos and are calculated through the neutrino
transport.

GR1D is implemented with the M1 scheme [47] with
multienergy groups for neutrino-radiation transport. It
solves the Boltzmann equation up to the first two moments
and use an analytic closure for closing moment equations.
The energy groups are logarithmically divided into
18 energies. The center value of the lowest energy group
is 2 MeVand that of the highest energy group is 280 MeV.
In this simulation, neutrino transport is calculated out to
600 km and neutrino information is read out at 500 km
considering effects of the gravity.
Interactions between neutrinos and matter are calculated

in advance as an opacity table with Nulib.1 Table II
summarizes interactions used in the simulation. In the
original opacity table, the bremsstrahlung is taken into
account only for heavy-lepton neutrinos. That is, the
interaction of N þ N → N þ N þ νx þ ν̄x is only included.
Since we found that this approximation leads to unphysi-
cally high average energy of νe and ν̄e at the late phase [37],

TABLE II. Summary of neutrino-matter interactions. Here, n is
a neutron, p is a proton, ðA; ZÞ is a nuclei whose mass number is
A and atomic number is Z. The neutrino interaction with ν has no
sensitivity to flavors but the interaction with νi has a sensitivity
to flavors.

Neutrino production References

νe þ n → pþ e− [48,49]
ν̄e þ p → nþ eþ [48]
νe þ ðA; ZÞ → ðA; Z þ 1Þ þ e− [48,50]
e− þ eþ → νx þ ν̄x [48,50]
N þ N → N þ N þ νe þ ν̄e [48,50]
N þ N → N þ N þ νx þ ν̄x [48,50]

Neutrino scattering
νþ α → νþ α [48,50]
νi þ p → νi þ p [48–50]
νi þ n → νi þ n [48–50]
νi þ ðA; ZÞ → νi þ ðA; ZÞ [48,50,51]
νi þ e− → ν0i þ e−0 [50,52]

1https://github.com/evanoconnor/NuLib.
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we reproduce the numerical table taking into account the
reaction, N þ N → N þ N þ νe þ ν̄e.

B. Asteroseismology

In order to calculate eigenmodes of oscillations in PNSs,
we employ the asteroseismology method. GREAT [27,28] is
open source software for GW asteroseismology in general
relativity [27]. That is, the perturbations in the linear
analysis both of fluid and metric are considered. The
oscillation follows the next equations:

∂rηr þ
�
2

r
þ 1

Γ1

∂rP
P

þ ∂rψ

ψ

�
ηr þ

ψ4

α2c2s
ðσ2 − L2Þη⊥

¼ 1

c2s

δQ̂
Q

−
�
6þ 1

c2s

�
δψ̂

ψ
; ð15Þ

∂rη⊥ −
�
1 −

N 2

σ2

�
ηr þ

�
∂r ln q − G

�
1þ 1

c2s

��
η⊥

¼ α2

ψ4σ2

�
∂rðln ρhÞ

�
1þ 1

c2s
G
���

δQ̂
Q

−
δψ̂

ψ

�
; ð16Þ

where ηr and η⊥ are longitudinal and transverse coefficients
of eigenmodes respectively, σ is the frequency, cs is the
sound speed, ψ is the conformal factor, Q≡ αψ and
Γ1 ≡ ρ

P
∂P
∂ρ jadiabatic ¼ hc2s are the adiabatic index. L2 and

N 2 are the relativistic Lamb frequency and relativistic
Brunt-Väisälä frequency and their definitions are

L≡ α2

ψ2
c2s

lðlþ 1Þ
r2

; ð17Þ

N ≡ α2

ψ4
BG; ð18Þ

where G is the gravity defined as

G ¼ −∂r ln α ð19Þ

and B is the relativistic version of the Schwarzschild
discriminant defined as

B ¼ ∂rϵ

ρh
−

1

Γ1

∂rP
P

: ð20Þ

Finally, about the metric perturbations, δψ̂ and δQ̂,
they read

∇̂2δψ̂ ¼ −2πψ5

��
5ϵþ ρh

c2s

�
δψ̂

ψ
−
ρh
c2s

δQ̂
Q

�

− 2πρhψ5

�
ψ5σ2

α2c2s
η⊥ − Bηr

�
; ð21Þ

∇̂2δQ̂

¼ 2πðρhþ 5PÞαψ5

�
δQ̂
Q

þ 4
δψ̂

ψ

�

þ 2πρhαψ5

��
6þ 1

c2s

�
ψ4σ2

α2
η⊥ −

δQ̂
Q

þ δψ̂

ψ

�
− ηrB

��
:

ð22Þ

In order to find frequencies, σ, these Eqs. (16), (17), (21),
and (22) are integrated from the center of the star to the
PNS surface (ρ ¼ 1011 g cm−3). The inner boundary con-
dition is ηrjr¼0 ¼ l

r η⊥jr¼0 ∝ rl−1, and the outer boundary
condition is as same as Eq. (7) in Ref. [24]. See also
Eqs. (4)–(6) of Ref. [24] to convert the spherical polar
coordinate of Eq. (1) into the isotropic coordinate used
in GREAT [53].

III. RESULTS

A. PNS properties

Before going to the argument of the GW signal, we
briefly give the time evolution of PNS gravitational mass
and radius, which are shown in Fig. 1. We define the
surface of the PNS at the radius where the density is
1011 g cm−3. The blue and red lines with the right and the
left axis show the radius and gravitational mass of the PNS,
respectively.
The PNS radius (blue line) is larger than 100 km at the

bounce and then rapidly shrinks to 13 km. The baryonic
mass of PNS converges to 1.36M⊙ soon after the onset of
the explosion. In such a light progenitor, the mass accretion
rate is small and PNS mass is converged in the early phase.
Although the baryonic mass is constant, the gravitational
mass (red line) decreases due to the neutrino emission up to
1.26M⊙ at 20 s after the bounce. Those evolutions are
consistent with other studies. For instance, our baryonic
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FIG. 1. Time evolution of gravitational mass (red) and radius
(blue) of the PNS. The left axis indicates the gravitational mass in
M⊙ and the right indicates the radius in km. The horizontal axis is
the postbounce time in seconds.
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mass 1.36M⊙ is consistent with previous studies that used
the same progenitor model [43,54,55]. Our gravitational
mass at the last moment of the simulation, 1.26M⊙ is also
consistent with an approximate estimate given in Ref. [43].

B. Gravitational wave modes

Using the model introduced in Sec. II A and the method
described in Sec. II B, we calculate the oscillation modes of
the entire PNS. In the following, we classify the modes into
p-modes, f-mode, and g-modes. The modes are character-
ized by the number of nodes. If there is no node, we call it
f-mode and otherwise it is p- or g-modes. The physical
difference between p-modes and g-modes is restoring force.
The p-modes are invoked by pressure and the g-modes are
driven by buoyancy. The frequency of the p-mode is higher
as the number of nodes increases. On the other hand, that
of the g-mode is inversely lower as the number of nodes
increases. While this simple classification is also used in
Refs. [19,20,22,24,26,27,33], Refs. [28,29] employ different
classification criteria, but this difference affects only the
names of the modes and does not change the following
discussion.
Roughly speaking, the p-mode propagates near the

surface of the star and the g-mode propagates near the
center of the star. Figure 2 shows longitudinal coefficients
ηr of the f-mode (blue) and g-mode (red) as functions of
radius at 1 s after the bounce, wherein the indexes of the
subscript are the number of nodes. The coefficients are
normalized for their maximum values to be unity. There is a
node at 15 km and a peak at 7 km in the g1-mode. In the
f-mode, there is no node except at the center and the ηr of
the f-mode increases with the radius. There is a node
at 14 km in the p1-mode and are two nodes at 11 km

and 19 km. Both ηr of the p-modes also increases
with the radius.
Following the simple mode identification, we show

the time evolution of eigenmodes of GWs in Fig. 3, which
are calculated from time snapshots of our supernova
simulation. We show them from 0.1 s after the bounce
in this figure because matter motion around the bounce is
dynamical and clearly deviated from the eigenmodes.
There are the g1-mode (red), f-mode (blue), and pi-modes
(green) in Fig. 3, where i is the natural number and
indicates the number of nodes.
The g1-mode has the lowest frequencies, the f-mode is

in the middle frequency range, and the pi-modes are the
highest. The g1-mode frequencies gradually increase, reach
the peak around 0.7 kHz at 0.55 s, slowly decrease and
eventually pass through 0.5 kHz at 2 s. Such evolution is
also seen in the previous studies, e.g., see Fig. 5 of Ref. [33]
and Fig. 3 of Ref. [26]. The frequencies of p-modes
increase and even the lowest p1-mode exceeds 3 kHz
at 2 s. Higher pi-modes increase faster.
The frequencies of the f-mode increase from 0.6 kHz

to 0.9 kHz for the first 0.15 s, keep the value up to 0.5 s
and then slowly increase again to 1.6 kHz at 20 s.
There are avoided crossings between the lowest p-mode
and f-mode around 0.2 s and between the g-mode and the
f-mode around 0.5 s [25,33]. Note that the term of
“avoided crossing” means that the frequencies of two
eigenmodes approach each other but they do not cross.
In the following section, we focus on the g-mode before
the avoided crossing and the f-mode after the avoided
crossing.

C. Fitting

In this section, we propose new fitting formulas for the
eigenmode frequencies that is based on the long-term
general relativistic simulation (see Fig. 3). We provide
one fitting formula in terms of postbounce time and three
types of fitting methods with respect to the mass and the
radius of the PNS: M=R, M=R2 and

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, which

mean compactness, surface gravity, and average density,
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f- (blue), and p-modes (green) in the PNS at 1 s after the bounce.
The ηr is normalized with the maximum values being unity. The
solid lines are the eigenmodes which have one node for g- and p-
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respectively. See Table I for the difference from the
previous formulas.
We select the so-called ramp-up mode that has avoided

crossing [25,33], i.e., that is g-mode before 0.76 s and the
f-mode after 0.76 s in our classification (see Fig. 3). In the
multidimensional simulation, this mode most clearly
and ubiquitously appears, e.g., Refs. [54,56]. In the most

of previous studies, fitting of this mode is provided
(see Table I).
First, we use postbounce time as a fitting variable.

Morozova et al. [33] employed quadratic functions to fit
eigenmode frequencies with postbounce time. However,
the quadratic function can fit curves but cannot fit constant
values. Thus, we also propose a new fitting formula with
respect to postbounce time. The function writes:

fðx ¼ tpbÞ ¼
a1xa4

xa4 þ a2
þ a3; ð23Þ

where tpb is postbounce time measured in s and a1, a2, a3
and a4 are fitting parameters. This function is proportional
to xa4 when x is close to 0 and becomes constant when x is
large enough. The parameters determined in this study are
shown in Table III. We also fit with quadratic function
ðgðx ¼ tpbÞ ¼ b1 þ b2xþ b3x2Þ for comparison with
Morozova et al. [33] and our fitting parameters for the
quadratic function are summarized in Table IV.
Figure 4 shows the fitting results of Eqs. (23) (orange)

and comparisons to quadratic equations (gray). We employ
data after 0.2 s in postbounce time because there are no
clear eigenmodes due to turbulence around the bounce
before this time. Three panels represent the different fitting
ranges of 0.2–1 (bottom), 0.2–4 (middle), and 0.2–20 s

TABLE III. Fitting parameters for Eq. (23), fðxÞ ¼ a1xa4
xa4þa2

þ a3.
Here x is tpb. The units of tpb and g are second and kHz,
respectively.

Fitting range (s) a1 a2 a3 a4

0.2–1 2.604 0.6971 −0.5158 0.5091
0.2–4 8.488 0.1415 −6.442 0.2907
0.2–20 2.639 0.5371 −0.7313 0.4661

TABLE IV. Fitting parameters for gðxÞ ¼ b1 þ b2xþ b3x2.
Here x is tpb. The units of tpb and g are second and kHz,
respectively.

Fitting range (s) b1 b2 b3

0.2–1 2.431 × 10−1 1.453 × 100 −7.043 × 10−1

0.2–4 5.552 × 10−1 4.471 × 10−1 −6.801 × 10−2

0.2–20 9.031 × 10−1 9.698 × 10−2 −3.384 × 10−3
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(top). In the bottom panel, the function fðxÞ fits the g- and
f-modes well and the result of the quadratic equation
overlaps from 0.2 to 1.0 s. After 1 s, which is the
extrapolated region, fðxÞ predicts the higher frequencies.
The value is higher by 0.1 kHz at 10 s and by 0.15 kHz
at 20 s. The extrapolation of the quadratic equation does
not match the simulation and deviates after 1 s. As we
mentioned above, the quadratic formula is suitable to fit
curves but not appropriate for asymptotically constant
lines. The middle panel shows the result of the fitting
range spanning from 0.2 to 4 s. The fðxÞ matches the
simulation overall but predicts a slightly smaller value in
the extrapolated region. The difference is 0.02 kHz at 20 s.
The quadratic function has behavior similar to that in the
bottom panel. That is, the function matches before 4 s but
falls down after 4 s. The way to fall down is slower than that
of the fitting from 0.2 to 1 s. Finally, the top panel shows
the result of the fitting range from 0.2 to 20 s. The fðxÞ
perfectly matches the simulation and the quadratic function
does not match the g-mode and has a similar shape after 1 s.
Next, we fit the eigenmodes with three formulas whose

variables are M=R, M=R2 and
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, which mean

compactness, surface gravity and average density, respec-
tively. The expression of fitting function is the same as
Sotani et al. [35], i.e.,

hðxÞ ¼ c1 þ c2 logðxÞ þ c3xþ c4x2; ð24Þ

where c1, c2, c3 and c4 are fitting parameters and the
variable x takes M=R, M=R2 or

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
.

The three variables,M=R,M=R2, and
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
behave in

the same way. Figure 5 shows time evolution of the
variables. In the early time, slopes are steep and gradually
become flat in the late time. In the early time, the slope
of M=R is the steepest, that of

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
is next and that of

M=R2 is the most modest. The normalization is determined
with the value at 20 s.
We fit hðxÞ of Eq. (24) over the different three time

ranges: 0.2–1 s, 0.2–2 s, and 0.2–20 s in postbounce time as
well. The fitting results are shown in Fig. 6 and Table V.
Figure 6 shows the fitting lines in the fitting ranges as solid
lines and their extrapolations as dashed lines. In the case of
the fitting range from 0.2 to 1 s, which is shown in the
bottom panel, all the three functions with fitting withM=R,
M=R2, and

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
are similar and they predict lower

frequencies in late time. During the fitting range, they
match the simulation well. However, in the extrapolated
region, they gradually become lower. The behavior is the
same for all the fitting variables. The rate of deviation offfiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
is the fastest, followed by M=R2 and finally M=R

is the slowest.
In the case of the fitting range from 0.2 to 4 s, which is

shown in the middle panel. The fitting results of all the
variables almost entirely overlap. In the fitting region, they
perfectly match the simulation. In the extrapolated region,
the fitting functions predict a little smaller values. At 20 s,
the value of the fitting functions is 1.5 kHz and smaller by
0.09 kHz than that of the simulation. At last, in the case
of fitting from 0.2 to 20 s, that is, the case that we fit
from beginning to end, the all functions reproduce the
simulation result well.

D. Comparison with previous studies

Figure 7 compares our fitting formulas with previous
studies of Refs. [29,35]. The horizontal axes are M=R2 in
the top panel and

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
in the bottom panel. There are

three solid lines of different fitting ranges in each panel.
In the top panel, all of the fitting formulas are similar to
each other below 1 kHz. Equation (5) of Sotani et al. [35]
(gray dashed) leads to slightly higher frequencies overall.
The fitting formula of Torres-Forné et al. [29,30] overlaps
our long-term fitting results.
In the bottom panel, Eq. (3) of Sotani et al. [35] (gray

dashed) also has higher frequencies than ours. Note that the
simulation conditions of our work and previous studies are
different, e.g., the progenitor model, treatment of gravity,
and equation of state. It is not so strange that the fitting
formulas are different as well. For example, Ref. [31]
estimates the error bar of the frequency as �300 Hz using
18 different models (see their Fig. 1).

E. Discussion on which fitting is the best

According to Figs. 4 and 6, the functions in the fitting
ranges can reproduce the simulation regardless of variables
[except gðtpbÞ] and the extrapolation becomes better as the
fitting range becomes longer. This subsection provides a
discussion on the fitting results. We here ensure which
variable is suitable in detail and how long a fitting range is
needed.
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We define the dimensionless deviation of fitting below:

DðtendÞ≡
Z

Tsim

Tstart

����AsimðtÞ−AfitðxðtÞ; tendÞ
AsimðtÞ

����dt=ðTsim − TstartÞ;

ð25Þ
where t is postbounce time, Tsim is the simulation time,
which is 20 s now, Tstart is the starting time of the integral,
which is 0.2 s, Asim shows eigenmode frequencies as a
function of time and AfitðxðtÞ; tendÞ means fitting functions,

f, g, h. The fitting range is from 0.2 s to tend in postbounce
time. The smaller value means that the fitting is more
accurate.
Figure 8 shows the deviations for functions of each

variable from 1 s to 20 s in tend. The time bin is 0.005 s.
The top panel compares Eq. (23) and the quadratic function.
As discussed in the previous section, the quadratic function
is not suitable for the long term fitting. Even if the fitting
range is short (≤ 4 s), fðtpbÞ shows smaller deviation, which
is ∼ 10%. The deviation of fðtpbÞ is about 0.25 at 1.5 s and

TABLE V. Fitting parameters for Eq. (24), hðxÞ ¼ c1 þ c2 logðxÞ þ c3xþ c4x2. The units ofM, R, and h areM⊙,
km, and kHz, respectively.

Fitting range (s) x c1 c2 c3 c4

0.2-1 M=R −4.501 × 101 −9.672 × 100 4.613 × 102 −2.459 × 103

M=R2 −9.209 × 100 −1.160 × 100 2.082 × 103 −3.112 × 105ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
−1.836 × 101 −2.829 × 100 9.390 × 102 −3.068 × 104

0.2–4 M=R 1.048 × 100 3.222 × 10−1 1.843 × 101 −5.490 × 101

M=R2 3.260 × 100 3.945 × 10−1 4.713 × 101 −1.497 × 103ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
2.841 × 100 4.549 × 10−1 2.647 × 101 −3.361 × 102

0.2–20 M=R 5.279 × 100 1.258 × 100 −1.927 × 101 1.280 × 102

M=R2 3.264 × 100 3.929 × 10−1 3.123 × 101 1.962 × 103ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
3.340 × 100 5.303 × 10−1 3.399 × 100 4.176 × 102
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gradually decreases to 0.008 at 20 s. fðtpbÞ can be used for
the rough estimate for the whole evolution of the GW. The
deviation using fðtpbÞ has a local minimum at 5 s. The fitting
slowly converges after 7 s. A longer fitting range is necessary
to obtain the precise estimate (≤ 1%). Note that, the fitting
of fðtpbÞ depends on the initial guess. Before 6 s, we set
ða1; a2; a3; a4Þ ¼ ð10; 5; 3; 1Þ as the initial guess and
ða1; a2; a3; a4Þ ¼ ð2.6; 0.5;−0.7; 0.46Þ after 6 s. On the
other hand, the deviation of the quadratic function is much
larger. It has 60 at 1 s and decreases to 0.04 at 20 s, which
corresponds to the deviation of fðtpbÞ at about 3 s.
The bottom panel shows a comparison of fitting func-

tions of Eq. (24) where the fitting parameters are M=R,
M=R2 or

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. To keep the deviation below percent

level, we need simulation for 4 s at least. All curves
behave in a similar way regardless of fitting variables. The
deviations monotonically decrease until ∼5 s (∼9 s for

M=R) and keep below 0.01 after 5 s. Among the variables
using M and R, the best fit would be hðM=RÞ. The
deviation of fitting with M=R has a maximum of 0.8 at
1 s, then decreases, has a local minimum of 0.003, raises
twice, and finally converges to 0.003. The deviation of
M=R is the largest from 4 s to 6 s but the deviation is the
smallest after 6 s. The deviations of fitting with M=R2 andffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
behave similarly. That ofM=R2 starts at 2 and has

a dip of 0.004 around 5 s. Then, it has a peak of 0.007 at 7 s
and converges to 0.004 again. Similarly, in the case offfiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, the deviation is the biggest value of 1.5 at 1 s,

has a dip of 0.0035 at 5 s, has a peak of 0.006 at 7 s and
converges to 0.0035 at last.

IV. SUMMARY

In this paper, we calculated the frequencies of the
eigenmodes of the PNS oscillation based on the long-term
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SN simulation and provided several fitting methods for
the GW asteroseismology. The supernova model was
simulated with GR1D, which solved the general relativistic
neutrino radiation hydrodynamics equations. For the esti-
mate of the frequencies of eigenmodes, we employed
GREAT that calculates eigenmodes of PNS oscillations.
The calculation continues up to 20 s, which is the longest
compared with recent studies. we fitted the eigenmodes,
which are the g-mode before the avoided crossing and the
f-mode after it, with functions considering several types of
fitting parameters.
We proposed the new fitting formula using the post-

bounce time, Eq. (23), and prove that it works better than
the simple quadratic function. The quadratic function is
suitable for fitting an increasing curve, and it falls short in
accurately depicting an asymptotically constant one.
We also derived fitting equations using M=R, M=R2,

and
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
as the previous studies [20,26,29,30,35].

These formulas effectively fit the eigenmodes, however,
usingM=R leads to a slightly better long-term fit compared
to the other two variables. Nevertheless, the difference
is small, not making it a matter of choice between the
variables. We also found that the fitting using less than 1 s
of simulation data cannot be extrapolated to the long-term
frequency prediction.
In order to give the quantitative behavior of the GW

emission, we need to conduct multidimensional simula-
tions [57–66]. The multidimensional simulation costs too
many computational resources. However, Figure 8 indi-
cates that simulations up to 5 s are enough for giving
reliable GW predictions.
For future observations, our goal is to estimate properties

of the supernova through the GWs. For this, we have to
know inverse functions of eigenmode and x of Eq. (24).
Especially, in the late time, the turbulence of fluid subsides.

If we use the late-time information, we can estimate the
mass and the radius of the neutron star. In future work, we
will prepare a lot of systematic simulations in order to make
a template of eigenmodes and make extrapolations of radii
and masses of neutron stars. The long-term template of
eingenmodes and fluid properties allow us to quickly
extract information on supernova interior. Moreover, in
the case of a galactic supernova, we can also observe
supernova neutrinos, which allow us to do multimessenger
astronomy. From a point of view of multimessenger
astronomy, it is worth estimating properties of SN and
PNS independently with different messengers such as GWs
and neutrinos. Indeed, there is a method to estimate PNS
masses and radii from supernova neutrinos [40,67,68]. By
combining neutrinos and GWs, we can check the consis-
tency and give more reliable estimates than independent
analysis. Since our supernova simulation includes the
neutrino radiation transport, the combined analysis is
possible, which will be reported in the future.
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Obergaulinger, P. Cerdá-Durán, N. Christensen, J. A. Font,
and R. Meyer, Inference of protoneutron star properties
from gravitational-wave data in core-collapse supernovae,
Phys. Rev. D 103, 063006 (2021).

[32] J. R. Westernacher-Schneider, E. O’Connor, E. O’Sullivan,
I. Tamborra, M.-R. Wu, S. M. Couch, and F. Malmenbeck,
Multimessenger asteroseismology of core-collapse super-
novae, Phys. Rev. D 100, 123009 (2019).

[33] V. Morozova, D. Radice, A. Burrows, and D. Vartanyan,
The gravitational wave signal from core-collapse super-
novae, Astrophys. J. 861, 10 (2018).

[34] M. L. Warren, S. M. Couch, E. P. O’Connor, and V.
Morozova, Constraining properties of the next nearby
core-collapse supernova with multimessenger signals,
Astrophys. J. 898, 139 (2020).

[36] Y. Suwa, K. Sumiyoshi, K. Nakazato, Y. Takahira, Y.
Koshio, M. Mori, and R. A. Wendell, Observing supernova
neutrino light curves with super-Kamiokande: Expected
event number over 10 s, Astrophys. J. 881, 139 (2019).

[37] M. Mori, Y. Suwa, K. Nakazato, K. Sumiyoshi, M. Harada,
A. Harada, Y. Koshio, and R. A. Wendell, Developing an
end-to-end simulation framework of supernova neutrino
detection, Prog. Theor. Exp. Phys. 2021, 023E01 (2020).

[35] H. Sotani and K. Sumiyoshi, Stability of the protoneutron
stars towards black hole formation, Mon. Not. R. Astron.
Soc. 507, 2766 (2021).

[38] Y. Suwa, A. Harada, K. Nakazato, and K. Sumiyoshi,
Analytic solutions for neutrino-light curves of core-collapse
supernovae, Prog. Theor. Exp. Phys. 2021, 013E01 (2021).

[39] K. Nakazato, F. Nakanishi, M. Harada, Y. Koshio, Y. Suwa,
K. Sumiyoshi, A. Harada, M. Mori, and R. A. Wendell,
Observing supernova neutrino light curves with Super-
Kamiokande. II. Impact of the nuclear equation of state,
Astrophys. J. 925, 98 (2022).

[40] Y. Suwa, A. Harada, M. Harada, Y. Koshio, M. Mori, F.
Nakanishi, K. Nakazato, K. Sumiyoshi, and R. A. Wendell,
Observing supernova neutrino light curves with Super-
Kamiokande. III. Extraction of mass and radius of neutron
stars from synthetic data, Astrophys. J. 934, 15 (2022).

[41] A. Heger and S. E. Woosley, Nucleosynthesis and evolution
of massive metal-free stars, Astrophys. J. 724, 341 (2010).

[42] T. Melson, H.-T. Janka, and A. Marek, Neutrino-driven
supernova of a low-mass iron-core progenitor boosted by
three dimesnsional turbulent convection, Astrophys. J. 801,
L24 (2015).

[43] D. Radice, A. Burrows, D. Vartanyan, M. A. Skinner,
and J. C. Dolence, Electron-capture and low-mass

LONG-TERM GRAVITATIONAL WAVE ASTEROSEISMOLOGY OF … PHYS. REV. D 107, 083015 (2023)

083015-11

https://arXiv.org/abs/2210.00326
https://doi.org/10.1103/PhysRevLett.58.1490
https://doi.org/10.1103/PhysRevLett.58.1494
https://doi.org/10.1016/0370-2693(88)91651-6
https://doi.org/10.1016/0370-2693(87)90728-3
https://doi.org/10.1086/166885
https://doi.org/10.1086/166885
https://doi.org/10.1086/167404
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://doi.org/10.1103/PhysRevD.94.044043
https://doi.org/10.1103/PhysRevD.94.044043
https://doi.org/10.1103/PhysRevD.96.063005
https://doi.org/10.1103/PhysRevD.96.063005
https://doi.org/10.1103/PhysRevD.99.123024
https://doi.org/10.1103/PhysRevD.99.123024
https://doi.org/10.1103/PhysRevD.102.063023
https://doi.org/10.1103/PhysRevD.102.023028
https://doi.org/10.1103/PhysRevD.102.063025
https://doi.org/10.1093/mnras/staa2597
https://doi.org/10.1093/mnras/staa2597
https://doi.org/10.1103/PhysRevD.104.123009
https://doi.org/10.1103/PhysRevD.104.123009
https://doi.org/10.1093/mnras/stx3067
https://doi.org/10.1093/mnras/stx3067
https://doi.org/10.1093/mnras/sty2854
https://doi.org/10.1103/PhysRevLett.123.051102
https://doi.org/10.1103/PhysRevLett.123.051102
https://doi.org/10.1103/PhysRevLett.127.239901
https://doi.org/10.1103/PhysRevLett.127.239901
https://doi.org/10.1103/PhysRevD.103.063006
https://doi.org/10.1103/PhysRevD.100.123009
https://doi.org/10.3847/1538-4357/aac5f1
https://doi.org/10.3847/1538-4357/ab97b7
https://doi.org/10.3847/1538-4357/ab2e05
https://doi.org/10.1093/ptep/ptaa185
https://doi.org/10.1093/mnras/stab2301
https://doi.org/10.1093/mnras/stab2301
https://doi.org/10.1093/ptep/ptaa154
https://doi.org/10.3847/1538-4357/ac3ae2
https://doi.org/10.3847/1538-4357/ac795e
https://doi.org/10.1088/0004-637X/724/1/341
https://doi.org/10.1088/2041-8205/801/2/L24
https://doi.org/10.1088/2041-8205/801/2/L24


iron-core-collapse supernovae: New neutrino-radiation-
hydrodynamics simulations, Astrophys. J. 850, 43 (2017).

[44] K. Nakazato, K. Sumiyoshi, and H. Togashi, Numerical
study of stellar core collapse and neutrino emission using
the nuclear equation of state obtained by the variational
method, Publ. Astron. Soc. Jpn. 73, 639 (2021).

[45] E. O’Connor and C. D. Ott, A new open-source code for
spherically symmetric stellar collapse to neutron stars and
black holes, Classical Quantum Gravity 27, 114103 (2010).

[46] E. O’Connor, An open-source neutrino radiation hydro-
dynamics code for core-collapse supernovae, Astrophys. J.
Suppl. Ser. 219, 24 (2015).

[47] M. Shibata, K. Kiuchi, Y. Sekiguchi, and Y. Suwa, Trun-
cated moment formalism for radiation hydrodynamics in
numerical relativity, Prog. Theor. Exp. Phys. 125, 1255
(2011).

[48] A. Burrows, S. Reddy, and T. A. Thompson, Neutrino
opacities in nuclear matter, Nucl. Phys. A777, 356 (2006).

[49] C. Horowitz, Weak magnetism for anti-neutrinos in super-
novae, Phys. Rev. D 65, 043001 (2002).

[50] S. W. Bruenn, Stellar core collapse: Numerical model and
infall epoch, Astrophys. J. Suppl. Ser. 58, 771 (1985).

[51] C. J. Horowitz, Neutrino trapping in a supernova and the
screening of weak neutral currents, Phys. Rev. D 55, 4577
(1997).

[52] J. Cernohorsky and S. A. Bludman, Maximum entropy
distribution and closure for Bose-Einstein and Fermi-dirac
radiation transport, Astrophys. J. 433, 250 (1994).

[53] A. Marek, H. Dimmelmeier, H. T. Janka, E. Müller, and R.
Buras, Exploring the relativistic regime with Newtonian
hydrodynamics: an improved effective gravitational poten-
tial for supernova simulations, Astron. Astrophys. 445, 273
(2006).

[54] B. Müller, H.-T. Janka, and A. Marek, A new multi-
dimensional general relativistic neutrino hydrodynamics
code of core-collapse Supernovae. III. Gravitational wave
signals from supernova explosion models, Astrophys. J.
766, 43 (2013).

[55] S. Wanajo, B. Müller, H.-T. Janka, and A. Heger, Nucleo-
synthesis in the innermost ejecta of neutrino-driven super-
nova explosions in two dimensions, Astrophys. J. 852, 40
(2018).

[56] J. W. Murphy, C. D. Ott, and A. Burrows, A model for
gravitational wave emission from neutrino-driven core-
collapse supernovae, Astrophys. J. 707, 1173 (2009).

[57] T. Yokozawa, M. Asano, T. Kayano, Y. Suwa, N. Kanda,
Y. Koshio, and M. R. Vagins, Probing the rotation of
core-collapse supernova with a concurrent analysis of

gravitational waves and neutrinos, Astrophys. J. 811, 86
(2015).

[58] T. Kuroda, K. Kotake, K. Hayama, and T. Takiwaki,
Correlated signatures of gravitational-wave and neutrino
emission in three-dimensional general-relativistic core-
collapse supernova simulations, Astrophys. J. 851, 62
(2017).

[59] H. Andresen, B. Müller, E. Müller, and H. T. Janka,
Gravitational wave signals from 3D neutrino hydrodynam-
ics simulations of core-collapse supernovae, Mon. Not. R.
Astron. Soc. 468, 2032 (2017).

[60] E. P. O’Connor and S. M. Couch, Exploring fundamen-
tally three-dimensional phenomena in high-fidelity sim-
ulations of core-collapse supernovae, Astrophys. J. 865,
81 (2018).

[61] D. Radice, V. Morozova, A. Burrows, D. Vartanyan,
and H. Nagakura, Characterizing the gravitational wave
signal from core-collapse supernovae, Astrophys. J. Lett.
876, L9 (2019).

[62] A. Mezzacappa, P. Marronetti, R. E. Landfield, E. J. Lentz,
K. N. Yakunin, S. W. Bruenn, W. R. Hix, O. E. B. Messer, E.
Endeve, J. M. Blondin, and J. A. Harris, Gravitational-wave
signal of a core-collapse supernova explosion of a 15M⊙
star, Phys. Rev. D 102, 023027 (2020).

[63] K. Nakamura, T. Takiwaki, and K. Kotake, Three-
dimensional simulation of a core-collapse supernova for a
binary star progenitor of SN 1987A, Mon. Not. R. Astron.
Soc. 514, 3941 (2022).

[64] O. E. Andersen, S. Zha, A. da Silva Schneider, A.
Betranhandy, S. M. Couch, and E. P. O’Connor, Equation-
of-state dependence of gravitational waves in core-collapse
supernovae, Astrophys. J. 923, 201 (2021).

[65] M. Bugli, J. Guilet, T. Foglizzo, and M. Obergaulinger,
Three-dimensional core-collapse supernovae with complex
magnetic structures: II. Rotational instabilities and multi-
messenger signatures, arXiv:2210.05012.

[66] T. Bruel, M.-A. Bizouard, M. Obergaulinger, P. Maturana-
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