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Ultralight dark matter (ULDM) is usually taken to be a single scalar field. Here we explore the possibility
that ULDM consists of N light scalar fields with only gravitational interactions. This configuration is more
consistent with the underlying particle physics motivations for these scenarios than a single ultralight field.
ULDM halos have a characteristic granular structure that increases stellar velocity dispersion and can be
used as observational constraints on ULDM models. In multifield simulations, we find that inside a halo

the amplitude of the total density fluctuations decreases as 1=
ffiffiffiffi
N

p
and that the fields do not become

significantly correlated over cosmological timescales. Smoother halos heat stellar orbits less efficiently,
reducing the velocity dispersion relative to the single field case and thus weakening the observational
constraints on the field mass. Analytically, we show that for N equal-mass fields with mass m the ULDM
contribution to the stellar velocity dispersion scales as 1=ðNm3Þ. Lighter fields heat the most efficiently and
if the smallest mass mL is significantly below the other field masses the dispersion scales as 1=ðN2m3

LÞ.
DOI: 10.1103/PhysRevD.107.083014

I. INTRODUCTION

Axion dark matter is a promising dark matter candidate.
Its ultralight limit (ULDM), also called fuzzy dark matter
(FDM), exhibits unique interference phenomena on galac-
tic scales, while still behaving like cold dark matter (CDM)
on scales much larger than the de Broglie wavelength.
CDM has had spectacular success accounting for the

formation of structures in the Universe. In particular, it
predicts the features of the cosmic web [1,2] revealed by
galaxy surveys and the properties of the anisotropies in the
microwave background [3]. However, at small scales many
details of galactic dynamics remain unclear. Specific issues
include the missing satellites [4,5], core-cusp [6–8], and
too-big-to-fail [9] problems associated with small-scale
structure formation in CDM, as reviewed in Ref. [10]. It is
possible that these problems will be solved by improving
survey sensitivity [11–13], baryonic physics [14] or even
the breakdown of Newtonian dynamics [15] at galactic
scales. Another option is that the dark matter has more
complicated small-scale dynamics than predicted by CDM

alone and ULDM is a widely studied scenario in this
category. Various extensions to this simple model have been
considered, including mixed dark matter scenarios [16] and
self-interacting scalar fields [17–19].
Given that the characteristic signatures of ULDM require

wavelike effects to be visible at subgalactic scales but must
not completely preclude the existence of small-scale struc-
ture, a particle mass of 10−22–10−18 eV is favored [20,21].
However, recent studies have put limits on much of this
parameter space. A nonexhaustive list of the phenomena that
can provide constraints includes the Lyman-α forest [22–25],
the galactic subhalo mass function [11,26], stellar dispersion
of ultra-faint dwarfs [27,28], galactic density profiles
[29–31], Milky Way satellites [32], and superradiance
[33,34]. A recent review is given in Ref. [35].
Critically, almost all treatments of ULDM assume the

presence of a single ultralight field. However, much of
the motivation for ULDM comes from string-theoretic
approaches to high-energy physics. These typically support
many axionlike fields rather than just one, as the axions
are associated with (nonequivalent) closed 2-cycles (two-
dimensional submanifolds of a larger manifold that cannot
be smoothly contracted to a point) of the Calabi-Yau
manifold that sets the topology of the compact dimensions.
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Calabi-Yau manifolds can contain many closed cycles—
numbers in the hundreds are seen as typical [36]. From this
perspective, multiple axionlike fields are actually a more
reasonable assumption than a single ultralight field. It is
expected that their masses are distributed broadly uni-
formly on a logarithmic scale [33], so several axionlike
species may be expected per decade of mass between
10−33 eV and 108 eV. However, the precise nature of the
distribution of masses is not tightly constrained, and it is
possible that it may be characterized by densely populated
mass ranges separated by larger gaps.
Single-field UDLM has rich dynamics on subgalactic

scales and multifield ULDM is potentially substantially
more complex. In this paper, we explore this scenario with a
specific focus on the heating of stellar orbits in ULDM
halos. ULDM halos have granular structures on scales
similar to the de Broglie length of the underlying field.
Orbiting stars are perturbed as they interact with the
gravitational potential of these structures, heating them
relative to their motion in a smooth background. This
effect is enhanced when the ULDM mass is small—in this
limit the granules are larger and more massive and the
resulting kicks to stellar velocities are more substantial.
Consequently, the observed velocity dispersions of stars in
dwarf halos leads to lower bounds on the ULDM mass.
However, when several uncorrelated fields are present, their
granules overlap leading to a smoother density field which
reduces the heating.
Previous studies of multifield scenarios include treat-

ments of large-scale structure [37] and rotation-curve [38]
constraints on two-field scenarios. Guo et al. [39] consider
the dynamics of two-field condensates with possible non-
linear mutual and self-interactions, while Luu et al. [40]
consider the properties of nested solitons in multifield
scenarios and Davoudiasl et al. [41] give constraints on
scenarios with very large number of fields, i.e. N ∼ 1030

and more. Very recently, Huang et al. [42] have performed
several two-field cosmological simulations which showed
that the central soliton can be substantially modified in this
scenario, potentially in ways that better match observations.
Amin et al. [43] looked at the related case of ultralight
vector dark matter which can mimic three equal-mass scalar
fields in the noninteracting case. They describe the con-
sequent reduction in stellar heating and estimate the size of
this suppression for fields of arbitrary spin s, which have
2sþ 1 components.
In this work, we use the superposition of eigenstates

to construct self-consistent ULDM halos. We then numeri-
cally evolve these halos in order to analyze how the
granularity in the outer regions depends upon the number
of distinct ULDM fields present. We consider up to four
ULDM fields, in both equal-mass and mixed-mass
scenarios. Visually, halos appear smoother with increasing
numbers of fields and we explicitly confirm this by
calculating the two-point correlation function. The granules

in each field are effectively a system of oscillators, coupled
through the gravitational potential so there is the possibility
for their motion to become correlated over time. If this
happened, it would undermine the suppression of the
heating in multifield models and we find that while a
small correlation arises it does not grow with time over
5 Gyr for typical axion masses.
We combine the results of these simulations with the

analytic approximations of multifield stellar heating. In
particular, the predicted stellar dispersion decreases as
1=ðNm3Þ for N fields in the equal-mass case of field with
mass m. In the multimass case, the lightest field dominates
the heating since the strength of the heating decreases with
the third power of the particle mass. If the lightest field with
mass mL is sufficiently light compared to the second
lightest field the resulting dispersion scales as 1=ðN2m3

LÞ.
The paper is organized as follows. In Sec. II we outline

our conventions and methodology, describe how initial
conditions are set up, and define statistical parameters used
to analyze the results. In Sec. III we discuss the results of
multifield simulations with both equal or different particle
masses. In Sec. IV we present an analytic estimate of how
the velocity dispersion induced by multifield ULDM scales
with the number of fields. We discuss our results in Sec. V.

II. METHODOLOGY

We assume that dark matter is composed of N inde-
pendent classical, real scalar fields which only interact
gravitationally with each other. In general, the evolution
of these fields is governed by the Klein-Gordon-Einstein
equations. Considering the nonrelativistic limit of the
Klein-Gordon equation relevant for structure formation,
the evolution equation in an expanding Friedmann-
Lemaître-Robertson-Walker universe reduces to the
Schrödinger equation [44,45]

iℏ
∂

∂t
Ψi ¼ −

ℏ2

2mia2
∇2Ψi þmiΨiΦ ð1Þ

where mi is the mass of the ith field and a is the
cosmological scale factor. In this limit, the N scalar fields
are represented by their corresponding complex wave
functions Ψi. This wavelike matter responds to the total
gravitational potential Φ, which is the solution to the
Poisson equation. In comoving units,

∇2Φ ¼ 4πG
a

ðρ − ρ̄Þ; with ρ ¼
XN
i¼1

mijΨij2; ð2Þ

where the source term for the field is the difference
between the total local density ρ and the average
density ρ̄. As usual, Planck’s constant is represented by
ℏ and Newton’s constant by G.
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We can set a ¼ 1 since we focus on individual halos
that are decoupled from the Hubble flow. In the ultralight
limit, the particle mass m is often expressed as
m ¼ m22 × 10−22 eV, and we adopt this notation. The
fraction of the total mass contained in the ith field is
denoted by ci, with

P
N
i ci ¼ 1. Since the fields do not

exchange mass ci are constants and we work with ci¼1=N
in our simulations. We consider cases with N fields with
identical masses and multimass scenarios where the masses
are distinct.
Single-field ULDM halos have an excited central soliton

[16,46–48] that oscillates with a frequency given by its
quasinormal modes [49]. This soliton is surrounded by a
halo composed of interfering excited states which yield
approximately spherical density fluctuations, usually called
halo granules. The size of these granules is roughly given
by the de Broglie wavelength

λdB ¼ ℏ
mv

; ð3Þ

where v denotes the local velocity of the field inside the
halo. This length is of course different for each field if the
fields have different particle masses.
We perform numerical simulations with a version of

AxioNyx [16] modified to evolve N fields. AxioNyx features
adaptive mesh refinement (AMR) which allows computing
power to be focused on regions of interest—in this case the
halo center—while the outer regions are evolved at lower
resolution. In the multimass case, the density-based refine-
ment condition is taken from the heaviest field in the
simulation which has the smallest de Broglie wavelength.
All fields are evolved on the same grid structure. In the
equal-mass cases, the refinement criterion is evaluated with
respect to a single, arbitrarily chosen field.
The Schrödinger equation is solved with a spectral

method on the root grid with periodic boundaries. In
refined regions we use finite differencing with aperiodic
boundary conditions and an appropriately subcycled time-
step. The Poisson equation is solved using the multigrid
Gauss-Seidel redblack solver implemented within Nyx [50].
All simulations are initialized on a ð100 kpcÞ3 box and
have a 1283 root grid resolution and three levels of
refinement in the center. Spatial resolution is increased
by a factor of two on each refinement level.

A. Halo construction

We generate multifield halos directly by adapting
the eigenmode method described in Ref. [51] in which
the initial configuration is constructed by decomposing the
halo density profile into radial eigenfunctions (see also
Ref. [52]) and multiplying each of them with a random
phase. We extend this to the multifield case by using the
same radial eigenfunctions for the density (appropriately

scaled by ci), but a different set of random phases for each
field. See Appendix A for more details.
We assume that each field has a central soliton and a

surrounding NFW halo with a combined density profile

ρðrÞ ¼
�
ρsolðrÞ if ρsol > ρNFW

ρNFWðrÞe½−ðr=rvirÞ2=2� otherwise:
ð4Þ

The exponential term suppresses the density outside the
virial radius rvir to minimize interactions at the periodic
boundaries of the box.
The NFW profile is given by [6]

ρNFWðrÞ ¼
ρ0

r=rsð1þ r=rsÞ2
ð5Þ

where rs is the scale radius. According to convention,
we define the virial radius as the radius at which the average
density in the enclosed sphere is 200 times the critical
density of the Universe, which also sets the virial mass
inside this sphere, Mvir. Finally, ρ0 is determined by
integrating this profile up to the virial radius.
For a single field, the central solitonic core is well-

described by a fitting formula [53]

ρsolðrÞ ¼
ρs

ð1þ 0.091ðr=rcÞ2Þ8
; ð6Þ

where rc denotes the core radiuswhere thedensity is half of its
central value and ρs¼1.9×109m22

−2ðrc=kpcÞ−4M⊙kpc−3.
We use the virial halo mass Mvir to determine the core

radius rc of the soliton applying the core-halo relation
introduced in [53],

rc ¼ 1.6 ×
1

m22

�
Mvir

109M⊙

�
−1=3

kpc: ð7Þ

This relation has become contested with several works
producing different scaling relationships showing the
sensitivity of results on numerical methods rather than
physics, or even arguing against a universal core-halo mass
relation (see Refs. [54–58] and works discussed therein).
Nevertheless, we assume that it is a sensible estimate of
core size in the multifield case. Finally, we are free to
choose the NFW scale radius in the range between rc and
the virial radius and this choice does not significantly affect
the dynamics of the halo.
For the sake of definiteness, we choose the dwarf galaxy

Eridanus II as a template for the halo as it has been widely
used to test ULDM. Eridanus II has a half-light radius
r1=2¼300 pc [59] and half-light mass M1=2¼1.2×107M⊙
[60]. According to Ref. [61], the half-light radius and the
virial radius are related by r1=2 ≃ 0.015 rvir, corresponding
to rvir¼20 kpc and Mvir ¼ 4π=3 × 200ρ̄r3vir ≃ 3 × 108M⊙.
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This results in the core radius rc ≃ 0.5 kpc and we choose
rs ¼ 2 kpc for the scale radius.

B. Fluctuation statistics

We define the two-point correlation function

ξðdÞ ¼ hδðxÞδðxþ dÞi

¼ 1

V

Z
δðxÞδðxþ dÞd3x ð8Þ

to quantify the smoothness of the density field. We first
obtain the spherically averaged density profiles ρ̄ðxÞ around
the highest-density point which only depends on the
distance x from that point. The overdensity field is

δðxÞ ¼ ρðxÞ − ρ̄ðxÞ
ρ̄ðxÞ : ð9Þ

This quantity is sampled at n random points with coor-
dinates x inside a spherical domain with radius rmax.
We multiply the overdensity in all nðn − 1Þ=2 pairs of

points where two points are separated by a vector d and bin
them according to the distance d ¼ jdj between the pair,

ξðdkÞ ¼
1

nk

Xn
i¼0

Xn
j¼iþ1

δðxiÞδðxjÞWkðjxi − xjjÞ; ð10Þ

where nk is the number of pairs of points in each bin,
and we take the mean value to give the result for the bin.
The window function Wkðjxi − xjjÞ ¼ 1 if the distance
between xi and xj falls into the dk bin, and zero otherwise.
We verify that the sample size n is large enough to ensure
convergence.
The fields are initialized to be completely uncorrelated,

but correlation can in principle grow as the system evolves.
In particular, an overdensity in one field induces a local
gravitational well which influences the dynamics of the

other fields. This could in principle create a correlation
between the fields which would grow over time. To assess
this possibility we introduce the reduced one-point covari-
ance or correlation parameter

ζðxÞ ¼ hδ1ðxÞδ2ðxÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδ1ðxÞ2i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδ2ðxÞ2i

p ; ð11Þ

where h� � �i again denotes a spatial average. For completely
correlated fields ζ ¼ 1, for anticorrelated fields ζ ¼ −1,
and ζ ¼ 0 for entirely uncorrelated fields.

III. SIMULATIONS

A. Equal-mass

We performed simulations with ULDM mass m22 ¼ 5
and one, two, and four ULDM fields. Each field in the
multifield simulations is initialized with the same radial
eigenfunctions, but different random phases. The granules
of the different fields are thus initially uncorrelated. We
evolve this system through Oð30Þ oscillation periods, or
roughly 5 Gyr. Transients associated with the relaxation
of the initial state decay over the first two or three
oscillation times.
The density on a slice through the center of the

simulations is shown in Fig. 1, at a representative time
(1.6 Gyr). As the number of fields increases, the solitonic
core retains its shape because there is a central overdensity
in each of the constituent fields. At the same time, the
granular overdensities in the surrounding halo are visibly
smoothed out.
Figure 2 shows the evolution of the maximum density,

which corresponds to the central density of the soliton, as a
function of time. In all cases we see oscillations in the
solitonic core [46,49], along with an initial transient. In the
multifield scenarios, the central oscillations in constituent
fields are synchronized. While they initially overlap owing
to our choice of initial conditions, there is also a clear

FIG. 1. Total density around the center of the halo for the simulations involving one field, two fields, and four fields. The total density
becomes progressively smoother as the number of fields increases.
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synchronization over time, presumably maintained by their
mutual gravitational coupling.
The two-point correlation function for the equal-mass

simulations is shown in Fig. 3. It is calculated at an arbitrary
time during the simulations. The value of ξðrÞ is close to
zero for scales much larger than the de Broglie wavelength.
Critically, ξðrÞ is consistent with a 1=N dependence, from
which we can infer that the amplitude of the overdensity
decreases in proportion to

ffiffiffiffi
N

p
, i.e. in the multifield case

δðxÞ → δðxÞ= ffiffiffiffi
N

p
. This scaling is also consistent with

simulations of vector dark matter [43] which, with no
self-interactions, has three independent components and
interference is suppressed by 1=

ffiffiffi
3

p
, relative to the scalar

case. To compute ξ we sampled the overdensity in random
points from a spherical domain centered on the center of the
simulation box with a radius of rmax ¼ 10 kpc. While the
solitons undergo a random walk [62,63] around their initial
position, they are rarely found more than 1.0 kpc from the
center of the box, and usually within 0.5 kpc. This permits

us to center our spherical domain on the box rather than the
location of the soliton.
If the granules developed spatial correlation over time,

the suppression of the overdensity observed in Fig. 3 would
diminish. We use the correlation parameter ζ [see Eq. (11)]
to test whether such correlation develops, and show ζ for
the two-field and four-field simulations in the top two
panels of Fig. 4. At the start of each simulation, constituent
fields are initialized with uncorrelated fluctuations which

FIG. 2. The density in the center of the soliton for the simulations with only one field (top), two fields (middle), and four fields
(bottom). We show densities of individual constituents ρi, as well as the total density ρtot.

FIG. 3. Two-point correlation function of the total overdensity
for the three equal-mass simulations at an arbitrary time. We see
that ξ ∼ 1=N and that the fields are fully uncorrelated at scales
much larger than the de Broglie length.

FIG. 4. The value of the correlation parameter for a combina-
tion of two constituent fields in simulations with two (top panel)
and four (middle panel) fields. In the four-field case, we show
only the correlation between two arbitrarily selected fields; other
combinations give very similar results. For reference, we show
the same statistical measure for two unrelated one-field simu-
lations (bottom panel). The uncertainty of ζ at each time is
captured by the standard error which is shown as the shaded area
around each line.
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manifests as ζðt ¼ 0Þ being around zero. We present results
for cutoff radii of rmax ¼ 5, 10, and 15 kpc. A small
centrally positioned sphere of radius 3rc was excised from
the sampling in order to exclude the solitonic core where a
positive correlation is to be expected. In practice, however,
since the volume of this sphere is tiny compared to the rest
of the sampling domain, including this region would not
significantly change our results.
In each of the multifield runs ζ is initially close to zero,

but a small, positive correlation between the fields develops
in the first 0.5 billion years of simulated evolution.
However, this growth does not continue and the correlation
remains small on timescales akin to the present age of the
Universe. Moreover, while we have not made an exhaustive
study we do see that the correlation is roughly similar in
both two- and four-field scenarios.
For comparison, we show the correlation between two

separate single-field simulations in the bottom panel of
Fig. 4. In this case, as expected, ζ fluctuates around zero,
demonstrating that the small positive value of ζðtÞ shown

for the two- and four-field runs is indeed physical, rather
than a computational artefact.
Fig. 4 shows a weak dependence on the radius from

which points are sampled. To investigate this dependence,
we plot ζ in Fig. 5 as a function of radius at the initial time
and at 1.62 and 4.87 billion years. We observe that initially
ζ is close to zero between 10 kpc < r < 15 kpc but it
increases as the simulation runs. This is due to the fact that
halos are initialized with eigenfunctions up to 20 kpc and
have a smooth radially symmetric profile beyond this
radius. This means that ζ ¼ 1 outside this region (see also
Appendix A). As time progresses, some of this “smooth-
ness” leaks from the region outside 20 kpc into the inner
parts of the halo.

B. Multimass case

To investigate the smoothing of the granular structure
with unequal masses we examine a representative two-field
scenario, with m22 ¼ 10 and m22 ¼ 5. Figure 6 shows the
density for both constituent fields and the total density at a
representative time. The different de Broglie wavelengths
of the fields are clearly visible and the combined density is
again qualitatively smoother than either of the individual
fields. This is made quantitative by the two-point correla-
tion function which is again suppressed relative to that of
the individual fields, as shown in Fig. 7. In addition, the
granules in the heavy field are smaller so the two-point
correlation function for this field is steeper and reaches zero
at a smaller distance than that of the light field.
This simulation verifies that the suppression of small-

scale structure seen in the equal-mass case carries over to
the multimass scenario. Clearly, this may break down in the
limit of an extreme mass ratio—if one field has a de Broglie
wavelength much larger than the others, it constitutes a
smooth background relative to the structure present in the
more massive fields. However, for mass differences of
Oð1Þ, the qualitative dynamics do not appear to depend on
whether we have strictly equal or merely similar masses.

FIG. 5. The correlation parameter as a function of radius at
three times for a pair of fields in a four-field simulation.

FIG. 6. Densities of the two constituent fields in the two-field multimass scenario (m22 ¼ 10 left and m22 ¼ 5 center), as well as the
total density (right).
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IV. STELLAR DISPERSION CONSTRAINTS

The Oð1Þ density fluctuations resulting from the inter-
ference between different velocity streams in phase space
can have an impact on the stellar dispersion of ultrafaint
dwarf galaxies [27,28]. This is a result of stars experiencing
an effective headwind of granules as they orbit in the
galactic potential which provides random kicks that
increase stellar velocity dispersion. Recently, this effect
has been used to derive strong constraints on the ULDM
mass for single-field scenarios. However, this effect is
quadratically dependent on the amplitude of overdensities,
i.e. Δσ2 ∼ δρ2 (see Appendix B) so it is suppressed in a
multifield ULDM scenario.

A. Equal-mass case

We start by looking at scenarios with N ultralight fields
which all have approximately the samemass.We assume that
the overdensities are fully uncorrelated, ignoring the small but
nonzero alignments found in our numerical simulations in
the previous section. As a star orbits in a halo it encounters
granules from each of the constituent fields. Accelerations
due to each granule add linearly, and we treat the acceleration
due to the granules in each field as independent encounters.
The de Broglie wavelength of each field is given by the
collective macroscopic potential which is mostly unchanged
relative to the single-field case. Therefore, we now have N
uncorrelated copies of the same granular density field. This
increases the number of encounters in the lifetime of the star,
n, by a factor of N, i.e. n → nN.
The total mass fraction in each field, indexed by i, is now

ci ¼ Mi=M. The granule mass, therefore, decreases by
the same factor, i.e. δM → δMðMi=MÞ, and as a result,
the velocity kick from a granule encounter goes as
δv → δvðMi=MÞ. Assuming that all fields contribute to
the total mass equally, we can further deduce δM → δM=N
and δv → δv=N.

The variances add linearly and so we can now write our
constraint for the stellar dispersion as (see Appendix B
for details)

Δσ2obs ≥
nδv2

N
∝

1

Nm3
; ð12Þ

where Δσobs is the observed stellar dispersion.
Consequently, for N ultralight fields with the same mass
and the same mass fraction, the impact of ULDM on stellar
dispersions is relaxed by a factor of N at a given mass.
This is equivalent to the result found for noninteracting
fields with arbitrary spin s [43] with the identification
2sþ 1 ¼ N.
If the mass is not evenly distributed we obtain

Δσ2obs ≥ nδv2
XN
i

�
Mi

M

�
2

∝
1

m3

XN
i

�
Mi

M

�
2

: ð13Þ

B. Multimass case

We calculate the more general multimass bound by
noting that the variances again add linearly. The number
of encounters ni with i-field granules and the amplitude
of the gravitational kicks depends on the field masses,
so we have

Δσ2obs ≥
XN
i

niδv2i

�
Mi

M

�
2

∝
XN
i

1

m3
i

�
Mi

M

�
2

: ð14Þ

If the overall mass is evenly divided between the fields this
simplifies to

Δσ2obs ≥
P

N
i niδv2i
N2

∝
1

N2

XN
i

1

m3
i
: ð15Þ

The resulting stellar dispersion is a strong function of the
mass spectrum. If the masses vary significantly, the term in
the above sum corresponding to the lightest mass field,mL,
dominates the contribution to the velocity dispersion.
Therefore, in the limit ðML

M Þ2=m3
L ≫ ðMi

M Þ2=m3
i , for all

i ≠ L, we find

Δσ2obs ≥
1

m3
L

�
ML

M

�
2

: ð16Þ

If, for example, each field has a roughly equal share of
the total mass and the lightest mass is at least a few times
lighter than the mass of any other field, i.e. 1=m3

L ≫ 1=m3
i ,

stellar dispersion now scales as 1=ðN2m3
LÞ. In contrast to

the equal-mass, equal-mass-ratio case we now have an
additional factor of 1=N because the lightest field has a

FIG. 7. Two-point correlation function for the simulation of two
fields with different masses. The combined density is smoother
than each density separately.
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dominant effect on the heating but only comprises 1=N of
the total mass.

V. CONCLUSIONS AND DISCUSSION

We present simulations of multifield ULDM halos with a
particular focus on how stellar heating constraints from
ultrafaint dwarf galaxies are altered in the presence of more
than one ULDM field. We show that multifield models have
smoother halos which reduce the extent to which orbiting
stars are kicked by encounters with granules relative to the
single-field case. We numerically evolve multifield halos
and compare our results to analytic approximation for the
heating dynamics. We perform the simulations with a
modified version of AxioNyx, for up to four scalar gravita-
tionally coupled fields. We examine one, two, or four
equal-mass fields and two fields with masses varying by a
factor of two.
As the number of constituent fields increases, the total

density field in the halo becomes smoother and the granular
structure is washed out, even though each constituent field
has the same amount of granular structures as the single-
field case. We observe this for both the equal-mass and
multimass cases. In the equal-mass case, the 2-point
correlation function in the halo is proportional to 1=N
and a consistent pattern is seen in the multimass case. This
corresponds to the amplitude of the overdensity decreasing
as 1=

ffiffiffiffi
N

p
.

Importantly, we verify that the suppression of fluctua-
tions persists over time. The granules are effectively
weakly coupled oscillators, so it is conceivable that their
motion could become synchronized, particularly in the
equal-mass case. However, the correlation parameter ζ
between the constituent fields remains small over cos-
mological timescales.
While we demonstrate the 1=

ffiffiffiffi
N

p
dependence of over-

density on N only based on simulations of 1, 2, and 4
fields, this dependence can be extrapolated to higher
numbers of fields. Since we observe that very little
correlation between fields develops, it is evident that
the observed suppression of fluctuations comes from
adding spatially uncorrelated densities and should there-
fore persist for a larger number of fields.
Using analytic approximations we find that the expected

stellar dispersion from gravitational heating of stars in
ultra-faint dwarf galaxies scales as 1=ðNm3Þ for the equal-
mass case, where m is the mass of the ultralight particle.
Consequently, roughly 10 fields would be needed to relax a
bound on the mass by a factor of two. In the multimass
case, the heating strongly depends on how particle masses
are distributed. In particular, it is dominated by the lowest-
mass field if its particle mass mL is at least a few times
lighter than that of any other field and N is not very large. If
all fields contain the same amount of the total mass, stellar
dispersion then scales as 1=ðN2m3

LÞ.

Formal observational bounds would require a more
detailed analysis. Moreover, we note that many of the
tightest bounds that have been proposed based on stellar
dispersion rely on measurements of a small number of
potentially idiosyncratic objects and the available dataset is
likely to improve substantially in the coming years.
Our work is based on halos constructed with eigenmodes

and as the recent analysis by Huang et al. [42] demonstrates,
in realistic cosmological multifield ULDM scenarios, not
all of the constituent fields may form their own solitons.
Moreover, in the limit thatN becomes large, it is conceivable
that none of the fields may form solitons and that the granule
dynamics may also differ from the few-field case. This will
be a worthwhile topic for future inquiry.
Beyond the stellar dynamics, the central region of

postmerger halos is of critical importance to the analyses
of supermassive black hole merger dynamics. A single
soliton undergoes both density oscillations and a random
walk [62,63], potentially reheating an inspiraling super-
massive black hole binary pair. We will address how the
presence of multiple fields affects these phenomena in
future studies.
It has been argued that the condensation of solitons is

driven by the two-body relaxation of granular overdensities
[36]. Therefore, it is possible the multifield picture would
affect this timescale in a way similar to its impact on stellar
dispersion. However, it has yet to be verified that this is the
relevant timescale for soliton formation in realistic halo
formation settings [35]. Future studies of multifield structure
formation, building on the recent work of Huang et al. [42]
would allow this possibility to be assessed. Effects of
multiple fields on the filaments or voids [64] present another
possible research avenue. Separately, there is also a strong
analogy between ULDM dynamics and the gravitational
fragmentation of the inflaton condensate in the very early
universe [65–69] and the dynamics of N-field ULDM may
be mirrored in the primordial universe if inflation is driven
by multiple fields [70–72].
In summary, extending the single-field ULDM to multi-

ple fields significantly alters the resulting cosmological
dynamics. In particular, it reduces the amount of granularity
in a dark matter halo which will in turn relaxes key
observational constraints that are sensitive to the ampli-
tudes of granules around the soliton, e.g. the heating of
stellar orbits in ultrafaint dwarf galaxies. This possibility is
actually more consistent with stringy arguments for the
existence of very light axions—given that they suggest
the existence of many such fields rather than an isolated
singlet—and it has rich cosmological possibilities that are
as-yet unexplored.

ACKNOWLEDGMENTS

We would like to thank Piotr T. Chruściel, Oliver Hahn,
Peter Hayman, Jens Niemeyer, Nikhil Padmanabhan, and
Bodo Schwabe for useful discussions. Simulations presented

MATEJA GOSENCA et al. PHYS. REV. D 107, 083014 (2023)

083014-8



here were performed on Vienna Scientific Cluster (VSC)
(Project No. 71770). A. E. is supported by the U.S.
Department of Energy under Contract No. DE-AC02-
76SF00515. While at Yale, J. Z. was supported by the
Future Investigations in NASA Earth and Space Science
and Technologies (FINESST) grant (Grant
No. 80NSSC20K1538). Research at Perimeter Institute is
supported in part by the Government of Canada through the
Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario
through the Ministry of Colleges and Universities. R. E.,
E. K. and Y.W. acknowledge support from the Marsden
Fund of the Royal Society of New Zealand. This collabo-
ration was partially supported by a Julius von Haast
Fellowship Award provided by the New Zealand Ministry
of Business, Innovation and Employment and administered
by the Royal Society of New Zealand. B. E. acknowledges
support from the Deutsche Forschungsgemeinschaft.

APPENDIX A: EIGENMODES FOR INITIAL
CONDITIONS

Here, we summarize the eigenfunction method for
the construction of stable halos from Refs. [51,52]. We
decompose the wave function of each field Ψ into its
orthogonal eigenmodes ψ jðrÞ which satisfy the time-
independent Schrödinger equation,

�
−

ℏ
2m

∇2 þmΦ
�
ψ j ¼ Ejψ j; ðA1Þ

where Ej is the eigenenergy of that state. The total wave
function is composed as

Ψðr; tÞ ¼
X
j

ajψ jðrÞe−iEjt=ℏ; ðA2Þ

where aj is the amplitude of each eigenmode. In our case,
the time-dependent exponential factor can be omitted
because we only construct the initial conditions and can
therefore use t ¼ 0. This sum is truncated at the eigenmode
whose energy corresponds to the energy of a particle on a
circular orbit at the virial radius rvir.
We then factorize eigenfunctions into their radial and

angular components,

ψ jðrÞ ¼ ψnlmðr; θ;ϕÞ ¼ RnlðrÞYm
l ðθ;ϕÞ; ðA3Þ

where Ym
l ðθ;ϕÞ are the spherical harmonics and the radial

part Rnl is obtained by solving

−
ℏ2

2m
d2u
dr2

þ
�
ℏ2

2m
lðlþ 1Þ

r2
þmΦðrÞ

�
u ¼ Eu ðA4Þ

with the new variable unlðrÞ ¼ rRnlðrÞ.

We use the profile defined in Eq. (4) to solve the Poisson
equation and determine ΦðrÞ which can then be used to
solve Eq. (A4) and to obtain the radial part of the
eigenmodes. This is done by discretizing the radial domain
and rewriting Eq. (A4) in a matrix form. We find the
eigenfunctions of this matrix with a tridiagonal matrix
solver from SCIPY.LINALG.
Once we have the eigenmodes, we can create a con-

structed density using ρconðrÞ ¼ mjΨðrÞj2. Combining
Eqs. (A2) and (A3), as well as using

P
m jYm

l ðθ;ϕÞj2 ¼
ð2lþ 1Þ=4π, the radial profile of the constructed density
becomes

ρconðrÞ ¼
1

4π

X
nl

ð2lþ 1Þjanlj2jRnlðrÞj2: ðA5Þ

The coefficients anl which determine the amplitudes
of each eigenmode are independent of the magnetic
number m. To determine their value we need to minimize
the cost function

Cðρtar; ρconÞ ¼
1

rfit

Z
rfit

0

dr

�
ρcon − ρtar

ρtar

�
2

: ðA6Þ

This is done numerically using the optimization methods
from SCIPY. Once the amplitudes of each eigenmode are
determined, the three-dimensional realization of a ULDM
halo is obtained by performing the sum

Ψðr; θ;ϕÞ ¼
X
nl

anlRnlðrÞYm
l ðθ;ϕÞeifnlm ðA7Þ

in each point ðr; θ;ϕÞ. Furthermore, each eigenmode is
multiplied by a random phase fnlm whose value is between
0 and 2π. This ensures that the constructed wave function
has an imaginary as well as a real part and that the halo is
stable.
To speed up this construction, we use the so-called

isotropic fit described in Ref. [51] which means that the
eigenfunctions are binned by similar energy eigenvalues
and all eigenfunctions in the same bin have the same anl.
We initialize the halo up to the virial radius

rvir ¼ 20 kpc. Outside of this radius, the halo has a smooth
suppressed radially symmetric NFW profile which ensures
that periodic boundary conditions do not affect the dynam-
ics of the halo. There is, however, quite a sharp transition
between the eigenfunctions region and the smooth region
which can produce some spurious effects. This method
could be further improved by smoothing this sharp tran-
sition in some way, but for our purpose, we avoid spurious
effects by analyzing a spherical region within only ∼3=4
of rvir.
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APPENDIX B: STELLAR DISPERSION
CONSTRAINTS IN THE ONE FIELD CASE

Here we discuss the central argument of stellar heating
for a single classical field. Interference between streams
results in the density field being broken into granules with
Oð1Þ oscillations in the density. On the de Broglie scale, the
fluctuations in the density are proportional to the average
density at any given point δρ ∼ ρ, when sufficiently far
from the central soliton that gravitational heating is
dominated by particles encountering granules rather than
the dynamics of the soliton.
The density field of the dark matter is composed of a

collection of such granules. As a star travels in the vicinity
of one of these granules it receives an acceleration due to
the potential gradient of the overdensity. In the weak
deflection limit, this alters the velocity as [73]

δv ¼ 2GδM
rσDM

; ðB1Þ

where r is the impact parameter and assumed to be
approximately the de Broglie wavelength associated with
the granule of size r ∼ λ ¼ ℏ=σDM=m, δM is the total mass
of the dark matter granule δM ∼ δρr3, and σDM is the dark
matter velocity dispersion.

The number of encounters in the lifetime of the star, n, is
given by comparing the granule crossing time r=σDM to the
total integration time t, resulting in n ∼ σDMt=r. As each
encounter kicks the star randomly, we can add the variance
of the kicks linearly and interpret the sum as the predicted
impact of granules on the velocity dispersion of stars due to
the dark matter for a specific model, i.e.

Δσ2pred ∼ nδv2: ðB2Þ

If this is larger than the observed stellar dispersion relation
Δσ2obs then the considered dark matter model can be
ruled out. Using that the stellar dispersion σ� can be
related to the enclosed mass at the half-light radius r1=2
byM1=2 ≈ 3σ2�r1=2=G and that the density is approximately
ρ ¼ M1=2=r31=2, we can rewrite the bounds on the dark
matter mass as

Δσ2obs ≥ nδv2 ¼ 9

�
σ�
σDM

�
4
�
ℏ
m

�
3 t
r41=2

; ðB3Þ

recovering the result in Ref. [28].
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