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Milky Way (MW) satellites exhibit a diverse range of internal kinematics, reflecting in turn a diverse set
of subhalo density profiles. These profiles include large cores and dense cusps, which any successful dark
matter model must explain simultaneously. A plausible driver of such diversity is self-interactions between
dark matter particles (SIDM) if the cross section passes the threshold for the gravothermal collapse phase at
the characteristic velocities of the MW satellites. In this case, some of the satellites are expected to be
hosted by subhalos that are still in the classical SIDM core phase, while those in the collapse phase would
have cuspy inner profiles, with a SIDM-driven intermediate mass black hole (IMBH) in the center as a
consequence of the runaway collapse. We develop an analytical framework that takes into account the
cosmological assembly of halos and is calibrated to previous simulations; we then predict the timescales
and mass scales (MBH) for the formation of IMBHs in velocity-dependent SIDM (vdSIDM) models as a
function of the present-day halo mass, M0. Finally, we estimate the region in the parameter space of the
effective cross section and M0 for a subclass of vdSIDM models that result in a diverse MW satellite
population as well as their corresponding fraction of SIDM-collapsed halos and those halos’ inferred
IMBH masses. We predict the latter to be in the range 0.1–1000M⊙ with a MBH −M0 relation that has a
similar slope, but lower normalization, than the extrapolated empirical relation of supermassive black holes
found in massive galaxies.
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I. INTRODUCTION

The cold dark matter (CDM) model is highly successful
at explaining observations of the large-scale structure of the
Universe (e.g., Ref. [1]). However, it has challenges in
matching observations on small scales, such as in the
regime of dwarf galaxies (for a recent review, see, e.g.,
Ref. [2]). Observationally, these challenges have been
established prominently for dwarf galaxies in the Local
Group and particularly within the Milky Way (MW)
satellites. For instance, the dynamical mass is dominated
by dark matter (DM) in the inner region of several bright
MW satellites yet is low compared to the inner densities of
the plausible subhalo hosts of MW analogs found in
collisionless CDM simulations; this is the classical too-
big-to-fail (TBTF) problem [3,4]. Another recurrent chal-
lenge is that several of the MW satellites are best explained
by density profiles of constant density, known as “cored”
density profiles, rather than the steep inner density slope
found in CDM simulations, referred to as “cuspy” profiles;
satellites that are reported to have cored profiles include
Fornax, Sculptor, Crater II, and Antlia II [5–9]. Overall, it is
now well established that the MW satellites have a diverse

range of internal kinematics, which is likely associated with
a subhalo population that exhibits a considerable diversity
of inner density profiles, from large cores to dense cuspy
systems [10–14]. This diversity is analogous to that of
rotation curves observed in higher mass, gas-rich dwarf
galaxies [15,16].
It is important to emphasize that such dwarf-scale

challenges are only insurmountable within CDM if no
other physical mechanisms related to gas/stellar (baryonic)
physics are considered. There are in fact several baryonic
processes that are known to exist that can alleviate these
challenges. For instance, supernova feedback can inject
energy into the inner DM halo, reducing its density [17]. If
impulsive enough, this is an efficient and irreversible cusp-
core transformation mechanism in dwarf galaxies [18–20].
In addition, tidal forces on the satellite by the MWDM halo
and the MW disk can effectively lower the densities of MW
subhalos if their orbits pass sufficiently close to the disk
[21]. The diverse orbits of the MW satellites combined with
this effect enhance the diversity of inner DM densities
relative to the CDM-only expectations [22]. However, how
efficient these processes are in creating the observed
diversity of the MW satellite population remains uncertain
since, for example, the impact of supernova feedback is
expected to be small in very faint DM-dominated systems*tam15@hi.is
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with low stellar-mass ratios [23]. On the other hand, it has
been argued that the tidal field of the MW system might not
be strong enough to explain the extremely low densities of
bright satellites such as Crater II and Antlia II [24,25].
One exciting possibility is that the properties of the MW

satellites provide clues about the DM nature beyond CDM.
In particular, if DM particles have strong self-interactions,
they can impact the nonlinear evolution of halos, signifi-
cantly reducing their inner densities [26]. Modified N-body
simulations that incorporate self-interacting DM (SIDM)
have shown that the collisions experienced by DM particles
with each other lead to significant momentum exchange.
This process effectively transfers heat from the dynamically
hot outer regions of the halo to the colder central regions,
thus lowering the central density of halos and creating
constant (isothermal) density cores [27–34]. SIDM models
can create sizeable DM cores and alleviate the classical
TBTF problem if the transfer cross section per unit mass,
σT=mχ , is ≳1 cm2 g−1 at the characteristic scales/velocities
of MW satellites ≲50 km=s [35]. It is also possible to
alleviate significantly the diversity of rotation curves in
higher mass dwarf galaxies (characteristic velocities
>50 km=s) if σT=mχ ≳ 2–3 cm2 g−1 [36,37].
Constant cross section SIDM models have been con-

strained more strongly at large scales/velocities. Particularly,
σT=mχ is required to be ≲0.1–1 cm2 g−1 at the scale of
clusters based on gravitational lensing, x-ray morphology,
and dynamical analysis in cluster mergers [38–43]. At
scales corresponding to massive elliptical galaxies, pre-
vious constraints based on x-ray morphology have been
shown to be weaker than anticipated by DM-only simu-
lations [44] once baryonic effects are included. Current
simulations including baryons have shown that σTmχ ∼
1 cm2 g−1 is consistent with the morphologies of elliptical
galaxies [45]. With such constraints at larger scales, a
constant cross section SIDM model is already only nar-
rowly viable as an alternative to CDM to explain the
properties of dwarf galaxies. Recent developments regard-
ing the diversity in the inner densities of the MW satellites
virtually rule out this possibility since, with such a low
cross section, it is not possible to generate very-high-
density satellites such as Willman I [13,46–48].
Remarkably, what is needed for SIDM models to remain

an interesting, viable alternative to CDM is to have even
larger cross sections (> 10 cm2 g−1) at the scale of the MW
satellites in order to trigger the gravothermal collapse phase
(see below). Such large cross sections can be naturally
accommodated by particlemodels with a velocity-dependent
cross section (e.g., through Yukawa-like interactions; see
e.g., Refs. [49–51]), where DMbehaves as a collisional fluid
on small scales and is essentially collisionless at cluster
scales. Long after the core-formation phase, further DM
particle collisions lead to heat outflow from the hotter inner
region to the colder outskirts of the halo. Since gravitaionally
bound systems have negative specific heat, mass/energy is

continuously lost from the inner region,while the density and
temperature continue to grow in a runaway instability that
drives the collapse of the inner core. This phenomenon is
known as the gravothermal catastrophe [52] and is observed
in globular clusters, where the collapse is mainly halted by
the formation of binary stars, which act as energy sinks [53].
For SIDM halos, the physical mechanism is the same, but
without the formation of bound DM states to act as energy
sinks, the collapse continues, eventually reaching a relativ-
istic instability that results in the formation of a black hole
[28,54–57]. If the core-collapse phase has been reached at the
scales of the MW satellites, then the SIDM predictions
become radically different with some of the satellites
expected to be hosted by (sub)halos with SIDM cores, while
those in the collapse phase would have cuspy (collapsed)
inner DM regions [13].
Given the problems with constant cross section SIDM

models mentioned above, it has been argued recently that
such models could be reconciled with the MW satellite
population by suggesting that the collapse phase might be
accelerated in the host (sub)halos of MW satellites by mass
loss via tidal stripping [58], since mass loss enhances the
negative temperature gradient in the outskirts of the (sub)
halo and makes the heat outflow more efficient.
Accelerated core collapse has been invoked to explain
the diversity of the MW’s dwarf spheroidal galaxies in
constant cross section models with σT=mχ ≳ 2–3 cm2 g−1
[14,58–60]. However, Ref. [61] recently simulated SIDM
subhalo satellites as they orbit the MW system and found
that energy gain due to collisions between particles in the
subhalo and the host instead inhibits core collapse in
subhalos.
Another study, Ref. [62], showed that subhalos in models

with constant cross sections between 1 and 5 cm2 g−1 are not
dense enough to match the densest ultrafaint and classical
dwarf spheroidal galaxies in the MW, and 5 cm2 g−1 is not
sufficient to enforce collapse even with the tidal effect of a
MW disk and bulge. This seemingly closes the last possibil-
ity for velocity-independent SIDM models (see also dis-
cussion in Sec. II G). On the other hand, this result motivates
the exploration of velocity-dependent SIDM models,
where recent full cosmological simulations with a specific
benchmark model [13,63] have shown that cross sections
≳50 cm2=g at velocities ≲30 km=s naturally result in a
diverse bimodal population of MW satellites, predicting
both cuspy, high-velocity dispersion subhalos, consistent
with dense systems (particularly ultrafaint satellites), and
cored, low-velocity dispersion subhalos, consistent with
brighter low-density satellites. These results have been
confirmed and expanded to generic velocity-dependent
SIDM models by the recent cosmological simulation suite
TangoSIDM [64].
In this work, we adopt the benchmark SIDM model

presented in Refs. [13,63] to explore the consequences of
gravothermal collapse for the formation of intermediatemass
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black holes (IMBHs) in the MW satellite population. Our
goal is twofold: (i) to compile a simple analytical framework
(calibrated to the simulations in Refs. [13,63]) that provides
predictions for the formation timescales and mass scales of
IMBHs in SIDM halos under arbitrary velocity-dependent
cross sections, and (ii) to provide the range of IMBHmasses
that is expected given the plausible range of cross sections
that produce a diverse MW satellite population, i.e., a
bimodal—core-cusp—satellite distribution.
This paper is organised as follows. In Sec. II, we describe

our model for the evolution of SIDM halos. We start with
our adopted primordial halo density profile and the con-
centration-mass relation, describe our computation of the
threshold time for the cusp-core transformation, and finally
estimate the timescales and masses of IMBHs expected in
the SIDM model due to gravothermal collapse. We also
include the impact of tidal stripping. In Sec. III, we present
our results, discuss how they are impacted by the various
properties of the model, and put our work in the context
of other related studies. Finally, we draw conclusions in
Sec. IV.

II. GRAVOTHERMAL COLLAPSE
IN SIDM HALOS

Our goal in this section is to follow the relevant stages in
the evolution of an SIDM halo: (i) formation of the
progenitor cuspy (i.e., CDM-like) halo, (ii) development
of the central core, and (iii) gravothermal collapse of the
core and formation of the black hole. In addition, we
discuss how tidal stripping might affect the gravothermal
collapse timescale.

A. Cosmic evolution of SIDM halos

In an SIDM halo where thermalization occurs due to
close, rare interactions with large momentum transfer, a
relaxation time can be defined due to self-scattering at the
characteristic radius1 r−2, which is given by

tr ¼
λ

aσvel
; ð1Þ

where σvel is the characteristic velocity dispersion, a ¼ffiffiffiffiffiffiffiffiffiffi
16=π

p
for hard-sphere scattering of particles with a

Maxwell-Boltzmann velocity distribution [54] and λ−1 ¼
ρðr−2ÞσT=mχ is the mean free path, which is inversely
proportional to the local density ρðr−2Þ and the cross
section per unit mass σT=mχ (evaluated at the characteristic
velocity σvel in the case of velocity-dependent SIDM
models). Therefore, the scattering rate (mean free path)

is higher (shorter) in denser regions. Within the region
where the age of the inner halo is comparable to the
relaxation time, self-scattering has a significant impact on
the inner DM structure turning the cusp into a core.
In CDM, where DM is collisionless, the velocity

dispersion peaks near the scale radius, r−2. By contrast,
in SIDMs, elastic scattering leads to momentum exchange
between DM particles, which, given the positive gradient of
the velocity dispersion profile within r−2, effectively results
in heat transfer from the outside in, up to the radius where
the velocity dispersion peaks. As a result, a central
isothermal core is formed, which continues to grow until
it is roughly the size of the scale radius and thus reaches a
quasiequilibrium state. After core formation, subsequent
collisions lead to momentum/energy flow from the center
to the outskirts of the halo, where the velocity dispersion
profile has a negative slope. Heat loss in the core results in
the infall of DM particles to more tightly bound orbits,
where they experience more interactions and are heated
further due to the negative heat capacity of the self-
gravitating system; a similar phenomenon occurs in globu-
lar clusters, [65]. Without energy sinks, the core suffers a
runaway instability, transforming the core into an ever
denser cusp, which ultimately results in the formation of a
black hole [54].
An SIDM halo undergoes gravothermal collapse in a

timescale tcoll ≈ 382tr, as described in Sec. II F. The
relaxation time depends on the halo mass and time of
assembly/formation (described in Sec. II D).

B. Primordial density profile

We assume that in the SIDM cosmology DM assembles
into spherical self-gravitating halos in virial equilibrium,
with a primordial structure that is the same as that of CDM
halos. This is a reasonable assumption at sufficiently high
redshift when the average number of collisions in the center
of halos is still well below one per Hubble time, and thus
the structure of the halo has been affected only minimally.
Cosmological simulations have shown that DM core sizes
are only a small fraction of their value at z ¼ 0 when the
Universe is around 1 Gyr old (z ∼ 5), e.g., Ref. [66].
The spherically averaged density profiles of equilibrium

collisionless CDM halos are well approximated by a two-
parameter formula known as the Navarro, Frenk, and White
(NFW) profile [67,68],

ρNFWðrÞ ¼ ρcrit
δchar

r=r−2ð1þ r=r−2Þ2
; ð2Þ

where r−2 is the radius at which the logarithmic slope of the
profile is −2, ρcrit is the critical density of the Universe, and
the characteristic overdensity δchar is given by

δchar ¼
200

3

c3

kðcÞ ; ð3Þ

1From here on in, we assign the characteristic radius to the
scale radius of the halo, which for the NFW profile is equal to r−2,
the radius at which the logarithm slope of the profile is −2; see
Sec. II B.

GRAVOTHERMAL COLLAPSE OF SELF-INTERACTING DARK … PHYS. REV. D 107, 083010 (2023)

083010-3



where kðcÞ ¼ lnð1þ cÞ − c=ð1þ cÞ and the concentration
c is defined as c ¼ r200=r−2 with r200 being the virial
radius, which is defined in this work as the radius where the
mean density of the halo is 200 times ρcrit.

C. Concentration-mass relation and formation redshift

The NFW profile is to first order a one free parameter
profile since the virial mass of the halo and its concentration
are strongly correlated, with a 1σ scatter in log c of order
0.1 [68,69]. We use the concentration-mass relation mod-
eled in Refs. [70,71], where the authors link the enclosed
mass profile of a halo at a given time with the prior mass
aggregation history of the halo. In particular, following
Ref. [71], we can define an assembly/formation redshift of
a halo of mass M0 at a redshift z0 as the redshift z−2 when
the enclosed mass within r−2 at z0, M−2, was first
assembled into progenitors more massive than a certain
fraction f ofM0.M0 is defined as the mass within the virial
radiusM0 ¼ ð4π=3Þr3200200ρcrit. The virial mass of the halo
at z−2 is equal to M−2 and can be computed from the
assembly history:

M−2 ¼ M0 × erfc

�
δcðz−2Þ − δcðz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðσ2ðf ×MÞ − σ2ðMÞÞ
p

�
: ð4Þ

The expression in parentheses on the right-hand side
corresponds to the collapsed mass fraction in Extended
Press-Schechter theory [72], where δcðz−2Þ ¼ δc=DðzÞ is
the redshift-dependent critical density for collapse with the
linear growth factor DðzÞ and σðMÞ is the rms mass
variance. For the NFW profile, the mass is connected to
the concentration by

M−2

M0

¼ kð1Þ
kðcÞ ; ð5Þ

hρ−2i
ρcritðz−2Þ

¼ 200c3
kð1Þ
kðcÞ : ð6Þ

The key assumption in the model is that the mean density
inside r−2 is directly proportional to the critical density of
the Universe at an assembly redshift z−2,

hρ−2i
ρcritðz−2Þ

¼ C

�
Hðz−2Þ
Hðz0Þ

�
2

; ð7Þ

where C is a free parameter. Throughout this paper, we use
f ¼ 0.02 and C ¼ 575 [73]. Inserting Eqs. (5) and (6) into
Eq. (4), we have a transcendental equation for the formation
redshift zform ¼ z−2 as a function of M0, which can then be
used to obtain the concentration c.

D. Threshold time for the cusp-core transformation

As a benchmark case,we set the halo formation time z−2 of
an SIDM halo extant at the present day to be the threshold
epoch at which the cusp-core transformation begins,
zcc ¼ zform ¼ z−2. At this epoch, we assume that the
SIDM halo has a NFW profile with a virial mass equal to
the enclosed mass within r−2 at z0 ¼ 0, Mðz−2Þ ¼ M−2jz0 .
The concentration of this primordial SIDMhalo is calculated
by repeating the method described in Sec. II C, but this time
setting z0 ¼ z−2. The range of z−2 values for the range of
present-day halo masses that we are interested in,
108 ≤ M0 ≤ 1012M⊙, is given by 6.1 ≥ z−2 ≥ 3. As we
noticed earlier, given this relatively high redshift range,
our choice of setting zcc ¼ z−2 is reasonable because the
effect of collisions in the inner halo is minimal at early times.
The next step is to develop a method to calculate the

relevant timescale for gravothermal collapse (Sec. II F), for
which we build a simplified model in which the evolu-
tionary stages of the SIDM halo occur in isolation. This
approach is somewhat different than the full cosmological
setting, where halo mergers are an active mechanism of
halo growth with transitory stages that affect the inner
centre of the halo. Although the cuspy NFW profile of
CDM halos is resilient to merger activity, e.g., Ref. [74], the
situation might in principle be more complex in an SIDM
scenario with gravothermal collapse for the following
reason. In the standard SIDM model without core collapse,
the merger between a small halo with a larger one is that of
two shallow (corelike) profiles with the smaller one having
progressed further in its core development since it forms
earlier; the result of this merger is a DM profile that is also
cored [75]. Thus, we would naively expect that halo
mergers will not delay the cusp-core transformation.
However, cosmological mass infall in general might delay
the core-collapse phase by pumping energy into the central
region to stabilize the core [76]. Moreover, in a velocity-
dependent SIDM halo with a sharp difference between the
cross section of low-mass halos to that of large mass halos,
the former are expected to go through the cusp-core-
collapse stages much faster than the latter, resulting in a
scenario in which mergers between low-mass core-
collapsed (cuspy) halos and high-mass cored halos are
possible. This has the potential to delay the core-collapse
phase.
Since our goal is to provide a simple, first-order estimate

for the black hole formation time, rather than a compre-
hensive calculation, we assume that in a relatively extreme
scenario, a significant merger would reset the clock for the
cusp-core-collapse stage. For this event, we adopt the last
major merger (LMM), which we define as a mass ratio of
10∶1 or higher between the two merging halos, and we
label the corresponding redshift as zLMM. In order to
calculate zLMM, we use the fitting formula for the mean
merger rate dNm=dξ=dz—in units of mergers per halo per
unit redshift per unit of mass ratio ξ—for a halo of mass
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MðzÞ at redshift z obtained from the combined Millennium
and Millennium II datasets in Ref. [77]:

dNm

dξdz
ðMðzÞ; ξ; zÞ

¼ A

�
MðzÞ

1012M⊙

�
α

ξβ exp

��
ξ

ξ̃

�
γ
�
× ð1þ zÞη; ð8Þ

where the best-fit parameters are ðα; β; γ; ηÞ ¼ ð0.133;
−1.995; 0.263; 0.0993Þ and ðA; ξ̃Þ¼ ð0.0104;9.72×10−3Þ.
ThemassMðzÞ is given by integrating themeanmass growth
rate of halos, taken from Ref. [77]:

dM
dt

¼ h _Mimean ¼ 46.1M⊙ yr−1
�

M
1012M⊙

�
1.1

× ð1þ 1.11zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

q
; ð9Þ

whereΩm andΩΛ are, respectively, the DM and dark energy
density parameters evaluated at the present day.
The cumulative number of mergers Nmðξmin;M0; z0; zÞ

for a halo of mass M0 at redshift z0 is then given by

Nmðξmin;M0;z0;zÞ¼
Z

z

z0

dz
Z

1

ξmin

dξ
dNm

dξdz
½MðzÞ;ξ;z�; ð10Þ

where we use the minimummass ratio for a major merger to
be ξmin ¼ 0.1. When the above equation equals 1, meaning
that the halo experienced one major merger event, we find
the corresponding zLMM for given halo of mass M0; we
therefore only consider the properties of halos extant
at z0 ¼ 0.
Having adopted all these considerations, we assume that

a viable range for the threshold epoch of the cusp-core
transformation is given by z−2 < zcc < zLMM. The corre-
sponding cosmic time for this epoch is given by

tðzÞ ¼ t0

Z
1=ð1þzÞ

0

da
_a
¼

2 sinh−1
� ffiffiffiffiffi

ΩΛ
Ωm

q
ð1þ zÞ−3=2

�

3H0

ffiffiffiffiffiffiffi
ΩΛ

p :

ð11Þ

where t0 is the age of the Universe and H0 is the Hubble
parameter. For reference, Fig. 1 shows the range of
plausible threshold times as a function of halo mass M0.

E. Velocity-dependent SIDM cross section

The cross section per unit mass, σ=mχ , is the key
physical property that characterizes a specific SIDMmodel.
We consider a class of models where self-scattering
between DM particles are mediated by a massive force
carrier of mass mϕ through an attractive Yukawa potential
with coupling strength αc [29,51,78]. Furthermore, we
assume that the elastic scattering between SIDM particles

can be modeled by the screened Coulomb scattering
interaction observed in a plasma, which in the classical
regime is well fitted by the transfer cross section,

σT
σmax
T

≈

8>><
>>:

4π
22.7 β

2 ln ð1þ β−1Þ; β < 0.1
8π
22.7 β

2ð1þ 1.5β1.65Þ−1; 0.1 < β < 103

π
22.7 ðln β þ 1 − 0.5 ln−1 βÞ2; β > 103;

ð12Þ
where β ¼ πv2max=v2 ¼ 2αcmϕ=ðmχv2Þ and σmax

T ¼
22.7=m2

ϕ and v is the relative velocity of the DM particles.
Here, vmax is the velocity at which ðσTvÞ peaks at a transfer
cross section equal to σmax

T .
In this work, we use the benchmark velocity-dependent

SIDM model introduced in Ref. [13] with vmax ¼ 25 km=s
and σmax

T ¼ 60 cm2 g−1. Reference [13] performed cosmo-
logical zoom simulations of an MW-size halo in which self-
interactions were extremely frequent, and showed that the
interaction frequency of DM particles in the subhalo
centers was sufficient to trigger the gravothermal catastro-
phe phase in a fraction of the subhalo population. They
subsequently demonstrated that frequent self-interactions
constitute an alternative explanation for the diverse dis-
tribution of inner DM densities found in the MW satellite
population (see Sec. I).
In our idealized model, we are interested in the character-

istic scales of a given halo that are relevant to set a single
characteristic cusp-core-collapse timescale. In particular,
we assign a single relaxation timescale for a halo due to
self-scattering using Eq. (1). We set a single characteristic
velocity dispersion σvel, which is given by the maximum
of the velocity dispersion profile σvel ¼ σrðrmaxÞ of the
primordial NFW halo at the beginning (zcc) of the cusp-core

FIG. 1. Cosmic time for the cusp-core transformation threshold
of SIDM halos as a function of the present-day halo mass M0.
The blue dotted line is the function of zLMM, and the yellow
dotted line is the function of zform. The horizontal line indicates
the infall time of subhaloes, which we fix to zinfall ¼ 1
(see Sec. II G).
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transformation. The radius at which this maximum occurs
is of Oð1Þ of the maximum size of the SIDM core that
eventually develops, and the value of σrðrmaxÞ sets the
temperature of the fully developed isothermal core. We
now describe in detail how we calculate σrðrmaxÞ.
We start by referring to the local radial velocity

dispersion σrðrÞ, which can in principle be obtained self-
consistently by solving the Jeans equation,

1

ρ

d
dr

ðρσ2r Þ þ 2β
σ2r
r
¼ −

dΦ
dr

; ð13Þ

where β ¼ 1 − σ2θ=σ
2
r is the velocity anisotropy parameter

and Φ is the gravitational potential, which for the NFW
profile is given by

ΦðsÞ
V2
200

¼ −
1

kðcÞ
lnð1þ csÞ

s
; ð14Þ

where s ¼ r=r200 and V200 is the circular velocity at
r ¼ r200:

V2
200 ¼ G

�
M0

2 ×
4

3
π200ρcrit

�
1=3

: ð15Þ

Here, we assume the simplest case of isotropic orbits,
where σθðrÞ ¼ σrðrÞ and β ¼ 0. In this case, the solution to
the Jeans equation can be computed analytically [79],
giving the one-dimensional velocity dispersion,

σ2r
V2
200

ðs; β ¼ 0Þ ¼ 1

2kðcÞ c
2sð1þ csÞ2

�
π2 − lnðcsÞ − 1

cs
−

1

ð1þ csÞ2 −
6

1þ cs
þ
�
1þ 1

c2s2
−

4

cs
−

2

1þ cs

�

× lnð1þ csÞ þ 3ln2ð1þ csÞ þ 6Li2ð−csÞ
�
; ð16Þ

where Li2ðxÞ is the dilogarithm. Using Eq. (16), we
compute σvel ¼ σrðrmaxÞ for a given value of M0 and c.
Finally, we compute a characteristic value for the transfer

cross section hσmaxi by computing the thermal average of
the transfer cross section at rmax, i.e., within the SIDM core.
We assume that the velocity distribution of DM particles
can be approximated by a Maxwell-Boltzmann distribu-
tion. Although such a distribution is not self-consistent
with the NFW profile, e.g., Ref. [80], it is a reasonable
approximation for our purposes because the distribution
within the SIDM core will eventually become Maxwellian
[81]. Therefore,

hσmaxi ¼
1

2σ3vel
ffiffiffi
π

p
Z

ðσTÞv2e−v2=4σ2veldv: ð17Þ

For reference, Fig. 2 shows the characteristic value for the
transfer cross section per unit mass as a function of halo
mass M0 today for the benchmark SIDM model (vd100)
from Ref. [13] that we use for calibration in our work.

F. Mass scales and timescales for black hole formation

We estimate the timescale for the formation of a black
hole in the center of an SIDM halo following the procedure
laid out by Ref. [82]. This timescale applies after the
threshold time for the cusp-core transformation zcc of
the primordial NFW halo as discussed in Sec. II D. The
formula from Ref. [82] is based on the (spherical) grav-
othermal fluid model, which has been used in the past to
study the gravothermal catastrophe in SIDM halos, e.g.,
Refs. [54,56,57,83–86]. The recent study by Ref. [82] is

particularly suitable for our work since, contrary to pre-
vious papers, it considers velocity-dependent cross sec-
tions. In Appendix A, we make a comparison between that
reference’s estimate of the collapse time and that made in
Ref. [57]. Before describing the key equation, we present a
short summary of the physical process based on Ref. [54].
In the gravothermal evolution of an SIDM halo, we can

distinguish between a long mean free path (LMFP) regime,
where the typical distance a particle travels is much longer
than the gravitational Jeans scale and the short mean free
path (SMFP) regime, where the situation is reversed. In the
LMFP regime, particles orbit the inner halo many times

FIG. 2. Characteristic transfer cross section per unit mass as a
function of a halo mass at z ¼ 0 [Eq. (17)] for the benchmark
SIDM model (vd100) from Ref. [13].
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unperturbed before being scattered, while in the SMFP
regime, particle motions in the core are constrained by
multiple collisions. In these two regimes, the heat con-
duction and the mass transfer between the core and the
extended halo are different.
Initially, as the core is growing in size, both the core and

extended halo are firmly in the LMFP limit; during this
phase, the inner core is approaching the transitional
regime, in between the LMFP and the SMFP where the
Knudsen number is of Oð1Þ. While the extended halo
remains nearly collisionless, with nearly the same pri-
mordial NFW density profile, the core evolves, and as the
gravothermal collapse is triggered, it transitions into the
SMFP regime where it essentially behaves as a fluid.
Although the velocity dispersion and the density of the
core both increase, the latter increases much faster with
time, d logðσ2r Þ=d logðρcoreÞ ≈ 0.1 [54], and it drives the
core into two components: a dense SMFP inner core that
continues to evolve, and a more dilute LMFP outer core,
with a nearly constant density, which connects to the
extended nearly unperturbed NFW halo. Eventually, the
temperature in the inner core is so high that it enters
the relativistic regime and dynamical instability occurs
that leads to the formation of the black hole [54] (see also
Ref. [87]). The classical gravothermal fluid formalism
cannot be used once the system becomes relativistic.
However, the classical formalism in the LMFP regime
allows us to follow the evolution of the core to high central
densities, and in fact, since most of the evolution occurs in
the LMFP regime, with only the last instants prior to
collapse being in the SMFP regime, the timescale for
collapse is dominated by the LMFP evolution of the core,
and thus the classical approach can be used to estimate the
timescale of interest.
According to Ref. [82], the amount of time required for

the primordial NFW to evolve from a central cusp to a
SIDM core and then to a fully collapsed cored when a black
hole forms—i.e., the cusp-core-collapse timescale—is
given by

tcoll ≈ 382trðzccÞ; ð18Þ

where trðzccÞ is the relaxation time, defined as the mean
time between individual collisions, which we introduced
briefly at the beginning of Sec. II A [see Eq. (1)].
Reference [82] gives a formula for trðzccÞ based on the
properties of the primordial NFW halo,

trðzccÞ ≃ 1.47 Gyr ×

�
0.6
C

�

×
�

cm2=g
σc;0ðzccÞ

��
100 km=s
σvelðzccÞ

��
107M⊙ kpc−3

ρsðzccÞ
�
;

ð19Þ

where C is a fitting parameter, which we set to 0.57
following Ref. [82]. The parameter σc;0 is a type of cross
section average given by

σc;0ðzccÞ ¼
3

2

hσviscv3i
hv3i ; ð20Þ

where σvisc ¼
R
dσ sin2 θ is the viscosity cross section with

the scattering deflecting angle θ. The difference between
σvisc and σT is small and depends on the SIDM particle
physics model, which gives the specific angular depend-
ence for the differential cross section [33]. We assume that
σvisc ≈ σT for isotropic scattering, since our results are
calibrated on the SIDM simulations by Ref. [13], which use
elastic isotropic scattering using σT. The cosmic time from
the big bang until the formation of the black hole is finally
given by

tBH ¼ tðzccÞ þ 382trðzccÞ; ð21Þ

where tðzccÞ is the time at which the core-collapse transition
begins, and is computed with Eq. (11).
The black hole is expected to form from material in the

SMFP region. Reference [55] estimates the mass of this seed
black holeMBH based on themass in the core,Mcore, that is in
the SMFP regime. In the late stages of the core evolution, the
Mcore-σvel relation determines the mass of the core at the
relativistic instability, which occurs when σvel ≈ c=3. When
the inner core is sufficiently dense, mass is continuously lost
from its surface as outer layers cool and expand to join the
outer core, with Ref. [54] predicting that the Mcore-σvel
relation settles to dlogMcore=dlogðσ2velÞ≈−0.85. Therefore,
the seed black hole mass is predicted to be

MBHðz�Þ ¼ Mcoreðz�Þ
�

σ2velðz�Þ
ðc=3Þ2 km2 s−2

�
0.85

: ð22Þ

The region outside the collapsed core relaxes to a dynami-
cally stable equilibrium system of particles that continue to
orbit the central black hole, and subsequent interactions in
this region will feed the black hole.
We should note that the behavior above has been

developed for a system in isolation. In an evolving halo
growing in a cosmological scenario, mass accretion might
modify this behavior as we described in Sec. II D. A
detailed treatment of the impact of cosmological accretion
in the gravothermal fluid equations, and in particular on the
scale of the SMFP region, goes beyond the scope of this
work. Instead, we consider a simple approach in which we
establish a range of plausible black hole masses by
considering the epoch z� at which Eq. (22) should be
evaluated. A lower estimate for the seed black hole mass
would be to set z� ¼ zcc, that is to assume that the scale of
the core (LMFP region), and thus the scale of the collapsing
SMFP region, is set by the properties of the halo, essentially
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its mass MðzccÞ, at the threshold time for the cusp-core
transformation. This, however, ignores the fact that the halo
mass grows during the cusp-core transformation and up to
the point of collapse [zBH given by Eq. (21)]; the size of the
core should thus grow as well, affecting the scale of the
collapsing region. An upper estimate for the seed black hole
mass can then be given by setting z� ¼ zBH, that is to
assume that the size of the SMFP region is set by the last
stages of the cusp-core-collapse evolution when the LMFP
region (core) has grown to a size set by MðzBHÞ. We then
bracket the plausible range of black hole masses by

MBHðz� ¼ zccÞ < MBH < MBHðz� ¼ zBHÞ: ð23Þ

To estimate the core mass Mcore in Eq. (22), we use the
results of the gravothermal fluid approach in Ref. [82] [the
same reference we use in Eq. (19)] where it is estimated that
the maximal core size of the halo is

rcore ≃ 0.45r−2 ð24Þ

before the collapse regime begins. This core radius is
defined as the radius at which the local density is half that
of the central density. The core size estimate in Eq. (24) is
roughly consistent with simulation results where the core
size is found to be ≲r−2 [66,88]. Assuming that the region
beyond the core remains essentially collisionless and with a
profile that matches the NFW distribution, we then have

Mcoreðz�Þ ¼ MNFWðrcore; z�Þ; ð25Þ

whereMNFWðrÞ is given by the NFW radial density profile
[Eq. (2)] for a halo with a mass M0ðz�Þ given by the mass
accretion history formula [Eq. (9)] evaluated at z� and a
concentration cðz�Þ obtained from this mass using the
model described in Sec. II C.

G. Impact of tidal stripping in the core-collapse phase

Tidal stripping is the process by which DM in the
outskirts of a smaller halo is removed by tidal forces as
it orbits within a larger host. References [14,58–60] argued
that the tidal interactions with the halo and central galaxy of
the host accelerate the core-collapse timescale by increas-
ing the temperature, thus making heat outflow more
efficient. These previous works have invoked tidal accel-
eration of core collapse as an explanation for the diversity
of the MW’s dwarf spheroidal galaxies (dSphs), based on
constant cross section SIDM models with relatively low
cross sections σT=mχ ∼ 1–5 cm2 g−1, while the velocity-
dependent model presented in Ref. [13] (see also
Refs. [63,89]) relies on large cross sections σT=mχ >
10 cm2 g−1 at the characteristic velocities of the dSphs
to ensure core collapse.
In order to take into account the impact of tidal stripping

in accelerating the core-collapse phase, we use the results

presented in Ref. [58], where tidal stripping is assumed to
modify the NFW profile for r > rt in the following way:
ρNFWðrtÞ × ðrt=rÞpt where pt ¼ 5 (based on [90]) and rt is
a truncation radius. This modified profile is a simple way to
incorporate the impact of mass loss from the outer region in
the timescale for collapse. We use the case of rt ¼ r−2 and
estimate the acceleration of the gravothermal catastrophe
due to tidal stripping as

tcoll;t ≈
1

10
tcoll; ð26Þ

where tcoll is the timescale for core-collapse without the
tidal effects [see Eq. (18)]. We only apply Eq. (26) for (sub)
halos after the infall redshift into the MW halo, which for
simplicity we fix to be zinfall ¼ 1 for the entire (sub)halo
mass range we consider in this work.2

III. RESULTS AND DISCUSSION

Our main goal is to investigate the consequences for
velocity-dependent SIDM models, which invoke core
collapse to explain the diversity of the MW satellite
population (such as that in Ref. [13]), on the formation
timescales for IMBHs and their masses.
Figure 3 shows the gravothermal collapse timescale—

which is approximately the BH formation timescale—as a
function of the halo’s present day mass M0 [Eq. (21)]. The
solid lines—together with their shaded regions, which are
given by the scatter in the cosmological concentration-mass
relation—bracket the range of possible threshold epochs for
the cusp-core-collapse evolution to begin (see Sec. II D),
with the yellow corresponding to the assembly redshift of
the primordial NFW halo zcc ¼ zform ¼ z−2, while the blue
corresponds to the epoch of the last major merger
zcc ¼ zLMM. The points where the right edge of the blue
region, tBHðzLMMÞ, and the right edge of the yellow region,
tBHðzformÞ, cross the z ¼ 0 horizontal line roughly indicate
the maximum mass of an isolated SIDM halo that could
undergo core collapse by the present day, for both of these
cases. For the case where zcc ¼ zLMM, the maximummass is
∼3 × 109M⊙, and for zcc ¼ zform, it is ∼5 × 1010M⊙.
Since we are interested in the (sub)halos that could host

the MW satellites, we have considered the impact of tidal
effects in the timescale for black hole formation. As
discussed in Sec. II G, for simplicity, we assume that all
(sub)halos in the mass range considered in Fig. 3 become
satellites at an infall redshift zinfall ¼ 1 and that tidal forces
by the host halo strip the material from the subhalo making
the heat outflow from the center to the outskirts of the

2We note that, although the subhalo infall redshift distribution
is broad, depending on the mass and orbit of individual subhalos,
it roughly has a median value of z ∼ 1 for the subhalo population
of MW-size halos [88,91]. Since this is the population we are
interested in, and since we are not considering detailed orbital
properties, we fix zinfall ¼ 1.
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subhalo much more efficient and thus reduce the timescale
for collapse by a factor of 10 [see Eq. (26)]. This significant
acceleration of the core-collapse phase is shown as dashed
lines in Fig. 3, which shifts the upper limit of the mean
mass of a halo that could undergo the core collapse to ∼2 ×
1011M⊙ and ∼1012M⊙ for the tBHðzLMMÞ and tBHðzformÞ
cases, respectively.
The black star symbol in Fig. 3 indicates the halo mass at

which 50% of (sub)halos are estimated to undergo core
collapse by z ¼ 0 according to the results in Ref. [25],
which is based on the simulation of the vd100 model
presented in Ref. [13]. The simulation results are not
compatible with our modeling of an early cusp-core
transformation (yellow lines), and therefore are also incon-
sistent with the acceleration effect due to tidal stripping
(dashed lines). In the following, we discuss the effects that
are likely behind this result:

(i) Tidal acceleration of core-collapse?—The impact
of additional environmental effects taking place

between a (sub)halo and the host halo during
mergers, such as the evaporation of subhalo particles
due to interactions with particles in the host, have
been found to counteract the tidal stripping effect,
delaying—or even disrupting—the core-collapse
phase in models with low cross sections σT=mχ ≲
10 cm2 g−1 [93]. Recent N-body cosmological
SIDM simulations of a MW-size halo and its
subhalos with a cross section in the range σT=mχ ∼
1–5 cm2 g−1 confirm that subhalos do not experi-
ence core collapse; thus, larger values are required
[62]. These recent results essentially rule out the
constant cross section SIDM model as a viable
possibility to explain the diversity of the MW
satellite population and therefore strengthen the case
for a velocity-dependent SIDM model with core
collapse such as the one explored here based in
Ref. [13] (see also Ref. [89]). Moreover, these
results indicate that core collapse is not accelerated
in the manner anticipated by the tidal stripping
model in Ref. [58], and thus the dashed lines in
Fig. 3 are likely overestimating its effectiveness.

(ii) Cosmological accretion.—Based on the previous
discussion, the likely range of validity for our
modeling is shown in Fig. 4, where we have omitted
the concentration-mass relation scatter for clarity. It
is clear that the simulation result (black star symbol)
is closer to the model where the cusp-core trans-
formation begins later, at zcc ¼ zLMM. This finding
supports the case for cosmological accretion in-
creasing the time of the evolution of a SIDM halo

FIG. 4. Timescale for black hole formation in SIDM halos as a
function of the present-day SIDM halo massM0 in isolation. The
solid blue and yellow lines are the same as those in Fig. 3, which
bracket the range of the possible threshold epochs for the cusp-
core-collapse evolution to begin (for mean values of the con-
centration-mass relation). The dashed black line is tBHðzLMMÞ
(i.e., the blue line) recalibrated to the simulation-based result of
Ref. [25] (black star) with the calibration factor C ¼ 0.42
[see Eq. (19)].

FIG. 3. The timescale to form a black hole [Eq. (21)] in SIDM
halos as a function of the present-day halo massM0 (in isolation)
for the velocity-dependent model vd100 [13,63] shown in Fig. 2.
The yellow solid line shows the case where the starting time for
the cusp-core-collapse evolution is set to the assembly/formation
time of the primordial (pre-SIDM) CDM NFW halo, zcc ¼ zform
(see Sec. II C and Fig. 1 where the yellow dotted line marks the
cosmic time corresponding to zform), while the blue solid line
brackets the impact of cosmological accretion by setting
zcc ¼ zLMM, which is the epoch of the last major merger for
given halo of mass M0 (see Sec. II D and Fig. 1 where the blue
dotted line marks the cosmic time corresponding to zLMM).
Shaded regions indicate a scatter of �10% in the concentra-
tion-mass relation, e.g., Ref. [92]. Dashed lines are the corre-
sponding cases including the acceleration of the collapse time
driven by tidal stripping [58] assuming a mass-independent infall
epoch of zinfall ¼ 1 (see Sec. II G). The horizontal orange line
indicates the age of the Universe. The black star symbol marks
the transition mass where 50% of the subhalo population is
estimated to be in the core-collapse regime according to Ref. [25];
see also Refs. [13,63].
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spent in the cored, quasistable regime, possibly due
to energy injection from infall material into the
central core as discussed in Sec. II D. A good match
to the simulation results can then be achieved by
setting zcc ¼ zLMM in our model and adjusting the C
parameter in Eq. (19) to C ≈ 0.42, which is shown as
a dashed line in Fig. 4. We note thatC is a calibration
factor which, following Ref. [82], we had set to C ¼
0.57 in Fig. 3. This agrees with Ref. [83], which
calibrated this parameter to a very similar value
using the isolated SIDM simulations in Ref. [56].
We can then model the impact of cosmological
accretion by either setting zcc to zLMM and makin a
small modification to C (which is the case we adopt)
or by modifying the value of C significantly (starting
from zcc ¼ zform) and invoking a needed recalibra-
tion of the parameter based on cosmological simu-
lations. For our model, the latter case can be
achieved by setting zcc ¼ z−2 and fixing C ≈ 0.19.

A. IMBHs in the ultrafaint galaxies

One consequence of invoking core collapse of SIDM
halos to explain the diversity of inner DM densities in the
MW satellite population is that those collapsed satellites
will host central black holes. In particular, the vd100 model
explored in Ref. [13] predicts that the dense ultrafaint
galaxies, specifically, Segue I, Segue II, Willman I, and
Boötes II, will be hosted by gravothermally collapsed
subhalos (see Fig. 3 in Ref. [13]). We can compute the
expected seed black hole mass for a collapsed SIDM halo
in the vd100 model using our framework [see Eq. (22)].
This is shown in Fig. 5 as a function ofM0, the halo mass in
isolation. We use our calibrated model with zcc ¼ zLMM and
C ¼ 0.42 and consider two cases to illustrate the impact of
halo concentration in our results: (i) the solid violet line
where halos have a mean concentration at M0 (cmean), and
(ii) the dashed red line for halos with a concentration in
excess3 to the mean by 2σ (cmean þ 2σ). We first notice that,
although the two lines representing these cases almost
overlap with each other in Fig. 5, they in fact have a
different slope and normalization since Eq. (22) depends
(weakly) on concentration.4 The net impact of concen-
tration in the value of MBH for a given halo mass is up
to 5%.
Second, these predicted MBH −M0 relations are trun-

cated at different halo masses, represented by the vertical
downward arrows of the respective color. In the first case
(using cmean), this cutoff mass occurs at M0 ∼ 3 × 108M⊙

(violet arrow) and can be interpreted as the mass at which
50% of the halos have core collapsed and 50% of the halos
are still in the core phase. At higher (lower) masses, the
fraction of core-collapsed halos is lower (higher) depending
on halo concentration. For example, SIDM halos with
M0 ∼ 2 × 109M⊙ are only expected to have collapsed by
the present day if they have a concentration larger than the
mean by 2σ (red arrow), which represents only a small
fraction (2.5%) of the halos at this mass. Therefore, in the
vd100 model, only a small fraction of the massive (sub)
halos in a MW-size system, which are expected to host the
MW satellites, would have undergone core collapse.
As we discussed in Sec. II F, the range of plausible BH

masses depends on the epoch (z�) at which one should
evaluate the relevant properties of the core that determine
the SMFP region that collapses [Eq. (23)]. We established
z� ¼ zBH as a reasonable choice, and it is the one that
appears in Fig. 5 and in subsequent figures. Modifying this
choice to the earliest plausible epoch z� ¼ zcc results
instead in a smaller BH mass. For our default choice of
zcc ¼ zlmm, the difference is up to 30% over the relevant
mass range with a weak dependence on halo mass.
The gray line in Fig. 5 represents the observed SMBH-

mass–halo-mass relation for massive galaxies extrapolated
to low masses [94], while the shaded gray band represents
the intrinsic observational scatter. This relation and its
spread have only been measured in halos larger than
1011.5M⊙, and therefore we plot the extrapolated values

FIG. 5. Black hole mass–halo mass relation. The violet and red
lines follow the estimate of the SIDM-core-collapse formula
[Eq. (22)] with the former using the mean concentration-mass
relation, while the latter uses a þ2σ value over the mean. For
these cases, the arrows indicate the corresponding halo mass at
which tBH ¼ 0, i.e., the mass at which 50% and 2.5% of the halo
population at that mass is in the core-collapse regime, violet and
red, respectively. The gray line is the extrapolation toward lower
masses of the empirical relation for supermassiv black holes
(SMBHs) in galaxies with halo masses > 1011.5M⊙, while the
gray band represents the intrinsic scatter on this relation. adopted
from Ref. [94].

3Recall we are using a mass-independent spread of the
distribution of halos in the concentration-mass relation equivalent
to 0.1 dex for 1σ of the distribution.

4This dependence is not strong because zBH decreases with
M0; thus, the halo mass at this redshift, MðzBHÞ, increases with
M0, which makes the relevant concentration, cðMðzBHÞÞ, almost
independent of present-day halo mass M0.
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down to 107M⊙ in Fig. 5. Such an extrapolation of the
empirical MBH −M0 relation to the regime of dSphs
(M0 ≤ 1010M⊙) would imply IMBHs in the range between
4–7 × 103M⊙. Remarkably, the slope of the predicted
SIDM-driven MBH −M0 relation by Eq. (22) is very
similar to that of the SMBH–halo mass relation, while
the normalization is approximately 2 orders of magni-
tude lower.
An important aspect of our model is that it aims to

explain the diversity of the MW satellite population, by
invoking a velocity-dependent SIDM model. This model
predicts that only a fraction of the satellites has undergone
collapse and hosts IMBHs, specifically the least massive (in
a model like vd100, those with M0 ≲ 3 × 109M⊙). For
instance, the massive central black hole inferred recently in
the dSph Leo I withMBH ∼ 3 × 106M⊙ [95] is too massive
to lie in the extrapolated MBH −M0 relation, and the
properties of the halo associated with Leo I, being one
of the brightest satellites of the MW, would likely put it in a
range of M0 values close to, but nevertheless above, the
threshold for collapse in the vd100 model. The significance
of this issue depends on the specific velocity-dependent
SIDM model assumed. For instance, in Ref. [89], Leo I is
associated with a halo of an initial mass of M200 ∼ 3 ×
109M⊙ that has gravothermally collapsed, according to the
inferred velocity-dependent SIDM model tuned to explain
the diversity of the dSph satellite population in that work.
Nevertheless, the central black hole mass inferred for Leo I
in Ref. [95] is several orders of magnitude larger than can
be explained by gravothermal collapse alone and a signifi-
cant growth of the seed black hole by other means would be
required. For other bright dSphs, there might be a different
type of conflict; for instance, Fornax and Ursa Minor have
upper limits to the presence of a central black hole of
aroundMBH ∼ 3 × 104M⊙ [96,97]. These systems haveM0

values likely in the range around the threshold for core
collapse. The precise value of M0 inferred from the
observed kinematics of the dSph depends on several
quantities, such as the modeled DM profile and the orbital
parameters, but with both being associated to cored systems
in Ref. [13] for the vd100 model, they are not expected to
be associated with collapsed subhalos.
We can classify SIDM models in the cross section–halo

mass parameter space as to whether they generate a
combination of cored and gravothermally collapsed halos
in the dwarf galaxy regime. More specifically, we deter-
mine the normalization boundaries of the self-interacting
cross section according to whether or not the gravothermal
collapse regime is expected to occur in a fraction of the
MW satellites’ host subhalos. In practice, and for simplic-
ity, we only consider SIDM models described by the
classical velocity-dependent formula for a Yukawa-like
interaction model σT [i.e., Eq. (12)], and, at first, we fix
the relative velocity vmax at which ðσTvÞ peaks; in this way,
we only vary the normalization σmax

T .

Figure 6 shows the effective cross section hσmaxi
[thermal average of σT=mχ at rmax; see Eq. (17)] as a
function of a halo mass at the present day, M0. The
corresponding BH masses for a given M0 are plotted on
the top x axis using Eq. (22). The vd100 model results for
the cases in which hσmaxi is computed at z ¼ zcc ¼
zLMMðM0Þ and at z ¼ 0 are shown as the black solid
and dashed lines, respectively. The former is the relevant
cross section to set the core-collapse timescale—notice that
the relevant epoch is a function of mass—while the latter is
shown as reference to make the connection with Fig. 2,
where the thermal average is evaluated at z ¼ 0 for
all halos.
The hashed/dotted region at M0 ≤ 108M⊙ marks an

approximate lower limit on the mass of halos where galaxy
formation is efficient; below this mass, heating during the
epoch of reionization severely reduces the efficiency of
cooling and subsequent star formation, e.g., Ref. [98]. The
vertical dotted red line is an approximate upper limit on the
mass of possible halo hosts for the population of dSph MW

FIG. 6. The effective cross section as a function of a present-
day SIDM halo massM0 in isolation. The black solid and dashed
lines represent the effective cross section for the vd100 model
evaluated at zLMM and z ¼ 0, respectively; we use our default
model with zcc ¼ zLMM and calibrated to the simulation analysis
in Ref. [25]. The x axis on the top shows the corresponding
(SIDM-driven) black hole mass for a given M0. The red dashed
line (nearly horizontal) indicates the required cross section value
for the onset of gravothermal collapse: SIDM-driven cuspy halos
lie above (light violet), while SIDM cores lie below (beige) down
to the point where the cross section is so low that halos are
essentially CDM-like (light green). The red dotted line marks the
upper mass for the dSph MW satellites to reside, e.g., Ref. [24],
while the hashed/dotted region to the left starts at the mass where
reionization significantly suppresses galaxy formation. The dark
violet band indicates the region where vdSIDM models like
vd100 but with different normalization produce a diverse MW
satellite population hosted by halos that could either be cored
or cuspy.
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satellites, e.g., Ref. [11]. Thus, the mass range 108–3 ×
1010M⊙ represents the region inhabited by theMWsatellites.
Different colored regions indicate the range of cross section
values where halos with different inner density profiles
reside. The light-green region at < 0.1 cm2 g−1 is where
DM is effectively collisionless, and thus the structure of all
halos is indistinguishable fromCDM (i.e., cuspy).5 The light
brown region in the middle is where SIDM models deviate
significantly from CDM and predict quasiequilibrium cored
halos. The red dashed line marks the effective cross section
for the onset of gravothermal collapse to occur by z ¼ 0; it
demarcates the transition from cores to SIDM-driven core-
collapsed (cuspy) halos (light violet region on the top of
Fig. 6).
The violet band in Fig. 6 denotes the set of cross section

normalization values [σmax
T in Eq. (12)] in vd100-like

models that generate a diverse population of MW satellites,
i.e., where halos with cored and cuspy profiles coexist. This
section of parameter space is highlighted with a yellow
hatched region within the range of halo masses expected for
the MW satellites. Given that the timescale for core-
collapse depends on halo mass and concentration, we
can estimate the fraction of halos of a given mass M0 that
have undergone gravothermal collapse by considering the
probability distribution of concentrations for halos at a
fixed mass, which according to simulations follows a log-
normal distribution, e.g., Ref. [100],

Pðlog10 cÞ ¼
1

σ
ffiffiffiffiffiffi
2π

p exp

�
−
1

2

�
log10 c − hlog10 ci

σ

�
2
�
;

ð27Þ

where hlog10 ci is the median value of the concentration (in
logarithm) and σ is its standard deviation. In our frame-
work, the former is given by the concentration-mass
relation model described in Sec. II C, while the latter is
taken to be mass independent and fixed to 0.1 dex based on
simulations.
Figure 7 shows the fraction of core-collapsed halos as a

function of M0 for the vd100 model (black solid line) and
for its variations with different cross section normalizations
that result in a diverse MW satellite population (dark
violet), i.e., for the corresponding models shown in dark
violet in Fig. 6. For a model with the normalization of
vd100, most of the massive (sub)halos (> 109M⊙) that are
expected to host the MW satellites are predicted to be
cored, with only ∼30% having undergone core collapse.
However, the breadth of the potential collapsed fraction
values indicates that even a small renormalization of the

model will significantly increase this fraction. We note that
the prediction in Fig. 7 needs to be tested with MW-size
simulations with a wide range of cross sections and with
enough massive subhalos to sample the high-mass end of
the subhalo population and subsequently recalibrated to
match the full range of vd100-style models.
In principle, a complete exploration of the Yukawa-like

interaction SIDM model in the classical regime requires
variations of two parameters, vmax and the normalization
σmax
T . In addition, the family of SIDM models that generate

gravothermally collapsed halos as well as cored halos is
restricted by a couple of additional factors we have yet to
consider. First, the impact of SIDM in DM structures at
larger scales can be compared with observational probes of
morphology based on lensing and x rays. These observa-
tions have constrained the transfer cross section σT=mχ ≲
0.1–1 cm2 g−1 on massive galaxies and galaxy cluster
scales (see Sec. I for references). In particular, we take
the approximate constraint on the cross section in massive
ellipticals set in Ref. [44] and more recently in Ref. [45] of
hσmaxi ≤ 1 cm2 g−1 at halo mass M0 ¼ 1013M⊙. Second,
the SIDM cross section is subject to an upper limit set by
the quantum zero-energy resonance, known as the unitarity
bound, e.g., Ref. [101]. When the cross section saturates
the unitarity bound, it is parametrized solely by the DM
mass and is given by

σu ¼
4π

k2
; ð28Þ

where the relative momentum of the scattering particles k is
defined as k ¼ ðm=2Þv. We can then use σu to set an upper
bound for the cross section σmax

T that peaks at vmax:

FIG. 7. The fraction of core-collapsed halos as a function ofM0

for the vdSIDM models shown in Fig. 6, which have a diverse
range of halo profiles (dark violet). The black solid line represents
the benchmark vd100 model. As in Fig. 6, we use our default
model with zcc ¼ zLMM and calibrated to the simulation analysis
in Ref. [25].

5The upper boundary here is approximate since small cores are
expected even at such low cross sections; however, simulation
results (e.g., Ref. [35]) have shown that these cores are too small
at the scale of MW satellites to constitute a significant deviation
from the CDM case (see also Ref. [99]).
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ðσTvÞ ≤ σmax
T vmax ≤ σuvmax: ð29Þ

In Fig. 8, we show the range of viable parameter space,
in peak relative velocity vmax and normalization σmax

T , of the
Yukawa-like SIDM models [Eq. (12)] that satisfy two
conditions: having a diverse halo population (i.e., cored and
gravothermally collapsed halos) in the range of masses
suitable to host the MW satellite population and satisfying
the constraint from elliptical galaxies. The unitarity bound
(for mχ ¼ 20 GeV as a reference) is marked as a dashed
line, and the pair of σmax

T and vmax corresponding to vd100
is marked with the blue star.

IV. CONCLUSIONS

If dark matter is made of particles that can strongly self-
interact and therefore can be described as self-interacting
DM, the nonlinear evolution of DM halos consists of two
phases: a cusp-core transformation in which the originally
cuspy halo develops a central isothermal core that is in
quasiequilibrium and remains in cored configuration for
several Gyr followed by a rapid gravothermal core-collapse
phase. The ultimate consequence of this SIDM-driven
collapse is the formation of a black hole with a mass that
is a fraction of the central DM core mass [54]. If the cross
section is strongly velocity dependent—and thus halo mass
dependent—then the population of halos today is expected
to exhibit a wide diversity of central density profiles. This
behavior has been invoked as a viable way to explain the
diversity of inner DM densities in the Milky Way satellites
[13,64,89].

Velocity-dependent SIDM models are the natural result
of several particle physics models, e.g., those with new
light mediators that produce an effective Yukawa-like
interaction between DM particles (for a review, see, e.g.,
Ref. [33]). These models also have the advantage of
avoiding the stringent constraints on the cross section from
gravitational lensing, x-ray morphology, and dynamical
analysis in cluster mergers and elliptical galaxies, which
limits σT=mχ ≲ 1 cm2 g−1 at these scales [38–45], well
below the threshold for gravothermal collapse. In this
SIDM scenario, the structure of DM today is indistinguish-
able from the cold dark matter scenario at cluster scales.
The deviation from CDM grows at smaller scales, starting
with the development of spherical isothermal cores in the
center of 1011–1012M⊙ halos and followed by the onset of
gravothermal collapse for the halos of dwarf spheroidal
galaxies, a fraction of which should host SIDM-generated
intermediate mass black holes.
In this work, we develop an analytical framework to

predict the timescales and mass scales for the formation of
IMBHs in SIDM halos, which includes the different stages
in the cusp-core-collapse evolution of SIDM halos in a
cosmological setting (Sec. II). This framework is calibrated
to a high-resolution simulation of a benchmark velocity-
dependent SIDM model (vd100; see Fig. 2), which has
been tuned to produce a large diversity in the MW satellite
population [13,25,63]. Our main results are summarized as
follows:

(i) The black hole formation (gravothermal collapse)
timescale as a function of present day halo mass (in
isolation) is shown in Fig. 3. We consider two
starting redshifts that bracket the range of the
possible threshold epochs (zcc) when the cusp-
core-collapse evolution starts (see Sec. II D). The
assembly/formation redshift of the primordial CDM
NFW halo zcc ¼ zform ¼ z−2 (yellow lines; defined
as the time of assembly of the central region of the
halo within its scale radius according to the model
by Ref. [71]), and the redshift of the last major
merger of the halo zcc ¼ zLMM (blue lines; takes into
account cosmological accretion and it is computed
using the simulation results of Ref. [77]). We also
consider the possible acceleration of the collapse
timescale driven by tidal stripping following [58]
(dashed lines in Fig. 3; see Sec. II G).

(ii) We compare our results with the mass threshold
(∼3 × 108M⊙), where most of the MW (sub)halos
are observed to have undergone gravothermal col-
lapse according to the vd100 SIDM simulation
analyses made in Ref. [63] and more recently in
Ref. [25]. We find that our modeling can be fitted to
this result by a small recalibration of the free
parameter C in the gravothermal fluid formalism
[Eq. (19)] by choosing zcc ¼ zLMM and by assuming
that tidal stripping has no impact on the collapse

FIG. 8. The viable values of the parameter space that define the
vdSIDMmodels studied here [Eq. (12)]: the relative velocity vmax
where the transfer cross section σmax

T peaks. The highlighted
region is that of models that produce a bimodal distribution of
halos (green area) and satisfies the constraint from elliptical
galaxies hσmaxi ≤ 1 cm2 g−1 for a halo mass of M0 ¼ 1013M⊙.
The black dashed line is the unitarity bound for the SIDM cross
section for a particle massmχ ¼ 20 GeV. The blue star marks the
vd100 model.
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time (see Fig. 4). This choice is seemingly consistent
with previous expectations that the core phase is
delayed by cosmological infall [76] and supports the
recent detailed simulation work by Ref. [61] that
suggests the impact of tidal stripping in accelerating
core collapse is likely overestimated in Ref. [58]—
from which we developed our incorporate tidal
stripping model—due to the competing environmen-
tal effect of subhalo heating through collisions with
host halo particles.

(iii) We show the black hole mass MBH as a function of
the present day halo mass M0 in Fig. 5 (violet and
red lines). This estimated seed black hole mass is
obtained with Eq. (22), which is derived by follow-
ing the evolution of the part of the core that collapses
to high central densities within the gravothermal
fluid formalism. The development of the relativistic
instability ultimately leads to the formation of the
black hole [55]. Remarkably, the slope of theMBH −
M0 SIDM-core-collapse relation is similar to that of
the extrapolated SMBH–halo mass empirical rela-
tion found in massive galaxies [94]. This mechanism
could then potentially constitute a continuation of
the empirical relation towards the regime of dSphs,
although the normalization is 2 orders of magnitude
below the expectation, and thus the seed SIDM-
driven black hole would need to grow substantially
to satisfy such a scenario and would have to be
rapidly accelerated compared to our predictions.

(iv) We also consider the impact of the cosmological
scatter in the concentration-mass relation in our
results by first considering a 10% scatter on the
concentration at a fixedmass (today) (e.g., Ref. [92]).
We find that more concentrated halos have their core
collapse several Gyrs earlier (shaded areas in Fig. 3).
The fraction of halos that is expected to collapse
strongly depends on the range of concentrations
available to the halo population at a given mass (see
Fig. 7). The predicted black hole mass is, however,
mainly set by halo mass and is only weakly affected
by concentration (at the percent level).

(v) Finally, we estimated the range of self-scattering
cross sections that result in a diverse MW satellite
population, i.e., that generate both cored and core-
collapsed host halos for MW satellites. We first
consider SIDM models with the same velocity
dependence as vd100 but with different normaliza-
tion [see Eq. (12)]. The results are shown in Figs. 6
and 7. We found that the vd100 model has a
normalization that is close to the lower limit to
exhibit diversity with most of the subhalos in MW-
size systems being cored, especially for halos
M0 > 1010M⊙, of which ∼70% are cored. The latter
is expected since our default choice of parameters is
calibrated to the recent results in Ref. [25], which

agrees qualitatively on the scarcity of massive core-
collapsed subhalos in vd100. As noted by Ref. [25],
this represents a potential issue with models such as
vd100 since it would be more natural to expect the
bright MW dSphs to be assigned to the most massive
subhalos, which in this case are likely to be cored,
and thus inconsistent with the properties of dense
bright dSphs. We show that such a potential issue
can be alleviated by a relatively small increase in the
cross section normalization of the vd100 model,
since the fraction of massive core-collapsed halos
increases rapidly with larger cross sections (see
Fig. 7). To expand upon this result, we explore in
Fig. 8 the parameter space of the Yukawa-like SIDM
model [Eq. (12)] to find the viable values of the peak
velocity vmax and the normalization σmax

T that satisfy:
(i) having a diverse MW satellite population (as
described before), (ii) satisfying constraints at larger
scales, in particular those set by elliptical galaxies
[44,45], and (iii) satisfying the constraint set on the
cross section by the unitarity bound. These con-
ditions set an upper bound for vmax to be vmax <
70 km s−1 with a very narrow range of possible σmax

T
values, while an ever wider range of σmax

T is suitable
for smaller vmax values down to vmax < 5 km s−1. To
ascertain whether a single SIDM model can fit all
MW satellites simultaneously requires much more
precise estimates for the fraction of collapsed-to-
total MW satellites.

In Appendix B, we discuss different values of calibration
parameter C in the gravothermal fluid model and their
impact on our results. Based on previous studies, this
parameter has a plausible range between 0.4–0.75, with our
calibrated value being at the low end. However, such a
value seems to be appropriate/favored by analyses based on
cosmological simulation [102] (see also Ref. [83]).
Nevertheless, we explore in Appendix B how choosing a
value at the high end C ¼ 0.75 would impact our key
results. We find that, although the timescale for black hole
formation significantly changes with such a value of C (see
Fig. 10), the impact on our key result is modest; that is, the
region in the plane σmax −M0 that would result in a diverse
(i.e., cuspy and cored) MW satellite population is shifted
downward overall by about a factor of ∼1.5 in the
normalization of the cross section (see Fig. 11).
If SIDM is to be invoked to explain the diversity of the

dSph MW satellite population, then the presence of IMBHs
in the center of cored-collapsed (cuspy) halos is unavoid-
able. Based on our work, the range of seed IMBH masses
for the dSphMW satellites that can potentially be hosted by
cored-collapsed SIDM halos is in the range 0.1–1000M⊙
(Fig. 6). The existence of such IMBHs may be verified by
detailed observations of dSph kinematics with the upcom-
ing generations of extremely large telescopes [103]. Due to
their high spatial resolution, they should be able to find
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< 105M⊙ black holes in < 109M⊙ in nearby galaxies
through high-precision proper motion measurements [103].
For example, to reach the range of 103–104M⊙, Ref. [104]
suggests looking at the disruption of stars passing close
to IMBHs. Under certain conditions, IMBHs should
typically acquire companions with orbital periods of years,
corresponding to semimajor axes of ∼5–10 mas for
∼103M⊙ IMBHs.
More precise observational kinematic data for the dSphs

in the future will constrain further the inner DM content of
these systems, possibly establishing their inner DM profile.
This will conclusively determine the significance of the
diversity problem and constrain different classes of sol-
utions. On the theoretical side, the predictions of vdSIDM
models such as those considered in this work need to be
complemented with more dedicated simulations that
explore the relevant parameter space of cross sections that
contain the gravothermal collapse regime [13,64] and can
be complemented with a semianalytical revision of the
predicted seed black hole mass in the seminal work by
Ref. [54] within a full cosmological setting. Finally, a key
aspect to explore is the interplay between the formation and
evolution of the visible baryonic galaxy with the collapsing
SIDM core and its central black hole.
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APPENDIX A

In this work, we computed the relaxation timescales for
self-scattering and core-collapse using Eqs. (18) and (19),
respectively. These equations are adapted from Ref. [82],
which incorporates a velocity-dependent SIDM cross

section into the gravothermal fluid formalism. In this
appendix, we consider the impact on our results of using
an alternative set of formulas developed by Ref. [57], where
the SIDM cross section is assumed to be constant.
According to this reference, the cusp-core-collapse time-
scale is given by

tcoll ¼ 455.65trðzccÞ; ðA1Þ

where trðzccÞ is the relaxation time derived for velocity-
independent cross sections:

trðzccÞ ¼
1

aσmax

�
kðcÞ2
4πG3

�
1=6

δ−7=6char ρcritðzccÞ−7=6M−1=3
0

¼ 0.310 Myr ×
�

M0

1012M⊙

�−1=3�kðcðzccÞÞ
kð9Þ

�
3=2

�
cðzccÞ
9

�
−7=2

�
ρcritðzccÞ

ρcritðz ¼ 15Þ
�

−7=6
� hσmaxi
1 cm2=g

�
−1
: ðA2Þ

Then, the time to form a black hole is given by

tBHðM0; σmaxÞ ¼ tðzccÞ þ 455.65trðzccÞ: ðA3Þ

In Fig. 9, we compare the black hole formation timescale
derived self-consistently for velocity-dependent cross sec-
tions [Eq. (21)] with the case derived assuming the
velocity-independent cross section [Eq. (A3)]. For this
comparison, we have used the case with zcc ¼ zform ¼ z−2
uncalibrated and without tidal stripping (i.e., equivalent to

the solid yellow line in Fig. 3). The tBH −M0 curves have a
similar shape in both cases across all the explored mass
range, but with a ∼1 Gyr difference in normalization. For
the purposes of this work, such a difference could be
absorbed almost completely in the calibration factor C
in Eq. (18).

APPENDIX B

In the gravothermal fluid formalism, the heat conduc-
tivity κ is a key quantity in the time evolution of the SIDM

FIG. 9. Timescale to form a black hole in SIDM halos as a
function of the present-day halo mass M0 (in isolation). The
yellow line [Eq. (21)] represents the cusp-core-collapse evolution
timescale chosen for this work (equal to the curve of the same
color in Fig. 3), and the violet line [Eq. (A3)] is based on
Ref. [57]. As in Fig. 3, shaded bands indicate a concentration
scatter of �10% in the concentration-mass relation (e.g.,
Ref. [92]). The horizontal line indicates the age of the Universe
at z ¼ 0.
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halo. In the LMFP regime, it can be derived by dimensional
analysis, but it carries an unknown parameter C that is the
order of unity, which cannot be derived from first princi-
ples, e.g., Refs. [54,56–58,82,83]. To determine C, all these
studies compared the evolution of the halo density profile
given by the gravothermal fluid model to that obtained from
different types of N-body simulations, where hard-sphere
elastic scattering interactions were implemented. Most of
these studies used isolated idealized simulations with only
Refs. [58,82,83] using the cosmological constant–cross
section SIDM simulations presented in Refs. [56,105]. For
large cross sections that have entered the regime of core
collapse, the latter studies suggest that a value of C ¼ 0.45
is a better fit to cosmological simulations, while previous
analyses based on isolated simulations preferred values
around 0.6–0.75.
In this work, we used the formula for the relaxation time

[Eq. (19)] and, initially, the fitting parameter C ¼ 0.57
calibrated for the velocity-dependent SIDM model in
Ref. [82] using isolated simulations. This value was
roughly in between the values explored in the literature
as discussed above. After comparing the timescale for
gravothermal collapse (black hole formation) with the
results from Ref. [25] based on the high-resolution veloc-
ity-dependent SIDM simulation performed in Ref. [13], we
found that a value of C ¼ 0.42 is a more accurate fit (see
Fig. 4). This is in qualitative agreement with the analysis in
Ref. [83], which found C ¼ 0.45 consistent with the
cosmological simulation they analyzed. However, we note
that there are different methods used for calibration. Our
calibration is based on comparing the mass threshold where
≥ 50% subhalos of a MW-size host have collapsed, while
Ref. [83] uses the density profile of the dwarf-size main
host halo. More recently, Ref. [102] performed a new
velocity-dependent SIDM cosmological simulation with a
resolution similar to that of Ref. [13]. Using a comparison
similar to ours, albeit with a different methodology,
between the gravothermal fluid model and the simulation,
Ref. [102] found find that a value of C ¼ 0.75 over-
estimates the number of subhalos that should collapse by
z ¼ 0 by around a factor of 2. Thus, this result also suggests
that a lower value of C fits cosmological simulations better,
which is qualitatively in agreement with our finding.
In order to obtain a precise value of the parameter C that

is appropriate for subhalos in a cosmological setting, it
would be necessary to perform a detailed analysis across
multiple high-resolution simulations that considers varia-
tions across different velocity-dependent cross sections and
a large exploration across different host halo masses. This
hypothetical study requires many more simulations than
have been performed to date; currently, only two exhibit the
required mass resolution (Refs. [13,102]). Such an analysis
is beyond the scope of this paper. Nevertheless, we can
take into account the uncertainty in the value of C
by considering its impact on the key results of our work.

We do this in this appendix by comparing the predictions of
our model with the calibrated C ¼ 0.42 value we have used
in our key results, and with a value of C ¼ 0.75. The latter
is the highest value for this parameter explored in
Refs. [54,58] and as we argued before is at the high end
of plausible values as found in Ref. [102].
The impact on the timescale for black hole formation due

to variations in C across this plausible range of values is
shown in Fig. 10, specifically as the range between the
dashed and thick dot-dashed black lines. We note that the
resulting range is similar to the spread observed due to
the 10% cosmological scatter in the concentration-mass
relation (see Fig. 3) with an increase in the threshold mass
that divides subhalos that have collapsed from those that
have not by about an order of magnitude. Naturally, setting
a higher value for the C parameter lowers the cross section
values required to reach the threshold for the onset of
gravothermal collapse by about a factor of 1.5; this is
shown in Fig. 11 through the difference between the thin
and thick red dashed lines. The overall change would then
be a shift downward of the region that is expected to have a
diverse MW subhalo satellite population of cores and
cusps. We conclude that the overall impact of the C
parameter uncertainty on our key plot Fig. 6 is a factor
of ∼1.5 on the normalization of the transfer cross section
that results in a diverse MW satellite population. Finally,
we show in Fig. 12 the fraction of core-collapsed halos as a
function of M0 when setting C ¼ 0.75 instead of our
default value of C ¼ 0.42 as a thick dot-dashed black line.
With this highest value of C, 80% of the (sub)halos with
> 109M⊙ are expected to have undergone core collapse.
This is around 50% higher than in the case of C ¼ 0.42.
Setting other values of C in the plausible range would result
in different core-collapsed halo fractions in between the
two black solid and dot-dashed lines.

FIG. 10. The same as Fig. 4, but with the addition of the thick
dot-dashed black line, which is the same as the calibrated model
used for our key results (thin dashed black line) but with C ¼
0.75 instead.
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instead of C ¼ 0.42, which is the calibrated value used for our
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